Search results for: external respiration function
6129 Implementation of a Paraconsistent-Fuzzy Digital PID Controller in a Level Control Process
Authors: H. M. Côrtes, J. I. Da Silva Filho, M. F. Blos, B. S. Zanon
Abstract:
In a modern society the factor corresponding to the increase in the level of quality in industrial production demand new techniques of control and machinery automation. In this context, this work presents the implementation of a Paraconsistent-Fuzzy Digital PID controller. The controller is based on the treatment of inconsistencies both in the Paraconsistent Logic and in the Fuzzy Logic. Paraconsistent analysis is performed on the signals applied to the system inputs using concepts from the Paraconsistent Annotated Logic with annotation of two values (PAL2v). The signals resulting from the paraconsistent analysis are two values defined as Dc - Degree of Certainty and Dct - Degree of Contradiction, which receive a treatment according to the Fuzzy Logic theory, and the resulting output of the logic actions is a single value called the crisp value, which is used to control dynamic system. Through an example, it was demonstrated the application of the proposed model. Initially, the Paraconsistent-Fuzzy Digital PID controller was built and tested in an isolated MATLAB environment and then compared to the equivalent Digital PID function of this software for standard step excitation. After this step, a level control plant was modeled to execute the controller function on a physical model, making the tests closer to the actual. For this, the control parameters (proportional, integral and derivative) were determined for the configuration of the conventional Digital PID controller and of the Paraconsistent-Fuzzy Digital PID, and the control meshes in MATLAB were assembled with the respective transfer function of the plant. Finally, the results of the comparison of the level control process between the Paraconsistent-Fuzzy Digital PID controller and the conventional Digital PID controller were presented.Keywords: fuzzy logic, paraconsistent annotated logic, level control, digital PID
Procedia PDF Downloads 2846128 Academic Leadership Succession Planning Practice in Nigeria Higher Education Institutions: A Case Study of Colleges of Education
Authors: Adie, Julius Undiukeye
Abstract:
This research investigated the practice of academic leadership succession planning in Nigerian higher education institutions, drawing on the lived experiences of the academic staff of the case study institutions. It is multi-case study research that adopts a qualitative research method. Ten participants (mainly academic staff) were used as the study sample. The study was guided by four research questions. Semi-structured interviews and archival information from official documents formed the sources of data. The data collected was analyzed using the Constant Comparative Technique (CCT) to generate empirical insights and facts on the subject of this paper. The following findings emerged from the data analysis: firstly, there was no formalized leadership succession plan in place in the institutions that were sampled for this study; secondly, despite the absence of a formal succession plan, the data indicates that academics believe that succession planning is very significant for institutional survival; thirdly, existing practices of succession planning in the sampled institutions, takes the forms of job seniority ranking, political process and executive fiat, ad-hoc arrangement, and external hiring; and finally, data revealed that there are some barriers to the practice of succession planning, such as traditional higher education institutions’ characteristics (e.g. external talent search, shared governance, diversity, and equality in leadership appointment) and the lack of interest in leadership positions. Based on the research findings, some far-reaching recommendations were made, including the urgent need for the ‘formalization’ of leadership succession planning by the higher education institutions concerned, through the design of an official policy framework.Keywords: academic leadership, succession, planning, higher education
Procedia PDF Downloads 1436127 Generating 3D Anisotropic Centroidal Voronoi Tessellations
Authors: Alexandre Marin, Alexandra Bac, Laurent Astart
Abstract:
New numerical methods for PDE resolution (such as Finite Volumes (FV) or Virtual Elements Method (VEM)) open new needs in terms of meshing of domains of interest, and in particular, polyhedral meshes have many advantages. One way to build such meshes consists of constructing Restricted Voronoi Diagrams (RVDs) whose boundaries respect the domain of interest. By minimizing a function defined for RVDs, the shapes of cells can be controlled, e.g., elongated according to user-defined directions or adjusted to comply with given aspect ratios (anisotropy) and density variations. In this paper, our contribution is threefold: First, we introduce a new gradient formula for the Voronoi tessellation energy under a continuous anisotropy field. Second, we describe a meshing algorithm based on the optimisation of this function that we validate against state-of-the-art approaches. Finally, we propose a hierarchical approach to speed up our meshing algorithm.Keywords: anisotropic Voronoi diagrams, meshes for numerical simulations, optimisation, volumic polyhedral meshing
Procedia PDF Downloads 1156126 A Prediction Model Using the Price Cyclicality Function Optimized for Algorithmic Trading in Financial Market
Authors: Cristian Păuna
Abstract:
After the widespread release of electronic trading, automated trading systems have become a significant part of the business intelligence system of any modern financial investment company. An important part of the trades is made completely automatically today by computers using mathematical algorithms. The trading decisions are taken almost instantly by logical models and the orders are sent by low-latency automatic systems. This paper will present a real-time price prediction methodology designed especially for algorithmic trading. Based on the price cyclicality function, the methodology revealed will generate price cyclicality bands to predict the optimal levels for the entries and exits. In order to automate the trading decisions, the cyclicality bands will generate automated trading signals. We have found that the model can be used with good results to predict the changes in market behavior. Using these predictions, the model can automatically adapt the trading signals in real-time to maximize the trading results. The paper will reveal the methodology to optimize and implement this model in automated trading systems. After tests, it is proved that this methodology can be applied with good efficiency in different timeframes. Real trading results will be also displayed and analyzed in order to qualify the methodology and to compare it with other models. As a conclusion, it was found that the price prediction model using the price cyclicality function is a reliable trading methodology for algorithmic trading in the financial market.Keywords: algorithmic trading, automated trading systems, financial markets, high-frequency trading, price prediction
