Search results for: excess air ratio
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4965

Search results for: excess air ratio

4035 GGA-PBEsol+TB-MBJ Studies of SrxPb1-xS Ternary Semiconductor Alloys

Authors: Y. Benallou, K. Amara, O. Arbouche

Abstract:

In this paper, we report a density functional study of the structural, electronic and elastic properties of the ordered phases of SrxPb1-xS ternary semiconductor alloys namely rocksalt compounds: PbS and SrS and the rocksalt-based compounds: SrPb3S4, SrPbS2, and Sr3PbS4. These First-principles calculations have been performed using the full potential linearized augmented plane wave method (FP-LAPW) within the Generalized Gradient Approximation developed by Perdew–Burke–Ernzerhor for solids (PBEsol). The calculated structural parameters like the lattice parameters, the bulk modulus B and their pressure derivative B' are in reasonable agreement with the available experimental and theoretical data. In addition, the elastic properties such as elastic constants (C11, C12, and C44), the shear modulus G, the Young modulus E, the Poisson’s ratio ν and the B/G ratio are also given. For the electronic properties calculations, the exchange and correlation effects were treated by the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential to prevent the shortcoming of the underestimation of the energy gaps in both LDA and GGA approximations. The obtained results are compared to available experimental data and to other theoretical calculations.

Keywords: SrxPb1-xS, GGA-PBEsol+TB-MBJ, density functional, Perdew–Burke–Ernzerhor, FP-LAPW

Procedia PDF Downloads 371
4034 Liquefaction Potential Assessment Using Screw Driving Testing and Microtremor Data: A Case Study in the Philippines

Authors: Arturo Daag

Abstract:

The Philippine Institute of Volcanology and Seismology (PHIVOLCS) is enhancing its liquefaction hazard map towards a detailed probabilistic approach using SDS and geophysical data. Target sites for liquefaction assessment are public schools in Metro Manila. Since target sites are in highly urbanized-setting, the objective of the project is to conduct both non-destructive geotechnical studies using Screw Driving Testing (SDFS) combined with geophysical data such as refraction microtremor array (ReMi), 3 component microtremor Horizontal to Vertical Spectral Ratio (HVSR), and ground penetrating RADAR (GPR). Initial test data was conducted in liquefaction impacted areas from the Mw 6.1 earthquake in Central Luzon last April 22, 2019 Province of Pampanga. Numerous accounts of liquefaction events were documented areas underlain by quaternary alluvium and mostly covered by recent lahar deposits. SDS estimated values showed a good correlation to actual SPT values obtained from available borehole data. Thus, confirming that SDS can be an alternative tool for liquefaction assessment and more efficient in terms of cost and time compared to SPT and CPT. Conducting borehole may limit its access in highly urbanized areas. In order to extend or extrapolate the SPT borehole data, non-destructive geophysical equipment was used. A 3-component microtremor obtains a subsurface velocity model in 1-D seismic shear wave velocity of the upper 30 meters of the profile (Vs30). For the ReMi, 12 geophone array with 6 to 8-meter spacing surveys were conducted. Microtremor data were computed through the Factor of Safety, which is the quotient of Cyclic Resistance Ratio (CRR) and Cyclic Stress Ratio (CSR). Complementary GPR was used to study the subsurface structure and used to inferred subsurface structures and groundwater conditions.

Keywords: screw drive testing, microtremor, ground penetrating RADAR, liquefaction

Procedia PDF Downloads 182
4033 Using the Nonlocal Theory of Free Vibrations Nanobeam

Authors: Ali Oveysi Sarabi

Abstract:

The dimensions of nanostructures are in the range of inter-atomic spacing of the structures which makes them impossible to be modeled as a continuum. Nanoscale size-effects on vibration analysis of nanobeams embedded in an elastic medium is investigated using different types of beam theory. To this end, Eringen’s nonlocal elasticity is incorporated to various beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), Reddy beam theory (RBT), and Levinson beam theory (LBT). The surrounding elastic medium is simulated with both Winkler and Pasternak foundation models and the difference between them is studies. Explicit formulas are presented to obtain the natural frequencies of nanobeam corresponding to each nonlocal beam theory. Selected numerical results are given for different values of the non-local parameter, Winkler modulus parameter, Pasternak modulus parameter and aspect ratio of the beam that imply the effects of them, separately. It is observed that the values of natural frequency are strongly dependent on the stiffness of elastic medium and the value of the non-local parameter and these dependencies varies with the value of aspect ratio and mode number.

Keywords: nanobeams, free vibration, nonlocal elasticity, winkler foundation model, Pasternak foundation model, beam theories

Procedia PDF Downloads 519
4032 Oil Extraction from Sunflower Seed Using Green Solvent 2-Methyltetrahydrofuran and Isoamyl Alcohol

Authors: Sergio S. De Jesus, Aline Santana, Rubens Maciel Filho

Abstract:

The objective of this study was to choose and determine a green solvent system with similar extraction efficiencies as the traditional Bligh and Dyer method. Sunflower seed oil was extracted using Bligh and Dyer method with 2-methyltetrahydrofuran and isoamyl using alcohol ratios of 1:1; 2:1; 3:1; 1:2; 3:1. At the same time comparative experiments was performed with chloroform and methanol ratios of 1:1; 2:1; 3:1; 1:2; 3:1. Comparison study was done using 5 replicates (n=5). Statistical analysis was performed using Microsoft Office Excel (Microsoft, USA) to determine means and Tukey’s Honestly Significant Difference test for comparison between treatments (α = 0.05). The results showed that using classic method with methanol and chloroform presented the extraction oil yield with the values of 31-44% (w/w) and values of 36-45% (w/w) using green solvents for extractions. Among the two extraction methods, 2 methyltetrahydrofuran and isoamyl alcohol ratio 2:1 provided the best results (45% w/w), while the classic method using chloroform and methanol with ratio of 3:1 presented a extraction oil yield of 44% (w/w). It was concluded that the proposed extraction method using 2-methyltetrahydrofuran and isoamyl alcohol in this work allowed the same efficiency level as chloroform and methanol.

Keywords: extraction, green solvent, lipids, sugarcane

Procedia PDF Downloads 358
4031 Sports Preference Intervention as a Predictor of Sustainable Participation at Risk Teenagers in Ibadan Metropolis, Ibadan Nigerian

Authors: Felix Olajide Ibikunle

Abstract:

