Search results for: alternative family structures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10674

Search results for: alternative family structures

1074 Journeys of Healing for Military Veterans: A Pilot Study

Authors: Heather Warfield, Brad Genereux

Abstract:

Military personnel encounter a number of challenges when separating from military service to include career uncertainty, relational/family dynamics, trauma as a result of military experiences, reconceptualization of identity, and existential issues related to purpose, meaning making and framing of the military experience(s). Embedded within military culture are well-defined rites of passage and a significant sense of belonging. Consequently, transition out of the military can result in the loss of such rites of passage and belongingness. However, a pilgrimage journey can provide the time and space to engage in a new rite of passage, to construct a new pilgrim identity, and a to develop deep social relationships that lead to a sense of belongingness to a particular pilgrim community as well as to the global community of pilgrims across numerous types of pilgrimage journeys. The aims of the current paper are to demonstrate the rationale for why pilgrimage journeys are particularly significant for military veterans, provide an overview of an innovative program that facilitates the Camino de Santiago pilgrimage for military veterans, and discusses the lessons learned from the initial pilot project of a recently established program. Veterans on the Camino (VOC) is an emerging nongovernmental organization in the USA. Founded by a military veteran, after leaving his military career, the primary objective of the organization is to facilitate healing for veterans via the Camino de Santiago pilgrimage journey. As part of the program, participants complete a semi-structured interview at three time points – pre, during, and post journey. The interview items are based on ongoing research by the principal investigator and address such constructs as meaning-making, wellbeing, therapeutic benefits and transformation. In addition, program participants complete The Sources of Meaning and Meaning in Life Questionnaire (SoMe). The pilot program occurred in the spring of 2017. Five participants were selected after an extensive application process and review by a three-person selection board. The selection criteria included demonstrated compatibility with the program objectives (i.e., prior military experience, availability for a 40 day journey, and awareness of the need for a transformational intervention). The participants were connected as a group through a private Facebook site and interacted with one another for several months prior to the pilgrimage. Additionally, the participants were interviewed prior to beginning the pilgrimage, at one point during the pilgrimage and immediately following the conclusion of the pilgrimage journey. The interviews yielded themes related to loss, meaning construction, renewed hope in humanity, and a commitment to future goals. The lessons learned from this pilot project included a confirmation of the need for such a program, a need for greater focus on logistical details, and the recognition that the pilgrimage experience needs to continue in some manner once the veterans return home.

Keywords: pilgrimage, healing, military veterans, Camino de Santiago

Procedia PDF Downloads 289
1073 Finite Element Analysis of Layered Composite Plate with Elastic Pin Under Uniaxial Load Using ANSYS

Authors: R. M. Shabbir Ahmed, Mohamed Haneef, A. R. Anwar Khan

Abstract:

Analysis of stresses plays important role in the optimization of structures. Prior stress estimation helps in better design of the products. Composites find wide usage in the industrial and home applications due to its strength to weight ratio. Especially in the air craft industry, the usage of composites is more due to its advantages over the conventional materials. Composites are mainly made of orthotropic materials having unequal strength in the different directions. Composite materials have the drawback of delamination and debonding due to the weaker bond materials compared to the parent materials. So proper analysis should be done to the composite joints before using it in the practical conditions. In the present work, a composite plate with elastic pin is considered for analysis using finite element software Ansys. Basically the geometry is built using Ansys software using top down approach with different Boolean operations. The modelled object is meshed with three dimensional layered element solid46 for composite plate and solid element (Solid45) for pin material. Various combinations are considered to find the strength of the composite joint under uniaxial loading conditions. Due to symmetry of the problem, only quarter geometry is built and results are presented for full model using Ansys expansion options. The results show effect of pin diameter on the joint strength. Here the deflection and load sharing of the pin are increasing and other parameters like overall stress, pin stress and contact pressure are reducing due to lesser load on the plate material. Further material effect shows, higher young modulus material has little deflection, but other parameters are increasing. Interference analysis shows increasing of overall stress, pin stress, contact stress along with pin bearing load. This increase should be understood properly for increasing the load carrying capacity of the joint. Generally every structure is preloaded to increase the compressive stress in the joint to increase the load carrying capacity. But the stress increase should be properly analysed for composite due to its delamination and debonding effects due to failure of the bond materials. When results for an isotropic combination is compared with composite joint, isotropic joint shows uniformity of the results with lesser values for all parameters. This is mainly due to applied layer angle combinations. All the results are represented with necessasary pictorial plots.

Keywords: bearing force, frictional force, finite element analysis, ANSYS

Procedia PDF Downloads 334
1072 The Performance Evaluation of the Modular Design of Hybrid Wall with Surface Heating and Cooling System

Authors: Selcen Nur Eri̇kci̇ Çeli̇k, Burcu İbaş Parlakyildiz, Gülay Zorer Gedi̇k

Abstract:

Reducing the use of mechanical heating and cooling systems in buildings, which accounts for approximately 30-40% of total energy consumption in the world has a major impact in terms of energy conservation. Formations of buildings that have sustainable and low energy utilization, structural elements with mechanical systems should be evaluated with a holistic approach. In point of reduction of building energy consumption ratio, wall elements that are vertical building elements and have an area broadly (m2) have proposed as a regulation with a different system. In the study, designing surface heating and cooling energy with a hybrid type of modular wall system and the integration of building elements will be evaluated. The design of wall element; - Identification of certain standards in terms of architectural design and size, -Elaboration according to the area where the wall elements (interior walls, exterior walls) -Solution of the joints, -Obtaining the surface in terms of building compatible with both conceptual structural put emphasis on upper stages, these elements will be formed. The durability of the product to the various forces, stability and resistance are so much substantial that are used the establishment of ready-wall element section and the planning of structural design. All created ready-wall alternatives will be paid attention at some parameters; such as adapting to performance-cost by optimum level and size that can be easily processed and reached. The restrictions such as the size of the zoning regulations, building function, structural system, wheelbase that are imposed by building laws, should be evaluated. The building aims to intend to function according to a certain standardization system and construction of wall elements will be used. The scope of performance criteria determined on the wall elements, utilization (operation, maintenance) and renovation phase, alternative material options will be evaluated with interim materials located in the contents. Design, implementation and technical combination of modular wall elements in the use phase and installation details together with the integration of energy saving, heat-saving and useful effects on the environmental aspects will be discussed in detail. As a result, the ready-wall product with surface heating and cooling modules will be created and defined as hybrid wall and will be compared with the conventional system in terms of thermal comfort. After preliminary architectural evaluations, certain decisions for all architectural design processes (pre and post design) such as the implementation and performance in use, maintenance, renewal will be evaluated in the results.

Keywords: modular ready-wall element, hybrid, architectural design, thermal comfort, energy saving

Procedia PDF Downloads 255
1071 Anisakidosis in Turkey: Serological Survey and Risk for Humans

Authors: E. Akdur Öztürk, F. İrvasa Bilgiç, A. Ludovisi , O. Gülbahar, D. Dirim Erdoğan, M. Korkmaz, M. Á. Gómez Morales

Abstract:

Anisakidosis is a zoonotic human fish-borne parasitic disease caused by accidental ingestion of anisakid third-stage larvae (L3) of members of the Anisakidae family present in infected marine fish or cephalopods. Infection with anisakid larvae can lead to gastric, intestinal, extra-gastrointestinal and gastroallergic forms of the disease. Anisakid parasites have been reported in almost all seas, particularly in the Mediterranean Sea. There is a remarkably high level of risk exposure to these zoonotic parasites as they are present in economically and ecologically important fish of Europe. Anisakid L3 larvae have been also detected in several fish species from the Aegean Sea. Turkey is a peninsular country surrounded by Black, Aegean and the Mediterranean Sea. In this country, fishing habit and fishery product consumption are highly common. In recent years, there was also an increase in the consumption of raw fish due to the increasing interest in the cuisine of the Far East countries. In different regions of Turkey, A. simplex (inMerluccius Merluccius Scomber japonicus, Trachurus mediterraneus, Sardina pilchardus, Engraulis encrasicolus, etc.), Anisakis spp., Contraceucum spp., Pseudoterronova spp. and, C. aduncum were identified as well. Although it is accepted both the presence of anisakid parasites in fish and fishery products in Turkey and the presence of Turkish people with allergic manifestations after fish consumption, there are no reports of human anisakiasis in this country. Given the high prevalence of anisakid parasites in the country, the absence of reports is likely not due to the absence of clinical cases rather to the unavailability of diagnostic tools and the low awareness of the presence of this infection. The aim of the study was to set up an IgE-Western Blot (WB) based test to detect the anisakidosis sensitization among Turkish people with a history of allergic manifestation related to fish consumption. To this end, crude worm antigens (CWA) and allergen enriched fraction (50-66% ) were prepared from L3 of A. simplex (s.l.) collected from Lepidopus caudatus fished in the Mediterranean Sea. These proteins were electrophoretically separated and transferred into the nitrocellulose membranes. By WB, specific proteins recognized by positive control serum samples from sensitized patients were visualized on nitrocellulose membranes by a colorimetric reaction. The CWA and 50–66% fraction showed specific bands, mainly due to Ani s 1 (20-22 kD) and Ani s 4 (9-10 kD). So far, a total of 7 serum samples from people with allergic manifestation and positive skin prick test (SPT) after fish consumption, have been tested and all of them resulted negative by WB, indicating the lack of sensitization to anisakids. This preliminary study allowed to set up a specific test and evidence the lack of correlation between both tests, SPT and WB. However, the sample size should be increased to estimate the anisakidosis burden in Turkish people.