Procedia PDF Downloads 1846125 Function of Fractals: Application of Non-Linear Geometry in Continental Architecture
Authors: Mohammadsadegh Zanganehfar
Abstract:
Since the introduction of fractal geometry in 1970, numerous efforts have been made by architects and researchers to transfer this area of mathematical knowledge in the discipline of architecture and postmodernist discourse. The discourse of complexity and architecture is one of the most significant ongoing discourses in the discipline of architecture from the '70s until today and has generated significant styles such as deconstructivism and parametrism in architecture. During these years, several projects were designed and presented by designers and architects using fractal geometry, but due to the lack of sufficient knowledge and appropriate comprehension of the features and characteristics of this nonlinear geometry, none of the fractal-based designs have been successful and satisfying. Fractal geometry as a geometric technology has a long presence in the history of architecture. The current research attempts to identify and discover the characteristics, features, potentials, and functionality of fractals despite their aesthetic aspect by examining case studies of pre-modern architecture in Asia and investigating the function of fractals.Keywords: Asian architecture, fractal geometry, fractal technique, geometric properties
Procedia PDF Downloads 2576124 An Assessment of Wind Energy in Sanar Village in North of Iran Using Weibull Function
Authors: Ehsanolah Assareh, Mojtaba Biglari, Mojtaba Nedaei
Abstract:
Sanar village in north of Iran is a remote region with difficult access to electricity, grid and water supply. Thus the aim of this research is to evaluate the potential of wind as a power source either for electricity generation or for water pumping. In this study the statistical analysis has been performed by Weibull distribution function. The results show that the Weibull distribution has fitted the wind data very well. Also it has been demonstrated that wind speed at 40 m height is ranged from 1.75 m/s in Dec to 3.28 m/s in Aug with average value of 2.69 m/s. In this research, different wind speed characteristics such as turbulence intensity, wind direction, monthly air temperature, humidity wind power density and other related parameters have been investigated. Finally it was concluded that the wind energy in the Sanar village may be explored by employing modern wind turbines that require very lower start-up speeds.Keywords: wind energy, wind turbine, weibull, Sanar village, Iran
Procedia PDF Downloads 5236123 Short-Term Association of In-vehicle Ultrafine Particles and Black Carbon Concentrations with Respiratory Health in Parisian Taxi Drivers
Authors: Melissa Hachem, Maxime Loizeau, Nadine Saleh, Isabelle Momas, Lynda Bensefa-Colas
Abstract:
Professional drivers are exposed inside their vehicles to high levels of air pollutants due to the considerable time they spend close to motor vehicle emissions. Little is known about ultrafine particles (UFP) or black carbon (BC) adverse respiratory health effects compared to the regulated pollutants. We aimed to study the short-term associations between UFP and BC concentrations inside vehicles and (1) the onset of mucosal irritation and (2) the acute changes in lung function of Parisian taxi drivers during a working day. An epidemiological study was carried out on 50 taxi drivers in Paris. UFP and BC were measured inside their vehicles with DiSCmini® and microAeth®, respectively. On the same day, the frequency and the severity of nose, eye, and throat irritations were self-reported by each participant and a spirometry test was performed before and after the work shift. Multivariate analysis was used to evaluate the associations between in-taxis UFP and BC concentrations and mucosal irritation and lung function, after adjustment for potential confounders. In-taxis UFP concentrations ranged from 17.9 to 37.9 × 103 particles/cm³ and BC concentrations from 2.2 to 3.9 μg/m³, during a mean of 9 ± 2 working hours. Significant dose-response relationships were observed between in-taxis UFP concentrations and both nasal irritation and lung function. The increase of in-taxis UFP (for an interquartile range of 20 × 103 particles/cm3) was associated to an increase in nasal irritation (adjusted OR = 6.27 [95% CI: 1.02 to 38.62]) and to a reduction in forced expiratory flow at 25–75% by −7.44% [95% CI: −12.63 to −2.24], forced expiratory volume in one second by −4.46% [95% CI: −6.99 to −1.93] and forced vital capacity by −3.31% [95% CI: −5.82 to −0.80]. Such associations were not found with BC. Incident throat and eye irritations were not related to in-vehicle particles exposure; however, they were associated with outdoor air quality (estimated by the Atmo index) and in-vehicle humidity, respectively. This study is the first to show a significant association, within a short-period of time, between in-vehicle UFP exposure and acute respiratory effects in professional drivers.Keywords: black carbon, lung function, mucosal irritation, taxi drivers, ultrafine particles
Procedia PDF Downloads 1786122 Toehold Mediated Shape Transition of Nucleic Acid Nanoparticles
Authors: Emil F. Khisamutdinov
Abstract:
Development of functional materials undergoing structural transformations in response to an external stimulus such as environmental changes (pH, temperature, etc.), the presence of particular proteins, or short oligonucleotides are of great interest for a variety of applications ranging from medicine to electronics. The dynamic operations of most nucleic acid (NA) devices, including circuits, nano-machines, and biosensors, rely on networks of NA strand displacement processes in which an external or stimulus strand displaces a target strand from a DNA or RNA duplex. The rate of strand displacement can be greatly increased by the use of “toeholds,” single-stranded regions of the target complex to which the invading strand can bind to initiate the reaction, forming additional base pairs that provide a thermodynamic driving force for transformation. Herein, we developed a highly robust nanoparticle shape transition, sequentially transforming DNA polygons from one shape to another using the toehold-mediated DNA strand displacement technique. The shape transformation was confirmed by agarose gel electrophoresis and atomic force microscopy. Furthermore, we demonstrate that our approach is applicable for RNA shape transformation from triangle to square, which can be detected by fluorescence emission from malachite green binding RNA aptamer. Using gel-shift and fluorescence assays, we demonstrated efficient transformation occurs at isothermal conditions (37°C) that can be implemented within living cells as reporter molecules. This work is intended to provide a simple, cost-effective, and straightforward model for the development of biosensors and regulatory devices in nucleic acid nanotechnology.Keywords: RNA nanotechnology, bionanotechnology, toehold mediated DNA switch, RNA split fluorogenic aptamers