Introductory Statement: Sustainable participation of teenagers in sports requires deliberate and concerted plans and managerial policy rooted in the “philosophy of catch them young.” At risk, teenagers need proper integration into societal aspiration: This direction will go a long way to streamline them into security breaches and attractive nuisance free lifestyles. Basic Methodology: The population consists of children between 13-19 years old. A proportionate sampling size technique of 60% was adopted to select seven zones out of 11 geo-political zones in the Ibadan metropolis. Qualitative information and interview were used to collect needed information. The majority of the teenagers were out of school, street hawkers, motor pack touts and unserious vocation apprentices. These groups have the potential for security breaches in the metropolis and beyond. Five hundred and thirty-four (534) respondents were used for the study. They were drawn from Ojoo, Akingbile and Moniya axis = 72; Agbowo, Ajibode and Apete axis = 74; Akobo, Basorun and Idi-ape axis 79; Wofun, Monatan and Iyana-Church axis = 78; Molete, Oke-ado and Oke-Bola axis = 75; Beere, Odinjo, Elekuro axis = 77; Eleyele, Ologuneru and Alesinloye axis = 79. Major Findings: Multiple regression was used to analyze the independent variables and percentages. The respondents' average age was 15.6 years old, and 100% were male. The instrument (questionnaire) used yielded; sport preference (r = 0.72), intervention (r = 0.68), and sustainable participation (r = 0.70). The relative contributions of sport preference on the participation of at risk teenagers was (F-ratio = 1.067); Intervention contribution of sport on the participation of at risk teenagers = produced (F-ratio of 12.095) was significant while, sustainable participation of at risk teenagers produced (F-ratio = 1.062) was significant. Closing Statement: The respondents’ sport preference stimulated their participation in sports. The intervention exposed at risk-teenagers to coaching, which activated their interest and participation in sports. At the same time, sustainable participation contributed positively to evolving at risk teenagers' participation in their preferred sport.

Keywords: sport, preference, intervention, teenagers, sustainable, participation and risk teenagers

Procedia PDF Downloads 54
4030 Hydrothermally Fabricated 3-D Nanostructure Metal Oxide Sensors

Authors: Mohammad Alenezi

Abstract:

Hierarchical nanostructures with higher dimensionality, consisting of nanostructure building blocks such as nanowires, nanotubes, or nanosheets are very attractive. They hold great properties like the high surface-to-volume ratio and well-ordered porous structures, which can be very challenging to attain for other mono-morphological nanostructures. Well-ordered hierarchical nanostructures with high surface-to-volume ratios facilitate gas diffusion into their surfaces as well as scattering of light. Therefore, hierarchical nanostructures are expected to perform highly as gas sensors. A multistage controlled hydrothermal synthesis method to fabricate high-performance single ZnO brushlike hierarchical nanostructure gas sensor from initial nanowires is reported. The performance of the sensor based on brush-like hierarchical nanostructure is analyzed and compared to that of a nanowire gas sensor. The hierarchical gas sensor demonstrated high sensitivity toward low concentration of acetone at high speed of response. The enhancement in the hierarchical sensor performance is attributed to the increased surface to volume ratio, reduction in dimensionality of the nanowire building blocks, formation of junctions between the initial nanowire and the secondary nanowires, and enhanced gas diffusion into the surfaces of the hierarchical nanostructures.

Keywords: metal oxide, nanostructure, hydrothermal, sensor

Procedia PDF Downloads 256
4029 Development and Utilization of Keratin-Fibrin-Gelatin Composite Films as Potential Material for Skin Tissue Engineering Application

Authors: Sivakumar Singaravelu, Giriprasath Ramanathan, M. D. Raja, Uma Tirichurapalli Sivagnanam

Abstract:

The goal of the present study was to develop and evaluate composite film for tissue engineering application. The keratin was extracted from bovine horn and used for preparation of keratin (HK), physiologically clotted fibrin (PCF) and gelatin (G) blend films in different stoichiometric ratios (1:1:1, 1:1:2 and 1:1:3) by using solvent casting method. The composite films (HK-PCF-G) were characterized physiochemically using Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA) and Scanning Electron Microscopy (SEM). The mechanical properties of the composite films were analyzed. The results of tensile strength show that ultimate strength and elongation were 10.72 Mpa and 4.83 MPA respectively for 1:1:3 ratio combination. The SEM image showed a slight smooth surface for 1:1:3 ratio combination compared to other films. In order to impart antibacterial activities, the composite films were loaded with Mupirocin (MP) to act against infection. The composite films acted as a suitable carrier to protect and release the drug in a controlled manner. This developed composite film would be a suitable alternative material for tissue engineering application.

Keywords: bovine horn, keratin, fibrin, gelatin, tensile strength

Procedia PDF Downloads 427
4028 Geomorphometric Analysis of the Hydrologic and Topographic Parameters of the Katsina-Ala Drainage Basin, Benue State, Nigeria

Authors: Oyatayo Kehinde Taofik, Ndabula Christopher

Abstract:

Drainage basins are a central theme in the green economy. The rising challenges in flooding, erosion or sediment transport and sedimentation threaten the green economy. This has led to increasing emphasis on quantitative analysis of drainage basin parameters for better understanding, estimation and prediction of fluvial responses and, thus associated hazards or disasters. This can be achieved through direct measurement, characterization, parameterization, or modeling. This study applied the Remote Sensing and Geographic Information System approach of parameterization and characterization of the morphometric variables of Katsina – Ala basin using a 30 m resolution Shuttle Radar Topographic Mission (SRTM) Digital Elevation Model (DEM). This was complemented with topographic and hydrological maps of Katsina-Ala on a scale of 1:50,000. Linear, areal and relief parameters were characterized. The result of the study shows that Ala and Udene sub-watersheds are 4th and 5th order basins, respectively. The stream network shows a dendritic pattern, indicating homogeneity in texture and a lack of structural control in the study area. Ala and Udene sub-watersheds have the following values for elongation ratio, circularity ratio, form factor and relief ratio: 0.48 / 0.39 / 0.35/ 9.97 and 0.40 / 0.35 / 0.32 / 6.0. They also have the following values for drainage texture and ruggedness index of 0.86 / 0.011 and 1.57 / 0.016. The study concludes that the two sub-watersheds are elongated, suggesting that they are susceptible to erosion and, thus higher sediment load in the river channels, which will dispose the watersheds to higher flood peaks. The study also concludes that the sub-watersheds have a very coarse texture, with good permeability of subsurface materials and infiltration capacity, which significantly recharge the groundwater. The study recommends that efforts should be put in place by the Local and State Governments to reduce the size of paved surfaces in these sub-watersheds by implementing a robust agroforestry program at the grass root level.

Keywords: erosion, flood, mitigation, morphometry, watershed

Procedia PDF Downloads 69
4027 Seismic History and Liquefaction Resistance: A Comparative Study of Sites in California

Authors: Tarek Abdoun, Waleed Elsekelly

Abstract:

Introduction: Liquefaction of soils during earthquakes can have significant consequences on the stability of structures and infrastructure. This study focuses on comparing two liquefaction case histories in California, namely the response of the Wildlife site in the Imperial Valley to the 2010 El-Mayor Cucapah earthquake (Mw = 7.2, amax = 0.15g) and the response of the Treasure Island Fire Station (F.S.) site in the San Francisco Bay area to the 1989 Loma Prieta Earthquake (Mw = 6.9, amax = 0.16g). Both case histories involve liquefiable layers of silty sand with non-plastic fines, similar shear wave velocities, low CPT cone penetration resistances, and groundwater tables at similar depths. The liquefaction charts based on shear wave velocity field predict liquefaction at both sites. However, a significant difference arises in their pore pressure responses during the earthquakes. The Wildlife site did not experience liquefaction, as evidenced by piezometer data, while the Treasure Island F.S. site did liquefy during the shaking. Objective: The primary objective of this study is to investigate and understand the reason for the contrasting pore pressure responses observed at the Wildlife site and the Treasure Island F.S. site despite their similar geological characteristics and predicted liquefaction potential. By conducting a detailed analysis of similarities and differences between the two case histories, the objective is to identify the factors that contributed to the higher liquefaction resistance exhibited by the Wildlife site. Methodology: To achieve this objective, the geological and seismic data available for both sites were gathered and analyzed. Then their soil profiles, seismic characteristics, and liquefaction potential as predicted by shear wave velocity-based liquefaction charts were analyzed. Furthermore, the seismic histories of both regions were examined. The number of previous earthquakes capable of generating significant excess pore pressures for each critical layer was assessed. This analysis involved estimating the total seismic activity that the Wildlife and Treasure Island F.S. critical layers experienced over time. In addition to historical data, centrifuge and large-scale experiments were conducted to explore the impact of prior seismic activity on liquefaction resistance. These findings served as supporting evidence for the investigation. Conclusions: The higher liquefaction resistance observed at the Wildlife site and other sites in the Imperial Valley can be attributed to preshaking by previous earthquakes. The Wildlife critical layer was subjected to a substantially greater number of seismic events capable of generating significant excess pore pressures over time compared to the Treasure Island F.S. layer. This crucial disparity arises from the difference in seismic activity between the two regions in the past century. In conclusion, this research sheds light on the complex interplay between geological characteristics, seismic history, and liquefaction behavior. It emphasizes the significant impact of past seismic activity on liquefaction resistance and can provide valuable insights for evaluating the stability of sandy sites in other seismic regions.

Keywords: liquefaction, case histories, centrifuge, preshaking

Procedia PDF Downloads 59
4026 Spectral Analysis Approaches for Simultaneous Determination of Binary Mixtures with Overlapping Spectra: An Application on Pseudoephedrine Sulphate and Loratadine

Authors: Sara El-Hanboushy, Hayam Lotfy, Yasmin Fayez, Engy Shokry, Mohammed Abdelkawy

Abstract:

Simple, specific, accurate and precise spectrophotometric methods are developed and validated for simultaneous determination of pseudoephedrine sulphate (PSE) and loratadine (LOR) in combined dosage form based on spectral analysis technique. Pseudoephedrine (PSE) in binary mixture could be analyzed either by using its resolved zero order absorption spectrum at its λ max 256.8 nm after subtraction of LOR spectrum or in presence of LOR spectrum by absorption correction method at 256.8 nm, dual wavelength (DWL) method at 254nm and 273nm, induced dual wavelength (IDWL) method at 256nm and 272nm and ratio difference (RD) method at 256nm and 262 nm. Loratadine (LOR) in the mixture could be analyzed directly at 280nm without any interference of PSE spectrum or at 250 nm using its recovered zero order absorption spectrum using constant multiplication(CM).In addition, simultaneous determination for PSE and LOR in their mixture could be applied by induced amplitude modulation method (IAM) coupled with amplitude multiplication (PM).

Keywords: dual wavelength (DW), induced amplitude modulation method (IAM) coupled with amplitude multiplication (PM), loratadine, pseudoephedrine sulphate, ratio difference (RD)

Procedia PDF Downloads 299
4025 Correlation of Serum Ferritin and Left Ventricular Function in Beta Thalassemia Major Patients with Increased Transfusion Dependence

Authors: Amna Imtiaz

Abstract:

Aims: To correlate serum ferritin with left ventricular function in beta thalassemia major patients with increased transfusion dependence and to find out whether echocardiography can be used to assess pre clinical cardiac disease in these patients. Methods: The cross sectional study was conducted at Department of Pathology, Shaheed Zulfiqar Ali Bhutto Medical University, Pakistan Institute of Medical Sciences, Islamabad. 60 patients of beta thalassemia major with increased transfusion dependence were enrolled in this study. Serum ferritin levels of all patients were measured by using indirect enzyme linked immunosorbent assay (ELISA). Echocardiography was performed on all patients by a consultant cardiologist by linking conventional echocardiography with tissue Doppler imaging. Ejection fraction and E/A ratio were measured in all patients to assess left ventricular systolic and diastolic function. Results: On the basis of serum ferritin level, patients were divided into three groups. Group I consisted of patients having serum ferritin level equal to or less than 2500 ng/ml. A total of 25 patients were placed in this group. Group II included patients having serum ferritin level between 2500 to 5000 ng/ml. A total of 22 patients were placed in this group. Group III included patients having serum ferritin level more than 5000 ng/ml. This group consisted of 13 patients. All patients having serum ferritin below 2500ng/ml had normal systolic function, and only 16% of the patients in this group had diastolic dysfunction as reflected by abnormal E/A ratio. In group II, 27% of the patients had systolic dysfunction reflected by subnormal ejection fraction while 40% of the patients had diastolic dysfunction. In group III, 62% of the patients had abnormal systolic and diastolic function. Pearson correlation was used to find a correlation between serum ferritin and left ventricular function. A strong negative correlation was found which is reflected by a p value of less than 0.05 which is significant. Chi square test is used to correlate serum ferritin with E/A ratio. P value came out to be less than 0.05 which is significant.

Keywords: beta thalassemia major, left ventricular function, serum ferritin, transfusion dependence

Procedia PDF Downloads 173
4024 Metagenomics Features of The Gut Microbiota in Metabolic Syndrome

Authors: Anna D. Kotrova, Alexandr N. Shishkin, Elena I. Ermolenko

Abstract:

The aim. To study the quantitative and qualitative colon bacteria ratio from patients with metabolic syndrome. Materials and methods. Fecal samples from patients of 2 groups were identified and analyzed: the first group was formed by patients with metabolic syndrome, the second one - by healthy individuals. The metagenomics method was used with the analysis of 16S rRNA gene sequences. The libraries of the variable sites (V3 and V4) gene 16S RNA were analyzed using the MiSeq device (Illumina). To prepare the libraries was used the standard recommended by Illumina, a method based on two rounds of PCR. Results. At the phylum level in the microbiota of patients with metabolic syndrome compared to healthy individuals, the proportion of Tenericutes was reduced, the proportion of Actinobacteria was increased. At the genus level, in the group with metabolic syndrome, relative to the second group was increased the proportion of Lachnospira. Conclusion. Changes in the colon bacteria ratio in the gut microbiota of patients with metabolic syndrome were found both at the type and the genus level. In the metabolic syndrome group, there is a decrease in the proportion of bacteria that do not have a cell wall. To confirm the revealed microbiota features in patients with metabolic syndrome, further study with a larger number of samples is required.

Keywords: gut microbiota, metabolic syndrome, metagenomics, tenericutes

Procedia PDF Downloads 201
4023 Shear Strength Evaluation of Ultra-High-Performance Concrete Flexural Members Using Adaptive Neuro-Fuzzy System

Authors: Minsu Kim, Hae-Chang Cho, Jae Hoon Chung, Inwook Heo, Kang Su Kim

Abstract:

For safe design of the UHPC flexural members, accurate estimations of their shear strengths are very important. However, since the shear strengths are significantly affected by various factors such as tensile strength of concrete, shear span to depth ratio, volume ratio of steel fiber, and steel fiber factor, the accurate estimations of their shear strengths are very challenging. In this study, therefore, the Adaptive Neuro-Fuzzy System (ANFIS), which has been widely used to solve many complex problems in engineering fields, was introduced to estimate the shear strengths of UHPC flexural members. A total of 32 experimental results has been collected from previous studies for training of the ANFIS algorithm, and the well-trained ANFIS algorithm provided good estimations on the shear strengths of the UHPC test specimens. Acknowledgement: This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning(NRF-2016R1A2B2010277).