Keywords: anisakidosis, fish parasite, serodiagnosis, Turkey

Procedia PDF Downloads 142
1070 Artificial Intelligence: Reimagining Education

Authors: Silvia Zanazzi

Abstract:

Artificial intelligence (AI) has become an integral part of our world, transitioning from scientific exploration to practical applications that impact daily life. The emergence of generative AI is reshaping education, prompting new questions about the role of teachers, the nature of learning, and the overall purpose of schooling. While AI offers the potential for optimizing teaching and learning processes, concerns about discrimination and bias arising from training data and algorithmic decisions persist. There is a risk of a disconnect between the rapid development of AI and the goals of building inclusive educational environments. The prevailing discourse on AI in education often prioritizes efficiency and individual skill acquisition. This narrow focus can undermine the importance of collaborative learning and shared experiences. A growing body of research challenges this perspective, advocating for AI that enhances, rather than replaces, human interaction in education. This study aims to examine the relationship between AI and education critically. Reviewing existing research will identify both AI implementation’s potential benefits and risks. The goal is to develop a framework that supports the ethical and effective integration of AI into education, ensuring it serves the needs of all learners. The theoretical reflection will be developed based on a review of national and international scientific literature on artificial intelligence in education. The primary objective is to curate a selection of critical contributions from diverse disciplinary perspectives and/or an inter- and transdisciplinary viewpoint, providing a state-of-the-art overview and a critical analysis of potential future developments. Subsequently, the thematic analysis of these contributions will enable the creation of a framework for understanding and critically analyzing the role of artificial intelligence in schools and education, highlighting promising directions and potential pitfalls. The expected results are (1) a classification of the cognitive biases present in representations of AI in education and the associated risks and (2) a categorization of potentially beneficial interactions between AI applications and teaching and learning processes, including those already in use or under development. While not exhaustive, the proposed framework will serve as a guide for critically exploring the complexity of AI in education. It will help to reframe dystopian visions often associated with technology and facilitate discussions on fostering synergies that balance the ‘dream’ of quality education for all with the realities of AI implementation. The discourse on artificial intelligence in education, highlighting reductionist models rooted in fragmented and utilitarian views of knowledge, has the merit of stimulating the construction of alternative perspectives that can ‘return’ teaching and learning to education, human growth, and the well-being of individuals and communities.

Keywords: education, artificial intelligence, teaching, learning

Procedia PDF Downloads 22
1069 Stochastic Pi Calculus in Financial Markets: An Alternate Approach to High Frequency Trading

Authors: Jerome Joshi

Abstract:

The paper presents the modelling of financial markets using the Stochastic Pi Calculus model. The Stochastic Pi Calculus model is mainly used for biological applications; however, the feature of this model promotes its use in financial markets, more prominently in high frequency trading. The trading system can be broadly classified into exchange, market makers or intermediary traders and fundamental traders. The exchange is where the action of the trade is executed, and the two types of traders act as market participants in the exchange. High frequency trading, with its complex networks and numerous market participants (intermediary and fundamental traders) poses a difficulty while modelling. It involves the participants to seek the advantage of complex trading algorithms and high execution speeds to carry out large volumes of trades. To earn profits from each trade, the trader must be at the top of the order book quite frequently by executing or processing multiple trades simultaneously. This would require highly automated systems as well as the right sentiment to outperform other traders. However, always being at the top of the book is also not best for the trader, since it was the reason for the outbreak of the ‘Hot – Potato Effect,’ which in turn demands for a better and more efficient model. The characteristics of the model should be such that it should be flexible and have diverse applications. Therefore, a model which has its application in a similar field characterized by such difficulty should be chosen. It should also be flexible in its simulation so that it can be further extended and adapted for future research as well as be equipped with certain tools so that it can be perfectly used in the field of finance. In this case, the Stochastic Pi Calculus model seems to be an ideal fit for financial applications, owing to its expertise in the field of biology. It is an extension of the original Pi Calculus model and acts as a solution and an alternative to the previously flawed algorithm, provided the application of this model is further extended. This model would focus on solving the problem which led to the ‘Flash Crash’ which is the ‘Hot –Potato Effect.’ The model consists of small sub-systems, which can be integrated to form a large system. It is designed in way such that the behavior of ‘noise traders’ is considered as a random process or noise in the system. While modelling, to get a better understanding of the problem, a broader picture is taken into consideration with the trader, the system, and the market participants. The paper goes on to explain trading in exchanges, types of traders, high frequency trading, ‘Flash Crash,’ ‘Hot-Potato Effect,’ evaluation of orders and time delay in further detail. For the future, there is a need to focus on the calibration of the module so that they would interact perfectly with other modules. This model, with its application extended, would provide a basis for researchers for further research in the field of finance and computing.

Keywords: concurrent computing, high frequency trading, financial markets, stochastic pi calculus

Procedia PDF Downloads 79
1068 Molecular Level Insights into the Adsorption of Perfluorooctanoic Acid on Clay Surfaces

Authors: Ravisha N. Mudalige, Duwage C. Perera, Jay N. Meegoda

Abstract:

Perfluorooctanoic acid (PFOA), a persistent and hazardous member of the per- and polyfluoroalkyl substances (PFAS) family, presents significant environmental challenges due to its exceptional durability, potential for bioaccumulation, and mobility in natural systems. As a "forever chemical," PFOA resists degradation, resulting in widespread contamination of soils and sediments. This study investigates the molecular-level mechanisms governing the adsorption of PFOA on two negatively charged clay minerals, kaolinite, and montmorillonite, under the influence of humic acid. Adsorption behavior is analyzed using the Langmuir isotherm model under two conditions: humic acid-coated clay to mimic organic substances and non-coated clay. The study also examines the effects of pH levels of 2 and 7, focusing on the role of protonation states, clay surface characteristics, and solution chemistry in influencing adsorption dynamics. Humic acid, an organic substance formed from the decomposition of plant and animal matter, significantly influences the surface properties of clay particles. By altering surface charge, increasing hydrophobicity, and providing additional binding sites, it enhances the clays' ability to interact with PFOA. Typically, the negatively charged surfaces of kaolinite and montmorillonite repel the equally negatively charged PFOA molecules, creating electrostatic repulsion that limits direct adsorption. However, the cation exchange capacity (CEC) of these clays is a pivotal factor that allows them to retain positively charged species, such as metal ions or functional groups introduced by humic acid coatings. These positively charged components act as intermediaries, bridging electrostatic interactions and facilitating hydrophobic partitioning, ultimately increasing the adsorption efficiency of PFOA onto the clay surfaces. At pH 2, increased protonation of the clay surfaces reduces electrostatic repulsion, enhancing PFOA adsorption, while humic acid coatings provide additional binding sites due to hydrophobicity. Conversely, at pH 7, adsorption is reduced due to dominant electrostatic repulsion, lower surface protonation, and competition between PFOA and humic acid components for available adsorption sites. This study provides molecular-level insights into the critical roles of clay chemistry, CEC, organic matter, and interfacial dynamics in overcoming electrostatic barriers to PFOA adsorption. By highlighting the essential role of organic matter in overcoming electrostatic repulsion, this work contributes to the development of more effective strategies for mitigating PFAS contamination in soils and water systems, offering valuable guidance for environmental remediation efforts.

Keywords: adsorption, clay surface, humic acid, Langmuir isotherm, prfluorooctanoic acid, PFAS

Procedia PDF Downloads 10
1067 Determination of Activation Energy for Thermal Decomposition of Selected Soft Tissues Components

Authors: M. Ekiert, T. Uhl, A. Mlyniec

Abstract:

Tendons are the biological soft tissue structures composed of collagen, proteoglycan, glycoproteins, water and cells of extracellular matrix (ECM). Tendons, which primary function is to transfer force generated by the muscles to the bones causing joints movement, are exposed to many micro and macro damages. In fact, tendons and ligaments trauma are one of the most numerous injuries of human musculoskeletal system, causing for many people (particularly for athletes and physically active people), recurring disorders, chronic pain or even inability of movement. The number of tendons reconstruction and transplantation procedures is increasing every year. Therefore, studies on soft tissues storage conditions (influencing i.e. tissue aging) seem to be an extremely important issue. In this study, an atomic-scale investigation on the kinetics of decomposition of two selected tendon components – collagen type I (which forms a 60-85% of a tendon dry mass) and elastin protein (which combine with ECM creates elastic fibers of connective tissues) is presented. A molecular model of collagen and elastin was developed based on crystal structure of triple-helical collagen-like 1QSU peptide and P15502 human elastin protein, respectively. Each model employed 4 linear strands collagen/elastin strands per unit cell, distributed in 2x2 matrix arrangement, placed in simulation box filled with water molecules. A decomposition phenomena was simulated with molecular dynamics (MD) method using ReaxFF force field and periodic boundary conditions. A set of NVT-MD runs was performed for 1000K temperature range in order to obtained temperature-depended rate of production of decomposition by-products. Based on calculated reaction rates activation energies and pre-exponential factors, required to formulate Arrhenius equations describing kinetics of decomposition of tested soft tissue components, were calculated. Moreover, by adjusting a model developed for collagen, system scalability and correct implementation of the periodic boundary conditions were evaluated. An obtained results provide a deeper insight into decomposition of selected tendon components. A developed methodology may also be easily transferred to other connective tissue elements and therefore might be used for further studies on soft tissues aging.

