Search results for: complex adaptive system (CAS)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21980

Search results for: complex adaptive system (CAS)

21050 The Axonal Connectivity of Motor and Premotor Areas as Revealed through Fiber Dissections: Shedding Light on the Structural Correlates of Complex Motor Behavior

Authors: Spyridon Komaitis, Christos Koutsarnakis, Evangelos Drosos, Aristotelis Kalyvas

Abstract:

This study opts to investigate the intrinsic architecture, morphology, and spatial relationship of the subcortical pathways implicated in the connectivity of the motor/premotor cortex and SMA/pre-SMA complex. Twenty normal, adult, formalin-fixed cerebral hemispheres were explored through the fiber micro-dissection technique. Lateral to medial and medial to lateral dissections focused on the area of interest were performed in a tandem manner and under the surgical microscope. We traced the subcortical architecture, spatial relationships, and axonal connectivity of four major pathways: a) the dorsal component of the SLF (SLF-I) was found to reside in the medial aspect of the hemisphere and seen to connect the precuneus with the SMA and pre-SMA complex, b) the frontal longitudinal system (FLS) was consistently encountered as the natural anterior continuation of the SLF-II and SLF-III and connected the premotor and prefrontal cortices c) the fronto-caudate tract (FCT), a fan-shaped tract, was documented to participate in connectivity of the prefrontal and premotor cortices to the head and body of the caudate nucleus and d) the cortico-tegmental tract(CTT) was invariably recorded to subserve the connectivity of the tegmental area with the fronto-parietal cortex. No hemispheric asymmetries were recorded for any of the implicated pathways. Sub-segmentation systems were also proposed for each of the aforementioned tracts. The structural connectivity and functional specialization of motor and premotor areas in the human brain remain vague to this day as most of the available evidence derives either from animal or tractographic studies. By using the fiber-microdissection technique as our main method of investigation, we provide sound structural evidence on the delicate anatomy of the related white matter pathways.

Keywords: neuroanatomy, premotor, motor, connectivity

Procedia PDF Downloads 128
21049 The Response of Adaptive Mechanism of Fluorescent Proteins from Coral Species and Target Cell Properties on Signalling Capacity as Biosensor

Authors: Elif Tugce Aksun Tumerkan

Abstract:

Fluorescent proteins (FPs) have become very popular since green fluorescent protein discovered from crystal jellyfish. It is known that Anthozoa species have a wide range of chromophore organisms, and the initial crystal structure for non-fluorescent chromophores obtained from the reef-building coral has been determined. There are also differently coloured pigments in non-bioluminescent Anthozoa zooxanthellate and azooxanthellate which are frequently members of the GFP-like protein family. The development of fluorescent proteins (FPs) and their applications is an outstanding example of basic science leading to practical biotechnological and medical applications. Fluorescent proteins have several applications in science and are used as important indicators in molecular biology and cell-based research. With rising interest in cell biology, FPs have used as biosensor indicators and probes in pharmacology and cell biology. Using fluorescent proteins in genetically encoded metabolite sensors has many advantages than chemical probes for metabolites such as easily introduced into any cell or organism in any sub-cellular localization and giving chance to fixing to fluoresce of different colours or characteristics. There are different factors effects to signalling mechanism when they used as a biosensor. While there are wide ranges of research have been done on the significance and applications of fluorescent proteins, the cell signalling response of FPs and target cell are less well understood. In this study, it was aimed to clarify the response of adaptive mechanisms of coral species such as pH, temperature and symbiotic relationship and target cells properties on the signalling capacity. Corals are a rich natural source of fluorescent proteins that change with environmental conditions such as light, heat stress and injury. Adaptation mechanism of coral species to these types of environmental variations is important factor due to FPs properties have affected by this mechanism. Since fluorescent proteins obtained from nature, their own ecological property like the symbiotic relationship is observed very commonly in coral species and living conditions have the impact on FPs efficiency. Target cell properties also have an effect on signalling and visualization. The dynamicity of detector that used for reading fluorescence and the level of background fluorescence are key parameters for the quality of the fluorescent signal. Among the factors, it can be concluded that coral species adaptive characteristics have the strongest effect on FPs signalling capacity.

