Search results for: protein structure classification
10840 Deep Graph Embeddings for the Analysis of Short Heartbeat Interval Time Series
Authors: Tamas Madl
Abstract:
Sudden cardiac death (SCD) constitutes a large proportion of cardiovascular mortalities, provides little advance warning, and the risk is difficult to recognize based on ubiquitous, low cost medical equipment such as the standard, 12-lead, ten second ECG. Autonomic abnormalities have been shown to be strongly predictive of SCD risk; yet current methods are not trivially applicable to the brevity and low temporal and electrical resolution of standard ECGs. Here, we build horizontal visibility graph representations of very short inter-beat interval time series, and perform unsuper- vised representation learning in order to convert these variable size objects into fixed-length vectors preserving similarity rela- tions. We show that such representations facilitate classification into healthy vs. at-risk patients on two different datasets, the Mul- tiparameter Intelligent Monitoring in Intensive Care II and the PhysioNet Sudden Cardiac Death Holter Database. Our results suggest that graph representation learning of heartbeat interval time series facilitates robust classification even in sequences as short as ten seconds.Keywords: sudden cardiac death, heart rate variability, ECG analysis, time series classification
Procedia PDF Downloads 23410839 Lexical Classification of Compounds in Berom: A Semantic Description of N-V Nominal Compounds
Authors: Pam Bitrus Marcus
Abstract:
Compounds in Berom, a Niger-Congo language that is spoken in parts of central Nigeria, have been understudied, and the semantics of N-V nominal compounds have not been sufficiently delineated. This study describes the lexical classification of compounds in Berom and, specifically, examines the semantics of nominal compounds with N-V constituents. The study relied on a data set of 200 compounds that were drawn from Bere Naha (a newsletter publication in Berom). Contrary to the nominalization process in defining the lexical class of compounds in languages, the study revealed that verbal and adjectival classes of compounds are also attested in Berom and N-V nominal compounds have an agentive or locative interpretation that is not solely determined by the meaning of the constituents of the compound but by the context of the usage.Keywords: berom, berom compounds, nominal compound, N-V compounds
Procedia PDF Downloads 7810838 Analysis of Autoantibodies to the S-100 Protein, NMDA, and Dopamine Receptors in Children with Type 1 Diabetes Mellitus
Authors: Yuri V. Bykov, V. A. Baturin
Abstract:
Aim of the study: The aim of the study was to perform a comparative analysis of the levels of autoantibodies (AAB) to the S-100 protein as well as to the dopamine and NMDA receptors in children with type 1 diabetes mellitus (DM) in therapeutic remission. Materials and methods: Blood serum obtained from 42 children ages 4 to 17 years (20 boys and 22 girls) was analyzed. Twenty-one of these children had a diagnosis of type 1 DM and were in therapeutic remission (study group). The mean duration of disease in children with type 1 DM was 9.6±0.36 years. Children without DM were included in a group of "apparently healthy children" (21 children, comparison group). AAB to the S-100 protein, the dopamine, and NMDA receptors were measured by ELISA. The normal range of IgG AAB was specified as up to 10 µg/mL. In order to compare the central parameters of the groups, the following parametric and non-parametric methods were used: Student's t-test or Mann-Whitney U test. The level of significance for inter-group comparisons was set at p<0.05. Results: The mean levels of AAB to the S-100B protein were significantly higher (p=0.0045) in children with DM (16.84±1.54 µg/mL) when compared with "apparently healthy children" (2.09±0.05 µg/mL). The detected elevated levels of AAB to NMDA receptors may indicate that in children with type 1 DM, there is a change in the activity of the glutamatergic system, which in its turn suggests the presence of excitotoxicity. The mean levels of AAB to dopamine receptors were higher (p=0.0082) in patients comprising the study group than in the children of the comparison group (40.47±2.31 µg/mL and 3.91±0.09 µg/mL). The detected elevated levels of AAB to dopamine receptors suggest an altered activity of the dopaminergic system in children with DM. This can also be viewed as indirect evidence of altered activity of the brain's glutamatergic system. The mean levels of AAB to NMDA receptors were higher in patients with type 1 DM compared with the "apparently healthy children," at 13.16±2.07 µg/mL and 1.304±0.05 µg/mL, respectively (p=0.0021). The elevated mean levels of AAB to the S-100B protein may indicate damage to brain tissue in children with type 1 DM. A difference was also detected between the mean values of the measured AABs, and this difference depended on the duration of the disease: mean AAB values were significantly higher in patients whose disease had lasted more than five years. Conclusions: The elevated mean levels of AAB to the S-100B protein may indicate damage to brain tissue in the setting of excitotoxicity in children with type 1 DM. The discovered elevation of the levels of AAB to NMDA and dopamine receptors may indicate the activation of the glutamatergic and dopaminergic systems. The observed abnormalities indicate the presence of central nervous system damage in children with type 1 DM, with a tendency towards the elevation of the levels of the studied AABs with disease progression.Keywords: autoantibodies, brain damage, children, diabetes mellitus
Procedia PDF Downloads 9610837 Application of Fuzzy Clustering on Classification Agile Supply Chain Firms
Authors: Hamidreza Fallah Lajimi, Elham Karami, Alireza Arab, Fatemeh Alinasab
Abstract:
Being responsive is an increasingly important skill for firms in today’s global economy; thus firms must be agile. Naturally, it follows that an organization’s agility depends on its supply chain being agile. However, achieving supply chain agility is a function of other abilities within the organization. This paper analyses results from a survey of 71 Iran manufacturing companies in order to identify some of the factors for agile organizations in managing their supply chains. Then we classification this company in four cluster with fuzzy c-mean technique and with Four validations functional determine automatically the optimal number of clusters.Keywords: agile supply chain, clustering, fuzzy clustering, business engineering
Procedia PDF Downloads 71310836 Determination of the Effective Economic and/or Demographic Indicators in Classification of European Union Member and Candidate Countries Using Partial Least Squares Discriminant Analysis
Authors: Esra Polat
Abstract:
Partial Least Squares Discriminant Analysis (PLSDA) is a statistical method for classification and consists a classical Partial Least Squares Regression (PLSR) in which the dependent variable is a categorical one expressing the class membership of each observation. PLSDA can be applied in many cases when classical discriminant analysis cannot be applied. For example, when the number of observations is low and when the number of independent variables is high. When there are missing values, PLSDA can be applied on the data that is available. Finally, it is adapted when multicollinearity between independent variables is high. The aim of this study is to determine the economic and/or demographic indicators, which are effective in grouping the 28 European Union (EU) member countries and 7 candidate countries (including potential candidates Bosnia and Herzegovina (BiH) and Kosova) by using the data set obtained from database of the World Bank for 2014. Leaving the political issues aside, the analysis is only concerned with the economic and demographic variables that have the potential influence on country’s eligibility for EU entrance. Hence, in this study, both the performance of PLSDA method in classifying the countries correctly to their pre-defined groups (candidate or member) and the differences between the EU countries and candidate countries in terms of these indicators are analyzed. As a result of the PLSDA, the value of percentage correctness of 100 % indicates that overall of the 35 countries is classified correctly. Moreover, the most important variables that determine the statuses of member and candidate countries in terms of economic indicators are identified as 'external balance on goods and services (% GDP)', 'gross domestic savings (% GDP)' and 'gross national expenditure (% GDP)' that means for the 2014 economical structure of countries is the most important determinant of EU membership. Subsequently, the model validated to prove the predictive ability by using the data set for 2015. For prediction sample, %97,14 of the countries are correctly classified. An interesting result is obtained for only BiH, which is still a potential candidate for EU, predicted as a member of EU by using the indicators data set for 2015 as a prediction sample. Although BiH has made a significant transformation from a war-torn country to a semi-functional state, ethnic tensions, nationalistic rhetoric and political disagreements are still evident, which inhibit Bosnian progress towards the EU.Keywords: classification, demographic indicators, economic indicators, European Union, partial least squares discriminant analysis
Procedia PDF Downloads 28010835 Effect of Coal Fly Ash on Morphological and Biochemical Characteristics of Helianthus Annuus L. Sunflower
Authors: Patel P. Kailash, Patel M. Parimal
Abstract:
An investigation was conducted to study the different concentration of coal fly ash solution on morphological and biochemical parameters of Helianthus annuus L. The seeds of Helianthus annuus L. were placed in petri dishes in three replicates and allowed to grow for 16 days in different concentration of coal fly ash solution. Shoot length, root length and fresh weight, dry weight declined with increasing concentration of fly ash. Semidiluted and concentrated fly ash solution exhibited significant reduction in chlorophyll, protein,sugar and ascorbic acid. Concentration dependent changes were observed in most of parameters. Diluted solution of fly ash revealed the maximum increase morphological and biochemical changes of seedlings.Keywords: Helianthus annuus L., protein, sugar, chlorophyll, coal fly ash
Procedia PDF Downloads 35010834 Ensemble of Deep CNN Architecture for Classifying the Source and Quality of Teff Cereal
Authors: Belayneh Matebie, Michael Melese
Abstract:
The study focuses on addressing the challenges in classifying and ensuring the quality of Eragrostis Teff, a small and round grain that is the smallest cereal grain. Employing a traditional classification method is challenging because of its small size and the similarity of its environmental characteristics. To overcome this, this study employs a machine learning approach to develop a source and quality classification system for Teff cereal. Data is collected from various production areas in the Amhara regions, considering two types of cereal (high and low quality) across eight classes. A total of 5,920 images are collected, with 740 images for each class. Image enhancement techniques, including scaling, data augmentation, histogram equalization, and noise removal, are applied to preprocess the data. Convolutional Neural Network (CNN) is then used to extract relevant features and reduce dimensionality. The dataset is split into 80% for training and 20% for testing. Different classifiers, including FVGG16, FINCV3, QSCTC, EMQSCTC, SVM, and RF, are employed for classification, achieving accuracy rates ranging from 86.91% to 97.72%. The ensemble of FVGG16, FINCV3, and QSCTC using the Max-Voting approach outperforms individual algorithms.Keywords: Teff, ensemble learning, max-voting, CNN, SVM, RF
Procedia PDF Downloads 5310833 Translating Discourse Organization Structures Used in Chinese and English Scientific and Engineering Writings
Authors: Ming Qian, Davis Qian
Abstract:
This study compares the different organization structures of Chinese and English writing discourses in the engineering and scientific fields, and recommends approaches for translators to convert the organization structures properly. Based on existing intercultural communication literature, English authors tend to deductively give their main points at the beginning, following with detailed explanations or arguments afterwards while the Chinese authors tend to place their main points inductively towards the end. In this study, this hypothesis has been verified by the authors’ Chinese-to-English translation experiences in the fields of science and engineering (e.g. journal papers, conference papers and monographs). The basic methodology used is the comparison of writings by Chinese authors with writings of the same or similar topic written by English authors in terms of organization structures. Translators should be aware of this nuance, so that instead of limiting themselves to translating the contents of an article in its original structure, they can convert the structures to fill the cross-culture gap. This approach can be controversial because if a translator changes the structure organization of a paragraph (e.g. from a 'because-therefore' inductive structure by a Chinese author to a deductive structure in English), this change of sentence order could be questioned by the original authors. For this reason, translators need to properly inform the original authors on the intercultural differences of English and Chinese writing (e.g. inductive structure versus deductive structure), and work with the original authors to maintain accuracy while converting from one structure used in a source language to another structure in the target language. The authors have incorporated these methodologies into their translation practices and work closely with the authors on the inter-cultural organization structure mapping. Translating discourse organization structure should become a standard practice in the translation process.Keywords: discourse structure, information structure, intercultural communication, translation practice