Procedia PDF Downloads 796121 Stability Analysis of a Human-Mosquito Model of Malaria with Infective Immigrants
Authors: Nisha Budhwar, Sunita Daniel
Abstract:
In this paper, we analyse the stability of the SEIR model of malaria with infective immigrants which was recently formulated by the authors. The model consists of an SEIR model for the human population and SI Model for the mosquitoes. Susceptible humans become infected after they are bitten by infectious mosquitoes and move on to the Exposed, Infected and Recovered classes respectively. The susceptible mosquito becomes infected after biting an infected person and remains infected till death. We calculate the reproduction number R0 using the next generation method and then discuss about the stability of the equilibrium points. We use the Lyapunov function to show the global stability of the equilibrium points.Keywords: equilibrium points, exposed, global stability, infective immigrants, Lyapunov function, recovered, reproduction number, susceptible
Procedia PDF Downloads 3656120 A Voice Signal Encryption Scheme Based on Chaotic Theory
Authors: Hailang Yang
Abstract:
To ensure the confidentiality and integrity of speech signals in communication transmission, this paper proposes a voice signal encryption scheme based on chaotic theory. Firstly, the scheme utilizes chaotic mapping to generate a key stream and then employs the key stream to perform bitwise exclusive OR (XOR) operations for encrypting the speech signal. Additionally, the scheme utilizes a chaotic hash function to generate a Message Authentication Code (MAC), which is appended to the encrypted data to verify the integrity of the data. Subsequently, we analyze the security performance and encryption efficiency of the scheme, comparing and optimizing it against existing solutions. Finally, experimental results demonstrate that the proposed scheme can resist common attacks, achieving high-quality encryption and speed.Keywords: chaotic theory, XOR encryption, chaotic hash function, Message Authentication Code (MAC)
Procedia PDF Downloads 516119 The Influence of Absorptive Capacity on Process Innovation: An Exploratory Study in Seven Leading and Emerging Countries
Authors: Raphael M. Rettig, Tessa C. Flatten
Abstract:
This empirical study answer calls for research on Absorptive Capacity and Process Innovation. Due to the fourth industrial revolution, manufacturing companies face the biggest disruption of their production processes since the rise of advanced manufacturing technologies in the last century. Therefore, process innovation will become a critical task to master in the future for many manufacturing firms around the world. The general ability of organizations to acquire, assimilate, transform, and exploit external knowledge, known as Absorptive Capacity, was proven to positively influence product innovation and is already conceptually associated with process innovation. The presented research provides empirical evidence for this influence. The findings are based on an empirical analysis of 732 companies from seven leading and emerging countries: Brazil, China, France, Germany, India, Japan, and the United States of America. The answers to the survey were collected in February and March 2018 and addressed senior- and top-level management with a focus on operations departments. The statistical analysis reveals the positive influence of potential and Realized Absorptive Capacity on successful process innovation taking the implementation of new digital manufacturing processes as an example. Potential Absorptive Capacity covering the acquisition and assimilation capabilities of an organization showed a significant positive influence (β = .304, p < .05) on digital manufacturing implementation success and therefore on process innovation. Realized Absorptive Capacity proved to have significant positive influence on process innovation as well (β = .461, p < .01). The presented study builds on prior conceptual work in the field of Absorptive Capacity and process innovation and contributes theoretically to ongoing research in two dimensions. First, the already conceptually associated influence of Absorptive Capacity on process innovation is backed by empirical evidence in a broad international context. Second, since Absorptive Capacity was measured with a focus on new product development, prior empirical research on Absorptive Capacity was tailored to the research and development departments of organizations. The results of this study highlight the importance of Absorptive Capacity as a capability in mechanical engineering and operations departments of organizations. The findings give managers an indication of the importance of implementing new innovative processes into their production system and fostering the right mindset of employees to identify new external knowledge. Through the ability to transform and exploit external knowledge, own production processes can be innovated successfully and therefore have a positive influence on firm performance and the competitive position of their organizations.Keywords: absorptive capacity, digital manufacturing, dynamic capabilities, process innovation
Procedia PDF Downloads 1436118 Copper Price Prediction Model for Various Economic Situations
Authors: Haidy S. Ghali, Engy Serag, A. Samer Ezeldin
Abstract:
Copper is an essential raw material used in the construction industry. During the year 2021 and the first half of 2022, the global market suffered from a significant fluctuation in copper raw material prices due to the aftermath of both the COVID-19 pandemic and the Russia-Ukraine war, which exposed its consumers to an unexpected financial risk. Thereto, this paper aims to develop two ANN-LSTM price prediction models, using Python, that can forecast the average monthly copper prices traded in the London Metal Exchange; the first model is a multivariate model that forecasts the copper price of the next 1-month and the second is a univariate model that predicts the copper prices of the upcoming three months. Historical data of average monthly London Metal Exchange copper prices are collected from January 2009 till July 2022, and potential external factors are identified and employed in the multivariate model. These factors lie under three main categories: energy prices and economic indicators of the three major exporting countries of copper, depending on the data availability. Before developing the LSTM models, the collected external parameters are analyzed with respect to the copper prices using correlation and multicollinearity tests in R software; then, the parameters are further screened to select the parameters that influence the copper prices. Then, the two LSTM models are developed, and the dataset is divided into training, validation, and testing sets. The results show that the performance of the 3-Month prediction model is better than the 1-Month prediction model, but still, both models can act as predicting tools for diverse economic situations.Keywords: copper prices, prediction model, neural network, time series forecasting