Keywords: biosensor, cell biology, environmental conditions, fluorescent protein, sea anemone

Procedia PDF Downloads 170
21048 Modelling and Analysis of Shear Banding in Flow of Complex Fluids

Authors: T. Chinyoka

Abstract:

We present the Johnson-Segalman constitutive model to capture certain fluid flow phenomena that has been experimentally observed in the flow of complex polymeric fluids. In particular, experimentally observed phenomena such as shear banding, spurt and slip are explored and/or explained in terms of the non-monotonic shear-stress versus shear-rate relationships. We also explore the effects of the inclusion of physical flow aspects such as wall porosity on shear banding. We similarly also explore the effects of the inclusion of mathematical modelling aspects such as stress diffusion into the stress constitutive models in order to predict shear-stress (or shear-rate) paths. We employ semi-implicit finite difference methods for all the computational solution procedures.

Keywords: Johnson-Segalman model, diffusive Johnson-Segalman model, shear banding, finite difference methods, complex fluid flow

Procedia PDF Downloads 365
21047 Diabetes Diagnosis Model Using Rough Set and K- Nearest Neighbor Classifier

Authors: Usiobaifo Agharese Rosemary, Osaseri Roseline Oghogho

Abstract:

Diabetes is a complex group of disease with a variety of causes; it is a disorder of the body metabolism in the digestion of carbohydrates food. The application of machine learning in the field of medical diagnosis has been the focus of many researchers and the use of recognition and classification model as a decision support tools has help the medical expert in diagnosis of diseases. Considering the large volume of medical data which require special techniques, experience, and high diagnostic skill in the diagnosis of diseases, the application of an artificial intelligent system to assist medical personnel in order to enhance their efficiency and accuracy in diagnosis will be an invaluable tool. In this study will propose a diabetes diagnosis model using rough set and K-nearest Neighbor classifier algorithm. The system consists of two modules: the feature extraction module and predictor module, rough data set is used to preprocess the attributes while K-nearest neighbor classifier is used to classify the given data. The dataset used for this model was taken for University of Benin Teaching Hospital (UBTH) database. Half of the data was used in the training while the other half was used in testing the system. The proposed model was able to achieve over 80% accuracy.

Keywords: classifier algorithm, diabetes, diagnostic model, machine learning

Procedia PDF Downloads 336
21046 Application of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Multipoint Optimal Minimum Entropy Deconvolution in Railway Bearings Fault Diagnosis

Authors: Yao Cheng, Weihua Zhang

Abstract:

Although the measured vibration signal contains rich information on machine health conditions, the white noise interferences and the discrete harmonic coming from blade, shaft and mash make the fault diagnosis of rolling element bearings difficult. In order to overcome the interferences of useless signals, a new fault diagnosis method combining Complete Ensemble Empirical Mode Decomposition with adaptive noise (CEEMDAN) and Multipoint Optimal Minimum Entropy Deconvolution (MOMED) is proposed for the fault diagnosis of high-speed train bearings. Firstly, the CEEMDAN technique is applied to adaptively decompose the raw vibration signal into a series of finite intrinsic mode functions (IMFs) and a residue. Compared with Ensemble Empirical Mode Decomposition (EEMD), the CEEMDAN can provide an exact reconstruction of the original signal and a better spectral separation of the modes, which improves the accuracy of fault diagnosis. An effective sensitivity index based on the Pearson's correlation coefficients between IMFs and raw signal is adopted to select sensitive IMFs that contain bearing fault information. The composite signal of the sensitive IMFs is applied to further analysis of fault identification. Next, for propose of identifying the fault information precisely, the MOMED is utilized to enhance the periodic impulses in composite signal. As a non-iterative method, the MOMED has better deconvolution performance than the classical deconvolution methods such Minimum Entropy Deconvolution (MED) and Maximum Correlated Kurtosis Deconvolution (MCKD). Third, the envelope spectrum analysis is applied to detect the existence of bearing fault. The simulated bearing fault signals with white noise and discrete harmonic interferences are used to validate the effectiveness of the proposed method. Finally, the superiorities of the proposed method are further demonstrated by high-speed train bearing fault datasets measured from test rig. The analysis results indicate that the proposed method has strong practicability.