Keywords: ultra-high-performance concrete, ANFIS, shear strength, flexural member

Procedia PDF Downloads 173
4022 Volatility Index, Fear Sentiment and Cross-Section of Stock Returns: Indian Evidence

Authors: Pratap Chandra Pati, Prabina Rajib, Parama Barai

Abstract:

The traditional finance theory neglects the role of sentiment factor in asset pricing. However, the behavioral approach to asset-pricing based on noise trader model and limit to arbitrage includes investor sentiment as a priced risk factor in the assist pricing model. Investor sentiment affects stock more that are vulnerable to speculation, hard to value and risky to arbitrage. It includes small stocks, high volatility stocks, growth stocks, distressed stocks, young stocks and non-dividend-paying stocks. Since the introduction of Chicago Board Options Exchange (CBOE) volatility index (VIX) in 1993, it is used as a measure of future volatility in the stock market and also as a measure of investor sentiment. CBOE VIX index, in particular, is often referred to as the ‘investors’ fear gauge’ by public media and prior literature. The upward spikes in the volatility index are associated with bouts of market turmoil and uncertainty. High levels of the volatility index indicate fear, anxiety and pessimistic expectations of investors about the stock market. On the contrary, low levels of the volatility index reflect confident and optimistic attitude of investors. Based on the above discussions, we investigate whether market-wide fear levels measured volatility index is priced factor in the standard asset pricing model for the Indian stock market. First, we investigate the performance and validity of Fama and French three-factor model and Carhart four-factor model in the Indian stock market. Second, we explore whether India volatility index as a proxy for fearful market-based sentiment indicators affect the cross section of stock returns after controlling for well-established risk factors such as market excess return, size, book-to-market, and momentum. Asset pricing tests are performed using monthly data on CNX 500 index constituent stocks listed on the National stock exchange of India Limited (NSE) over the sample period that extends from January 2008 to March 2017. To examine whether India volatility index, as an indicator of fear sentiment, is a priced risk factor, changes in India VIX is included as an explanatory variable in the Fama-French three-factor model as well as Carhart four-factor model. For the empirical testing, we use three different sets of test portfolios used as the dependent variable in the in asset pricing regressions. The first portfolio set is the 4x4 sorts on the size and B/M ratio. The second portfolio set is the 4x4 sort on the size and sensitivity beta of change in IVIX. The third portfolio set is the 2x3x2 independent triple-sorting on size, B/M and sensitivity beta of change in IVIX. We find evidence that size, value and momentum factors continue to exist in Indian stock market. However, VIX index does not constitute a priced risk factor in the cross-section of returns. The inseparability of volatility and jump risk in the VIX is a possible explanation of the current findings in the study.

Keywords: India VIX, Fama-French model, Carhart four-factor model, asset pricing

Procedia PDF Downloads 231
4021 Evaluation of Molasses and Sucrose as Cabohydrate Sources for Biofloc System on Nile Tilapia (Oreochromis niloticus) Performances

Authors: A. M. Nour, M. A. Zaki, E. A. Omer, Nourhan Mohamed

Abstract:

Performances of mixed-sex Nile tilapia (Oreochromis niloticus) fingerlings (11.33 ± 1.78 g /fish) reared under biofloc system developed by molasses and sucrose as carbon sources in indoor fiberglass tanks were evaluated. Six indoor fiberglass tanks (1m 3 each filled with 1000 l of underground fresh water), each was stocked with 2kg fish were used for 14 weeks experimental period. Three experimental groups were designed (each group 2 tanks) as following: 1-control: 20% daily without biofloc, 2-zero water exchange rate with biofloc (molasses as C source) and 3-zero water exchange rate with biofloc (sucrose as C source). Fish in all aquariums were fed on floating feed pellets (30% crude protein, 3 mm in diameter) at a rate of 3% of the actual live fish body, 3 times daily and 6 days a week. Carbohydrate supplementations were applied daily to each tank two hrs, after feeding to maintain the carbon: nitrogen ratio (C: N) ratio 20:1. Fish were reared under continuous aeration by pumping air into the water in the tank bottom using two sandy diffusers and constant temperature between 27.0-28.0 ºC by using electrical heaters for 10 weeks. Criteria's for assessment of water quality parameters, biofloc production and fish growth performances were collected and evaluated. The results showed that total ammonia nitrogen in control group was higher than biofloc groups. The biofloc volumes were 19.13 mg/l and 13.96 mg/l for sucrose and molasses, respectively. Biofloc protein (%), ether extract (%) and gross energy (kcal/100g DM), they were higher in biofloc molasses group than biofloc sucrose group. Tilapia growth performances were significantly higher (P < 0.05) with molasses group than in sucrose and control groups, respectively. The highest feed and nutrient utilization values for protein efficiency ratio (PER), protein productive (PPV%) and energy utilization (EU, %) were higher in molasses group followed by sucrose group and control group respectively.

Keywords: biofloc, Nile tilapia, cabohydrates, performances

Procedia PDF Downloads 175
4020 Dynamic Analysis of Nanosize FG Rectangular Plates Based on Simple Nonlocal Quasi 3D HSDT

Authors: Sabrina Boutaleb, Fouad Bourad, Kouider Halim Benrahou, Abdelouahed Tounsi

Abstract:

In the present work, the dynamic analysis of the functionally graded rectangular nanoplates is studied. The theory of nonlocal elasticity based on the quasi 3D high shear deformation theory (quasi 3D HSDT) has been employed to determine the natural frequencies of the nanosized FG plate. In HSDT, a cubic function is employed in terms of thickness coordinates to introduce the influence of transverse shear deformation and stretching thickness. The theory of nonlocal elasticity is utilized to examine the impact of the small scale on the natural frequency of the FG rectangular nanoplate. The equations of motion are deduced by implementing Hamilton’s principle. To demonstrate the accuracy of the proposed method, the calculated results in specific cases are compared and examined with available results in the literature, and a good agreement is observed. Finally, the influence of the various parameters, such as the nonlocal coefficient, the material indexes, the aspect ratio, and the thickness-to-length ratio, on the dynamic properties of the FG nanoplates is illustrated and discussed in detail.

