Search results for: memory isolation
1127 Revolutionizing Financial Forecasts: Enhancing Predictions with Graph Convolutional Networks (GCN) - Long Short-Term Memory (LSTM) Fusion
Authors: Ali Kazemi
Abstract:
Those within the volatile and interconnected international economic markets, appropriately predicting market trends, hold substantial fees for traders and financial establishments. Traditional device mastering strategies have made full-size strides in forecasting marketplace movements; however, monetary data's complicated and networked nature calls for extra sophisticated processes. This observation offers a groundbreaking method for monetary marketplace prediction that leverages the synergistic capability of Graph Convolutional Networks (GCNs) and Long Short-Term Memory (LSTM) networks. Our suggested algorithm is meticulously designed to forecast the traits of inventory market indices and cryptocurrency costs, utilizing a comprehensive dataset spanning from January 1, 2015, to December 31, 2023. This era, marked by sizable volatility and transformation in financial markets, affords a solid basis for schooling and checking out our predictive version. Our algorithm integrates diverse facts to construct a dynamic economic graph that correctly reflects market intricacies. We meticulously collect opening, closing, and high and low costs daily for key inventory marketplace indices (e.g., S&P 500, NASDAQ) and widespread cryptocurrencies (e.g., Bitcoin, Ethereum), ensuring a holistic view of marketplace traits. Daily trading volumes are also incorporated to seize marketplace pastime and liquidity, providing critical insights into the market's shopping for and selling dynamics. Furthermore, recognizing the profound influence of the monetary surroundings on financial markets, we integrate critical macroeconomic signs with hobby fees, inflation rates, GDP increase, and unemployment costs into our model. Our GCN algorithm is adept at learning the relational patterns amongst specific financial devices represented as nodes in a comprehensive market graph. Edges in this graph encapsulate the relationships based totally on co-movement styles and sentiment correlations, enabling our version to grasp the complicated community of influences governing marketplace moves. Complementing this, our LSTM algorithm is trained on sequences of the spatial-temporal illustration discovered through the GCN, enriched with historic fee and extent records. This lets the LSTM seize and expect temporal marketplace developments accurately. Inside the complete assessment of our GCN-LSTM algorithm across the inventory marketplace and cryptocurrency datasets, the version confirmed advanced predictive accuracy and profitability compared to conventional and opportunity machine learning to know benchmarks. Specifically, the model performed a Mean Absolute Error (MAE) of 0.85%, indicating high precision in predicting day-by-day charge movements. The RMSE was recorded at 1.2%, underscoring the model's effectiveness in minimizing tremendous prediction mistakes, which is vital in volatile markets. Furthermore, when assessing the model's predictive performance on directional market movements, it achieved an accuracy rate of 78%, significantly outperforming the benchmark models, averaging an accuracy of 65%. This high degree of accuracy is instrumental for techniques that predict the course of price moves. This study showcases the efficacy of mixing graph-based totally and sequential deep learning knowledge in economic marketplace prediction and highlights the fee of a comprehensive, records-pushed evaluation framework. Our findings promise to revolutionize investment techniques and hazard management practices, offering investors and economic analysts a powerful device to navigate the complexities of cutting-edge economic markets.Keywords: financial market prediction, graph convolutional networks (GCNs), long short-term memory (LSTM), cryptocurrency forecasting
Procedia PDF Downloads 661126 Neuromarketing: Discovering the Somathyc Marker in the Consumer´s Brain
Authors: Mikel Alonso López, María Francisca Blasco López, Víctor Molero Ayala
Abstract:
The present study explains the somatic marker theory of Antonio Damasio, which indicates that when making a decision, the stored or possible future scenarios (future memory) images allow people to feel for a moment what would happen when they make a choice, and how this is emotionally marked. This process can be conscious or unconscious. The development of new Neuromarketing techniques such as functional magnetic resonance imaging (fMRI), carries a greater understanding of how the brain functions and consumer behavior. In the results observed in different studies using fMRI, the evidence suggests that the somatic marker and future memories influence the decision-making process, adding a positive or negative emotional component to the options. This would mean that all decisions would involve a present emotional component, with a rational cost-benefit analysis that can be performed later.Keywords: emotions, decision making, somatic marker, consumer´s brain
Procedia PDF Downloads 4031125 Solvent Free Microwave Extraction of Essential Oils: A Clean Chemical Processing in the Teaching and Research Laboratory
Authors: M. A. Ferhat, M. N. Boukhatem, F. Chemat
Abstract:
Microwave Clevenger or microwave accelerated distillation (MAD) is a combination of microwave heating and distillation, performed at atmospheric pressure without added any solvent or water. Isolation and concentration of volatile compounds are performed by a single stage. MAD extraction of orange essential oil was studied using fresh orange peel from Valencia late cultivar oranges as the raw material. MAD has been compared with a conventional technique, which used a Clevenger apparatus with hydro-distillation (HD). MAD and HD were compared in term of extraction time, yields, chemical composition and quality of the essential oil, efficiency and costs of the process. Extraction of essential oils from orange peels with MAD was better in terms of energy saving, extraction time (30 min versus 3 h), oxygenated fraction (11.7% versus 7.9%), product yield (0.42% versus 0.39%) and product quality. Orange peels treated by MAD and HD were observed by scanning electronic microscopy (SEM). Micrographs provide evidence of more rapid opening of essential oil glands treated by MAD, in contrast to conventional hydro-distillation.Keywords: clevenger, microwave, extraction; hydro-distillation, essential oil, orange peel
Procedia PDF Downloads 3501124 Highly Linear and Low Noise AMR Sensor Using Closed Loop and Signal-Chopped Architecture
Authors: N. Hadjigeorgiou, A. C. Tsalikidou, E. Hristoforou, P. P. Sotiriadis
Abstract:
During the last few decades, the continuously increasing demand for accurate and reliable magnetic measurements has paved the way for the development of different types of magnetic sensing systems as well as different measurement techniques. Sensor sensitivity and linearity, signal-to-noise ratio, measurement range, cross-talk between sensors in multi-sensor applications are only some of the aspects that have been examined in the past. In this paper, a fully analog closed loop system in order to optimize the performance of AMR sensors has been developed. The operation of the proposed system has been tested using a Helmholtz coil calibration setup in order to control both the amplitude and direction of magnetic field in the vicinity of the AMR sensor. Experimental testing indicated that improved linearity of sensor response, as well as low noise levels can be achieved, when the system is employed.Keywords: AMR sensor, closed loop, memory effects, chopper, linearity improvement, sensitivity improvement, magnetic noise, electronic noise
Procedia PDF Downloads 3621123 Shock Response Analysis of Soil-Structure Systems Induced by Near-Fault Pulses
Authors: H. Masaeli, R. Ziaei, F. Khoshnoudian
Abstract:
Shock response analysis of the soil–structure systems induced by near–fault pulses is investigated. Vibration transmissibility of the soil–structure systems is evaluated by Shock Response Spectra (SRS). Medium–to–high rise buildings with different aspect ratios located on different soil types as well as different foundations with respect to vertical load bearing safety factors are studied. Two types of mathematical near–fault pulses, i.e. forward directivity and fling step, with different pulse periods as well as pulse amplitudes are selected as incident ground shock. Linear versus nonlinear Soil–Structure Interaction (SSI) condition are considered alternatively and the corresponding results are compared. The results show that nonlinear SSI is likely to amplify the acceleration responses when subjected to long–period incident pulses with normalized period exceeding a threshold. It is also shown that this threshold correlates with soil type, so that increased shear–wave velocity of the underlying soil makes the threshold period decrease.Keywords: nonlinear soil–structure interaction, shock response spectrum, near–fault ground shock, rocking isolation
Procedia PDF Downloads 3161122 Load Balancing and Resource Utilization in Cloud Computing
Authors: Gagandeep Kaur
Abstract:
Cloud computing uses various computing resources such as CPU, memory, processor etc. which is used to deliver service over the network and is one of the emerging fields for large scale distributed computing. In cloud computing, execution of large number of tasks with available resources to achieve high performance, minimal total time for completion, minimum response time, effective utilization of resources etc. are the major research areas. In the proposed research, an algorithm has been proposed to achieve high performance in load balancing and resource utilization. The proposed algorithm is used to reduce the makespan, increase the resource utilization and performance cost for independent tasks. Further scheduling metrics based on algorithm in cloud computing has been proposed.Keywords: resource utilization, response time, load balancing, performance cost
Procedia PDF Downloads 1821121 Relationship between Quality Improvement Strategies on the Basis of Different Management Activities
Authors: Manjinder Singh, Anish Sachdeva
Abstract:
Research on total quality management (TQM), total productive maintenance (TPM), international organization for standardization (ISO) and six sigma generally investigate the implementation and impact of these programs in isolation. However, none of these quality improvement programs is self-sufficient and they may not be powerful enough to deliver the improvements and innovations that are required nowadays to ensure the survival and growth of a firm. They are not mutually exclusive and inconsistent. On the contrary, they need complementary support and may reinforce mutually to make use of their complementarity, inducement of side-effects in favor of other quality improvement program, mutual simulation and exploitation of shared values. In this paper, first of all, the various management activities were identified which are normally under focus when any quality improvement program is implemented in any organization. Then TOPSIS methodology was applied to establish the ranking of various quality improvement programs (total quality management, total productive maintenance, ISO and six sigma which were brought to the corporate boardroom to improve the quality) with respect to different management activities (operations related activities, quality related activities, maintenance related activities, organizational related activities, human related activities and finance related activities).Keywords: total productive maintenance (TPM), total quality management (TQM), TOPSIS, international organization for standardization (ISO)
Procedia PDF Downloads 4391120 Cytotoxic Metabolites from Tagetes minuta L. Growing in Saudi Arabia
Authors: Ali A. A. Alqarni, Gamal A. Mohamed, Hossam M. Abdallah, Sabrin R. M. Ibrahim
Abstract:
Phytochemical investigation of the methanolic extract of aerial parts of Tagetes minuta L. (Family: Asteraceae) using different chromatographic techniques led to the isolation of five compounds; ecliptal (1), scopoletin (2), P-hydroxy benzoic acid (3), patuletin (4), and patuletin-7-O-β-D-glucopyranoside (5) (Figure 1). Their structures were established based on physical, chemical, and spectral data [Ultraviolet (UV), Proton ¹H, Carbon thirteen ¹³C, and Heteronuclear Multiple Bond Correlation (HMBC) NMR], as well as Electrospray Ionization Mass Spectroscopy (ESIMS) and comparison with literature data. Their cytotoxic activity was assessed towards human liver hepatocellular carcinoma (HepG2), human breast cancer (MCF-7), and human colon cancer (HCT116) cancer cell lines using sulphorhodamine B (SRB) assay. It is noteworthy that compound 1 demonstrated a significant cytotoxic potential towards HepG2, MCF7, and HCT116 cells with IC₅₀s ranging from 2.74 to 7.01 μM, compared to doxorubicin (IC₅₀ 0.18, 0.60, and 0.20 μM, respectively), whereas compounds 2, 4, and 5 showed moderate cytotoxic potential with IC50s ranging from 11.71 to 35.64 μM. However, 3 was inactive up to a concentration of 100 μM towards the three tested cancer cell lines.Keywords: Asteraceae, cytotoxicity, metabolites, Tagetes minuta
Procedia PDF Downloads 1631119 New Bioactive Compounds from Two Chrysanthemum Saharian Species (Asteraceae) Growing in Algeria
Authors: Zahia Kabouche, Ouissem Gherboudj, Naima Boutaghane, Ahmed Kabouche, Laurence Voutquenne-Nazabadioko
Abstract:
Chrysanthemum herbs (Asteraceae) are extensively used as food additives and in folk medicine. Anti-cancer, anti-human immunodeficiency virus type 1 (HIV-1), anti-inflammatory, antinociceptive and antiproliferative activities as well as antioxidant effects have been reported for Chrysanthemum species. We report the isolation and identification of flavonoids and new and known terpenoids from the endemic species, C. macrocarpum and C. deserticolum “guertoufa”, used in Algerian Sahara as tea drinks and in “couscous” and soups “Chorba”. Structures of the isolated compounds were established by 1-D and 2-D homo and hetero-nuclear NMR (1H, 13C, COSY, HSQC, HMBC, and NOESY), mass spectrometry, UV and comparison with literature data. C. deserticolum extracts were tested by four methods to identify the antioxidant activity namely, ABTS•+, DPPH• scavenging, CUPRAC and ferrous-ions chelating activity methods. Anti-inflammatory, antinociceptive, antiproliferative and antioxidant activities of C. macrocarpum extracts and isolated compounds are also reported here.Keywords: Chrysanthemum macrocarpum, C. deserticolum, flavonoids, terpenoids, antioxidant, anti-inflammatory, anti-proliferative