Keywords: decomposition, molecular dynamics, soft tissue, tendons

Procedia PDF Downloads 210
1066 Identification of Damage Mechanisms in Interlock Reinforced Composites Using a Pattern Recognition Approach of Acoustic Emission Data

Authors: M. Kharrat, G. Moreau, Z. Aboura

Abstract:

The latest advances in the weaving industry, combined with increasingly sophisticated means of materials processing, have made it possible to produce complex 3D composite structures. Mainly used in aeronautics, composite materials with 3D architecture offer better mechanical properties than 2D reinforced composites. Nevertheless, these materials require a good understanding of their behavior. Because of the complexity of such materials, the damage mechanisms are multiple, and the scenario of their appearance and evolution depends on the nature of the exerted solicitations. The AE technique is a well-established tool for discriminating between the damage mechanisms. Suitable sensors are used during the mechanical test to monitor the structural health of the material. Relevant AE-features are then extracted from the recorded signals, followed by a data analysis using pattern recognition techniques. In order to better understand the damage scenarios of interlock composite materials, a multi-instrumentation was set-up in this work for tracking damage initiation and development, especially in the vicinity of the first significant damage, called macro-damage. The deployed instrumentation includes video-microscopy, Digital Image Correlation, Acoustic Emission (AE) and micro-tomography. In this study, a multi-variable AE data analysis approach was developed for the discrimination between the different signal classes representing the different emission sources during testing. An unsupervised classification technique was adopted to perform AE data clustering without a priori knowledge. The multi-instrumentation and the clustered data served to label the different signal families and to build a learning database. This latter is useful to construct a supervised classifier that can be used for automatic recognition of the AE signals. Several materials with different ingredients were tested under various solicitations in order to feed and enrich the learning database. The methodology presented in this work was useful to refine the damage threshold for the new generation materials. The damage mechanisms around this threshold were highlighted. The obtained signal classes were assigned to the different mechanisms. The isolation of a 'noise' class makes it possible to discriminate between the signals emitted by damages without resorting to spatial filtering or increasing the AE detection threshold. The approach was validated on different material configurations. For the same material and the same type of solicitation, the identified classes are reproducible and little disturbed. The supervised classifier constructed based on the learning database was able to predict the labels of the classified signals.

Keywords: acoustic emission, classifier, damage mechanisms, first damage threshold, interlock composite materials, pattern recognition

Procedia PDF Downloads 156
1065 Dry Modifications of PCL/Chitosan/PCL Tissue Scaffolds

Authors: Ozan Ozkan, Hilal Turkoglu Sasmazel

Abstract:

Natural polymers are widely used in tissue engineering applications, because of their biocompatibility, biodegradability and solubility in the physiological medium. On the other hand, synthetic polymers are also widely utilized in tissue engineering applications, because they carry no risk of infectious diseases and do not cause immune system reaction. However, the disadvantages of both polymer types block their individual usages as tissue scaffolds efficiently. Therefore, the idea of usage of natural and synthetic polymers together as a single 3D hybrid scaffold which has the advantages of both and the disadvantages of none has been entered to the literature. On the other hand, even though these hybrid structures support the cell adhesion and/or proliferation, various surface modification techniques applied to the surfaces of them to create topographical changes on the surfaces and to obtain reactive functional groups required for the immobilization of biomolecules, especially on the surfaces of synthetic polymers in order to improve cell adhesion and proliferation. In a study presented here, to improve the surface functionality and topography of the layer by layer electrospun 3D poly-epsilon-caprolactone/chitosan/poly-epsilon-caprolactone hybrid tissue scaffolds by using atmospheric pressure plasma method, thus to improve cell adhesion and proliferation of these tissue scaffolds were aimed. The formation/creation of the functional hydroxyl and amine groups and topographical changes on the surfaces of scaffolds were realized by using two different atmospheric pressure plasma systems (nozzle type and dielectric barrier discharge (DBD) type) carried out under different gas medium (air, Ar+O2, Ar+N2). The plasma modification time and distance for the nozzle type plasma system as well as the plasma modification time and the gas flow rate for DBD type plasma system were optimized with monitoring the changes in surface hydrophilicity by using contact angle measurements. The topographical and chemical characterizations of these modified biomaterials’ surfaces were carried out with SEM and ESCA, respectively. The results showed that the atmospheric pressure plasma modifications carried out with both nozzle type plasma and DBD plasma caused topographical and functionality changes on the surfaces of the layer by layer electrospun tissue scaffolds. However, the shelf life studies indicated that the hydrophilicity introduced to the surfaces was mainly because of the functionality changes. Therefore, according to the optimized results, samples treated with nozzle type air plasma modification applied for 9 minutes from a distance of 17 cm and Ar+O2 DBD plasma modification applied for 1 minute under 70 cm3/min O2 flow rate were found to have the highest hydrophilicity compared to pristine samples.

Keywords: biomaterial, chitosan, hybrid, plasma

Procedia PDF Downloads 276
1064 Gender-Transformative Education: A Pathway to Nourishing and Evolving Gender Equality in the Higher Education of Iran

Authors: Sepideh Mirzaee

Abstract:

Gender-transformative (G-TE) education is a challenging concept in the field of education and it is a matter of hot debate in the contemporary world. Paulo Freire as the prominent advocate of transformative education considers it as an alternative to conventional banking model of education. Besides, a more inclusive concept has been introduced, namely, G-TE, as an unbiased education fostering an environment of gender justice. As its main tenet, G-TE eliminates obstacles to education and improves social shifts. A plethora of contemporary research indicates that G-TE could completely revolutionize education systems by displacing inequalities and changing gender stereotypes. Despite significant progress in female education and its effects on gender equality in Iran, challenges persist. There are some deficiencies regarding gender disparities in the society and, education, specifically. As an example, the number of women with university degrees is on the rise; thus, there will be an increasing demand for employment in the society by them. Instead, many job opportunities remain occupied by men and it is seen as intolerable for the society to assign such occupations to women. In fact, Iran is regarded as a patriarchal society where educational contexts can play a critical role to assign gender ideology to its learners. Thus, such gender ideologies in the education can become the prevailing ideologies in the entire society. Therefore, improving education in this regard, can lead to a significant change in a society subsequently influencing the status of women not only within their own country but also on a global scale. Notably, higher education plays a vital role in this empowerment and social change. Particularly higher education can have a crucial part in imparting gender neutral ideologies to its learners and bringing about substantial change. It has the potential to alleviate the detrimental effects of gender inequalities. Therefore, this study aims to conceptualize the pivotal role of G-TE and its potential power in developing gender equality within the higher educational system of Iran presented within a theoretical framework. The study emphasizes the necessity of stablishing a theoretical grounding for citizenship, and transformative education while distinguishing gender related issues including gender equality, equity and parity. This theoretical foundation will shed lights on the decisions made by policy-makers, syllabus designers, material developers, and specifically professors and students. By doing so, they will be able to promote and implement gender equality recognizing the determinants, obstacles, and consequences of sustaining gender-transformative approaches in their classes within the Iranian higher education system. The expected outcomes include the eradication of gender inequality, transformation of gender stereotypes and provision of equal opportunities for both males and females in education.