Keywords: nonlocal elasticity theory, FG nanoplate, free vibration, refined theory, elastic foundation

Procedia PDF Downloads 99
4019 Optimization of Syngas Quality for Fischer-Tropsch Synthesis

Authors: Ali Rabah

Abstract:

This research received no grant or financial support from any public, commercial, or none governmental agency. The author conducted this work as part of his normal research activities as a professor of Chemical Engineering at the University of Khartoum, Sudan. Abstract While fossil oil reserves have been receding, the demand for diesel and gasoline has been growing. In recent years, syngas of biomass origin has been emerging as a viable feedstock for Fischer-Tropsch (FT) synthesis, a process for manufacturing synthetic gasoline and diesel. This paper reports the optimization of syngas quality to match FT synthesis requirements. The optimization model maximizes the thermal efficiency under the constraint of H2/CO≥2.0 and operating conditions of equivalent ratio (0 ≤ ER ≤ 1.0), steam to biomass ratio (0 ≤ SB ≤ 5), and gasification temperature (500 °C ≤ Tg ≤ 1300 °C). The optimization model is executed using the optimization section of the Model Analysis Tools of the Aspen Plus simulator. The model is tested using eleven (11) types of MSW. The optimum operating conditions under which the objective function and the constraint are satisfied are ER=0, SB=0.66-1.22, and Tg=679 - 763°C. Under the optimum operating conditions, the syngas quality is H2=52.38 - 58.67-mole percent, LHV=12.55 - 17.15 MJ/kg, N2=0.38 - 2.33-mole percent, and H2/CO≥2.15. The generalized optimization model reported could be extended to any other type of biomass and coal. Keywords: MSW, Syngas, Optimization, Fischer-Tropsch.

Keywords: syngas, MSW, optimization, Fisher-Tropsh

Procedia PDF Downloads 58
4018 Experimental Investigation on the Effect of Cross Flow on Discharge Coefficient of an Orifice

Authors: Mathew Saxon A, Aneeh Rajan, Sajeev P

Abstract:

Many fluid flow applications employ different types of orifices to control the flow rate or to reduce the pressure. Discharge coefficients generally vary from 0.6 to 0.95 depending on the type of the orifice. The tabulated value of discharge coefficients of various types of orifices available can be used in most common applications. The upstream and downstream flow condition of an orifice is hardly considered while choosing the discharge coefficient of an orifice. But literature shows that the discharge coefficient can be affected by the presence of cross flow. Cross flow is defined as the condition wherein; a fluid is injected nearly perpendicular to a flowing fluid. Most researchers have worked on water being injected into a cross-flow of water. The present work deals with water to gas systems in which water is injected in a normal direction into a flowing stream of gas. The test article used in the current work is called thermal regulator, which is used in a liquid rocket engine to reduce the temperature of hot gas tapped from the gas generator by injecting water into the hot gas so that a cooler gas can be supplied to the turbine. In a thermal regulator, water is injected through an orifice in a normal direction into the hot gas stream. But the injection orifice had been calibrated under backpressure by maintaining a stagnant gas medium at the downstream. The motivation of the present study aroused due to the observation of a lower Cd of the orifice in flight compared to the calibrated Cd. A systematic experimental investigation is carried out in this paper to study the effect of cross-flow on the discharge coefficient of an orifice in water to a gas system. The study reveals that there is an appreciable reduction in the discharge coefficient with cross flow compared to that without cross flow. It is found that the discharge coefficient greatly depends on the ratio of momentum of water injected to the momentum of the gas cross flow. The effective discharge coefficient of different orifices was normalized using the discharge coefficient without cross-flow and it is observed that normalized curves of effective discharge coefficient of different orifices with momentum ratio collapsing into a single curve. Further, an equation is formulated using the test data to predict the effective discharge coefficient with cross flow using the calibrated Cd value without cross flow.

Keywords: cross flow, discharge coefficient, orifice, momentum ratio

Procedia PDF Downloads 124
4017 Preservation of Coconut Toddy Sediments as a Leavening Agent for Bakery Products

Authors: B. R. Madushan, S. B. Navaratne, I. Wickramasinge

Abstract:

Toddy sediment (TS) was cultured in a PDA medium to determine initial yeast load, and also it was undergone sun, shade, solar, dehumidified cold air (DCA) and hot air oven (at 400, 500 and 60oC) drying with a view to preserve viability of yeast. Thereafter, this study was conducted according to two factor factorial design in order to determine best preservation method. Therein the dried TS from the best drying method was taken and divided into two portions. One portion was mixed with 3: 7 ratio of TS: rice flour and the mixture was divided in to two again. While one portion was kept under in house condition the other was in a refrigerator. Same procedure was followed to the rest portion of TS too but it was at the same ratio of corn flour. All treatments were vacuum packed in triple laminate pouches and the best preservation method was determined in terms of leavening index (LI). The TS obtained from the best preservation method was used to make foods (bread and hopper) and organoleptic properties of it were evaluated against same of ordinary foods using sensory panel with a five point hedonic scale. Results revealed that yeast load or fresh TS was 58×106 CFU/g. The best drying method in preserving viability of yeast was DCA because LI of this treatment (96%) is higher than that of other three treatments. Organoleptic properties of foods prepared from best preservation method are as same as ordinary foods according to Duo trio test.

Keywords: biological leavening agent, coconut toddy, fermentation, yeast

Procedia PDF Downloads 326
4016 Sex Differences in Age-Related AMPK-Sirt1 Axis Alteration in Human Heart

Authors: Maria Luisa Barcena De Arellano, Sofya Pozdniakova, Pavelas Karkacas, Anja Kuhl, Istvan Baczko, Yury Ladilov, Vera Regitz-Zagrosek

Abstract:

Introduction: Aging is associated with deterioration of the physiological function, leading to systemic inflammation and mitochondrial dysfunction that promote the development of cardiovascular diseases. Sex differences in aging-related cardiovascular diseases have been postulated. However, their precise mechanisms remain unclear. In the current study, we aimed to investigate the sex difference in the age-related alteration in Sirt1-AMPK signaling and its relation to the mitochondrial biogenesis and inflammation. Methods: Male and female human non-disease lateral left ventricular wall tissue (young (17–40 years; n= 7 male and 7 female) and old (50–68 years; n= 9 male and 8 female)) were used. qRT-PCR, western blot and immunohistochemistry assays were performed for expression analyses of Sirt1, AMPK, pAMPK, ac-Ku70, TFAM, PGC-1α, Sirt3, SOD2 and catalase. CD68 was used as a marker for macrophages and the ratio of IL-12:IL10 (pro-inflammatory phenotype (high IL-12/low IL-10) and anti-inflammatory phenotype (low IL-12/high IL-10) was used to examine the inflammatory stage in the heart. Results: Sirt1 expression was significantly higher in young females compared to young males, whereas in aged hearts Sirt1 expression was significantly downregulated in females, but not in males. In line with the Sirt1 downregulation in aged females, acetylation of nuclear Ku70, a direct target of Sirt1, in aged female hearts was significantly elevated. The activity of AMPK was significantly decreased in aged individuals, however no sex differences in the AMPK expression or activity were found in young or old individuals. The expression of mitochondrial proteins TOM40, SOD2 and Sirt3 was significantly higher in young females compared to young males, while in aged female hearts SOD2 and TOM40 were downregulated. In addition, the expression of catalase, a key cytosolic and mitochondrial anti-oxidative enzyme was significantly higher in young females and this female sex benefit was lost in aged hearts. In addition, the number of cardiac macrophages was significantly increased in old female, but not in male hearts. Consistently, the pro-inflammatory shift in old females was further confirmed by differences in the IL12/IL10 ratio in young female cardiac tissue in a favour of the anti-inflammatory mediator IL-10 (ratio 1:4) compared to young males (ratio 1:1). The anti-inflammatory environment in the heart was lost in aged females (ratio 1:1). Conclusion: Aging leads to the significant downregulation of Sirt1 expression and elevated acetylation of Ku70 in female, but not in male hearts. Furthermore, a beneficial upregulation of mitochondrial and anti-oxidative proteins in young females is lost with aging. Moreover, the malfunctions in the expression of Sirt1 and mitochondrial proteins in aged female hearts is accompanied by a significant pro-inflammatory shift. The study provides a molecular basis for the increased incidence of cardiovascular diseases in old women.