Procedia PDF Downloads 3361118 Isolation and Probiotic Characterization of Lactobacillus plantarum and Lactococcus lactis from Gut Microbiome of Rohu (Labeo rohita)
Authors: Prem Kumar, Anuj Tyagi, Harsh Panwar, Vaneet Inder Kaur
Abstract:
Though aquaculture started as an occupation for poor and weak farmers for livelihood, it has now acquired the shape of one of the biggest industry to grow live protein in the form of aquatic organisms. Industrialization of the aquaculture sector has led to intensification resulting in stress on aquatic organisms and frequent disease outbreaks leading to huge economic impacts. Indiscriminate use of antibiotics as growth promoter and prophylactic agent in aquaculture has resulted in rapid emergence and spread of antibiotic resistance in bacterial pathogens. Over the past few years, use of probiotics (as an alternative of antibiotics) in aquaculture has gained attention due to their immunostimulant and growth promoting properties. It has now well known that after administration, a probiotic bacterium has to compete and establish itself against native microbiota to show its eventual beneficial properties. Due to their non-fish origin, commercial probiotics sometimes may display poor probiotic functionalities and antagonistic effects. Thus, isolation and characterization of probiotic bacteria from same fish host is very much necessary. In this study, attempts were made to isolate potent probiotic lactic acid bacteria (LAB) from intestinal microflora of rohu fish. Twenty-five experimental rohu fishes (mean weight 400 ± 20gm, mean standard length 20 ± 3cm) were used in the study to collect fish gut after dissection in a sterile condition. A total of 150 tentative LAB isolates from selective agar media (de Man-Rogosa-Sharpe (MRS)) were screened for their antimicrobial activity against Aeromonas hydrophila and Microccocus leuteus. A total of 17 isolates, identified as Lactobacillus plantarum and Lactococcus lactis, identified by biochemical tests and PCR amplification and sequencing of 16S rRNA gene fragment, displayed promising antimicrobial activity against both the pathogens. Two isolates from each species (FLB1, FLB2 from L. plantarum; and FLC1, FLC2 from L. lactis) were subjected to downstream probiotic potential characterization. These isolates were compared in vitro for their hemolytic activity, acid and bile tolerance for growth kinetics, auto-aggregation, cell-surface hydrophobicity against xylene, and chloroform, tolerance to phenol, cell adhesion, and safety parameters (by intraperitoneal and intramuscular injections). None of the tested isolates showed any hemolytic activity indicating their potential safety. Moreover, these isolates were tolerant to 0.3% bile (75-82% survival), phenol stress (96-99% survival) with 100% viability at pH 3 over a period of 3 h. Antibiotic sensitivity test revealed that all the tested LAB isolates were resistant to vancomycin, gentamicin, streptomycin, and erythromycin and sensitive to Erythromycin, Chloramphenicol, Ampicillin, Trimethoprim, and Nitrofurantoin. Tetracycline resistance was found in L. plantarum (FLB1 and FLB2 isolates), whereas L. lactis were susceptible to it. Intramuscular and intraperitoneal challenges to fingerlings of rohu fish (5 ± 1gm weight) with FLB1 showed no pathogenicity and occurrence of disease symptoms in fishes over an observation period of 7 days. The results revealed FLB1 as a potential probiotic candidate for aquaculture application among other isolates.Keywords: aquaculture, Lactobacillus plantarum, Lactococcus lactis, probiotics
Procedia PDF Downloads 1361117 Probiotic Properties of Lactic Acid Bacteria Isolated from Fermented Food
Authors: Wilailak Siripornadulsil, Siriyanapat Tasaku, Jutamas Buahorm, Surasak Siripornadulsil
Abstract:
The objectives of this study were to isolate LAB from various sources, dietary supplement, Thai traditional fermented food, and freshwater fish and to characterize their potential as probiotic cultures. Out of 1,558 isolates, 730 were identified as LAB based on isolation on MRS agar supplemented with a bromocresol purple indicator and CaCO3 and gram-positive, catalase and oxidase negative characteristics. Eight isolates showed the potential probiotic properties including tolerance to acid, bile salt and heat, proteolytic, amylolytic and lipolytic activities and oxalate-degrading capability. They all showed the antimicrobial activity against some Gram-negative and Gram-positive pathogenic bacteria. Based on 16S rDNA sequence analysis, they were identified as Enterococcus faecalis BT2 and MG30, Leconostoc mesenteroides SW64 and Pediococcus pentosaceous BD33, CF32, NP6, PS34 and SW5. The health beneficial effects and food safety will be further investigated and developed as a probiotic or protective culture used in Nile tilapia belly flap meat fermentation.Keywords: probiotic, lactic acid bacteria, pathogen, protective culture
Procedia PDF Downloads 3821116 Trigonelline: A Promising Compound for The Treatment of Alzheimer's Disease
Authors: Mai M. Farid, Ximeng Yang, Tomoharu Kuboyama, Chihiro Tohda
Abstract:
Trigonelline is a major alkaloid component derived from Trigonella foenum-graecum L. (fenugreek) and has been reported before as a potential neuroprotective agent, especially in Alzheimer’s disease (AD). However, the previous data were unclear and used model mice were not well established. In the present study, the effect of trigonelline on memory function was investigated in Alzheimer’s disease transgenic model mouse, 5XFAD which overexpresses the mutated APP and PS1 genes. Oral administration of trigonelline for 14 days significantly enhanced object recognition and object location memories. Plasma and cerebral cortex were isolated at 30 min, 1h, 3h, and 6 h after oral administration of trigonelline. LC-MS/MS analysis indicated that trigonelline was detected in both plasma and cortex from 30 min after, suggesting good penetration of trigonelline into the brain. In addition, trigonelline significantly ameliorated axonal and dendrite atrophy in Amyloid β-treated cortical neurons. These results suggest that trigonelline could be a promising therapeutic candidate for AD.Keywords: alzheimer’s disease, cortical neurons, LC-MS/MS analysis, trigonelline
Procedia PDF Downloads 1471115 Antimicrobial, Antioxidant and Enzyme Activities of Geosmithia pallida (KU693285): A Fungal Endophyte Associated with Brucea mollis Wall Ex. Kurz, an Endangered and Medicinal Plant of N. E. India
Authors: Deepanwita Deka, Dhruva Kumar Jha
Abstract:
Endophytes are the microbes that colonize living, internal tissues of plants without causing any immediate, overt negative effects. Endophytes are rich source of therapeutic substances like antimicrobial, anticancerous, herbicidal, insecticidal, immunomodulatory compounds. Brucea mollis, commonly known as Quinine in Assam, belonging to the family Simaroubaceae, is a shrub or small tree, recorded as endangered species in North East India by CAMP survey in 2003. It is traditionally being used as antimalarial and antimicrobial agent and has antiplasmodial, cytotoxic, anticancer, diuretic, cardiovascular effect etc. Being endangered and medicinal; this plant may host certain noble endophytes which need to be studied in depth. The aim of the present study was isolation and identification of potent endophytic fungi from Brucea mollis, an endangered medicinal plant, to protect it from extinction due to over use for medicinal purposes. Aseptically collected leaves, barks and roots samples of healthy plants were washed and cut into a total of 648 segments of about 2 cm long and 0.5 cm broad with sterile knife, comprising 216 segments each from leaves, barks and roots. These segments were surface sterilized using ethanol, mercuric chloride (HgCl2) and aqueous solution of sodium hypochlorite (NaClO). Different media viz., Czapeck-Dox-Agar (CDA, Himedia), Potato-Dextrose-Agar (PDA, Himedia), Malt Extract Agar (MEA, Himedia), Sabourad Dextrose Agar (SDA, Himedia), V8 juice agar, nutrient agar and water agar media and media amended with plant extracts were used separately for the isolation of the endophytic fungi. A total of 11 fungal species were recovered from leaf, bark and root tissues of B. mollis. The isolates were screened for antimicrobial, antioxidant and enzymatic activities using certain protocols. Cochliobolus geniculatus was identified as the most dominant species. The mycelia sterilia (creamy white) showing highest inhibitory activity against Candida albicans (MTCC 183) was induced to sporulate using modified PDA media. The isolate was identified as Geosmithia pallida. The internal transcribed spacer of rDNA was sequenced for confirmation of the taxonomic identity of the sterile mycelia (creamy white). The internal transcribed spacer r-DNA sequence was submitted to the NCBI (KU693285) for the first time from India. G. pallida and Penicillium showed highest antioxidant activity among all the isolates. The antioxidant activity of G. pallida and Penicillium didn’t show statistically significant difference (P˃0.05). G. pallida, Cochliobolus geniculatus and P. purpurogenum respectively showed highest cellulase, amylase and protease activities. Thus, endopytic fungal isolates may be used as potential natural resource of pharmaceutical importance. The endophytic fungi, Geosmithia pallida, may be used for synthesis of pharmaceutically important natural products and consequently can replace plants hitherto used for the same purpose. This study suggests that endophytes should be investigated more aggressively to better understand the endophyte biology of B. mollis.Keywords: Antimicrobial activity, antioxidant activity, Brucea mollis, endophytic fungi, enzyme activity, Geosmithia pallida
Procedia PDF Downloads 1871114 Organizational Learning Strategies for Building Organizational Resilience
Authors: Stephanie K. Douglas, Gordon R. Haley
Abstract:
Organizations face increasing disruptions, changes, and uncertainties through the rapid shifts in the economy and business environment. A capacity for resilience is necessary for organizations to survive and thrive in such adverse conditions. Learning is an essential component of an organization's capability for building resilience. Strategic human resource management is a principal component of learning and organizational resilience. To achieve organizational resilience, human resource management strategies must support individual knowledge, skills, and ability development through organizational learning. This study aimed to contribute to the comprehensive knowledge of the relationship between strategic human resource management and organizational learning to build organizational resilience. The organizational learning dimensions of knowledge acquisition, knowledge distribution, knowledge interpretation, and organizational memory can be fostered through human resource management strategies and then aggregated to the organizational level to build resilience.Keywords: human resource development, human resource management, organizational learning, organizational resilience
Procedia PDF Downloads 1371113 Forecasting Thermal Energy Demand in District Heating and Cooling Systems Using Long Short-Term Memory Neural Networks
Authors: Kostas Kouvaris, Anastasia Eleftheriou, Georgios A. Sarantitis, Apostolos Chondronasios
Abstract:
To achieve the objective of almost zero carbon energy solutions by 2050, the EU needs to accelerate the development of integrated, highly efficient and environmentally friendly solutions. In this direction, district heating and cooling (DHC) emerges as a viable and more efficient alternative to conventional, decentralized heating and cooling systems, enabling a combination of more efficient renewable and competitive energy supplies. In this paper, we develop a forecasting tool for near real-time local weather and thermal energy demand predictions for an entire DHC network. In this fashion, we are able to extend the functionality and to improve the energy efficiency of the DHC network by predicting and adjusting the heat load that is distributed from the heat generation plant to the connected buildings by the heat pipe network. Two case-studies are considered; one for Vransko, Slovenia and one for Montpellier, France. The data consists of i) local weather data, such as humidity, temperature, and precipitation, ii) weather forecast data, such as the outdoor temperature and iii) DHC operational parameters, such as the mass flow rate, supply and return temperature. The external temperature is found to be the most important energy-related variable for space conditioning, and thus it is used as an external parameter for the energy demand models. For the development of the forecasting tool, we use state-of-the-art deep neural networks and more specifically, recurrent networks with long-short-term memory cells, which are able to capture complex non-linear relations among temporal variables. Firstly, we develop models to forecast outdoor temperatures for the next 24 hours using local weather data for each case-study. Subsequently, we develop models to forecast thermal demand for the same period, taking under consideration past energy demand values as well as the predicted temperature values from the weather forecasting models. The contributions to the scientific and industrial community are three-fold, and the empirical results are highly encouraging. First, we are able to predict future thermal demand levels for the two locations under consideration with minimal errors. Second, we examine the impact of the outdoor temperature on the predictive ability of the models and how the accuracy of the energy demand forecasts decreases with the forecast horizon. Third, we extend the relevant literature with a new dataset of thermal demand and examine the performance and applicability of machine learning techniques to solve real-world problems. Overall, the solution proposed in this paper is in accordance with EU targets, providing an automated smart energy management system, decreasing human errors and reducing excessive energy production.Keywords: machine learning, LSTMs, district heating and cooling system, thermal demand