Keywords: citizenship education, gender inequality, higher education, patriarchal society, transformative education

Procedia PDF Downloads 65
1063 Quantification of Lawsone and Adulterants in Commercial Henna Products

Authors: Ruchi B. Semwal, Deepak K. Semwal, Thobile A. N. Nkosi, Alvaro M. Viljoen

Abstract:

The use of Lawsonia inermis L. (Lythraeae), commonly known as henna, has many medicinal benefits and is used as a remedy for the treatment of diarrhoea, cancer, inflammation, headache, jaundice and skin diseases in folk medicine. Although widely used for hair dyeing and temporary tattooing, henna body art has popularized over the last 15 years and changed from being a traditional bridal and festival adornment to an exotic fashion accessory. The naphthoquinone, lawsone, is one of the main constituents of the plant and responsible for its dyeing property. Henna leaves typically contain 1.8–1.9% lawsone, which is used as a marker compound for the quality control of henna products. Adulteration of henna with various toxic chemicals such as p-phenylenediamine, p-methylaminophenol, p-aminobenzene and p-toluenodiamine to produce a variety of colours, is very common and has resulted in serious health problems, including allergic reactions. This study aims to assess the quality of henna products collected from different parts of the world by determining the lawsone content, as well as the concentrations of any adulterants present. Ultra high performance liquid chromatography-mass spectrometry (UPLC-MS) was used to determine the lawsone concentrations in 172 henna products. Separation of the chemical constituents was achieved on an Acquity UPLC BEH C18 column using gradient elution (0.1% formic acid and acetonitrile). The results from UPLC-MS revealed that of 172 henna products, 11 contained 1.0-1.8% lawsone, 110 contained 0.1-0.9% lawsone, whereas 51 samples did not contain detectable levels of lawsone. High performance thin layer chromatography was investigated as a cheaper, more rapid technique for the quality control of henna in relation to the lawsone content. The samples were applied using an automatic TLC Sampler 4 (CAMAG) to pre-coated silica plates, which were subsequently developed with acetic acid, acetone and toluene (0.5: 1.0: 8.5 v/v). A Reprostar 3 digital system allowed the images to be captured. The results obtained corresponded to those from UPLC-MS analysis. Vibrational spectroscopy analysis (MIR or NIR) of the powdered henna, followed by chemometric modelling of the data, indicates that this technique shows promise as an alternative quality control method. Principal component analysis (PCA) was used to investigate the data by observing clustering and identifying outliers. Partial least squares (PLS) multivariate calibration models were constructed for the quantification of lawsone. In conclusion, only a few of the samples analysed contain lawsone in high concentrations, indicating that they are of poor quality. Currently, the presence of adulterants that may have been added to enhance the dyeing properties of the products, is being investigated.

Keywords: Lawsonia inermis, paraphenylenediamine, temporary tattooing, lawsone

Procedia PDF Downloads 460
1062 In Vivo Evaluation of Exposure to Electromagnetic Fields at 27 GHz (5G) of Danio Rerio: A Preliminary Study

Authors: Elena Maria Scalisi, Roberta Pecoraro, Martina Contino, Sara Ignoto, Carmelo Iaria, Santi Concetto Pavone, Gino Sorbello, Loreto Di Donato, Maria Violetta Brundo

Abstract:

5G Technology is evolving to satisfy a variety of service requirements that may allow high data-rate connections (1Gbps) and lower latency times than current (<1ms). In order to support a high data transmission speed and a high traffic service for eMBB (enhanced mobile broadband) use cases, 5G systems have the characteristic of using different frequency bands of the radio wave spectrum (700 MHz, 3.6-3.8 GHz and 26.5-27.5 GHz), thus taking advantage of higher frequencies than previous mobile radio generations (1G-4G). However, waves at higher frequencies have a lower capacity to propagate in free space and therefore, in order to guarantee the capillary coverage of the territory for high reliability applications, it will be necessary to install a large number of repeaters. Following the introduction of this new technology, there has been growing concern over the past few months about possible harmful effects on human health. The aim of this preliminary study is to evaluate possible short term effects induced by 5G-millimeter waves on embryonic development and early life stages of Danio rerio by Z-FET. We exposed developing zebrafish at frequency of 27 GHz, with a standard pyramidal horn antenna placed at 15 cm far from the samples holder ensuring an incident power density of 10 mW/cm2. During the exposure cycle, from 6 h post fertilization (hpf) to 96 hpf, we measured a different morphological endpoints every 24 hours. Zebrafish embryo toxicity test (Z-FET) is a short term test, carried out on fertilized eggs of zebrafish and it represents an effective alternative to acute test with adult fish (OECD, 2013). We have observed that 5G did not reveal significant impacts on mortality nor on morphology because exposed larvae showed a normal detachment of the tail, presence of heartbeat, well-organized somites, therefore hatching rate was lower than untreated larvae even at 48 h of exposure. Moreover, the immunohistochemical analysis performed on larvae showed a negativity to the HSP-70 expression used as a biomarkers. This is a preliminary study on evaluation of potential toxicity induced by 5G and it seems appropriate to underline the importance that further studies would take, aimed at clarifying the probable real risk of exposure to electromagnetic fields.

Keywords: Biomarker of exposure, embryonic development, 5G waves, zebrafish embryo toxicity test

Procedia PDF Downloads 131
1061 Functionalization of Carbon-Coated Iron Nanoparticles with Fluorescent Protein

Authors: A. G. Pershina, P. S. Postnikov, M. E. Trusova, D. O. Burlakova, A. E. Sazonov

Abstract:

Invention of magnetic-fluorescent nanocomposites is a rapidly developing area of research. The magnetic-fluorescent nanocomposite attractiveness is connected with the ability of simultaneous management and control of such nanocomposites by two independent methods based on different physical principles. These nanocomposites are applied for the solution of various essential scientific and experimental biomedical problems. The aim of this research is development of principle approach to nanobiohybrid structures with magnetic and fluorescent properties design. The surface of carbon-coated iron nanoparticles (Fe@C) were covalently modified by 4-carboxy benzenediazonium tosylate. Recombinant fluorescent protein TagGFP2 (Eurogen) was obtained in E. coli (Rosetta DE3) by standard laboratory techniques. Immobilization of TagGFP2 on the nanoparticles surface was provided by the carbodiimide activation. The amount of COOH-groups on the nanoparticle surface was estimated by elemental analysis (Elementar Vario Macro) and TGA-analysis (SDT Q600, TA Instruments. Obtained nanocomposites were analyzed by FTIR spectroscopy (Nicolet Thermo 5700) and fluorescence microscopy (AxioImager M1, Carl Zeiss). Amount of the protein immobilized on the modified nanoparticle surface was determined by fluorimetry (Cary Eclipse) and spectrophotometry (Unico 2800) with the help of preliminary obtained calibration plots. In the FTIR spectra of modified nanoparticles the adsorption band of –COOH group around 1700 cm-1 and bands in the region of 450-850 cm-1 caused by bending vibrations of benzene ring were observed. The calculated quantity of active groups on the surface was equal to 0,1 mmol/g of material. The carbodiimide activation of COOH-groups on nanoparticles surface results to covalent immobilization of TagGFP2 fluorescent protein (0.2 nmol/mg). The success of immobilization was proved by FTIR spectroscopy. Protein characteristic adsorption bands in the region of 1500-1600 cm-1 (amide I) were presented in the FTIR spectrum of nanocomposite. The fluorescence microscopy analysis shows that Fe@C-TagGFP2 nanocomposite possesses fluorescence properties. This fact confirms that TagGFP2 protein retains its conformation due to immobilization on nanoparticles surface. Magnetic-fluorescent nanocomposite was obtained as a result of unique design solution implementation – the fluorescent protein molecules were fixed to the surface of superparamagnetic carbon-coated iron nanoparticles using original diazonium salts.

Keywords: carbon-coated iron nanoparticles, diazonium salts, fluorescent protein, immobilization

Procedia PDF Downloads 343
1060 Study of Phase Separation Behavior in Flexible Polyurethane Foam

Authors: El Hatka Hicham, Hafidi Youssef, Saghiri Khalid, Ittobane Najim

Abstract:

Flexible polyurethane foam (FPUF) is a low-density cellular material generally used as a cushioning material in many applications such as furniture, bedding, packaging, etc. It is commercially produced during a continuous process, where a reactive mixture of foam chemicals is poured onto a moving conveyor. FPUFs are produced by the catalytic balancing of two reactions involved, the blowing reaction (isocyanate-water) and the gelation reaction (isocyanate-polyol). The microstructure of FPUF is generally composed of soft phases (polyol phases) and rigid domains that separate into two domains of different sizes: the rigid polyurea microdomains and the macrodomains (larger aggregates). The morphological features of FPUF are strongly influenced by the phase separation morphology that plays a key role in determining the global FPUF properties. This phase-separated morphology results from a thermodynamic incompatibility between soft segments derived from aliphatic polyether and hard segments derived from the commonly used aromatic isocyanate. In order to improve the properties of FPUF against the different stresses faced by this material during its use, we report in this work a study of the phase separation phenomenon in FPUF that has been examined using SAXS WAXS and FTIR. Indeed, we have studied with these techniques the effect of water, isocyanates, and alkaline chlorides on the phase separation behavior. SAXS was used to study the morphology of the microphase separated, WAXS to examine the nature of the hard segment packing, and FTIR to investigate the hydrogen bonding characteristics of the materials studied. The prepared foams were shown to have different levels of urea phase connectivity; the increase in water content in the FPUF formulation leads to an increase in the amount of urea formed and consequently the increase of the size of urea aggregates formed. Alkali chlorides (NaCl, KCl, and LiCl) incorporated into FPUF formulations show that is the ability to prevent hydrogen bond formation and subsequently alter the rigid domains. FPUFs prepared by different isocyanate structures showed that urea aggregates are difficult to be formed in foams prepared by asymmetric diisocyanate, while are more easily formed in foams prepared by symmetric and aliphatic diisocyanate.