Keywords: inflammation, mitochondrial dysfunction, aging, Sirt1-AMPK axis

Procedia PDF Downloads 246
4015 Limitation of Parallel Flow in Three-Dimensional Elongated Porous Domain Subjected to Cross Heat and Mass Flux

Authors: Najwa Mimouni, Omar Rahli, Rachid Bennacer, Salah Chikh

Abstract:

In the present work 2D and 3D numerical simulations of double diffusion natural convection in an elongated enclosure filled with a binary fluid saturating a porous medium are carried out. In the formulation of the problem, the Boussinesq approximation is considered and cross Neumann boundary conditions are specified for heat and mass walls conditions. The numerical method is based on the control volume approach with the third order QUICK scheme. Full approximation storage (FAS) with full multigrid (FMG) method is used to solve the problem. For the explored large range of the controlling parameters, we clearly evidenced that the increase in the depth of the cavity i.e. the lateral aspect ratio has an important effect on the flow patterns. The 2D perfect parallel flows obtained for a small lateral aspect ratio are drastically destabilized by increasing the cavity lateral dimension. This yields a 3D fluid motion with a much more complicated flow pattern and the classically studied 2D parallel flows are impossible.

Keywords: bifurcation, natural convection, heat and mass transfer, parallel flow, porous media

Procedia PDF Downloads 453
4014 Establishing Correlation between Urban Heat Island and Urban Greenery Distribution by Means of Remote Sensing and Statistics Data to Prioritize Revegetation in Yerevan

Authors: Linara Salikhova, Elmira Nizamova, Aleksandra Katasonova, Gleb Vitkov, Olga Sarapulova.

Abstract:

While most European cities conduct research on heat-related risks, there is a research gap in the Caucasus region, particularly in Yerevan, Armenia. This study aims to test the method of establishing a correlation between urban heat islands (UHI) and urban greenery distribution for prioritization of heat-vulnerable areas for revegetation. Armenia has failed to consider measures to mitigate UHI in urban development strategies despite a 2.1°C increase in average annual temperature over the past 32 years. However, planting vegetation in the city is commonly used to deal with air pollution and can be effective in reducing UHI if it prioritizes heat-vulnerable areas. The research focuses on establishing such priorities while considering the distribution of urban greenery across the city. The lack of spatially explicit air temperature data necessitated the use of satellite images to achieve the following objectives: (1) identification of land surface temperatures (LST) and quantification of temperature variations across districts; (2) classification of massifs of land surface types using normalized difference vegetation index (NDVI); (3) correlation of land surface classes with LST. Examination of the heat-vulnerable city areas (in this study, the proportion of individuals aged 75 years and above) is based on demographic data (Census 2011). Based on satellite images (Sentinel-2) captured on June 5, 2021, NDVI calculations were conducted. The massifs of the land surface were divided into five surface classes. Due to capacity limitations, the average LST for each district was identified using one satellite image from Landsat-8 on August 15, 2021. In this research, local relief is not considered, as the study mainly focuses on the interconnection between temperatures and green massifs. The average temperature in the city is 3.8°C higher than in the surrounding non-urban areas. The temperature excess ranges from a low in Norq Marash to a high in Nubarashen. Norq Marash and Avan have the highest tree and grass coverage proportions, with 56.2% and 54.5%, respectively. In other districts, the balance of wastelands and buildings is three times higher than the grass and trees, ranging from 49.8% in Quanaqer-Zeytun to 76.6% in Nubarashen. Studies have shown that decreased tree and grass coverage within a district correlates with a higher temperature increase. The temperature excess is highest in Erebuni, Ajapnyak, and Nubarashen districts. These districts have less than 25% of their area covered with grass and trees. On the other hand, Avan and Norq Marash districts have a lower temperature difference, as more than 50% of their areas are covered with trees and grass. According to the findings, a significant proportion of the elderly population (35%) aged 75 years and above reside in the Erebuni, Ajapnyak, and Shengavit neighborhoods, which are more susceptible to heat stress with an LST higher than in other city districts. The findings suggest that the method of comparing the distribution of green massifs and LST can contribute to the prioritization of heat-vulnerable city areas for revegetation. The method can become a rationale for the formation of an urban greening program.

Keywords: heat-vulnerability, land surface temperature, urban greenery, urban heat island, vegetation

Procedia PDF Downloads 51
4013 Mathematical Modelling of a Low Tip Speed Ratio Wind Turbine for System Design Evaluation

Authors: Amir Jalalian-Khakshour, T. N. Croft

Abstract:

Vertical Axis Wind Turbine (VAWT) systems are becoming increasingly popular as they have a number of advantages over traditional wind turbines. The advantages are reliability, ease of transportation and manufacturing. These attributes could make these technologies useful in developing economies. The performance characteristics of a VAWT are different from a horizontal axis wind turbine, which can be attributed to the low tip speed ratio operation. To unlock the potential of these VAWT systems, the operational behaviour in a number of system topologies and environmental conditions needs to be understood. In this study, a non-linear dynamic simulation method was developed in Matlab and validated against in field data of a large scale, 8-meter rotor diameter prototype. This simulation method has been utilised to determine the performance characteristics of a number of control methods and system topologies. The motivation for this research was to develop a simulation method which accurately captures the operating behaviour and is computationally inexpensive. The model was used to evaluate the performance through parametric studies and optimisation techniques. The study gave useful insights into the applications and energy generation potential of this technology.

Keywords: power generation, renewable energy, rotordynamics, wind energy

Procedia PDF Downloads 287
4012 Revealing the Risks of Obstructive Sleep Apnea

Authors: Oyuntsetseg Sandag, Lkhagvadorj Khosbayar, Naidansuren Tsendeekhuu, Densenbal Dansran, Bandi Solongo

Abstract:

Introduction: Obstructive sleep apnea (OSA) is a common disorder affecting at least 2% to 4% of the adult population. It is estimated that nearly 80% of men and 93% of women with moderate to severe sleep apnea are undiagnosed. A number of screening questionnaires and clinical screening models have been developed to help identify patients with OSA, also it’s indeed to clinical practice. Purpose of study: Determine dependence of obstructive sleep apnea between for severe risk and risk factor. Material and Methods: A cross-sectional study included 114 patients presenting from theCentral state 3th hospital and Central state 1th hospital. Patients who had obstructive sleep apnea (OSA)selected in this study. Standard StopBang questionnaire was obtained from all patients.According to the patients’ response to the StopBang questionnaire was divided into low risk, intermediate risk, and high risk.Descriptive statistics were presented mean ± standard deviation (SD). Each questionnaire was compared on the likelihood ratio for a positive result, the likelihood ratio for a negative test result of regression. Statistical analyses were performed utilizing SPSS 16. Results: 114 patients were obtained (mean age 48 ± 16, male 57)that divided to low risk 54 (47.4%), intermediate risk 33 (28.9%), high risk 27 (23.7%). Result of risk factor showed significantly increasing that mean age (38 ± 13vs. 54 ± 14 vs. 59 ± 10, p<0.05), blood pressure (115 ± 18vs. 133 ± 19vs. 142 ± 21, p<0.05), BMI(24 IQR 22; 26 vs. 24 IQR 22; 29 vs. 28 IQR 25; 34, p<0.001), neck circumference (35 ± 3.4 vs. 38 ± 4.7 vs. 41 ± 4.4, p<0.05)were increased. Results from multiple logistic regressions showed that age is significantly independently factor for OSA (odds ratio 1.07, 95% CI 1.02-1.23, p<0.01). Predictive value of age was significantly higher factor for OSA (AUC=0.833, 95% CI 0.758-0.909, p<0.001). Our study showing that risk of OSA is beginning 47 years old (sensitivity 78.3%, specifity74.1%). Conclusions: According to most of all patients’ response had intermediate risk and high risk. Also, age, blood pressure, neck circumference and BMI were increased such as risk factor was increased for OSA. Especially age is independently factor and highest significance for OSA. Patients’ age one year is increased likelihood risk factor 1.1 times is increased.

Keywords: obstructive sleep apnea, Stop-Bang, BMI (Body Mass Index), blood pressure

Procedia PDF Downloads 292
4011 Comparison of Water Equivalent Ratio of Several Dosimetric Materials in Proton Therapy Using Monte Carlo Simulations and Experimental Data

Authors: M. R. Akbari , H. Yousefnia, E. Mirrezaei

Abstract:

Range uncertainties of protons are currently a topic of interest in proton therapy. Two of the parameters that are often used to specify proton range are water equivalent thickness (WET) and water equivalent ratio (WER). Since WER values for a specific material is nearly constant at different proton energies, it is a more useful parameter to compare. In this study, WER values were calculated for different proton energies in polymethyl methacrylate (PMMA), polystyrene (PS) and aluminum (Al) using FLUKA and TRIM codes. The results were compared with analytical, experimental and simulated SEICS code data obtained from the literature. In FLUKA simulation, a cylindrical phantom, 1000 mm in height and 300 mm in diameter, filled with the studied materials was simulated. A typical mono-energetic proton pencil beam in a wide range of incident energies usually applied in proton therapy (50 MeV to 225 MeV) impinges normally on the phantom. In order to obtain the WER values for the considered materials, cylindrical detectors, 1 mm in height and 20 mm in diameter, were also simulated along the beam trajectory in the phantom. In TRIM calculations, type of projectile, energy and angle of incidence, type of target material and thickness should be defined. The mode of 'detailed calculation with full damage cascades' was selected for proton transport in the target material. The biggest difference in WER values between the codes was 3.19%, 1.9% and 0.67% for Al, PMMA and PS, respectively. In Al and PMMA, the biggest difference between each code and experimental data was 1.08%, 1.26%, 2.55%, 0.94%, 0.77% and 0.95% for SEICS, FLUKA and SRIM, respectively. FLUKA and SEICS had the greatest agreement (≤0.77% difference in PMMA and ≤1.08% difference in Al, respectively) with the available experimental data in this study. It is concluded that, FLUKA and TRIM codes have capability for Bragg curves simulation and WER values calculation in the studied materials. They can also predict Bragg peak location and range of proton beams with acceptable accuracy.

Keywords: water equivalent ratio, dosimetric materials, proton therapy, Monte Carlo simulations

Procedia PDF Downloads 304
4010 Controlling the Surface Morphology of the Biocompatible Hydroxyapatite Layer Deposited by Using a Flame-Coating

Authors: Nabaa M. Abdul Rahim, Mohammed A.Kadhim, Fadhil K. Fuliful

Abstract:

A biocompatible layer is prepared from calcium phosphate, which plays a role in building damaged bones and is used in many applications. In this research, calcium phosphate is coated on stainless steel substrates (SS 316) by using the flame coating. FE-SEM images show that the behavior of the sample surfaces varies with distance, at 3cm, appeared with nanostructures of bumps shaped of diameter about 317 nm. The contents of the elements are analyzed by energy-dispersive X-ray spectroscopy (EDX). The chemical elements C, Ca, Fe, Ni, Cr, Mn and O corresponding to calcium phosphate and the alloy are revealed by EDX analysis of the coating layer. XRD patterns for the calcium phosphate layers indicate the formation of the Hap layer on the deposited layers. The samples are immersed in a solution of simulated body fluids (SBF) for 21 days to examine the biocompatibility, as the tests show that the calcium phosphate ratio of 1.65 is the appropriate and biocompatible ratio in the human body. The assays show antibacterial activity using the diffusion disk procedure. On the surface of the agar, observed infested E.coli bacteria and incubated for 24 hours at 37°C. Bacteria grow on the entire agar rather than in some areas around some samples at a distance of 3 cm from the flame hole.

Keywords: biomaterial, flame coating, antibacterial activity, stainless steel

Procedia PDF Downloads 77
4009 Energy Absorption of Circular Thin-Walled Tube with Curved-Crease Patterns under Axial Crushing

Authors: Grzegorz Dolzyk, Sungmoon Jung

Abstract:

Thin-walled tubes are commonly used as energy absorption devices for their excellent mechanical properties and high manufacturability. Techniques such as grooving and pre-folded origami shapes were introduced to circular and polygonal tubes to improve its energy absorption efficiency. This paper examines the energy absorption characteristics of circular tubes with pre-embedded curved-crease pattern. Set of numerical analyzes were conducted with different grooving patterns for tubes with various diameter (D) to thickness (t) ratio. It has been found that even very shallow grooving can positively affect thin wall tubes, leading to increased energy absorption and higher crushing load efficiency. The phenomenon is associated with nonsymmetric deformation that is usually observed for tubes with a high D/t ratio ( > 90). Grooving can redirect a natural mode of post-buckling deformation to a one with a higher number of lobes such that its beneficial and more stable. Also, the opposite effect can be achieved, and highly disrupted deformation can be a cause of reduced energy absorption capabilities. Curved-crease engraved patterns can be used to stabilize and change a form of hazardous post-buckling deformation.