Procedia PDF Downloads 1421112 i2kit: A Tool for Immutable Infrastructure Deployments
Authors: Pablo Chico De Guzman, Cesar Sanchez
Abstract:
Microservice architectures are increasingly in distributed cloud applications due to the advantages on the software composition, development speed, release cycle frequency and the business logic time to market. On the other hand, these architectures also introduce some challenges on the testing and release phases of applications. Container technology solves some of these issues by providing reproducible environments, easy of software distribution and isolation of processes. However, there are other issues that remain unsolved in current container technology when dealing with multiple machines, such as networking for multi-host communication, service discovery, load balancing or data persistency (even though some of these challenges are already solved by traditional cloud vendors in a very mature and widespread manner). Container cluster management tools, such as Kubernetes, Mesos or Docker Swarm, attempt to solve these problems by introducing a new control layer where the unit of deployment is the container (or the pod — a set of strongly related containers that must be deployed on the same machine). These tools are complex to configure and manage and they do not follow a pure immutable infrastructure approach since servers are reused between deployments. Indeed, these tools introduce dependencies at execution time for solving networking or service discovery problems. If an error on the control layer occurs, which would affect running applications, specific expertise is required to perform ad-hoc troubleshooting. As a consequence, it is not surprising that container cluster support is becoming a source of revenue for consulting services. This paper presents i2kit, a deployment tool based on the immutable infrastructure pattern, where the virtual machine is the unit of deployment. The input for i2kit is a declarative definition of a set of microservices, where each microservice is defined as a pod of containers. Microservices are built into machine images using linuxkit —- a tool for creating minimal linux distributions specialized in running containers. These machine images are then deployed to one or more virtual machines, which are exposed through a cloud vendor load balancer. Finally, the load balancer endpoint is set into other microservices using an environment variable, providing service discovery. The toolkit i2kit reuses the best ideas from container technology to solve problems like reproducible environments, process isolation, and software distribution, and at the same time relies on mature, proven cloud vendor technology for networking, load balancing and persistency. The result is a more robust system with no learning curve for troubleshooting running applications. We have implemented an open source prototype that transforms i2kit definitions into AWS cloud formation templates, where each microservice AMI (Amazon Machine Image) is created on the fly using linuxkit. Even though container cluster management tools have more flexibility for resource allocation optimization, we defend that adding a new control layer implies more important disadvantages. Resource allocation is greatly improved by using linuxkit, which introduces a very small footprint (around 35MB). Also, the system is more secure since linuxkit installs the minimum set of dependencies to run containers. The toolkit i2kit is currently under development at the IMDEA Software Institute.Keywords: container, deployment, immutable infrastructure, microservice
Procedia PDF Downloads 1791111 The Budget Impact of the DISCERN™ Diagnostic Test for Alzheimer’s Disease in the United States
Authors: Frederick Huie, Lauren Fusfeld, William Burchenal, Scott Howell, Alyssa McVey, Thomas F. Goss
Abstract:
Alzheimer’s Disease (AD) is a degenerative brain disease characterized by memory loss and cognitive decline that presents a substantial economic burden for patients and health insurers in the US. This study evaluates the payer budget impact of the DISCERN™ test in the diagnosis and management of patients with symptoms of dementia evaluated for AD. DISCERN™ comprises three assays that assess critical factors related to AD that regulate memory, formation of synaptic connections among neurons, and levels of amyloid plaques and neurofibrillary tangles in the brain and can provide a quicker, more accurate diagnosis than tests in the current diagnostic pathway (CDP). An Excel-based model with a three-year horizon was developed to assess the budget impact of DISCERN™ compared with CDP in a Medicare Advantage plan with 1M beneficiaries. Model parameters were identified through a literature review and were verified through consultation with clinicians experienced in diagnosis and management of AD. The model assesses direct medical costs/savings for patients based on the following categories: •Diagnosis: costs of diagnosis using DISCERN™ and CDP. •False Negative (FN) diagnosis: incremental cost of care avoidable with a correct AD diagnosis and appropriately directed medication. •True Positive (TP) diagnosis: AD medication costs; cost from a later TP diagnosis with the CDP versus DISCERN™ in the year of diagnosis, and savings from the delay in AD progression due to appropriate AD medication in patients who are correctly diagnosed after a FN diagnosis.•False Positive (FP) diagnosis: cost of AD medication for patients who do not have AD. A one-way sensitivity analysis was conducted to assess the effect of varying key clinical and cost parameters ±10%. An additional scenario analysis was developed to evaluate the impact of individual inputs. In the base scenario, DISCERN™ is estimated to decrease costs by $4.75M over three years, equating to approximately $63.11 saved per test per year for a cohort followed over three years. While the diagnosis cost is higher with DISCERN™ than with CDP modalities, this cost is offset by the higher overall costs associated with CDP due to the longer time needed to receive a TP diagnosis and the larger number of patients who receive a FN diagnosis and progress more rapidly than if they had received appropriate AD medication. The sensitivity analysis shows that the three parameters with the greatest impact on savings are: reduced sensitivity of DISCERN™, improved sensitivity of the CDP, and a reduction in the percentage of disease progression that is avoided with appropriate AD medication. A scenario analysis in which DISCERN™ reduces the utilization for patients of computed tomography from 21% in the base case to 16%, magnetic resonance imaging from 37% to 27% and cerebrospinal fluid biomarker testing, positive emission tomography, electroencephalograms, and polysomnography testing from 4%, 5%, 10%, and 8%, respectively, in the base case to 0%, results in an overall three-year net savings of $14.5M. DISCERN™ improves the rate of accurate, definitive diagnosis of AD earlier in the disease and may generate savings for Medicare Advantage plans.Keywords: Alzheimer’s disease, budget, dementia, diagnosis.