Keywords: flexible polyurethane foam, hard segments, phase separation, soft segments

Procedia PDF Downloads 166
1059 The Effect of Data Integration to the Smart City

Authors: Richard Byrne, Emma Mulliner

Abstract:

Smart cities are a vision for the future that is increasingly becoming a reality. While a key concept of the smart city is the ability to capture, communicate, and process data that has long been produced through day-to-day activities of the city, much of the assessment models in place neglect this fact to focus on ‘smartness’ concepts. Although it is true technology often provides the opportunity to capture and communicate data in more effective ways, there are also human processes involved that are just as important. The growing importance with regards to the use and ownership of data in society can be seen by all with companies such as Facebook and Google increasingly coming under the microscope, however, why is the same scrutiny not applied to cities? The research area is therefore of great importance to the future of our cities here and now, while the findings will be of just as great importance to our children in the future. This research aims to understand the influence data is having on organisations operating throughout the smart cities sector and employs a mixed-method research approach in order to best answer the following question: Would a data-based evaluation model for smart cities be more appropriate than a smart-based model in assessing the development of the smart city? A fully comprehensive literature review concluded that there was a requirement for a data-driven assessment model for smart cities. This was followed by a documentary analysis to understand the root source of data integration to the smart city. A content analysis of city data platforms enquired as to the alternative approaches employed by cities throughout the UK and draws on best practice from New York to compare and contrast. Grounded in theory, the research findings to this point formulated a qualitative analysis framework comprised of: the changing environment influenced by data, the value of data in the smart city, the data ecosystem of the smart city and organisational response to the data orientated environment. The framework was applied to analyse primary data collected through the form of interviews with both public and private organisations operating throughout the smart cities sector. The work to date represents the first stage of data collection that will be built upon by a quantitative research investigation into the feasibility of data network effects in the smart city. An analysis into the benefits of data interoperability supporting services to the smart city in the areas of health and transport will conclude the research to achieve the aim of inductively forming a framework that can be applied to future smart city policy. To conclude, the research recognises the influence of technological perspectives in the development of smart cities to date and highlights this as a challenge to introduce theory applied with a planning dimension. The primary researcher has utilised their experience working in the public sector throughout the investigation to reflect upon what is perceived as a gap in practice of where we are today, to where we need to be tomorrow.

Keywords: data, planning, policy development, smart cities

Procedia PDF Downloads 312
1058 Online Early Childhood Monitoring and Evaluation of Systems in Underprivileged Communities: Tracking Growth and Progress in Young Children's Ability Levels

Authors: Lauren Kathryn Stretch

Abstract:

A study was conducted in the underprivileged setting of Nelson Mandela Bay, South Africa in order to monitor the progress of learners whose teachers receive training through the Early Inspiration Training Programme. Through tracking children’s growth & development, the effectiveness of the practitioner-training programme, which focuses on empowering women from underprivileged communities in South Africa, was analyzed. The aim was to identify impact & reach and to assess the effectiveness of this intervention programme through identifying impact on children’s growth and development. A Pre- and Post-Test was administered on about 850 young children in Pre-Grade R and Grade R classes in order to understand children’s ability level & the growth that would be evident as a result of effective teacher training. A pre-test evaluated the level of each child’s abilities, including physical-motor development, language, and speech development, cognitive development including visual perceptual skills, social-emotional development & play development. This was followed by a random selection of the classes of children into experimental and control groups. The experimental group’s teachers (practitioners) received 8-months of training & intervention, as well as mentorship & support. After the 8-month training programme, children from the experimental & control groups underwent post-assessment. The results indicate that the impact of effective practitioner training and enhancing a deep understanding of stimulation on young children, that this understanding is implemented in the classroom, highlighting the areas of growth & development in the children whose teachers received additional training & support, as compared to those who did not receive additional training. Monitoring & Evaluation systems not only track children’s ability levels, but also have a core focus on reporting systems, mentorship and providing ongoing support. As a result of the study, an Online Application (for Apple or Android Devices) was developed which is used to track children’s growth via age-appropriate assessments. The data is then statistically analysed to provide direction for relevant & impactful intervention. The App also focuses on effective reporting strategies, structures, and implementation to support organizations working with young children & maximize on outcomes.

Keywords: early childhood development, developmental child assessments, online application, monitoring and evaluating online

Procedia PDF Downloads 195
1057 A Validated Estimation Method to Predict the Interior Wall of Residential Buildings Based on Easy to Collect Variables

Authors: B. Gepts, E. Meex, E. Nuyts, E. Knaepen, G. Verbeeck

Abstract:

The importance of resource efficiency and environmental impact assessment has raised the interest in knowing the amount of materials used in buildings. If no BIM model or energy performance certificate is available, material quantities can be obtained through an estimation or time-consuming calculation. For the interior wall area, no validated estimation method exists. However, in the case of environmental impact assessment or evaluating the existing building stock as future material banks, knowledge of the material quantities used in interior walls is indispensable. This paper presents a validated method for the estimation of the interior wall area for dwellings based on easy-to-collect building characteristics. A database of 4963 residential buildings spread all over Belgium is used. The data are collected through onsite measurements of the buildings during the construction phase (between mid-2010 and mid-2017). The interior wall area refers to the area of all interior walls in the building, including the inner leaf of exterior (party) walls, minus the area of windows and doors, unless mentioned otherwise. The two predictive modelling techniques used are 1) a (stepwise) linear regression and 2) a decision tree. The best estimation method is selected based on the best R² k-fold (5) fit. The research shows that the building volume is by far the most important variable to estimate the interior wall area. A stepwise regression based on building volume per building, building typology, and type of house provides the best fit, with R² k-fold (5) = 0.88. Although the best R² k-fold value is obtained when the other parameters ‘building typology’ and ‘type of house’ are included, the contribution of these variables can be seen as statistically significant but practically irrelevant. Thus, if these parameters are not available, a simplified estimation method based on only the volume of the building can also be applied (R² k-fold = 0.87). The robustness and precision of the method (output) are validated three times. Firstly, the prediction of the interior wall area is checked by means of alternative calculations of the building volume and of the interior wall area; thus, other definitions are applied to the same data. Secondly, the output is tested on an extension of the database, so it has the same definitions but on other data. Thirdly, the output is checked on an unrelated database with other definitions and other data. The validation of the estimation methods demonstrates that the methods remain accurate when underlying data are changed. The method can support environmental as well as economic dimensions of impact assessment, as it can be used in early design. As it allows the prediction of the amount of interior wall materials to be produced in the future or that might become available after demolition, the presented estimation method can be part of material flow analyses on input and on output.

Keywords: buildings as material banks, building stock, estimation method, interior wall area

Procedia PDF Downloads 33
1056 Promoting Incubation Support to Youth Led Enterprises: A Case Study from Bangladesh to Eradicate Hazardous Child Labour through Microfinance

Authors: Md Maruf Hossain Koli

Abstract:

The issue of child labor is enormous and cannot be ignored in Bangladesh. The problem of child exploitation is a socio-economic reality of Bangladesh. This paper will indicate the causes, consequences, and possibilities of using microfinance as remedies of hazardous child labor in Bangladesh. Poverty is one of the main reasons for children to become child laborers. It is an indication of economic vulnerability, inadequate law, and enforcement system and cultural and social inequities along with the inaccessible and low-quality educational system. An attempt will be made in this paper to explore and analyze child labor scenario in Bangladesh and will explain holistic intervention of BRAC, the largest nongovernmental organization in the world to address child labor through promoting incubation support to youth-led enterprises. A combination of research methods were used to write this paper. These include non-reactive observation in the form of literature review, desk studies as well as reactive observation like site visits and, semi-structured interviews. Hazardous Child labor is a multi-dimensional and complex issue. This paper was guided by the answer following research questions to better understand the current context of hazardous child labor in Bangladesh, especially in Dhaka city. The author attempted to figure out why child labor should be considered as a development issue? Further, it also encountered why child labor in Bangladesh is not being reduced at an expected pace? And finally what could be a sustainable solution to eradicate this situation. One of the most challenging characteristics of child labor is that it interrupts a child’s education and cognitive development hence limiting the building of human capital and fostering intergenerational reproduction of poverty and social exclusion. Children who are working full-time and do not attend school, cannot develop the necessary skills. This leads them and their future generation to remain in poor socio-economic condition as they do not get a better paying job. The vicious cycle of poverty will be reproduced and will slow down sustainable development. The outcome of the research suggests that most of the parents send their children to work to help them to increase family income. In addition, most of the youth engaged in hazardous work want to get training, mentoring and easy access to finance to start their own business. The intervention of BRAC that includes classroom and on the job training, tailored mentoring, health support, access to microfinance and insurance help them to establish startup. This intervention is working in developing business and management capacity through public-private partnerships and technical consulting. Supporting entrepreneurs, improving working conditions with micro, small and medium enterprises and strengthening value chains focusing on youth and children engaged with hazardous child labor.