Keywords: bearing, complete ensemble empirical mode decomposition with adaptive noise, fault diagnosis, multipoint optimal minimum entropy deconvolution

Procedia PDF Downloads 374
21045 Generation of Knowlege with Self-Learning Methods for Ophthalmic Data

Authors: Klaus Peter Scherer, Daniel Knöll, Constantin Rieder

Abstract:

Problem and Purpose: Intelligent systems are available and helpful to support the human being decision process, especially when complex surgical eye interventions are necessary and must be performed. Normally, such a decision support system consists of a knowledge-based module, which is responsible for the real assistance power, given by an explanation and logical reasoning processes. The interview based acquisition and generation of the complex knowledge itself is very crucial, because there are different correlations between the complex parameters. So, in this project (semi)automated self-learning methods are researched and developed for an enhancement of the quality of such a decision support system. Methods: For ophthalmic data sets of real patients in a hospital, advanced data mining procedures seem to be very helpful. Especially subgroup analysis methods are developed, extended and used to analyze and find out the correlations and conditional dependencies between the structured patient data. After finding causal dependencies, a ranking must be performed for the generation of rule-based representations. For this, anonymous patient data are transformed into a special machine language format. The imported data are used as input for algorithms of conditioned probability methods to calculate the parameter distributions concerning a special given goal parameter. Results: In the field of knowledge discovery advanced methods and applications could be performed to produce operation and patient related correlations. So, new knowledge was generated by finding causal relations between the operational equipment, the medical instances and patient specific history by a dependency ranking process. After transformation in association rules logically based representations were available for the clinical experts to evaluate the new knowledge. The structured data sets take account of about 80 parameters as special characteristic features per patient. For different extended patient groups (100, 300, 500), as well one target value as well multi-target values were set for the subgroup analysis. So the newly generated hypotheses could be interpreted regarding the dependency or independency of patient number. Conclusions: The aim and the advantage of such a semi-automatically self-learning process are the extensions of the knowledge base by finding new parameter correlations. The discovered knowledge is transformed into association rules and serves as rule-based representation of the knowledge in the knowledge base. Even more, than one goal parameter of interest can be considered by the semi-automated learning process. With ranking procedures, the most strong premises and also conjunctive associated conditions can be found to conclude the interested goal parameter. So the knowledge, hidden in structured tables or lists can be extracted as rule-based representation. This is a real assistance power for the communication with the clinical experts.

Keywords: an expert system, knowledge-based support, ophthalmic decision support, self-learning methods

Procedia PDF Downloads 253
21044 Dynamic Cardiac Mitochondrial Proteome Alterations after Ischemic Preconditioning

Authors: Abdelbary Prince, Said Moussa, Hyungkyu Kim, Eman Gouda, Jin Han

Abstract:

We compared the dynamic alterations of mitochondrial proteome of control, ischemia-reperfusion (IR) and ischemic preconditioned (IPC) rabbit hearts. Using 2-DE, we identified 29 mitochondrial proteins that were differentially expressed in the IR heart compared with the control and IPC hearts. For two of the spots, the expression patterns were confirmed by Western blotting analysis. These proteins included succinate dehydrogenase complex, Acyl-CoA dehydrogenase, carnitine acetyltransferase, dihydrolipoamide dehydrogenase, Atpase, ATP synthase, dihydrolipoamide succinyltransferase, ubiquinol-cytochrome c reductase, translation elongation factor, acyl-CoA dehydrogenase, actin alpha, succinyl-CoA Ligase, dihydrolipoamide S-succinyltransferase, citrate synthase, acetyl-Coenzyme A dehydrogenase, creatine kinase, isocitrate dehydrogenase, pyruvate dehydrogenase, prohibitin, NADH dehydrogenase (ubiquinone) Fe-S protein, enoyl Coenzyme A hydratase, superoxide dismutase [Mn], and 24-kDa subunit of complex I. Interestingly, most of these proteins are associated with the mitochondrial respiratory chain, antioxidant enzyme system, and energy metabolism. The results provide clues as to the cardioprotective mechanism of ischemic preconditioning at the protein level and may serve as potential biomarkers for detection of ischemia-induced cardiac injury.