Procedia PDF Downloads 1136117 Relation between Chronic Mechanical Low Back Pain and Hip Rotation
Authors: Mohamed M. Diab, Koura G. Mohamed, A. Balbaa, Radwan Sh. Ahamed
Abstract:
Background: Chronic mechanical low back pain (CMLBP) is the most common complaint of the working-age population. Mechanical low back pain is often a chronic, dull, aching pain of varying intensity that affects the lower spine. In the current proposal the hip rotation-CMLBP relationship is based on that limited hip motion will be compensated by motion in the lumbopelvic region and this increase force translates to the lumbar spine. The purpose of this study was to investigate if there a relationship between chronic mechanical low back pain (CMLBP) and hip medial and lateral rotation (peak torque and Range of motion (ROM) in patients with CMLBP. Methods: Sixty patients with CMLBP diagnosed by an orthopedist participated in the current study after signing a consent form. Their mean of age was (23.76±2.39) years, mean of weight (71.8±12.7) (Kg), mean of height (169.65±7.49) (Cm) and mean of BMI (25.5±3.86) (Kg/m2). Visual Analogue Scale (VAS) was used to assess pain. Fluid Filled Inclinometer was used to measure Hip rotation ROM (medial and lateral). Isokinetic Dynamometer was used to measure peak torque of hip rotators muscles (medial and lateral), concentric peak torque with tow Isokinetic speeds (60ᵒ/sec and 180ᵒ/sec) was selected to measure peak torque. Results: The results of this study demonstrated that there is poor relationship between pain and hip external rotation ROM, also there is poor relation between pain and hip internal rotation ROM. There is poor relation between pain and hip internal rotators peak torque and hip external rotators peak torque in both speeds. Conclusion: Depending on the current study it is not recommended to give an importance to hip rotation in treating Chronic Mechanical Low Back Pain.Keywords: hip rotation ROM, hip rotators strength, low back pain, chronic mechanical
Procedia PDF Downloads 3116116 Assessing Effects of an Intervention on Bottle-Weaning and Reducing Daily Milk Intake from Bottles in Toddlers Using Two-Part Random Effects Models
Authors: Yungtai Lo
Abstract:
Two-part random effects models have been used to fit semi-continuous longitudinal data where the response variable has a point mass at 0 and a continuous right-skewed distribution for positive values. We review methods proposed in the literature for analyzing data with excess zeros. A two-part logit-log-normal random effects model, a two-part logit-truncated normal random effects model, a two-part logit-gamma random effects model, and a two-part logit-skew normal random effects model were used to examine effects of a bottle-weaning intervention on reducing bottle use and daily milk intake from bottles in toddlers aged 11 to 13 months in a randomized controlled trial. We show in all four two-part models that the intervention promoted bottle-weaning and reduced daily milk intake from bottles in toddlers drinking from a bottle. We also show that there are no differences in model fit using either the logit link function or the probit link function for modeling the probability of bottle-weaning in all four models. Furthermore, prediction accuracy of the logit or probit link function is not sensitive to the distribution assumption on daily milk intake from bottles in toddlers not off bottles.Keywords: two-part model, semi-continuous variable, truncated normal, gamma regression, skew normal, Pearson residual, receiver operating characteristic curve
Procedia PDF Downloads 3496115 The Relationship between Hot and Cool Executive Function and Theory of Mind in School-Aged Children with Autism Spectrum Disorder
Authors: Evangelia-Chrysanthi Kouklari, Stella Tsermentseli, Claire P. Monks
Abstract:
Executive function (EF) refers to a set of future-oriented and goal-directed cognitive skills that are crucial for problem solving and social behaviour, as well as the ability to organise oneself. It has been suggested that EF could be conceptualised as two distinct but interrelated constructs, one emotional (hot) and one cognitive (cool), as it facilitates both affective and cognitive regulation. Cool EF has been found to be strongly related to Theory of Mind (ToM) that is the ability to infer mental states, but research has not taken into account the association between hot EF and ToM in Autism Spectrum Disorder (ASD) to date. The present study investigates the associations between both hot and cool EF and ToM in school-aged children with ASD. This cross-sectional study assesses 79 school-aged children with ASD (7-15 years) and 91 controls matched for age and IQ, on tasks tapping cool EF (working memory, inhibition, planning), hot EF (effective decision making, delay discounting), and ToM (emotional understanding and false/no false belief). Significant group differences in each EF measure support a global executive dysfunction in ASD. Strong associations between hot EF and ToM in ASD are reported for the first time (i.e. ToM emotional understanding and delay discounting). These findings highlight that hot EF also makes a unique contribution to the developmental profile of ASD. Considering the role of both hot and cool EF in association with ToM in individuals with ASD may aid in gaining a greater understanding not just of how these complex multifaceted cognitive abilities relate to one another, but their joint role in the distinct developmental pathway followed in ASD.Keywords: ASD, executive function, school age, theory of mind
Procedia PDF Downloads 2916114 Integrated Nested Laplace Approximations For Quantile Regression
Authors: Kajingulu Malandala, Ranganai Edmore
Abstract:
The asymmetric Laplace distribution (ADL) is commonly used as the likelihood function of the Bayesian quantile regression, and it offers different families of likelihood method for quantile regression. Notwithstanding their popularity and practicality, ADL is not smooth and thus making it difficult to maximize its likelihood. Furthermore, Bayesian inference is time consuming and the selection of likelihood may mislead the inference, as the Bayes theorem does not automatically establish the posterior inference. Furthermore, ADL does not account for greater skewness and Kurtosis. This paper develops a new aspect of quantile regression approach for count data based on inverse of the cumulative density function of the Poisson, binomial and Delaporte distributions using the integrated nested Laplace Approximations. Our result validates the benefit of using the integrated nested Laplace Approximations and support the approach for count data.Keywords: quantile regression, Delaporte distribution, count data, integrated nested Laplace approximation
Procedia PDF Downloads 1636113 Developing Performance Model for Road Side Elements Receiving Periodic Maintenance
Authors: Ayman M. Othman, Hassan Y. Ahmed, Tallat A. Ali
Abstract:
Inadequate maintenance programs and funds allocated for highway networks in the developed countries have led to fast deterioration of road side elements. Therefore, this research focuses on developing a performance model for road side elements periodic maintenance activities. Road side elements that receive periodic maintenance include; earthen shoulder, road signs and traffic markings. Using the level of service concept, the developed model can determine the optimal periodic maintenance intervals for those elements based on a selected level of service suitable with the available periodic maintenance budget. Data related to time periods for progressive deterioration stages for the chosen elements were collected. Ten maintenance experts in Aswan, Sohag and Assiut cities were interviewed for that purpose. Time in months related to 10%, 25%, 40%, 50%, 75%, 90% and 100% deterioration of each road side element was estimated based on the experts opinion. Least square regression analysis has shown that a power function represents the best fit for earthen shoulders edge drop-off and damage of road signs with time. It was also evident that, the progressive dirtiness of road signs could be represented by a quadratic function an a linear function could represent the paint degradation nature of both traffic markings and road signs. Actual measurements of earthen shoulder edge drop-off agree considerably with the developed model.Keywords: deterioration, level of service, periodic maintenance, performance model, road side element
Procedia PDF Downloads 5726112 Presenting a Model in the Analysis of Supply Chain Management Components by Using Statistical Distribution Functions
Authors: Ramin Rostamkhani, Thurasamy Ramayah
Abstract:
One of the most important topics of today’s industrial organizations is the challenging issue of supply chain management. In this field, scientists and researchers have published numerous practical articles and models, especially in the last decade. In this research, to our best knowledge, the discussion of data modeling of supply chain management components using well-known statistical distribution functions has been considered. The world of science owns mathematics, and showing the behavior of supply chain data based on the characteristics of statistical distribution functions is innovative research that has not been published anywhere until the moment of doing this research. In an analytical process, describing different aspects of functions including probability density, cumulative distribution, reliability, and failure function can reach the suitable statistical distribution function for each of the components of the supply chain management. It can be applied to predict the behavior data of the relevant component in the future. Providing a model to adapt the best statistical distribution function in the supply chain management components will be a big revolution in the field of the behavior of the supply chain management elements in today's industrial organizations. Demonstrating the final results of the proposed model by introducing the process capability indices before and after implementing it alongside verifying the approach through the relevant assessment as an acceptable verification is a final step. The introduced approach can save the required time and cost to achieve the organizational goals. Moreover, it can increase added value in the organization.Keywords: analyzing, process capability indices, statistical distribution functions, supply chain management components
Procedia PDF Downloads 876111 Heat Transfer Studies on CNT Nanofluids in a Turbulent Flow Heat Exchanger
Authors: W. Rashmi, M. Khalid, O. Seiksan, R. Saidur, A. F. Ismail
Abstract:
Nanofluids have received much more attention since its discovery. They are believed to be promising coolants in heat transfer applications due to their enhanced thermal conductivity and heat transfer characteristics. In this study, the enhancement in heat transfer of CNT-nanofluids under turbulent flow conditions is investigated experimentally. Carbon nanotube (CNTs) concentration was varied between 0.051-0.085 wt%. The nanofluid suspension was stabilized by gum arabic (GA) through a process of homogenisation and sonication. The flow rates of cold fluid (water) is varied from 1.7-3 L/min and flow rates of the hot fluid is varied between 2-3.5 L/min. Thermal conductivity, density and viscosity of the nanofluids were also measured as a function of temperature and CNT concentration. The experimental results are validated with theoretical correlations for turbulent flow available in the literature. Results showed an enhancement in heat transfer range between 9-67% as a function of temperature and CNT concentration.Keywords: nanofluids, carbon nanotubes (CNT), heat transfer enhancement, heat transfer
Procedia PDF Downloads 5006110 Causes and Impacts of Rework Costs in Construction Projects
Authors: Muhammad Ejaz1
Abstract:
Rework has been defined as: "The unnecessary effort of re-doing a process or activity that was incorrectly implemented the first time." A great threat to the construction industry is rework. By and large due attention has not been given to avoid the causes of reworks, resulting time and cost over runs, in civil engineering projects. Besides these direct consequences, there might also be indirect consequences, such as stress, de-motivation or loss of future clients. When delivered products do not meet the requirements or expectations, work often has to be redone. Rework occurs in various phases of the construction process or in various divisions of a company. Rework can occur on the construction site or in a management department due to for example bad materials management. Rework can also have internal or external origins. Changes in clients’ expectations are an example of an external factor that might lead to rework. Rework can cause many costs to be higher than calculated at the start of the project. Rework events can have many different origins and for this research they have been categorized into four categories; changes, errors, omissions, and damages. The research showed that the major source of reworks were non professional attitude from technical hands and ignorance of total quality management principals by stakeholders. It also revealed that sources of reworks have not major differences among project categories. The causes were further analyzed by interviewing employees. Based on existing literature an extensive list of rework causes was made and during the interviews the interviewees were asked to confirm or deny statements regarding rework causes. The causes that were most frequently confirmed can be grouped into the understanding categories. 56% (max) of the causes are change-related, 30% (max) is error-related and 18% (max) falls into another category. Therefore, by recognizing above mentioned factors, reworks can be reduced to a great extent.Keywords: total quality management, construction industry, cost overruns, rework, material management, client’s expectations
Procedia PDF Downloads 2936109 Development of Graph-Theoretic Model for Ranking Top of Rail Lubricants
Authors: Subhash Chandra Sharma, Mohammad Soleimani
Abstract:
Selection of the correct lubricant for the top of rail application is a complex process. In this paper, the selection of the proper lubricant for a Top-Of-Rail (TOR) lubrication system based on graph theory and matrix approach has been developed. Attributes influencing the selection process and their influence on each other has been represented through a digraph and an equivalent matrix. A matrix function which is called the Permanent Function is derived. By substituting the level of inherent contribution of the influencing parameters and their influence on each other qualitatively, a criterion called Suitability Index is derived. Based on these indices, lubricants can be ranked for their suitability. The proposed model can be useful for maintenance engineers in selecting the best lubricant for a TOR application. The proposed methodology is illustrated step–by-step through an example.Keywords: lubricant selection, top of rail lubrication, graph-theory, Ranking of lubricants
Procedia PDF Downloads 2956108 A Robotic Rehabilitation Arm Driven by Somatosensory Brain-Computer Interface
Authors: Jiewei Li, Hongyan Cui, Chunqi Chang, Yong Hu
Abstract:
It was expected to benefit patient with hemiparesis after stroke by extensive arm rehabilitation, to partially regain forearm and hand function. This paper propose a robotic rehabilitation arm in assisting the hemiparetic patient to learn new ways of using and moving their weak arms. In this study, the robotic arm was driven by a somatosensory stimulated brain computer interface (BCI), which is a new modality BCI. The use of somatosensory stimulation is not only an input for BCI, but also a electrical stimulation for treatment of hemiparesis to strengthen the arm and improve its range of motion. A trial of this robotic rehabilitation arm was performed in a stroke patient with pure motor hemiparesis. The initial trial showed a promising result from the patient with great motivation and function improvement. It suggests that robotic rehabilitation arm driven by somatosensory BCI can enhance the rehabilitation performance and progress for hemiparetic patients after stroke.Keywords: robotic rehabilitation arm, brain computer interface (BCI), hemiparesis, stroke, somatosensory stimulation
Procedia PDF Downloads 3906107 Parameter Estimation of Gumbel Distribution with Maximum-Likelihood Based on Broyden Fletcher Goldfarb Shanno Quasi-Newton
Authors: Dewi Retno Sari Saputro, Purnami Widyaningsih, Hendrika Handayani
Abstract:
Extreme data on an observation can occur due to unusual circumstances in the observation. The data can provide important information that can’t be provided by other data so that its existence needs to be further investigated. The method for obtaining extreme data is one of them using maxima block method. The distribution of extreme data sets taken with the maxima block method is called the distribution of extreme values. Distribution of extreme values is Gumbel distribution with two parameters. The parameter estimation of Gumbel distribution with maximum likelihood method (ML) is difficult to determine its exact value so that it is necessary to solve the approach. The purpose of this study was to determine the parameter estimation of Gumbel distribution with quasi-Newton BFGS method. The quasi-Newton BFGS method is a numerical method used for nonlinear function optimization without constraint so that the method can be used for parameter estimation from Gumbel distribution whose distribution function is in the form of exponential doubel function. The quasi-New BFGS method is a development of the Newton method. The Newton method uses the second derivative to calculate the parameter value changes on each iteration. Newton's method is then modified with the addition of a step length to provide a guarantee of convergence when the second derivative requires complex calculations. In the quasi-Newton BFGS method, Newton's method is modified by updating both derivatives on each iteration. The parameter estimation of the Gumbel distribution by a numerical approach using the quasi-Newton BFGS method is done by calculating the parameter values that make the distribution function maximum. In this method, we need gradient vector and hessian matrix. This research is a theory research and application by studying several journals and textbooks. The results of this study obtained the quasi-Newton BFGS algorithm and estimation of Gumbel distribution parameters. The estimation method is then applied to daily rainfall data in Purworejo District to estimate the distribution parameters. This indicates that the high rainfall that occurred in Purworejo District decreased its intensity and the range of rainfall that occurred decreased.Keywords: parameter estimation, Gumbel distribution, maximum likelihood, broyden fletcher goldfarb shanno (BFGS)quasi newton
Procedia PDF Downloads 3246106 Impact of Twin Therapeutic Approaches on Certain Biophysiological Parameters among Breast Cancer Patients after Breast Surgery at Selected Hospital
Authors: Selvia Arokiya Mary
Abstract:
Introduction: Worldwide, breast cancer comprises 10.4% of all cancer incidence among women. In 2004, breast cancer caused 519,000 deaths worldwide (7% of cancer deaths; almost 1% of all deaths). Many women who undergo breast surgery suffer from ill-defined pain syndromes. STATEMENT OF THE PROBLEM: A study to assess the effectiveness of twin therapeutic approaches on certain bio-physiological parameters in breast cancer patients after breast surgery at selected hospital, Chennai. Objectives: This study is to 1. assess the level of certain biophysiological parameters in women after mastectomy. 2. assess the effectiveness of twin therapeutic approaches on certain biophysiological parameters in women after mastectomy. 3. correlate the practice of twin therapeutic approaches with certain biophysiological parameters. 4. associate the selected demographic variables with certain biophysiological parameters in women after mastectomy Research Design and Method: Pre experimental research design was used. Fifty women were selected by using convenient sampling technique at government general hospital, Chennai. Results: The Level of pain shows, in the study group 49(98%) of them had moderate in the pre test and after the intervention all of them had mild pain in the post test. In relation to level of shoulder function before the intervention shows that in the study group 49(98%) of them had movement towards gravity and after intervention 24 (48%) of them had movement against gravity maximum resistance. There was a significant reduction in pain and shoulder stiffness level at a ‘P’ level of < 0.001. There was a negative correlation between the pranayama practice and the level of pain, there was a positive correlation between the arm exercise practice and the level of shoulder function. There was no significant association between demographic and clinical variables with the level of pain and shoulder function in the study. Hypothesis: There is a significant difference in level of pain and shoulder function among women following breast surgery who receive pranayama & arm exercise programme. The pranayama had effect in terms of reduction of pain, arm exercise programme had effect in prevention of arm stiffness among post operative women following breast surgery. Thus the stated hypothesis was accepted. Conclusion: On the basis of the findings of the present study there was Advancing age related to increasing risk of breast cancer, level of pain also the type of surgery was associated with level of pain and shoulder function, There fore it is to be concluded that the study participants may get benefited by practice of pranayama and arm exercise program.Keywords: biophysiological parameters breast surgery, lumpectomy , mastectomy, radical mastectomy, twin therapeutic approach, pranayama, arm exercise
Procedia PDF Downloads 2456105 Research on Spatial Distribution of Service Facilities Based on Innovation Function: A Case Study of Zhejiang University Zijin Co-Maker Town
Authors: Zhang Yuqi
Abstract:
Service facilities are the boosters for the cultivation and development of innovative functions in innovative cluster areas. At the same time, reasonable service facilities planning can better link the internal functional blocks. This paper takes Zhejiang University Zijin Co-Maker Town as the research object, based on the combination of network data mining and field research and verification, combined with the needs of its internal innovative groups. It studies the distribution characteristics and existing problems of service facilities and then proposes a targeted planning suggestion. The main conclusions are as follows: (1) From the perspective of view, the town is rich in general life-supporting services, but lacking of provision targeted and distinctive service facilities for innovative groups; (2) From the perspective of scale structure, small-scale street shops are the main business form, lack of large-scale service center; (3) From the perspective of spatial structure, service facilities layout of each functional block is too fragile to fit the characteristics of 2aggregation- distribution' of innovation and entrepreneurial activities; (4) The goal of optimizing service facilities planning should be guided for fostering function of innovation and entrepreneurship and meet the actual needs of the innovation and entrepreneurial groups.Keywords: the cultivation of innovative function, Zhejiang University Zijin Co-Maker Town, service facilities, network data mining, space optimization advice
Procedia PDF Downloads 1166104 Comparison of the Effect of Heart Rate Variability Biofeedback and Slow Breathing Training on Promoting Autonomic Nervous Function Related Performance
Authors: Yi Jen Wang, Yu Ju Chen
Abstract:
Background: Heart rate variability (HRV) biofeedback can promote autonomic nervous function, sleep quality and reduce psychological stress. In HRV biofeedback training, it is hoped that through the guidance of machine video or audio, the patient can breathe slowly according to his own heart rate changes so that the heart and lungs can achieve resonance, thereby promoting the related effects of autonomic nerve function; while, it is also pointed out that if slow breathing of 6 times per minute can also guide the case to achieve the effect of cardiopulmonary resonance. However, there is no relevant research to explore the comparison of the effectiveness of cardiopulmonary resonance by using video or audio HRV biofeedback training and metronome-guided slow breathing. Purpose: To compare the promotion of autonomic nervous function performance between using HRV biofeedback and slow breathing guided by a metronome. Method: This research is a kind of experimental design with convenient sampling; the cases are randomly divided into the heart rate variability biofeedback training group and the slow breathing training group. The HRV biofeedback training group will conduct HRV biofeedback training in a four-week laboratory and use the home training device for autonomous training; while the slow breathing training group will conduct slow breathing training in the four-week laboratory using the mobile phone APP breathing metronome to guide the slow breathing training, and use the mobile phone APP for autonomous training at home. After two groups were enrolled and four weeks after the intervention, the autonomic nervous function-related performance was repeatedly measured. Using the chi-square test, student’s t-test and other statistical methods to analyze the results, and use p <0.05 as the basis for statistical significance. Results: A total of 27 subjects were included in the analysis. After four weeks of training, the HRV biofeedback training group showed significant improvement in the HRV indexes (SDNN, RMSSD, HF, TP) and sleep quality. Although the stress index also decreased, it did not reach statistical significance; the slow breathing training group was not statistically significant after four weeks of training, only sleep quality improved significantly, while the HRV indexes (SDNN, RMSSD, TP) all increased. Although HF and stress indexes decreased, they were not statistically significant. Comparing the difference between the two groups after training, it was found that the HF index improved significantly and reached statistical significance in the HRV biofeedback training group. Although the sleep quality of the two groups improved, it did not reach that level in a statistically significant difference. Conclusion: HRV biofeedback training is more effective in promoting autonomic nervous function than slow breathing training, but the effects of reducing stress and promoting sleep quality need to be explored after increasing the number of samples. The results of this study can provide a reference for clinical or community health promotion. In the future, it can also be further designed to integrate heart rate variability biological feedback training into the development of AI artificial intelligence wearable devices, which can make it more convenient for people to train independently and get effective feedback in time.Keywords: autonomic nervous function, HRV biofeedback, heart rate variability, slow breathing