Keywords: child labour, enterprise development, microfinance, youth entrepreneurship

Procedia PDF Downloads 129
1055 Common Used Non-Medical Practice and Perceived Benefits in Couples with Fertility Problems in Turkey

Authors: S. Fata, M. A. Tokat, N. Bagardi, B. Yilmaz

Abstract:

Nowadays, various traditional practices are used throughout the world with aim to improve fertility. Various traditional remedies, acupuncture, religious practices such as sacrifice are frequently used. Studies often evaluate the traditional practices used by the women. But the use of this non-medical practice by couples and specific application reasons of this methods has been less investigated. The aim of this study was to evaluate the common used non-medical practices and determine perceived benefits by couples with fertility problems in Turkey. This is a descriptive study. Research data were collected between May-July 2016, in Izmir Ege Birth Education and Research Hospital Assisted Reproduction Clinic, from 151 couples with fertility problem. Personal Information Form and Non-Medical Practices Used for Fertility Evaluation Form was used. Number 'GOA 2649' permission letter from Dokuz Eylul University Non-Invasive Research Ethics Board, permission letter from the institution and the written consent from participants has been received to carry out the study. In the evaluation of the data, frequencies and proportions analysis were used. The average age of women participating in the study was 32.87, the 35.8% were high school graduates, 60.3% were housewife and the 58.9% lived in city. The 30.5% of husbands were high school graduates, the 96.7% were employed and the 60.9% lived in city. The 78.1% of couples lived as a nuclear family, the average marriage year was 7.58, in 33.8% the fertility problem stems from women, 42.4% of them received a diagnosis for 1-2 years, 35.1% were being treated for 1-2 years. The 35.8% of women reported use of non-medical applications. The 24.4% of women used figs, onion cure, hacemat, locust, bee-pollen milk, the 18.2% used herbs, the 13.1% vowed, the 12.1% went to the tomb, the 10.1% did not bath a few days after the embryo transfer, the 9.1% used thermal water baths, the 5.0% manually corrected the womb, the 5.0% printed amulets by Hodja, the 3.0% went to the Hodja/pilgrims. Among the perceived benefits of using non-medical practices; facilitate pregnancy and implantation, improve oocyte quality were the most recently expressed. Women said that they often used herbs to develop follicles, did not bath after embryo transfer with aim to provide implantation, and used thermal waters to get rid of the infection. Compared to women, only the 25.8% of men used the non-medical practice. The 52.1% reported that they used peanuts, hacemat, locust, bee-pollen milk, the 14.9% used herbs, the 12.8% vowed, the 10.1% went to the tomb, the 10.1% used thermal water baths. Improve sperm number, motility and quality were the most expected benefits. Men said that they often used herbs to improve sperm number, used peanuts, hacemat, locust, bee-pollen milk to improve sperm motility and quality. Couples in Turkey often use non-medical practices to deal with fertility problems. Some of the practices considered as useful can adversely affect health. Healthcare providers should evaluate the use of non-medical practices and should inform if the application is known adverse effects on health.

Keywords: fertility, couples, non-medical practice, perceived benefit

Procedia PDF Downloads 342
1054 The Convention of Culture: A Comprehensive Study on Dispute Resolution Pertaining to Heritage and Related Issues

Authors: Bhargavi G. Iyer, Ojaswi Bhagat

Abstract:

In recent years, there has been a lot of discussion about ethnic imbalance and diversity in the international context. Arbitration is now subject to the hegemony of a small number of people who are constantly reappointed. When a court system becomes exclusionary, the quality of adjudication suffers significantly. In such a framework, there is a misalignment between adjudicators' preconceived views and the interests of the parties, resulting in a biased view of the proceedings. The world is currently witnessing a slew of intellectual property battles around cultural appropriation. The term "cultural appropriation" refers to the industrial west's theft of indigenous culture, usually for fashion, aesthetic, or dramatic purposes. Selena Gomez exemplifies cultural appropriation by commercially using the “bindi,” which is sacred to Hinduism, as a fashion symbol. In another case, Victoria's Secret insulted indigenous peoples' genocide by stealing native Indian headdresses. In the case of yoga, a similar process can be witnessed, with Vedic philosophy being reduced to a type of physical practice. Such a viewpoint is problematic since indigenous groups have worked hard for generations to ensure the survival of their culture, and its appropriation by the western world for purely aesthetic and theatrical purposes is upsetting to those who practise such cultures. Because such conflicts involve numerous jurisdictions, they must be resolved through international arbitration. However, these conflicts are already being litigated, and the aggrieved parties, namely developing nations, do not believe it prudent to use the World Intellectual Property Organization's (WIPO) already established arbitration procedure. This practise, it is suggested in this study, is the outcome of Europe's exclusionary arbitral system, which fails to recognise the non-legal and non-commercial nature of indigenous culture issues. This research paper proposes a more comprehensive, inclusive approach that recognises the non-legal and non-commercial aspects of IP disputes involving cultural appropriation, which can only be achieved through an ethnically balanced arbitration structure. This paper also aspires to expound upon the benefits of arbitration and other means of alternative dispute resolution (ADR) in the context of disputes pertaining to cultural issues; positing that inclusivity is a solution to the existing discord between international practices and localised cultural points of dispute. This paper also hopes to explicate measures that will facilitate ensuring inclusion and ideal practices in the domain of arbitration law, particularly pertaining to cultural heritage and indigenous expression.

Keywords: arbitration law, cultural appropriation, dispute resolution, heritage, intellectual property

Procedia PDF Downloads 144
1053 Synthesis and Characterization of High-Aspect-Ratio Hematite Nanostructures for Solar Water Splitting

Authors: Paula Quiterio, Arlete Apolinario, Celia T. Sousa, Joao Azevedo, Paula Dias, Adelio Mendes, Joao P. Araujo

Abstract:

Nowadays one of the mankind's greatest challenges has been the supply of low-cost and environmentally friendly energy sources as an alternative to non-renewable fossil fuels. Hydrogen has been considered a promising solution, representing a clean and low-cost fuel. It can be produced directly from clean and abundant resources, such as sunlight and water, using photoelectrochemical cells (PECs), in a process that mimics the nature´s photosynthesis. Hematite (alpha-Fe2O3) has attracted considerable attention as a promising photoanode for solar water splitting, due to its high chemical stability, nontoxicity, availability and low band gap (2.2 eV), which allows reaching a high thermodynamic solar-to-hydrogen efficiency of 16.8 %. However, the main drawbacks of hematite such as the short hole diffusion length and the poor conductivity that lead to high electron-hole recombination result in significant PEC efficiency losses. One strategy to overcome these limitations and to increase the PEC efficiency is to use 1D nanostructures, such as nanotubes (NTs) and nanowires (NWs), which present high aspect ratios and large surface areas providing direct pathways for electron transport up to the charge collector and minimizing the recombination losses. In particular, due to the ultrathin walls of the NTs, the holes can reach the surface faster than in other nanostructures, representing a key factor for the NTs photoresponse. In this work, we prepared hematite NWs and NTs, respectively by hydrothermal process and electrochemical anodization. For hematite NWs growing, we studied the effect of variable hydrothermal conditions, different annealing temperatures and time, and the use of Ti and Sn dopants on the morphology and PEC performance. The crystalline phase characterization by X-ray diffraction was crucial to distinguish the formation of hematite and other iron oxide phases, alongside its effect on the photoanodes conductivity and consequent PEC efficiency. The conductivity of the as-prepared NWs is very low, in the order of 10-5 S cm-1, but after doping and annealing optimization it increased by a factor of 105. A high photocurrent density of 1.02 mA cm-2 at 1.45 VRHE was obtained under simulated sunlight, which is a very promising value for this kind of hematite nanostructures. The stability of the photoelectrodes was also tested, presenting good stability after several J-V measurements over time. The NTs, synthesized by fast anodizations with potentials ranging from 20-100 V, presented a linear growth of the NTs pore walls, with very low thicknesses from 10 - 18 nm. These preliminary results are also very promising for the use of hematite photoelectrodes on PEC hydrogen applications.

Keywords: hematite, nanotubes, nanowires, photoelectrochemical cells

Procedia PDF Downloads 230
1052 Finite Element Modeling of Mass Transfer Phenomenon and Optimization of Process Parameters for Drying of Paddy in a Hybrid Solar Dryer

Authors: Aprajeeta Jha, Punyadarshini P. Tripathy

Abstract:

Drying technologies for various food processing operations shares an inevitable linkage with energy, cost and environmental sustainability. Hence, solar drying of food grains has become imperative choice to combat duo challenges of meeting high energy demand for drying and to address climate change scenario. But performance and reliability of solar dryers depend hugely on sunshine period, climatic conditions, therefore, offer a limited control over drying conditions and have lower efficiencies. Solar drying technology, supported by Photovoltaic (PV) power plant and hybrid type solar air collector can potentially overpower the disadvantages of solar dryers. For development of such robust hybrid dryers; to ensure quality and shelf-life of paddy grains the optimization of process parameter becomes extremely critical. Investigation of the moisture distribution profile within the grains becomes necessary in order to avoid over drying or under drying of food grains in hybrid solar dryer. Computational simulations based on finite element modeling can serve as potential tool in providing a better insight of moisture migration during drying process. Hence, present work aims at optimizing the process parameters and to develop a 3-dimensional (3D) finite element model (FEM) for predicting moisture profile in paddy during solar drying. COMSOL Multiphysics was employed to develop a 3D finite element model for predicting moisture profile. Furthermore, optimization of process parameters (power level, air velocity and moisture content) was done using response surface methodology in design expert software. 3D finite element model (FEM) for predicting moisture migration in single kernel for every time step has been developed and validated with experimental data. The mean absolute error (MAE), mean relative error (MRE) and standard error (SE) were found to be 0.003, 0.0531 and 0.0007, respectively, indicating close agreement of model with experimental results. Furthermore, optimized process parameters for drying paddy were found to be 700 W, 2.75 m/s at 13% (wb) with optimum temperature, milling yield and drying time of 42˚C, 62%, 86 min respectively, having desirability of 0.905. Above optimized conditions can be successfully used to dry paddy in PV integrated solar dryer in order to attain maximum uniformity, quality and yield of product. PV-integrated hybrid solar dryers can be employed as potential and cutting edge drying technology alternative for sustainable energy and food security.