Keywords: ischemic preconditioning, mitochondria, proteome, cardioprotection

Procedia PDF Downloads 349
21043 Detecting Port Maritime Communities in Spain with Complex Network Analysis

Authors: Nicanor Garcia Alvarez, Belarmino Adenso-Diaz, Laura Calzada Infante

Abstract:

In recent years, researchers have shown an interest in modelling maritime traffic as a complex network. In this paper, we propose a bipartite weighted network to model maritime traffic and detect port maritime communities. The bipartite weighted network considers two different types of nodes. The first one represents Spanish ports, while the second one represents the countries with which there is major import/export activity. The flow among both types of nodes is modeled by weighting the volume of product transported. To illustrate the model, the data is segmented by each type of traffic. This will allow fine tuning and the creation of communities for each type of traffic and therefore finding similar ports for a specific type of traffic, which will provide decision-makers with tools to search for alliances or identify their competitors. The traffic with the greatest impact on the Spanish gross domestic product is selected, and the evolution of the communities formed by the most important ports and their differences between 2019 and 2009 will be analyzed. Finally, the set of communities formed by the ports of the Spanish port system will be inspected to determine global similarities between them, analyzing the sum of the membership of the different ports in communities formed for each type of traffic in particular.

Keywords: bipartite networks, competition, infomap, maritime traffic, port communities

Procedia PDF Downloads 148
21042 Derivatives Balance Method for Linear and Nonlinear Control Systems

Authors: Musaab Mohammed Ahmed Ali, Vladimir Vodichev

Abstract:

work deals with an universal control technique or single controller for linear and nonlinear stabilization and tracing control systems. These systems may be structured as SISO and MIMO. Parameters of controlled plants can vary over a wide range. Introduced a novel control systems design method, construction of stable platform orbits using derivative balance, solved transfer function stability preservation problem of linear system under partial substitution of a rational function. Universal controller is proposed as a polar system with the multiple orbits to simplify design procedure, where each orbit represent single order of controller transfer function. Designed controller consist of proportional, integral, derivative terms and multiple feedback and feedforward loops. The controller parameters synthesis method is presented. In generally, controller parameters depend on new polynomial equation where all parameters have a relationship with each other and have fixed values without requirements of retuning. The simulation results show that the proposed universal controller can stabilize infinity number of linear and nonlinear plants and shaping desired previously ordered performance. It has been proven that sensor errors and poor performance will be completely compensated and cannot affect system performance. Disturbances and noises effect on the controller loop will be fully rejected. Technical and economic effect of using proposed controller has been investigated and compared to adaptive, predictive, and robust controllers. The economic analysis shows the advantage of single controller with fixed parameters to drive infinity numbers of plants compared to above mentioned control techniques.

Keywords: derivative balance, fixed parameters, stable platform, universal control

Procedia PDF Downloads 136
21041 Kinetics and Mechanism of Oxidation of Dimethylglyoxime Chromium (III) Complex by Periodate

Authors: Ahmed A. Abdel-Khalek, Reham A. Mohamed

Abstract:

The kinetics of oxidation of binary complex [CrIII(DMG)2(H2O)4 ]+ to Cr(VI) by periodate has been investigated spectrophotometrically where, [DMG= Dimethylglyoxime] at 370nm under pseudo first order reaction conditions in aqueous medium over 20- 40ºC range, PH 2-3, and I=0.07 mol dm-3. The reaction is first order with respect to both [IO4-] and Cr(III), and the reaction increased with PH increased. Thermodymanic activation parameters have been calculated. It is suggested that electron transfer proceeds through an inner sphere mechanism via coordination of IO4- to Cr (III). The reaction obeys the following rate law Rate= {k1 K5+ k2 K6 K2 } [Cr III (DMG)2(H2O)4 ]+ [H5IO6].

Keywords: chromium, dimethylglyoxime, kinetics, oxidation, periodate

Procedia PDF Downloads 423
21040 Quantum Entanglement and Thermalization in Superconducting Two-Qubit Systems

Authors: E. Karami, M. Bohloul, P. Najmadi

Abstract:

The superconducting system is a suitable system for quantum computers. Quantum entanglement is a fundamental phenomenon that is key to the power of quantum computers. Quantum entanglement has been studied in different superconducting systems. In this paper, we are investigating a superconducting two-qubit system as a macroscopic system. These systems include two coupled Quantronium circuits. We calculate quantum entanglement and thermalization for system evolution and compare them. We observe, thermalization and entanglement have different behavior, and equilibrium thermal state has maximum entanglement.