Procedia PDF Downloads 44110832 Ownership Structure and Portfolio Performance: Pre- and Post-Crisis Evidence from the Amman Stock Exchange
Authors: Mohammad Q. M. Momani
Abstract:
The objective of this study is to examine whether the value relevance of ownership structure changed as the Amman Stock Exchange market conditions changed. Using data from 2005 to 2014, the study finds that the performance of portfolios that contain firms with concentrated ownership structure declines significantly during the post-crisis period. These portfolios exhibit poor performance relative to portfolios that contain firms with dispersed ownership structure during the post-crisis period. The results argue that uninspired performance of the Amman Stock Exchange during the post-crisis period, increased the incentives for controlling shareholders to expropriate. Investors recognized these incentives and discounted firms that were more likely to expropriate.Keywords: value relevance, ownership structure, portfolio performance, Jordan, ASE
Procedia PDF Downloads 12410831 Wavelet-Based Classification of Myocardial Ischemia, Arrhythmia, Congestive Heart Failure and Sleep Apnea
Authors: Santanu Chattopadhyay, Gautam Sarkar, Arabinda Das
Abstract:
This paper presents wavelet based classification of various heart diseases. Electrocardiogram signals of different heart patients have been studied. Statistical natures of electrocardiogram signals for different heart diseases have been compared with the statistical nature of electrocardiograms for normal persons. Under this study four different heart diseases have been considered as follows: Myocardial Ischemia (MI), Congestive Heart Failure (CHF), Arrhythmia and Sleep Apnea. Statistical nature of electrocardiograms for each case has been considered in terms of kurtosis values of two types of wavelet coefficients: approximate and detail. Nine wavelet decomposition levels have been considered in each case. Kurtosis corresponding to both approximate and detail coefficients has been considered for decomposition level one to decomposition level nine. Based on significant difference, few decomposition levels have been chosen and then used for classification.Keywords: arrhythmia, congestive heart failure, discrete wavelet transform, electrocardiogram, myocardial ischemia, sleep apnea
Procedia PDF Downloads 13410830 An Experimental Study for Assessing Email Classification Attributes Using Feature Selection Methods
Authors: Issa Qabaja, Fadi Thabtah
Abstract:
Email phishing classification is one of the vital problems in the online security research domain that have attracted several scholars due to its impact on the users payments performed daily online. One aspect to reach a good performance by the detection algorithms in the email phishing problem is to identify the minimal set of features that significantly have an impact on raising the phishing detection rate. This paper investigate three known feature selection methods named Information Gain (IG), Chi-square and Correlation Features Set (CFS) on the email phishing problem to separate high influential features from low influential ones in phishing detection. We measure the degree of influentially by applying four data mining algorithms on a large set of features. We compare the accuracy of these algorithms on the complete features set before feature selection has been applied and after feature selection has been applied. After conducting experiments, the results show 12 common significant features have been chosen among the considered features by the feature selection methods. Further, the average detection accuracy derived by the data mining algorithms on the reduced 12-features set was very slight affected when compared with the one derived from the 47-features set.Keywords: data mining, email classification, phishing, online security
Procedia PDF Downloads 43210829 The Impact of Protein Content on Athletes’ Body Composition
Authors: G. Vici, L. Cesanelli, L. Belli, R. Ceci, V. Polzonetti
Abstract:
Several factors contribute to success in sport and diet is one of them. Evidence-based sport nutrition guidelines underline the importance of macro- and micro-nutrients’ balance and timing in order to improve athlete’s physical status and performance. Nevertheless, a high content of proteins is commonly found in resistance training athletes’ diet with carbohydrate intake that is not enough or not well planned. The aim of the study was to evaluate the impact of different protein and carbohydrate diet contents on body composition and sport performance on a group of resistance training athletes. Subjects were divided as study group (n=16) and control group (n=14). For a period of 4 months, both groups were subjected to the same resistance training fitness program with study group following a specific diet and control group following an ab libitum diet. Body compositions were evaluated trough anthropometric measurement (weight, height, body circumferences and skinfolds) and Bioimpedence Analysis. Physical strength and training status of individuals were evaluated through the One Repetition Maximum test (RM1). Protein intake in studied group was found to be lower than in control group. There was a statistically significant increase of body weight, free fat mass and body mass cell of studied group respect to the control group. Fat mass remains almost constant. Statistically significant changes were observed in quadriceps and biceps circumferences, with an increase in studied group. The MR1 test showed improvement in study group’s strength but no changes in control group. Usually people consume hyper-proteic diet to achieve muscle mass development. Through this study, it was possible to show that protein intake fixed at 1,7 g/kg/d can meet the individual's needs. In parallel, the increased intake of carbohydrates, focusing on quality and timing of assumption, has enabled the obtainment of desired results with a training protocol supporting a hypertrophic strategy. Therefore, the key point seems related to the planning of a structured program both from a nutritional and training point of view.Keywords: body composition, diet, exercise, protein
Procedia PDF Downloads 22510828 A Review and Classification of Maritime Disasters: The Case of Saudi Arabia's Coastline
Authors: Arif Almutairi, Monjur Mourshed
Abstract:
Due to varying geographical and tectonic factors, the region of Saudi Arabia has been subjected to numerous natural and man-made maritime disasters during the last two decades. Natural maritime disasters, such as cyclones and tsunamis, have been recorded in coastal areas of the Indian Ocean (including the Arabian Sea and the Gulf of Aden). Therefore, the Indian Ocean is widely recognised as the potential source of future destructive natural disasters that could affect Saudi Arabia’s coastline. Meanwhile, man-made maritime disasters, such as those arising from piracy and oil pollution, are located in the Red Sea and the Arabian Gulf, which are key locations for oil export and transportation between Asia and Europe. This paper provides a brief overview of maritime disasters surrounding Saudi Arabia’s coastline in order to classify them by frequency of occurrence and location, and discuss their future impact the region. Results show that the Arabian Gulf will be more vulnerable to natural maritime disasters because of its location, whereas the Red Sea is more vulnerable to man-made maritime disasters, as it is the key location for transportation between Asia and Europe. The results also show that with the aid of proper classification, effective disaster management can reduce the consequences of maritime disasters.Keywords: disaster classification, maritime disaster, natural disasters, man-made disasters