Procedia PDF Downloads 1381110 Insulation and Architectural Design to Have Sustainable Buildings in Iran
Authors: Ali Bayati, Jamileh Azarnoush
Abstract:
Nowadays according to increasing the population all around the world, consuming of fossil fuels increased dramatically. Many believe that most of the atmospheric pollution comes by using fossil fuels. The process of natural sources entering cities shows one of the large challenges in consumption sources management. Nowadays, everyone considered about the consumption of fossil fuels and also Reduction of consumption civil energy in megacities that play a key role in solving serious problems such as air pollution, producing greenhouse gasses, global warming and damage ozone layer. In the construction industry, we should use the materials with the lowest need to energy for making and carrying them, and also the materials which need the lowest energy and expenses to recycling. In this way, the kind of usage material, the way of processing, regional materials and the adaptation with the environment is critical. Otherwise, the isolation should be use and mention in the long term. Accordingly, in this article we investigates the new ways in order to reduce environmental pollution and save more energy by using materials that are not harmful to the environment, fully insulated materials in buildings, sustainable and diversified buildings, suitable urban design and using solar energy more efficiently in order to reduce energy consumption.Keywords: building design, construction masonry, insulation, sustainable construction
Procedia PDF Downloads 5401109 Molecular Identification of Pneumocystis SPP Isolated from Wild Rats in Tehran, Iran
Authors: Babak Rezavand
Abstract:
Pneumocystis carinii pneumonia (PCP) is one of the main causes of morbidity and mortality among immunocompromised and HIV-positive patients and remained one of the most important common opportunistic infections in these individuals in the world. Pneumocystis infection has been reported in many mammals. The aim of this study was to determine the Pneumocystis infection in wild rats as natural reservoirs of this organism in Tehran city, Iran. Fifty three rats (Rattus rattus) were live trapped in different areas of Tehran city, Iran. After isolation of their lung tissues and homogenization in sterile conditions, DNA was extracted. DNAs from all of the Pneumocystis species were amplified by pAZ102-H and pAZ102-E primers, and Nested PCR was performed using pAZ102-X and pAZ102-W primers from the initial PCR product for all the species of Pneumocystis. Amplification of the genome revealed the presence of Pneumocystis in the lungs of 17 rats (32%) through a PCR product with a bandwidth of 346 bp. In the Nested PCR amplification, from the PCR product of 53 rats, 64.2% of the samples were positive with a bandwidth of 261bp. Pneumocystis SPP infestation is highly prevalent among wild rats in Tehran city, indicating the existence of infection in the natural ecosystem of these rodents. As a host, rat plays an important role in the transmission of the microorganism in the world.Keywords: pneumocystis SPP, rattus rattus, nested PCR, Tehran
Procedia PDF Downloads 2101108 Incidence of Anaemia in Female Breast Cancer Patients
Authors: Fatima Abu Baker Hamad
Abstract:
Anaemia is a public health problem that affects population in both rich and poor countries. Although the primary cause is iron deficiency, it is seldom present in isolation. More frequently it coexists with a number of other causes, such as malaria, parasitic infection, nutritional deficiencies and hemoglobin apathies. That was the people in Sudan suffered from it .Anaemia has a high prevalence in patients with cancer. The aim of this study was to find the incidence of anaemia in new cases of Sudanese female breast patients attending the National Cancer Institute (NCI), Gezira University, Sudan. The study was performed on 250 female breast cancer patients, the age range was (20-70) years and the mean age was 45.99±0.82. The hemoglobin level was measured by SYSMEX-KX2lM.As result 144(58.8) of patients presented with anaemia, between moderate to severe. Forty four (17.6%) of the patients were found to be under weight, 31 of them were anaemic. While 105(42%) of the patients were overweight and obese, 52 of them were anaemic. The incidence of anaemia in newly diagnosed Sudanese female breast cancer patients presented at NCI is association presentation with advance disease stage. Also it is related to age, state of nutrition and social economic factors. Early cancer detection which leads to effective treatment and reduced complication of diseases included anaemia is recommended.Keywords: anaemia, breast cancer, stages of disease, malaria
Procedia PDF Downloads 3881107 A Deep Learning Based Integrated Model For Spatial Flood Prediction
Authors: Vinayaka Gude Divya Sampath
Abstract:
The research introduces an integrated prediction model to assess the susceptibility of roads in a future flooding event. The model consists of deep learning algorithm for forecasting gauge height data and Flood Inundation Mapper (FIM) for spatial flooding. An optimal architecture for Long short-term memory network (LSTM) was identified for the gauge located on Tangipahoa River at Robert, LA. Dropout was applied to the model to evaluate the uncertainty associated with the predictions. The estimates are then used along with FIM to identify the spatial flooding. Further geoprocessing in ArcGIS provides the susceptibility values for different roads. The model was validated based on the devastating flood of August 2016. The paper discusses the challenges for generalization the methodology for other locations and also for various types of flooding. The developed model can be used by the transportation department and other emergency response organizations for effective disaster management.Keywords: deep learning, disaster management, flood prediction, urban flooding
Procedia PDF Downloads 1461106 Imagology: The Study of Multicultural Imagery Reflected in the Heart of Elif Shafak’s 'The Bastard of Istanbul'
Authors: Mohammad Reza Haji Babai, Sepideh Ahmadkhan Beigi
Abstract:
Internationalization and modernization of the globe have played their roles in the process of cultural interaction between globalized societies and, consequently, found their way to the world of literature under the name of ‘imagology’. Imagology has made it possible for the reader to understand the author’s thoughts and judgments of others. The present research focuses on the intercultural images portrayed in the novel of a popular Turkish-French writer, Elif Shafak, about the lifestyle, traditions, habits, and social norms of Turkish, Americans, and Armenians. The novel seeks to articulate a more intricate multicultural memory of Turkishness by grieving over the Armenian massacre. This study finds that, as a mixture of multiple lifestyles and discourses, The Bastard of Istanbul reflects not only images of oriental culture but also occidental cultures. This means that the author has attempted to maintain selfhood through historical and cultural recollection, which resulted in constructing the self and another identity.Keywords: imagology, Elif Shafak, The Bastard of Istanbul, self-image, other-image