Keywords: macroscopic system, quantum entanglement, thermalization, superconducting system

Procedia PDF Downloads 155
21039 Emotional Awareness and Working Memory as Predictive Factors for the Habitual Use of Cognitive Reappraisal among Adolescents

Authors: Yuri Kitahara

Abstract:

Background: Cognitive reappraisal refers to an emotion regulation strategy in which one changes the interpretation of emotion-eliciting events. Numerous studies show that cognitive reappraisal is associated with mental health and better social functioning. However the examination of the predictive factors of adaptive emotion regulation remains as an issue. The present study examined the factors contributing to the habitual use of cognitive reappraisal, with a focus on emotional awareness and working memory. Methods: Data was collected from 30 junior high school students, using a Japanese version of the Emotion Regulation Questionnaire (ERQ), the Levels of Emotional Awareness Scale for Children (LEAS-C), and N-back task. Results: A positive correlation between emotional awareness and cognitive reappraisal was observed in the high-working-memory group (r = .54, p < .05), whereas no significant relationship was found in the low-working-memory group. In addition, the results of the analysis of variance (ANOVA) showed a significant interaction between emotional awareness and working memory capacity (F(1, 26) = 7.74, p < .05). Subsequent analysis of simple main effects confirmed that high working memory capacity significantly increases the use of cognitive reappraisal for high-emotional-awareness subjects, and significantly decreases the use of cognitive reappraisal for low-emotional-awareness subjects. Discussion: These results indicate that under the condition when one has an adequate ability for simultaneous processing of information, explicit understanding of emotion would contribute to adaptive cognitive emotion regulation. The findings are discussed along with neuroscientific claims.

Keywords: cognitive reappraisal, emotional awareness, emotion regulation, working memory

Procedia PDF Downloads 231
21038 Recommender System Based on Mining Graph Databases for Data-Intensive Applications

Authors: Mostafa Gamal, Hoda K. Mohamed, Islam El-Maddah, Ali Hamdi

Abstract:

In recent years, many digital documents on the web have been created due to the rapid growth of ’social applications’ communities or ’Data-intensive applications’. The evolution of online-based multimedia data poses new challenges in storing and querying large amounts of data for online recommender systems. Graph data models have been shown to be more efficient than relational data models for processing complex data. This paper will explain the key differences between graph and relational databases, their strengths and weaknesses, and why using graph databases is the best technology for building a realtime recommendation system. Also, The paper will discuss several similarity metrics algorithms that can be used to compute a similarity score of pairs of nodes based on their neighbourhoods or their properties. Finally, the paper will discover how NLP strategies offer the premise to improve the accuracy and coverage of realtime recommendations by extracting the information from the stored unstructured knowledge, which makes up the bulk of the world’s data to enrich the graph database with this information. As the size and number of data items are increasing rapidly, the proposed system should meet current and future needs.

Keywords: graph databases, NLP, recommendation systems, similarity metrics

Procedia PDF Downloads 104
21037 Exploration for Magnetic Minerals Using Geophysical Logging Techniques in the Northwestern Part of Bangladesh

Authors: Md. Selim Reza, Mohammad Zohir Uddin

Abstract:

Geophysical logging technique was conducted in a borehole in the north-western part of Bangladesh. The main objectives of this study were to identify the subsurface lithology and the presence of magnetic minerals within the basement complex. In this survey, full waveform sonic, magnetic susceptibility and natural gamma logs were conducted up to the depth of 660 m. From sonic log, three distinct velocity zones were observed at depths ranging from 20 m to 81 m, 81m to 360 m and 420 m to 660 m having the average velocity of 1600 m/s indicating unconsolidated sediment, 2500 m/s indicating hard, compact and matured sediments and 6300 m/s indicating basement complex respectively. Some low-velocity zones within the basement were identified as fractures/fissures. Natural gamma log was carried out only in the basement complex. According to magnetic susceptibility log, broadly three important zones were identified which had good agreement with the natural gamma, sonic as well as geological logs. The zone at the depth from 460 m to 470 m had the average susceptibility value of 3445 cgs unit. The average natural gamma value and sonic velocity in this zone are 150 cps and 3000 m/s respectively. The zone at the depth from 571 m to 598 m had the average susceptibility value of 5158 cgs unit with the average natural gamma value and sonic velocity are 160 cps and 6000 m/s respectively. On the other hand, the zone at the depth from 598 m to 620 m had the average susceptibility value of 1998 cgs unit with the average natural gamma value and sonic velocity show 200 cps and 3000 m/s respectively. From the interpretation of geophysical logs the 1st and 3rd zones within the basement complex are considered to be less significant whereas the 2nd zone is described as the most significant for magnetic minerals. Therefore, more drill holes are recommended on the anomalous body to delineate the extent, thickness and reserve of the magnetic body and further research are needed to determine the quality of mineral resources.