Procedia PDF Downloads 18910827 Application of Machine Learning Models to Predict Couchsurfers on Free Homestay Platform Couchsurfing
Authors: Yuanxiang Miao
Abstract:
Couchsurfing is a free homestay and social networking service accessible via the website and mobile app. Couchsurfers can directly request free accommodations from others and receive offers from each other. However, it is typically difficult for people to make a decision that accepts or declines a request when they receive it from Couchsurfers because they do not know each other at all. People are expected to meet up with some Couchsurfers who are kind, generous, and interesting while it is unavoidable to meet up with someone unfriendly. This paper utilized classification algorithms of Machine Learning to help people to find out the Good Couchsurfers and Not Good Couchsurfers on the Couchsurfing website. By knowing the prior experience, like Couchsurfer’s profiles, the latest references, and other factors, it became possible to recognize what kind of the Couchsurfers, and furthermore, it helps people to make a decision that whether to host the Couchsurfers or not. The value of this research lies in a case study in Kyoto, Japan in where the author has hosted 54 Couchsurfers, and the author collected relevant data from the 54 Couchsurfers, finally build a model based on classification algorithms for people to predict Couchsurfers. Lastly, the author offered some feasible suggestions for future research.Keywords: Couchsurfing, Couchsurfers prediction, classification algorithm, hospitality tourism platform, hospitality sciences, machine learning
Procedia PDF Downloads 13110826 Optimal Sensing Technique for Estimating Stress Distribution of 2-D Steel Frame Structure Using Genetic Algorithm
Authors: Jun Su Park, Byung Kwan Oh, Jin Woo Hwang, Yousok Kim, Hyo Seon Park
Abstract:
For the structural safety, the maximum stress calculated from the stress distribution of a structure is widely used. The stress distribution can be estimated by deformed shape of the structure obtained from measurement. Although the estimation of stress is strongly affected by the location and number of sensing points, most studies have conducted the stress estimation without reasonable basis on sensing plan such as the location and number of sensors. In this paper, an optimal sensing technique for estimating the stress distribution is proposed. This technique proposes the optimal location and number of sensing points for a 2-D frame structure while minimizing the error of stress distribution between analytical model and estimation by cubic smoothing splines using genetic algorithm. To verify the proposed method, the optimal sensor measurement technique is applied to simulation tests on 2-D steel frame structure. The simulation tests are performed under various loading scenarios. Through those tests, the optimal sensing plan for the structure is suggested and verified.Keywords: genetic algorithm, optimal sensing, optimizing sensor placements, steel frame structure
Procedia PDF Downloads 53110825 A Comprehensive Analysis of LACK (Leishmania Homologue of Receptors for Activated C Kinase) in the Context of Visceral Leishmaniasis
Authors: Sukrat Sinha, Abhay Kumar, Shanthy Sundaram
Abstract:
The Leishmania homologue of activated C kinase (LACK) is known T cell epitope from soluble Leishmania antigens (SLA) that confers protection against Leishmania challenge. This antigen has been found to be highly conserved among Leishmania strains. LACK has been shown to be protective against L. donovani challenge. A comprehensive analysis of several LACK sequences was completed. The analysis shows a high level of conservation, lower variability and higher antigenicity in specific portions of the LACK protein. This information provides insights for the potential consideration of LACK as a putative candidate in the context of visceral Leishmaniasis vaccine target.Keywords: bioinformatics, genome assembly, leishmania activated protein kinase c (lack), next-generation sequencing
Procedia PDF Downloads 33810824 Extracellular Hydrolase-Producing Bacteria Isolated from Chilca Salterns in Peru
Authors: Carol N. Flores-Fernández, Guadalupe Espilco, Cynthia Esquerre, Amparo I. Zavaleta
Abstract:
Saline environments represent a valuable source of enzymes with novel properties and particular features for application in food, pharmaceutical and chemical industry. This study focuses on the isolation and screening of hydrolase-producing bacteria from Chilca salterns and the evaluation of their biotechnological potential. Soil samples were collected from Chilca salterns in Peru. For the isolation, medium containing 0.2 % of yeast extract, 5 % of NaCl and 10 % of the soil sample was used. After 72 h of incubation at 37 °C, serial dilutions were made up to 10−12 dilutions, spread on agar plates with 0.5 % of yeast extract and 5 % of NaCl, and incubated at 37 °C for 48 h. Screening of hydrolase-producing bacteria was carried out for cellulases, amylases, lipases, DNase, and proteases on specific media. Moreover, protease-producing bacteria were tested using protein extracted from the following legumes as substrate: Glycine max, Lupinus mutabilis, Pisum sativum, Erythrina edulis, Cicer arietinum, Phaseolus vulgaris and Vicia faba. A total of 16 strains were isolated from soil samples. On the screening media; 75, 44, 81 and 50 % were cellulase, amylase, DNase and protease producers, respectively. Also, 19 % of the isolates produced all the hydrolytic enzymes above mentioned. Lipase producers were not found. The 37 % and 12 % of the strains grew at 20 % and 30 % of salt concentration, respectively. In addition, 75 % of the strains grew at pH range between 5 and 10. From the total of protease-producing bacteria, 100 % hydrolyzed Glycine max, Lupinus mutabilis, and Pisum sativum protein, while 87 % hydrolyzed Erythrina edulis and Cicer arietinum protein. Finally, 75 % and 50 % of the strains hydrolyzed Phaseolus vulgaris and Vicia faba protein, respectively. Hydrolase-producing bacteria isolated from Chilca salterns in Peru grew at high salt concentrations and wide range of pH. In addition, protease-producing bacteria hydrolyzed protein from different sources such as leguminous. These enzymes have great biotechnological potential and could be used for different industrial processes and applications.Keywords: bacteria, extracellular, hydrolases, Peru, salterns
Procedia PDF Downloads 20810823 Examining the Extent and Magnitude of Food Security amongst Rural Farming Households in Nigeria
Authors: Ajibade T., Omotesho O. A., Ayinde O. E, Ajibade E. T., Muhammad-Lawal A.