Keywords: finite element modeling, moisture migration, paddy grain, process optimization, PV integrated hybrid solar dryer

Procedia PDF Downloads 151
1051 Impact of Alkaline Activator Composition and Precursor Types on Properties and Durability of Alkali-Activated Cements Mortars

Authors: Sebastiano Candamano, Antonio Iorfida, Patrizia Frontera, Anastasia Macario, Fortunato Crea

Abstract:

Alkali-activated materials are promising binders obtained by an alkaline attack on fly-ashes, metakaolin, blast slag among others. In order to guarantee the highest ecological and cost efficiency, a proper selection of precursors and alkaline activators has to be carried out. These choices deeply affect the microstructure, chemistry and performances of this class of materials. Even if, in the last years, several researches have been focused on mix designs and curing conditions, the lack of exhaustive activation models, standardized mix design and curing conditions and an insufficient investigation on shrinkage behavior, efflorescence, additives and durability prevent them from being perceived as an effective and reliable alternative to Portland. The aim of this study is to develop alkali-activated cements mortars containing high amounts of industrial by-products and waste, such as ground granulated blast furnace slag (GGBFS) and ashes obtained from the combustion process of forest biomass in thermal power plants. In particular, the experimental campaign was performed in two steps. In the first step, research was focused on elucidating how the workability, mechanical properties and shrinkage behavior of produced mortars are affected by the type and fraction of each precursor as well as by the composition of the activator solutions. In order to investigate the microstructures and reaction products, SEM and diffractometric analyses have been carried out. In the second step, their durability in harsh environments has been evaluated. Mortars obtained using only GGBFS as binder showed mechanical properties development and shrinkage behavior strictly dependent on SiO2/Na2O molar ratio of the activator solutions. Compressive strengths were in the range of 40-60 MPa after 28 days of curing at ambient temperature. Mortars obtained by partial replacement of GGBFS with metakaolin and forest biomass ash showed lower compressive strengths (≈35 MPa) and shrinkage values when higher amount of ashes were used. By varying the activator solutions and binder composition, compressive strength up to 70 MPa associated with shrinkage values of about 4200 microstrains were measured. Durability tests were conducted to assess the acid and thermal resistance of the different mortars. They all showed good resistance in a solution of 5%wt of H2SO4 also after 60 days of immersion, while they showed a decrease of mechanical properties in the range of 60-90% when exposed to thermal cycles up to 700°C.

Keywords: alkali activated cement, biomass ash, durability, shrinkage, slag

Procedia PDF Downloads 326
1050 Optical Assessment of Marginal Sealing Performance around Restorations Using Swept-Source Optical Coherence Tomography

Authors: Rima Zakzouk, Yasushi Shimada, Yasunori Sumi, Junji Tagami

Abstract:

Background and purpose: The resin composite has become the main material for the restorations of caries in recent years due to aesthetic characteristics, especially with the development of the adhesive techniques. The quality of adhesion to tooth structures is depending on an exchange process between inorganic tooth material and synthetic resin and a micromechanical retention promoted by resin infiltration in partially demineralized dentin. Optical coherence tomography (OCT) is a noninvasive diagnostic method for obtaining cross-sectional images that produce high-resolution of the biological tissue at the micron scale. The aim of this study was to evaluate the gap formation at adhesive/tooth interface of two-step self-etch adhesives that are preceded with or without phosphoric acid pre-etching in different regions of teeth using SS-OCT. Materials and methods: Round tapered cavities (2×2 mm) were prepared in cervical part of bovine incisors teeth and divided into 2 groups (n=10): first group self-etch adhesive (Clearfil SE Bond) was applied for SE group and second group treated with acid etching before applying the self-etch adhesive for PA group. Subsequently, both groups were restored with Estelite Flow Quick Flowable Composite Resin and observed under OCT. Following 5000 thermal cycles, the same section was obtained again for each cavity using OCT at 1310-nm wavelength. Scanning was repeated after two months to monitor the gap progress. Then the gap length was measured using image analysis software, and the statistics analysis were done between both groups using SPSS software. After that, the cavities were sectioned and observed under Confocal Laser Scanning Microscope (CLSM) to confirm the result of OCT. Results: Gaps formed at the bottom of the cavity was longer than the gap formed at the margin and dento-enamel junction in both groups. On the other hand, pre-etching treatment led to damage the DEJ regions creating longer gap. After 2 months the results showed almost progress in the gap length significantly at the bottom regions in both groups. In conclusions, phosphoric acid etching treatment did not reduce the gap lrngth in most regions of the cavity. Significance: The bottom region of tooth was more exposed to gap formation than margin and DEJ regions, The DEJ damaged with phosphoric acid treatment.

Keywords: optical coherence tomography, self-etch adhesives, bottom, dento enamel junction

Procedia PDF Downloads 227
1049 Optimizing the Doses of Chitosan/Tripolyphosphate Loaded Nanoparticles of Clodinofop Propargyl and Fenoxaprop-P-Ethyl to Manage Avena Fatua L.: An Environmentally Safer Alternative to Control Weeds

Authors: Muhammad Ather Nadeem, Bilal Ahmad Khan, Hussam F. Najeeb Alawadi, Athar Mahmood, Aneela Nijabat, Tasawer Abbas, Muhammad Habib, Abdullah

Abstract:

The global prevalence of Avena fatua infestation poses a significant challenge to wheat sustainability. While chemical control stands out as an efficient and rapid way to control weeds, concerns over developing resistance in weeds and environmental pollution have led to criticisms of herbicide use. Consequently, this study was designed to address these challenges through the chemical synthesis, characterization, and optimization of chitosan-based nanoparticles containing clodinofop Propargyl and fenoxaprop-P-ethyl for the effective management of A. fatua. Utilizing the ionic gelification technique, chitosan-based nanoparticles of clodinofop Propargyl and fenoxaprop-P-ethyl were prepared. These nanoparticles were applied at the 3-4 leaf stage of Phalaris minor weed, applying seven altered doses. These nanoparticles were applied at the 3-4 leaf stage of Phalaris minor weed, applying seven altered doses (D0 (Check weeds), D1 (Recommended dose of traditional-herbicide (TH), D2 (Recommended dose of Nano-herbicide (NPs-H)), D3 (NPs-H with 05-fold lower dose), D4 ((NPs-H) with 10-fold lower dose), D5 (NPs-H with 15-fold lower dose), and D6 (NPs-H with 20-fold lower dose)). Characterization of the chitosan-containing herbicide nanoparticles (CHT-NPs) was conducted using FT-IR analysis, demonstrating a perfect match with standard parameters. UV–visible spectrum further revealed absorption peaks at 310 nm for NPs of clodinofop propargyl and at 330 nm for NPs of fenoxaprop-p-ethyl. This research aims to contribute to sustainable weed management practices by addressing the challenges associated with chemical herbicide use. The application of chitosan-based nanoparticles (CHT-NPs) containing fenoxaprop-P-ethyl and clodinofop-propargyl at the recommended dose of the standard herbicide resulted in 100% mortality and visible injury to weeds. Surprisingly, when applied at a lower dose with 5-folds, these chitosan-containing nanoparticles of clodinofop Propargyl and fenoxaprop-P-ethyl demonstrated extreme control efficacy. Furthermore, at a 10-fold lower dose compared to standard herbicides and the recommended dose of clodinofop-propargyl and fenoxaprop-P-ethyl, the chitosan-based nanoparticles exhibited comparable effects on chlorophyll content, visual injury (%), mortality (%), plant height (cm), fresh weight (g), and dry weight (g) of A. fatua. This study indicates that chitosan/tripolyphosphate-loaded nanoparticles containing clodinofop-propargyl and fenoxaprop-P-ethyl can be effectively utilized for the management of A. fatua at a 10-fold lower dose, highlighting their potential for sustainable and efficient weed control.

Keywords: mortality, chitosan-based nanoparticles, visual injury, chlorophyl contents, 5-fold lower dose.