Keywords: axial crushing, energy absorption, grooving, thin-wall structures

Procedia PDF Downloads 127
4008 Comparative Evaluation of High Pure Mn3O4 Preparation Technique between the Conventional Process from Electrolytic Manganese and a Sustainable Approach Directly from Low-Grade Rhodochrosite

Authors: Fang Lian, Zefang Chenli, Laijun Ma, Lei Mao

Abstract:

Up to now, electrolytic process is a popular way to prepare Mn and MnO2 (EMD) with high purity. However, the conventional preparation process of manganese oxide such as Mn3O4 with high purity from electrolytic manganese metal is characterized by long production-cycle, high-pollution discharge and high energy consumption especially initially from low-grade rhodochrosite, the main resources for exploitation and applications in China. Moreover, Mn3O4 prepared from electrolytic manganese shows large particles, single morphology beyond the control and weak chemical activity. On the other hand, hydrometallurgical method combined with thermal decomposition, hydrothermal synthesis and sol-gel processes has been widely studied because of its high efficiency, low consumption and low cost. But the key problem in direct preparation of manganese oxide series from low-grade rhodochrosite is to remove completely the multiple impurities such as iron, silicon, calcium and magnesium. It is urgent to develop a sustainable approach to high pure manganese oxide series with character of short process, high efficiency, environmentally friendly and economical benefit. In our work, the preparation technique of high pure Mn3O4 directly from low-grade rhodochrosite ore (13.86%) was studied and improved intensively, including the effective leaching process and the short purifying process. Based on the same ion effect, the repeated leaching of rhodochrosite with sulfuric acid is proposed to improve the solubility of Mn2+ and inhibit the dissolution of the impurities Ca2+ and Mg2+. Moreover, the repeated leaching process could make full use of sulfuric acid and lower the cost of the raw material. With the aid of theoretical calculation, Ba(OH)2 was chosen to adjust the pH value of manganese sulfate solution and BaF2 to remove Ca2+ and Mg2+ completely in the process of purifying. Herein, the recovery ratio of manganese and removal ratio of the impurity were evaluated via chemical titration and ICP analysis, respectively. Comparison between conventional preparation technique from electrolytic manganese and a sustainable approach directly from low-grade rhodochrosite have also been done herein. The results demonstrate that the extraction ratio and the recovery ratio of manganese reached 94.3% and 92.7%, respectively. The heavy metal impurities has been decreased to less than 1ppm, and the content of calcium, magnesium and sodium has been decreased to less than 20ppm, which meet standards of high pure reagent for energy and electronic materials. In compare with conventional technique from electrolytic manganese, the power consumption has been reduced to ≤2000 kWh/t(product) in our short-process approach. Moreover, comprehensive recovery rate of manganese increases significantly, and the wastewater generated from our short-process approach contains low content of ammonia/ nitrogen about 500 mg/t(product) and no toxic emissions. Our study contributes to the sustainable application of low-grade manganese ore. Acknowledgements: The authors are grateful to the National Science and Technology Support Program of China (No.2015BAB01B02) for financial support to the work.

Keywords: leaching, high purity, low-grade rhodochrosite, manganese oxide, purifying process, recovery ratio

Procedia PDF Downloads 236
4007 Accessing Properties of Alkali Activated Ground Granulated Blast Furnace Slag Based Self Compacting Geopolymer Concrete Incorporating Nano Silica

Authors: Guneet Saini, Uthej Vattipalli

Abstract:

In a world with increased demand for sustainable construction, waste product of one industry could be a boon to the other in reducing the carbon footprint. Usage of industrial waste such as fly ash and ground granulated blast furnace slag have become the epicenter of curbing the use of cement, one of the major contributors of greenhouse gases. In this paper, empirical studies have been done to develop alkali activated self-compacting geopolymer concrete (GPC) using ground granulated blast furnace slag (GGBS), incorporated with 2% nano-silica by weight, through evaluation of its fresh and hardening properties. Experimental investigation on 6 mix designs of varying molarity of 10M, 12M and 16M of the alkaline solution and a binder content of 450 kg/m³ and 500 kg/m³ has been done and juxtaposed with GPC mix design composed of 16M alkaline solution concentration and 500 kg/m³ binder content without nano-silica. The sodium silicate to sodium hydroxide ratio (SS/SH), alkaline activator liquid to binder ratio (AAL/B) and water to binder ratio (W/B), which significantly affect the performance and mechanical properties of GPC, were fixed at 2.5, 0.45 and 0.4 respectively. To catalyze the early stage geopolymerisation, oven curing is done maintaining the temperature at 60˚C. This paper also elucidates the test results for fresh self-compacting concrete (SCC) done as per EFNARC guidelines. The mechanical properties tests conducted were: compressive strength test after 7 days, 28 days, 56 days and 90 days; flexure test; split tensile strength test after 28 days, 56 days and 90 days; X-ray diffraction test to analyze the mechanical performance and sorptivity test for testing of permeability. The study revealed that the sample of 16M concentration of alkaline solution with 500 Kg/m³ binder content containing 2% nano silica produced the highest compressive, flexural and split tensile strength of 81.33 MPa, 7.875 MPa, and 6.398 MPa respectively, at the end of 90 days.

Keywords: alkaline activator liquid, geopolymer concrete, ground granulated blast furnace slag, nano silica, self compacting

Procedia PDF Downloads 126
4006 Investigation on Correlation of Earthquake Intensity Parameters with Seismic Response of Reinforced Concrete Structures

Authors: Semra Sirin Kiris

Abstract:

Nonlinear dynamic analysis is permitted to be used for structures without any restrictions. The important issue is the selection of the design earthquake to conduct the analyses since quite different response may be obtained using ground motion records at the same general area even resulting from the same earthquake. In seismic design codes, the method requires scaling earthquake records based on site response spectrum to a specified hazard level. Many researches have indicated that this limitation about selection can cause a large scatter in response and other charecteristics of ground motion obtained in different manner may demonstrate better correlation with peak seismic response. For this reason influence of eleven different ground motion parameters on the peak displacement of reinforced concrete systems is examined in this paper. From conducting 7020 nonlinear time history analyses for single degree of freedom systems, the most effective earthquake parameters are given for the range of the initial periods and strength ratios of the structures. In this study, a hysteresis model for reinforced concrete called Q-hyst is used not taken into account strength and stiffness degradation. The post-yielding to elastic stiffness ratio is considered as 0.15. The range of initial period, T is from 0.1s to 0.9s with 0.1s time interval and three different strength ratios for structures are used. The magnitude of 260 earthquake records selected is higher than earthquake magnitude, M=6. The earthquake parameters related to the energy content, duration or peak values of ground motion records are PGA(Peak Ground Acceleration), PGV (Peak Ground Velocity), PGD (Peak Ground Displacement), MIV (Maximum Increamental Velocity), EPA(Effective Peak Acceleration), EPV (Effective Peak Velocity), teff (Effective Duration), A95 (Arias Intensity-based Parameter), SPGA (Significant Peak Ground Acceleration), ID (Damage Factor) and Sa (Spectral Response Spectrum).Observing the correlation coefficients between the ground motion parameters and the peak displacement of structures, different earthquake parameters play role in peak displacement demand related to the ranges formed by the different periods and the strength ratio of a reinforced concrete systems. The influence of the Sa tends to decrease for the high values of strength ratio and T=0.3s-0.6s. The ID and PGD is not evaluated as a measure of earthquake effect since high correlation with displacement demand is not observed. The influence of the A95 is high for T=0.1 but low related to the higher values of T and strength ratio. The correlation of PGA, EPA and SPGA shows the highest correlation for T=0.1s but their effectiveness decreases with high T. Considering all range of structural parameters, the MIV is the most effective parameter.

Keywords: earthquake parameters, earthquake resistant design, nonlinear analysis, reinforced concrete

Procedia PDF Downloads 136