Abstract:
This study was carried out to examine the extent and magnitude of food security amongst farming rural households in Nigeria. Data used for this study was collected from a total of two hundred and forty rural farming households using a two-stage random sampling technique. The main tools of analysis for this study include descriptive statistics and a constructed food security index using the identification and aggregation procedure. The headcount ratio in this study reveals that 71% of individuals in the study area were food secure with an average per capita calorie and protein availability of 4,213.92kcal and 99.98g respectively. The aggregated household daily calorie availability and daily protein availability per capita were 3,634.57kcal and 84.08g respectively which happens to be above the food security line of 2,470kcal and 65g used in this study. The food insecure households fell short of the minimum daily per capita calorie and protein requirement by 2.1% and 24.9%. The study revealed that the area is food insecure due to unequal distribution of the available food amongst the sampled population. The study recommends that the households should empower themselves financially in order to enhance their ability to afford the food during both on and off seasons. Also, processing and storage of farm produce should be enhanced in order to improve on availability throughout the year.Keywords: farming household, food security, identification and aggregation, food security index
Procedia PDF Downloads 29110822 Rice Serine/Threonine Kinase 1 Is Required for the Stimulation of OsNug2 GTPase Activity
Authors: Jae Bok Heo, Yun Mi Lee, Hee Rang Yun
Abstract:
Several GTPases are required for ribosome biogenesis and assembly. We recently characterized rice (Oryza sativa) nuclear/nucleolar GTPase 2 (OsNug2), belonging to the YlqF/YawG family of GTPases, as playing a role in pre-60S ribosomal subunit maturation. To investigate the potential factors involved in regulating the function of OsNug2, yeast two-hybrid screens were carried out using OsNug2 as bait. Rice serine/threonine kinase 1 (OsSTK1) was identified as a potential interacting protein candidate. In vitro pull down and bimolecular fluorescence complementation assays confirmed the interaction between OsNug2 and OsSTK1, and like green fluorescent protein-tagged OsNug2, green fluorescent protein-tagged OsSTK1 was targeted to the nucleus of Arabidopsis protoplasts. OsSTK1 was not found to affect the GTP-binding activity of OsNug2; however, when recombinant OsSTK1 was included in OsNug2 assay reaction mixtures, OsSTK1 increased the GTPase activity of OsNug2. To test whether OsSTK1 phosphorylates OsNug2 in vitro, a kinase assay was performed. OsSTK1 was found to have weak autophosphorylation activity and strongly phosphorylated serine 209 of OsNug2. Yeast complementation testing resulted in a GAL::OsNug2(S209N) mutant-harboring yeast strain exhibiting a growth-defective phenotype on galactose medium at 39°C, divergent from that of a yeast strain harboring GAL::OsNug2. The intrinsic GTPase activity of mutant OsNug2(S209N) was found to be similar to that of OsNug2, was not fully enhanced upon weak binding of OsSTK1. Our findings reported here indicate that OsSTK1 functions as a positive regulator protein of OsNug2 by enhancing the GTPase activity of OsNug2, and that the phosphorylation of serine 209 of OsNug2 is essential for the complete function of OsNug2 in ribosome biogenesis.Keywords: OsSTK1, OsNug2, GTPase activity, GTP binding activity, phosphorylation
Procedia PDF Downloads 37110821 In-Depth Analysis on Sequence Evolution and Molecular Interaction of Influenza Receptors (Hemagglutinin and Neuraminidase)
Authors: Dong Tran, Thanh Dac Van, Ly Le
Abstract:
Hemagglutinin (HA) and Neuraminidase (NA) play an important role in host immune evasion across influenza virus evolution process. The correlation between HA and NA evolution in respect to epitopic evolution and drug interaction has yet to be investigated. In this study, combining of sequence to structure evolution and statistical analysis on epitopic/binding site specificity, we identified potential therapeutic features of HA and NA that show specific antibody binding site of HA and specific binding distribution within NA active site of current inhibitors. Our approach introduces the use of sequence variation and molecular interaction to provide an effective strategy in establishing experimental based distributed representations of protein-protein/ligand complexes. The most important advantage of our method is that it does not require complete dataset of complexes but rather directly inferring feature interaction from sequence variation and molecular interaction. Using correlated sequence analysis, we additionally identified co-evolved mutations associated with maintaining HA/NA structural and functional variability toward immunity and therapeutic treatment. Our investigation on the HA binding specificity revealed unique conserved stalk domain interacts with unique loop domain of universal antibodies (CR9114, CT149, CR8043, CR8020, F16v3, CR6261, F10). On the other hand, NA inhibitors (Oseltamivir, Zaninamivir, Laninamivir) showed specific conserved residue contribution and similar to that of NA substrate (sialic acid) which can be exploited for drug design. Our study provides an important insight into rational design and identification of novel therapeutics targeting universally recognized feature of influenza HA/NA.Keywords: influenza virus, hemagglutinin (HA), neuraminidase (NA), sequence evolution
Procedia PDF Downloads 16410820 Application of Remote Sensing Technique on the Monitoring of Mine Eco-Environment
Authors: Haidong Li, Weishou Shen, Guoping Lv, Tao Wang
Abstract:
Aiming to overcome the limitation of the application of traditional remote sensing (RS) technique in the mine eco-environmental monitoring, in this paper, we first classified the eco-environmental damages caused by mining activities and then introduced the principle, classification and characteristics of the Light Detection and Ranging (LiDAR) technique. The potentiality of LiDAR technique in the mine eco-environmental monitoring was analyzed, particularly in extracting vertical structure parameters of vegetation, through comparing the feasibility and applicability of traditional RS method and LiDAR technique in monitoring different types of indicators. The application situation of LiDAR technique in extracting typical mine indicators, such as land destruction in mining areas, damage of ecological integrity and natural soil erosion. The result showed that the LiDAR technique has the ability to monitor most of the mine eco-environmental indicators, and exhibited higher accuracy comparing with traditional RS technique, specifically speaking, the applicability of LiDAR technique on each indicator depends on the accuracy requirement of mine eco-environmental monitoring. In the item of large mine, LiDAR three-dimensional point cloud data not only could be used as the complementary data source of optical RS, Airborne/Satellite LiDAR could also fulfill the demand of extracting vertical structure parameters of vegetation in large areas.Keywords: LiDAR, mine, ecological damage, monitoring, traditional remote sensing technique
Procedia PDF Downloads 39710819 Characterization and Analysis of Airless Tire in Mountain Cycle
Authors: Sadia Rafiq, Md. Ashab Siddique Zaki, Ananya Roy
Abstract:
Mountain cycling is a type of off-road bicycle racing that typically takes place on rocky, arid, or other challenging terrains on specially-made mountain cycles. Professional cyclists race while attempting to stay on their bikes in a variety of locales across the world. For safety measures in mountain cycling, as there we have a high chance of injury in case of tire puncture, it’s a preferable way to use an airless tire instead of a pneumatic tire. As airless tire does not tend to go flat, it needs to be replaced less frequently. The airless tire replaces the pneumatic tire, wheel, and tire system with a single unit. It consists of a stiff hub connected to a shear band by flexible, pliable spokes, which is made of poly-composite and a tread band, all of which work together as a single unit to replace all of the components of a normal radial tire. In this paper, an analysis of airless tires in the mountain cycle is shown along with structure and material study. We will be taking the Honeycomb and Diamond Structure of spokes to compare the deformation in both cases and choose our preferable structure. As we know, the tread and spokes deform with the surface roughness and impact. So, the tire tread thickness and the design of spokes can control how much the tire can distort. Through the simulation, we can come to the conclusion that the diamond structure deforms less than the honeycomb structure. So, the diamond structure is more preferable.Keywords: airless tire, diamond structure, honeycomb structure, deformation
Procedia PDF Downloads 8210818 An Automated System for the Detection of Citrus Greening Disease Based on Visual Descriptors
Authors: Sidra Naeem, Ayesha Naeem, Sahar Rahim, Nadia Nawaz Qadri
Abstract:
Citrus greening is a bacterial disease that causes considerable damage to citrus fruits worldwide. Efficient method for this disease detection must be carried out to minimize the production loss. This paper presents a pattern recognition system that comprises three stages for the detection of citrus greening from Orange leaves: segmentation, feature extraction and classification. Image segmentation is accomplished by adaptive thresholding. The feature extraction stage comprises of three visual descriptors i.e. shape, color and texture. From shape feature we have used asymmetry index, from color feature we have used histogram of Cb component from YCbCr domain and from texture feature we have used local binary pattern. Classification was done using support vector machines and k nearest neighbors. The best performances of the system is Accuracy = 88.02% and AUROC = 90.1% was achieved by automatic segmented images. Our experiments validate that: (1). Segmentation is an imperative preprocessing step for computer assisted diagnosis of citrus greening, and (2). The combination of shape, color and texture features form a complementary set towards the identification of citrus greening disease.Keywords: citrus greening, pattern recognition, feature extraction, classification
Procedia PDF Downloads 18410817 Competition between Verb-Based Implicit Causality and Theme Structure's Influence on Anaphora Bias in Mandarin Chinese Sentences: Evidence from Corpus
Authors: Linnan Zhang
Abstract:
Linguists, as well as psychologists, have shown great interests in implicit causality in reference processing. However, most frequently-used approaches to this issue are psychological experiments (such as eye tracking or self-paced reading, etc.). This research is a corpus-based one and is assisted with statistical tool – software R. The main focus of the present study is about the competition between verb-based implicit causality and theme structure’s influence on anaphora bias in Mandarin Chinese sentences. In Accessibility Theory, it is believed that salience, which is also known as accessibility, and relevance are two important factors in reference processing. Theme structure, which is a special syntactic structure in Chinese, determines the salience of an antecedent on the syntactic level while verb-based implicit causality is a key factor to the relevance between antecedent and anaphora. Therefore, it is a study about anaphora, combining psychology with linguistics. With analysis of the sentences from corpus as well as the statistical analysis of Multinomial Logistic Regression, major findings of the present study are as follows: 1. When the sentence is stated in a ‘cause-effect’ structure, the theme structure will always be the antecedent no matter forward biased verbs or backward biased verbs co-occur; in non-theme structure, the anaphora bias will tend to be the opposite of the verb bias; 2. When the sentence is stated in a ‘effect-cause’ structure, theme structure will not always be the antecedent and the influence of verb-based implicit causality will outweigh that of theme structure; moreover, the anaphora bias will be the same with the bias of verbs. All the results indicate that implicit causality functions conditionally and the noun in theme structure will not be the high-salience antecedent under any circumstances.Keywords: accessibility theory, anaphora, theme strcture, verb-based implicit causality