Procedia PDF Downloads 1411105 Efficient Fake News Detection Using Machine Learning and Deep Learning Approaches
Authors: Chaima Babi, Said Gadri
Abstract:
The rapid increase in fake news continues to grow at a very fast rate; this requires implementing efficient techniques that allow testing the re-liability of online content. For that, the current research strives to illuminate the fake news problem using deep learning DL and machine learning ML ap-proaches. We have developed the traditional LSTM (Long short-term memory), and the bidirectional BiLSTM model. A such process is to perform a training task on almost of samples of the dataset, validate the model on a subset called the test set to provide an unbiased evaluation of the final model fit on the training dataset, then compute the accuracy of detecting classifica-tion and comparing the results. For the programming stage, we used Tensor-Flow and Keras libraries on Python to support Graphical Processing Units (GPUs) that are being used for developing deep learning applications.Keywords: machine learning, deep learning, natural language, fake news, Bi-LSTM, LSTM, multiclass classification
Procedia PDF Downloads 951104 PMEL Marker Identification of Dark and Light Feather Colours in Local Canary
Authors: Mudawamah Mudawamah, Muhammad Z. Fadli, Gatot Ciptadi, Aulanni’am
Abstract:
Canary breeders have spread throughout Indonesian regions for the low-middle society and become an income source for them. The interesting phenomenon of the canary market is the feather colours become one of determining factor for the price. The advantages of this research were contributed to the molecular database as a base of selection and mating for the Indonesia canary breeder. The research method was experiment with the genome obtained from canary blood isolation. The genome did the PCR amplification with PMEL marker followed by sequencing. Canaries were used 24 heads of light and dark colour feathers. Research data analyses used BioEdit and Network 4.6.0.0 software. The results showed that all samples were amplification with PMEL gene with 500 bp fragment length. In base sequence of 40 was found Cytosine(C) in the light colour canaries, while the dark colour canaries was obtained Thymine (T) in same base sequence. Sequence results had 286-415 bp fragment and 10 haplotypes. The conclusions were the PMEL gene (gene of white pigment) was likely to be used PMEL gene to detect molecular genetic variation of dark and light colour feather.Keywords: canary, haplotype, PMEL, sequence
Procedia PDF Downloads 2371103 Breast Cancer Prediction Using Score-Level Fusion of Machine Learning and Deep Learning Models
Authors: Sam Khozama, Ali M. Mayya
Abstract:
Breast cancer is one of the most common types in women. Early prediction of breast cancer helps physicians detect cancer in its early stages. Big cancer data needs a very powerful tool to analyze and extract predictions. Machine learning and deep learning are two of the most efficient tools for predicting cancer based on textual data. In this study, we developed a fusion model of two machine learning and deep learning models. To obtain the final prediction, Long-Short Term Memory (LSTM) and ensemble learning with hyper parameters optimization are used, and score-level fusion is used. Experiments are done on the Breast Cancer Surveillance Consortium (BCSC) dataset after balancing and grouping the class categories. Five different training scenarios are used, and the tests show that the designed fusion model improved the performance by 3.3% compared to the individual models.Keywords: machine learning, deep learning, cancer prediction, breast cancer, LSTM, fusion
Procedia PDF Downloads 1631102 Increasing a Computer Performance by Overclocking Central Processing Unit (CPU)
Authors: Witthaya Mekhum, Wutthikorn Malikong
Abstract:
The objective of this study is to investigate the increasing desktop computer performance after overclocking central processing unit or CPU by running a computer component at a higher clock rate (more clock cycles per second) than it was designed at the rate of 0.1 GHz for each level or 100 MHz starting at 4000 GHz-4500 GHz. The computer performance is tested for each level with 4 programs, i.e. Hyper PI ver. 0.99b, Cinebench R15, LinX ver.0.6.4 and WinRAR . After the CPU overclock, the computer performance increased. When overclocking CPU at 29% the computer performance tested by Hyper PI ver. 0.99b increased by 10.03% and when tested by Cinebench R15 the performance increased by 20.05% and when tested by LinX Program the performance increased by 16.61%. However, the performance increased only 8.14% when tested with Winrar program. The computer performance did not increase according to the overclock rate because the computer consists of many components such as Random Access Memory or RAM, Hard disk Drive, Motherboard and Display Card, etc.Keywords: overclock, performance, central processing unit, computer
Procedia PDF Downloads 2831101 Sensitivity and Specificity of Some Serological Tests Used for Diagnosis of Bovine Brucellosis in Egypt on Bacteriological and Molecular Basis
Authors: Hosein I. Hosein, Ragab Azzam, Ahmed M. S. Menshawy, Sherin Rouby, Khaled Hendy, Ayman Mahrous, Hany Hussien
Abstract:
Brucellosis is a highly contagious bacterial zoonotic disease of a worldwide spread and has different names; Infectious or enzootic abortion and Bang's disease in animals; and Mediterranean or Malta fever, Undulant Fever and Rock fever in humans. It is caused by the different species of genus Brucella which is a Gram-negative, aerobic, non-spore forming, facultative intracellular bacterium. Brucella affects a wide range of mammals including bovines, small ruminants, pigs, equines, rodents, marine mammals as well as human resulting in serious economic losses in animal populations. In human, Brucella causes a severe illness representing a great public health problem. The disease was reported in Egypt for the first time in 1939; since then the disease remained endemic at high levels among cattle, buffalo, sheep and goat and is still representing a public health hazard. The annual economic losses due to brucellosis were estimated to be about 60 million Egyptian pounds yearly, but actual estimates are still missing despite almost 30 years of implementation of the Egyptian control programme. Despite being the gold standard, bacterial isolation has been reported to show poor sensitivity for samples with low-level of Brucella and is impractical for regular screening of large populations. Thus, serological tests still remain the corner stone for routine diagnosis of brucellosis, especially in developing countries. In the present study, a total of 1533 cows (256 from Beni-Suef Governorate, 445 from Al-Fayoum Governorate and 832 from Damietta Governorate), were employed for estimation of relative sensitivity, relative specificity, positive predictive value and negative predictive value of buffered acidified plate antigen test (BPAT), rose bengal test (RBT) and complement fixation test (CFT). The overall seroprevalence of brucellosis revealed (19.63%). Relative sensitivity, relative specificity, positive predictive value and negative predictive value of BPAT,RBT and CFT were estimated as, (96.27 %, 96.76 %, 87.65 % and 99.10 %), (93.42 %, 96.27 %, 90.16 % and 98.35%) and (89.30 %, 98.60 %, 94.35 %and 97.24 %) respectively. BPAT showed the highest sensitivity among the three employed serological tests. RBT was less specific than BPAT. CFT showed the least sensitivity 89.30 % among the three employed serological tests but showed the highest specificity. Different tissues specimens of 22 seropositive cows (spleen, retropharyngeal udder, and supra-mammary lymph nodes) were subjected for bacteriological studies for isolation and identification of Brucella organisms. Brucella melitensis biovar 3 could be recovered from 12 (54.55%) cows. Bacteriological examinations failed to classify 10 cases (45.45%) and were culture negative. Bruce-ladder PCR was carried out for molecular identification of the 12 Brucella isolates at the species level. Three fragments of 587 bp, 1071 bp and 1682 bp sizes were amplified indicating Brucella melitensis. The results indicated the importance of using several procedures to overcome the problem of escaping of some infected animals from diagnosis.Bruce-ladder PCR is an important tool for diagnosis and epidemiologic studies, providing relevant information for identification of Brucella spp.Keywords: brucellosis, relative sensitivity, relative specificity, Bruce-ladder, Egypt
Procedia PDF Downloads 3551100 Isolation and Classification of Red Blood Cells in Anemic Microscopic Images
Authors: Jameela Ali Alkrimi, Abdul Rahim Ahmad, Azizah Suliman, Loay E. George
Abstract:
Red blood cells (RBCs) are among the most commonly and intensively studied type of blood cells in cell biology. The lack of RBCs is a condition characterized by lower than normal hemoglobin level; this condition is referred to as 'anemia'. In this study, a software was developed to isolate RBCs by using a machine learning approach to classify anemic RBCs in microscopic images. Several features of RBCs were extracted using image processing algorithms, including principal component analysis (PCA). With the proposed method, RBCs were isolated in 34 second from an image containing 18 to 27 cells. We also proposed that PCA could be performed to increase the speed and efficiency of classification. Our classifier algorithm yielded accuracy rates of 100%, 99.99%, and 96.50% for K-nearest neighbor (K-NN) algorithm, support vector machine (SVM), and neural network ANN, respectively. Classification was evaluated in highly sensitivity, specificity, and kappa statistical parameters. In conclusion, the classification results were obtained for a short time period with more efficient when PCA was used.Keywords: red blood cells, pre-processing image algorithms, classification algorithms, principal component analysis PCA, confusion matrix, kappa statistical parameters, ROC
Procedia PDF Downloads 4051099 Cyber Bullying Victimization of Elementary School Students and Their Reflections on the Victimization
Authors: Merve Sadetas Sezer, Ismail Sahin, Ahmet Oguz Akturk
Abstract:
With the use of developing technology, mostly in communication and entertainment, students spend considerable time on the internet. In addition to the advantages provided by the internet, social isolation brings problems such as addiction. This is one of the problems of the virtual violence. Cyber-bullying is the common name of the intensities which students are exposed on the internet. The purpose of this study designed as a qualitative research is to find out the cyber bullying varieties and its effects on elementary school students. The participants of this research are 6th, 7th and 8th grade students of a primary school and 24 students agreed to participate in the study. The students were asked to fill an interview with semi-structured open-ended questions. According to the results obtained in the research, the most important statements determined by the participants are breaking passwords on social networking sites, slang insult to blasphemy and taking friendship offers from unfamiliar people. According to participants from the research, the most used techniques to prevent themselves from cyber bullying are to complain to the site administrator, closing accounts on social networking sites and countercharging. Also, suggestions were presented according to the findings.Keywords: bullying, cyber-bullying, elementary, peer-relationship, virtual victimization
Procedia PDF Downloads 3491098 Evaluating the Impact of Replacement Policies on the Cache Performance and Energy Consumption in Different Multicore Embedded Systems
Authors: Sajjad Rostami-Sani, Mojtaba Valinataj, Amir-Hossein Khojir-Angasi
Abstract:
The cache has an important role in the reduction of access delay between a processor and memory in high-performance embedded systems. In these systems, the energy consumption is one of the most important concerns, and it will become more important with smaller processor feature sizes and higher frequencies. Meanwhile, the cache system dissipates a significant portion of energy compared to the other components of a processor. There are some elements that can affect the energy consumption of the cache such as replacement policy and degree of associativity. Due to these points, it can be inferred that selecting an appropriate configuration for the cache is a crucial part of designing a system. In this paper, we investigate the effect of different cache replacement policies on both cache’s performance and energy consumption. Furthermore, the impact of different Instruction Set Architectures (ISAs) on cache’s performance and energy consumption has been investigated.Keywords: energy consumption, replacement policy, instruction set architecture, multicore processor
Procedia PDF Downloads 154