Procedia PDF Downloads 56
1048 Cognitive Linguistic Features Underlying Spelling Development in a Second Language: A Case Study of L2 Spellers in South Africa

Authors: A. Van Staden, A. Tolmie, E. Vorster

Abstract:

Research confirms the multifaceted nature of spelling development and underscores the importance of both cognitive and linguistic skills that affect sound spelling development such as working and long-term memory, phonological and orthographic awareness, mental orthographic images, semantic knowledge and morphological awareness. This has clear implications for many South African English second language spellers (L2) who attempt to become proficient spellers. Since English has an opaque orthography, with irregular spelling patterns and insufficient sound/grapheme correspondences, L2 spellers can neither rely, nor draw on the phonological awareness skills of their first language (for example Sesotho and many other African languages), to assist them to spell the majority of English words. Epistemologically, this research is informed by social constructivism. In addition the researchers also hypothesized that the principles of the Overlapping Waves Theory was an appropriate lens through which to investigate whether L2 spellers could significantly improve their spelling skills via the implementation of an alternative route to spelling development, namely the orthographic route, and more specifically via the application of visual imagery. Post-test results confirmed the results of previous research that argues for the interactive nature of different cognitive and linguistic systems such as working memory and its subsystems and long-term memory, as learners were systematically guided to store visual orthographic images of words in their long-term lexicons. Moreover, the results have shown that L2 spellers in the experimental group (n = 9) significantly outperformed L2 spellers (n = 9) in the control group whose intervention involved phonological awareness (and coding) including the teaching of spelling rules. Consequently, L2 learners in the experimental group significantly improved in all the post-test measures included in this investigation, namely the four sub-tests of short-term memory; as well as two spelling measures (i.e. diagnostic and standardized measures). Against this background, the findings of this study look promising and have shown that, within a social-constructivist learning environment, learners can be systematically guided to apply higher-order thinking processes such as visual imagery to successfully store and retrieve mental images of spelling words from their output lexicons. Moreover, results from the present study could play an important role in directing research into this under-researched aspect of L2 literacy development within the South African education context.

Keywords: English second language spellers, phonological and orthographic coding, social constructivism, visual imagery as spelling strategy

Procedia PDF Downloads 361
1047 Safety and Maternal Anxiety in Mother's and Baby's Sleep: Cross-sectional Study

Authors: Rayanne Branco Dos Santos Lima, Lorena Pinheiro Barbosa, Kamila Ferreira Lima, Victor Manuel Tegoma Ruiz, Monyka Brito Lima Dos Santos, Maria Wendiane Gueiros Gaspar, Luzia Camila Coelho Ferreira, Leandro Cardozo Dos Santos Brito, Deyse Maria Alves Rocha

Abstract:

Introduction: The lack of regulation of the baby's sleep-wake pattern in the first years of life affects the health of thousands of women. Maternal sleep deprivation can trigger or aggravate psychosomatic problems such as depression, anxiety and stress that can directly influence maternal safety, with consequences for the baby's and mother's sleep. Such conditions can affect the family's quality of life and child development. Objective: To correlate maternal security with maternal state anxiety scores and the mother's and baby's total sleep time. Method: Cross-sectional study carried out with 96 mothers of babies aged 10 to 24 months, accompanied by nursing professionals linked to a Federal University in Northeast Brazil. Study variables were maternal security, maternal state anxiety scores, infant latency and sleep time, and total nocturnal sleep time of mother and infant. Maternal safety was calculated using a four-point Likert scale (1=not at all safe, 2=somewhat safe, 3=very safe, 4=completely safe). Maternal anxiety was measured by State-Trait Anxiety Inventory, state-anxiety subscale whose scores vary from 20 to 80 points, and the higher the score, the higher the anxiety levels. Scores below 33 are considered mild; from 33 to 49, moderate and above 49, high. As for the total nocturnal sleep time, values between 7-9 hours of sleep were considered adequate for mothers, and values between 9-12 hours for the baby, according to the guidelines of the National Sleep Foundation. For the sleep latency time, a time equal to or less than 20 min was considered adequate. It is noteworthy that the latency time and the time of night sleep of the mother and the baby were obtained by the mother's subjective report. To correlate the data, Spearman's correlation was used in the statistical package R version 3.6.3. Results: 96 women and babies participated, aged 22 to 38 years (mean 30.8) and 10 to 24 months (mean 14.7), respectively. The average of maternal security was 2.89 (unsafe); Mean maternal state anxiety scores were 43.75 (moderate anxiety). The babies' average sleep latency time was 39.6 min (>20 min). The mean sleep times of the mother and baby were, respectively, 6h and 42min and 8h and 19min, both less than the recommended nocturnal sleep time. Maternal security was positively correlated with maternal state anxiety scores (rh=266, p=0.009) and negatively correlated with infant sleep latency (rh= -0.30. P=0.003). Baby sleep time was positively correlated with maternal sleep time. (rh 0.46, p<0.001). Conclusion: The more secure the mothers considered themselves, the higher the anxiety scores and the shorter the baby's sleep latency. Also, the longer the baby sleeps, the longer the mother sleeps. Thus, interventions are needed to promote the quality and efficiency of sleep for both mother and baby.

Keywords: sleep, anxiety, infant, mother-child relations

Procedia PDF Downloads 104
1046 The Current Home Hemodialysis Practices and Patients’ Safety Related Factors: A Case Study from Germany

Authors: Ilyas Khan. Liliane Pintelon, Harry Martin, Michael Shömig

Abstract:

The increasing costs of healthcare on one hand, and the rise in aging population and associated chronic disease, on the other hand, are putting increasing burden on the current health care system in many Western countries. For instance, chronic kidney disease (CKD) is a common disease and in Europe, the cost of renal replacement therapy (RRT) is very significant to the total health care cost. However, the recent advancement in healthcare technology, provide the opportunity to treat patients at home in their own comfort. It is evident that home healthcare offers numerous advantages apparently, low costs and high patients’ quality of life. Despite these advantages, the intake of home hemodialysis (HHD) therapy is still low in particular in Germany. Many factors are accounted for the low number of HHD intake. However, this paper is focusing on patients’ safety-related factors of current HHD practices in Germany. The aim of this paper is to analyze the current HHD practices in Germany and to identify risks related factors if any exist. A case study has been conducted in a dialysis center which consists of four dialysis centers in the south of Germany. In total, these dialysis centers have 350 chronic dialysis patients, of which, four patients are on HHD. The centers have 126 staff which includes six nephrologists and 120 other staff i.e. nurses and administration. The results of the study revealed several risk-related factors. Most importantly, these centers do not offer allied health services at the pre-dialysis stage, the HHD training did not have an established curriculum; however, they have just recently developed the first version. Only a soft copy of the machine manual is offered to patients. Surprisingly, the management was not aware of any standard available for home assessment and installation. The home assessment is done by a third party (i.e. the machines and equipment provider) and they may not consider the hygienic quality of the patient’s home. The type of machine provided to patients at home is similar to the one in the center. The model may not be suitable at home because of its size and complexity. Even though portable hemodialysis machines, which are specially designed for home use, are available in the market such as the NxStage series. Besides the type of machine, no assistance is offered for space management at home in particular for placing the machine. Moreover, the centers do not offer remote assistance to patients and their carer at home. However, telephonic assistance is available. Furthermore, no alternative is offered if a carer is not available. In addition, the centers are lacking medical staff including nephrologists and renal nurses.

Keywords: home hemodialysis, home hemodialysis practices, patients’ related risks in the current home hemodialysis practices, patient safety in home hemodialysis

Procedia PDF Downloads 119
1045 The Functions of Spatial Structure in Supporting Socialization in Urban Parks

Authors: Navid Nasrolah Mazandarani, Faezeh Mohammadi Tahrodi, Jr., Norshida Ujang, Richard Jan Pech

Abstract:

Human evolution has designed us to be dependent on social and natural settings, but designed of our modern cities often ignore this fact. It is evident that high-rise buildings dominate most metropolitan city centers. As a result urban parks are very limited and in many cases are not socially responsive to our social needs in these urban ‘jungles’. This paper emphasizes the functions of urban morphology in supporting socialization in Lake Garden, one of the main urban parks in Kuala Lumpur, Malaysia. It discusses two relevant theories; first the concept of users’ experience coined by Kevin Lynch (1960) which states that way-finding is related to the process of forming mental maps of environmental surroundings. Second, the concept of social activity coined by Jan Gehl (1987) which holds that urban public spaces can be more attractive when they provide welcoming places in which people can walk around and spend time. Until recently, research on socio-spatial behavior mainly focused on social ties, place attachment and human well-being; with less focus on the spatial dimension of social behavior. This paper examines the socio-spatial behavior within the spatial structure of the urban park by exploring the relationship between way-finding and social activity. The urban structures defined by the paths and nodes were analyzed as the fundamental topological structure of space to understand their effects on the social engagement pattern. The study uses a photo questionnaire survey to inspect the spatial dimension in relation to the social activities within paths and nodes. To understand the legibility of the park, spatial cognition was evaluated using sketch maps produced by 30 participants who visited the park. The results of the sketch mapping indicated that a spatial image has a strong interrelation with socio-spatial behavior. Moreover, an integrated spatial structure of the park generated integrated use and social activity. It was found that people recognized and remembered the spaces where they engaged in social activities. They could experience the park more thoroughly, when they found their way continuously through an integrated park structure. Therefore, the benefits of both perceptual and social dimensions of planning and design happened simultaneously. The findings can assist urban planners and designers to redevelop urban parks by considering the social quality design that contributes to clear mental images of these places.

Keywords: spatial structure, social activities, sketch map, urban park, way-finding

Procedia PDF Downloads 318