Procedia PDF Downloads 19810816 A General Framework for Knowledge Discovery from Echocardiographic and Natural Images
Authors: S. Nandagopalan, N. Pradeep
Abstract:
The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.Keywords: active contour, Bayesian, echocardiographic image, feature vector
Procedia PDF Downloads 44510815 3D Vision Transformer for Cervical Spine Fracture Detection and Classification
Authors: Obulesh Avuku, Satwik Sunnam, Sri Charan Mohan Janthuka, Keerthi Yalamaddi
Abstract:
In the United States alone, there are over 1.5 million spine fractures per year, resulting in about 17,730 spinal cord injuries. The cervical spine is where fractures in the spine most frequently occur. The prevalence of spinal fractures in the elderly has increased, and in this population, fractures may be harder to see on imaging because of coexisting degenerative illness and osteoporosis. Nowadays, computed tomography (CT) is almost completely used instead of radiography for the imaging diagnosis of adult spine fractures (x-rays). To stop neurologic degeneration and paralysis following trauma, it is vital to trace any vertebral fractures at the earliest. Many approaches have been proposed for the classification of the cervical spine [2d models]. We are here in this paper trying to break the bounds and use the vision transformers, a State-Of-The-Art- Model in image classification, by making minimal changes possible to the architecture of ViT and making it 3D-enabled architecture and this is evaluated using a weighted multi-label logarithmic loss. We have taken this problem statement from a previously held Kaggle competition, i.e., RSNA 2022 Cervical Spine Fracture Detection.Keywords: cervical spine, spinal fractures, osteoporosis, computed tomography, 2d-models, ViT, multi-label logarithmic loss, Kaggle, public score, private score
Procedia PDF Downloads 11410814 The Prediction Mechanism of M. cajuputi Extract from Lampung-Indonesia, as an Anti-Inflammatory Agent for COVID-19 by NFκβ Pathway
Authors: Agustyas Tjiptaningrum, Intanri Kurniati, Fadilah Fadilah, Linda Erlina, Tiwuk Susantiningsih
Abstract:
Coronavirus disease-19 (COVID-19) is still one of the health problems. It can be a severe condition that is caused by a cytokine storm. In a cytokine storm, several proinflammatory cytokines are released massively. It destroys epithelial cells, and subsequently, it can cause death. The anti-inflammatory agent can be used to decrease the number of severe Covid-19 conditions. Melaleuca cajuputi is a plant that has antiviral, antibiotic, antioxidant, and anti-inflammatory activities. This study was carried out to analyze the prediction mechanism of the M. cajuputi extract from Lampung, Indonesia, as an anti-inflammatory agent for COVID-19. This study constructed a database of protein host target that was involved in the inflammation process of COVID-19 using data retrieval from GeneCards with the keyword “SARS-CoV2”, “inflammation,” “cytokine storm,” and “acute respiratory distress syndrome.” Subsequent protein-protein interaction was generated by using Cytoscape version 3.9.1. It can predict the significant target protein. Then the analysis of the Gene Ontology (GO) and KEGG pathways was conducted to generate the genes and components that play a role in COVID-19. The result of this study was 30 nodes representing significant proteins, namely NF-κβ, IL-6, IL-6R, IL-2RA, IL-2, IFN2, C3, TRAF6, IFNAR1, and DOX58. From the KEGG pathway, we obtained the result that NF-κβ has a role in the production of proinflammatory cytokines, which play a role in the COVID-19 cytokine storm. It is an important factor for macrophage transcription; therefore, it will induce inflammatory gene expression that encodes proinflammatory cytokines such as IL-6, TNF-α, and IL-1β. In conclusion, the blocking of NF-κβ is the prediction mechanism of the M. cajuputi extract as an anti-inflammation agent for COVID-19.Keywords: antiinflammation, COVID-19, cytokine storm, NF-κβ, M. cajuputi
Procedia PDF Downloads 8710813 Biosensor Design through Molecular Dynamics Simulation
Authors: Wenjun Zhang, Yunqing Du, Steven W. Cranford, Ming L. Wang
Abstract:
The beginning of 21st century has witnessed new advancements in the design and use of new materials for biosensing applications, from nano to macro, protein to tissue. Traditional analytical methods lack a complete toolset to describe the complexities introduced by living systems, pathological relations, discrete hierarchical materials, cross-phase interactions, and structure-property dependencies. Materiomics – via systematic molecular dynamics (MD) simulation – can provide structure-process-property relations by using a materials science approach linking mechanisms across scales and enables oriented biosensor design. With this approach, DNA biosensors can be utilized to detect disease biomarkers present in individuals’ breath such as acetone for diabetes. Our wireless sensor array based on single-stranded DNA (ssDNA)-decorated single-walled carbon nanotubes (SWNT) has successfully detected trace amount of various chemicals in vapor differentiated by pattern recognition. Here, we present how MD simulation can revolutionize the way of design and screening of DNA aptamers for targeting biomarkers related to oral diseases and oral health monitoring. It demonstrates great potential to be utilized to build a library of DNDA sequences for reliable detection of several biomarkers of one specific disease, and as well provides a new methodology of creating, designing, and applying of biosensors.Keywords: biosensor, DNA, biomarker, molecular dynamics simulation