Procedia PDF Downloads 1756103 AER Model: An Integrated Artificial Society Modeling Method for Cloud Manufacturing Service Economic System
Authors: Deyu Zhou, Xiao Xue, Lizhen Cui
Abstract:
With the increasing collaboration among various services and the growing complexity of user demands, there are more and more factors affecting the stable development of the cloud manufacturing service economic system (CMSE). This poses new challenges to the evolution analysis of the CMSE. Many researchers have modeled and analyzed the evolution process of CMSE from the perspectives of individual learning and internal factors influencing the system, but without considering other important characteristics of the system's individuals (such as heterogeneity, bounded rationality, etc.) and the impact of external environmental factors. Therefore, this paper proposes an integrated artificial social model for the cloud manufacturing service economic system, which considers both the characteristics of the system's individuals and the internal and external influencing factors of the system. The model consists of three parts: the Agent model, environment model, and rules model (Agent-Environment-Rules, AER): (1) the Agent model considers important features of the individuals, such as heterogeneity and bounded rationality, based on the adaptive behavior mechanisms of perception, action, and decision-making; (2) the environment model describes the activity space of the individuals (real or virtual environment); (3) the rules model, as the driving force of system evolution, describes the mechanism of the entire system's operation and evolution. Finally, this paper verifies the effectiveness of the AER model through computational and experimental results.Keywords: cloud manufacturing service economic system (CMSE), AER model, artificial social modeling, integrated framework, computing experiment, agent-based modeling, social networks
Procedia PDF Downloads 796102 Comparative Study Using WEKA for Red Blood Cells Classification
Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy
Abstract:
Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifying the RBCs as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-alaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively.Keywords: K-nearest neighbors algorithm, radial basis function neural network, red blood cells, support vector machine
Procedia PDF Downloads 4096101 Adoption of Green Supply Chain Practices and Their Impact on a Firm's Economic and Environmental Performance
Authors: Qingyu Zhang, Helin Ma, Lili Weng, Mei Cao
Abstract:
Green supply chain management has been an important organizational strategy to reduce environmental risks and improve financial performance. Firms have to adopt green supply chain practices to meet the official regulations and reduce peer pressure in China. This paper exhibits an empirical study of the drivers of green supply chain management practices and the environmental and economic performance of green supply chain management implementation in Chinese firms. While China is the fastest-growing emerging economy, it has paid a high ecological price. It is reported that China hosts 7 of the world’s 10 most polluted cities. The continued environmental deterioration and the resultant heightened regulatory control and public scrutiny have posed new operating challenges to firms conducting business in China. These challenges make the country an ideal setting to conduct the present study. A research questionnaire was developed to gather data in China. The questionnaire targeted managers and employees in Chinese companies. The data were collected in the last quarter of 2015, involving industries such as electronic & communicational equipment, textile & clothing, pharmaceutical & healthcare, and so on. This study confirms and validates that (1) both internal and external drivers play a significant role in the implementation of green supply chain management practices; (2) green purchase and investment recovery have a significant impact on firms’ environmental and economic performance; (3) with the improvement of the firms’ environmental performance, their economic performance will improve.Keywords: economic performance, environmental performance, external driver, green supply chain management
Procedia PDF Downloads 3786100 A Prediction Model for Dynamic Responses of Building from Earthquake Based on Evolutionary Learning
Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park
Abstract:
The seismic responses-based structural health monitoring system has been performed to prevent seismic damage. Structural seismic damage of building is caused by the instantaneous stress concentration which is related with dynamic characteristic of earthquake. Meanwhile, seismic response analysis to estimate the dynamic responses of building demands significantly high computational cost. To prevent the failure of structural members from the characteristic of the earthquake and the significantly high computational cost for seismic response analysis, this paper presents an artificial neural network (ANN) based prediction model for dynamic responses of building considering specific time length. Through the measured dynamic responses, input and output node of the ANN are formed by the length of specific time, and adopted for the training. In the model, evolutionary radial basis function neural network (ERBFNN), that radial basis function network (RBFN) is integrated with evolutionary optimization algorithm to find variables in RBF, is implemented. The effectiveness of the proposed model is verified through an analytical study applying responses from dynamic analysis for multi-degree of freedom system to training data in ERBFNN.Keywords: structural health monitoring, dynamic response, artificial neural network, radial basis function network, genetic algorithm
Procedia PDF Downloads 304