Procedia PDF Downloads 46310812 Analysis of the Interventions Performed in Pediatric Cardiology Unit Based on Nursing Interventions Classification (NIC-6th): A Pilot Study
Authors: Ji Wen Sun, Nan Ping Shen, Yi Bei Wu
Abstract:
This study used Nursing Interventions Classification (NIC-6th) to identify the interventions performed in a pediatric cardiology unit, and then to analysis its frequency, time and difficulty, so as to give a brief review on what our nurses have done. The research team selected a 35 beds pediatric cardiology unit, and drawn all the nursing interventions in the nursing record from our hospital information system (HIS) from 1 October 2015 to 30 November 2015, using NIC-6th to do the matching and then counting their frequencies. Then giving each intervention its own time and difficulty code according to NIC-6th. The results showed that nurses in pediatric cardiology unit performed totally 43 interventions from 5394 statements, and most of them were in RN(basic) education level needed and less than 15 minutes time needed. There still had some interventions just needed by a nursing assistant but done by nurses, which should call for nurse managers to think about the suitable staffing. Thus, counting the summary of the product of frequency, time and difficulty for each intervention of each nurse can know one's performance. Acknowledgement Clinical Management Optimization Project of Shanghai Shen Kang Hospital Development Center (SHDC2014615); Hundred-Talent Program of Construction of Nursing Plateau Discipline (hlgy16073qnhb).Keywords: nursing interventions, nursing interventions classification, nursing record, pediatric cardiology
Procedia PDF Downloads 36410811 A Computational Investigation of Potential Drugs for Cholesterol Regulation to Treat Alzheimer’s Disease
Authors: Marina Passero, Tianhua Zhai, Zuyi (Jacky) Huang
Abstract:
Alzheimer’s disease has become a major public health issue, as indicated by the increasing populations of Americans living with Alzheimer’s disease. After decades of extensive research in Alzheimer’s disease, only seven drugs have been approved by Food and Drug Administration (FDA) to treat Alzheimer’s disease. Five of these drugs were designed to treat the dementia symptoms, and only two drugs (i.e., Aducanumab and Lecanemab) target the progression of Alzheimer’s disease, especially the accumulation of amyloid-b plaques. However, controversial comments were raised for the accelerated approvals of either Aducanumab or Lecanemab, especially with concerns on safety and side effects of these two drugs. There is still an urgent need for further drug discovery to target the biological processes involved in the progression of Alzheimer’s disease. Excessive cholesterol has been found to accumulate in the brain of those with Alzheimer’s disease. Cholesterol can be synthesized in both the blood and the brain, but the majority of biosynthesis in the adult brain takes place in astrocytes and is then transported to the neurons via ApoE. The blood brain barrier separates cholesterol metabolism in the brain from the rest of the body. Various proteins contribute to the metabolism of cholesterol in the brain, which offer potential targets for Alzheimer’s treatment. In the astrocytes, SREBP cleavage-activating protein (SCAP) binds to Sterol Regulatory Element-binding Protein 2 (SREBP2) in order to transport the complex from the endoplasmic reticulum to the Golgi apparatus. Cholesterol is secreted out of the astrocytes by ATP-Binding Cassette A1 (ABCA1) transporter. Lipoprotein receptors such as triggering receptor expressed on myeloid cells 2 (TREM2) internalize cholesterol into the microglia, while lipoprotein receptors such as Low-density lipoprotein receptor-related protein 1 (LRP1) internalize cholesterol into the neuron. Cytochrome P450 Family 46 Subfamily A Member 1 (CYP46A1) converts excess cholesterol to 24S-hydroxycholesterol (24S-OHC). Cholesterol has been approved for its direct effect on the production of amyloid-beta and tau proteins. The addition of cholesterol to the brain promotes the activity of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), secretase, and amyloid precursor protein (APP), which all aid in amyloid-beta production. The reduction of cholesterol esters in the brain have been found to reduce phosphorylated tau levels in mice. In this work, a computational pipeline was developed to identify the protein targets involved in cholesterol regulation in brain and further to identify chemical compounds as the inhibitors of a selected protein target. Since extensive evidence shows the strong correlation between brain cholesterol regulation and Alzheimer’s disease, a detailed literature review on genes or pathways related to the brain cholesterol synthesis and regulation was first conducted in this work. An interaction network was then built for those genes so that the top gene targets were identified. The involvement of these genes in Alzheimer’s disease progression was discussed, which was followed by the investigation of existing clinical trials for those targets. A ligand-protein docking program was finally developed to screen 1.5 million chemical compounds for the selected protein target. A machine learning program was developed to evaluate and predict the binding interaction between chemical compounds and the protein target. The results from this work pave the way for further drug discovery to regulate brain cholesterol to combat Alzheimer’s disease.Keywords: Alzheimer’s disease, drug discovery, ligand-protein docking, gene-network analysis, cholesterol regulation
Procedia PDF Downloads 75