Keywords: basement complex, fractures/fissures, geophysical logging, lithology, magnetic susceptibility

Procedia PDF Downloads 289
21036 Spherical Harmonic Based Monostatic Anisotropic Point Scatterer Model for RADAR Applications

Authors: Eric Huang, Coleman DeLude, Justin Romberg, Saibal Mukhopadhyay, Madhavan Swaminathan

Abstract:

High performance computing (HPC) based emulators can be used to model the scattering from multiple stationary and moving targets for RADAR applications. These emulators rely on the RADAR Cross Section (RCS) of the targets being available in complex scenarios. Representing the RCS using tables generated from electromagnetic (EM) simulations is often times cumbersome leading to large storage requirement. This paper proposed a spherical harmonic based anisotropic scatterer model to represent the RCS of complex targets. The problem of finding the locations and reflection profiles of all scatterers can be formulated as a linear least square problem with a special sparsity constraint. This paper solves this problem using a modified Orthogonal Matching Pursuit algorithm. The results show that the spherical harmonic based scatterer model can effectively represent the RCS data of complex targets.

Keywords: RADAR, RCS, high performance computing, point scatterer model

Procedia PDF Downloads 191
21035 Impact of the Simplification of Licensing Procedures for Industrial Complexes on Supply of Industrial Complexes and Regional Policies

Authors: Seung-Seok Bak, Chang-Mu Jung

Abstract:

An enough amount supply of industrial complexes is an important national policy in South Korea, which is highly dependent on foreign trade. A development process of the industrial complex can distinguish between the planning stage and the construction stage. The planning stage consists of the process of consulting with many stakeholders on the contents of the development of industrial complex, feasibility study, compliance with the Regional policies, and so on. The industrial complex planning stage, including licensing procedure, usually takes about three years in South Korea. The government determined that the appropriate supply of industrial complexes have been delayed, due to the long licensing period and drafted a law to shorten the license period in 2008. The law was expected to shorten the period of licensing, which was about three years, to six months. This paper attempts to show that the shortening of the licensing period does not positively affect the appropriate supply of industrial complexes. To do this, we used Interrupted Time Series Designs. As a result, it was found that the supply of industrial complexes was influenced more by other factors such as actual industrial complex demand of private sector and macro-level economic variables. In addition, the specific provisions of the law conflict with local policy and cause some problems such as damage to nature and agricultural land, traffic congestion.

Keywords: development of industrial complexes, industrial complexes, interrupted time series designs, simplification of licensing procedures for industrial complexes, time series regression

Procedia PDF Downloads 295
21034 Stochastic Matrices and Lp Norms for Ill-Conditioned Linear Systems

Authors: Riadh Zorgati, Thomas Triboulet

Abstract:

In quite diverse application areas such as astronomy, medical imaging, geophysics or nondestructive evaluation, many problems related to calibration, fitting or estimation of a large number of input parameters of a model from a small amount of output noisy data, can be cast as inverse problems. Due to noisy data corruption, insufficient data and model errors, most inverse problems are ill-posed in a Hadamard sense, i.e. existence, uniqueness and stability of the solution are not guaranteed. A wide class of inverse problems in physics relates to the Fredholm equation of the first kind. The ill-posedness of such inverse problem results, after discretization, in a very ill-conditioned linear system of equations, the condition number of the associated matrix can typically range from 109 to 1018. This condition number plays the role of an amplifier of uncertainties on data during inversion and then, renders the inverse problem difficult to handle numerically. Similar problems appear in other areas such as numerical optimization when using interior points algorithms for solving linear programs leads to face ill-conditioned systems of linear equations. Devising efficient solution approaches for such system of equations is therefore of great practical interest. Efficient iterative algorithms are proposed for solving a system of linear equations. The approach is based on a preconditioning of the initial matrix of the system with an approximation of a generalized inverse leading to a stochastic preconditioned matrix. This approach, valid for non-negative matrices, is first extended to hermitian, semi-definite positive matrices and then generalized to any complex rectangular matrices. The main results obtained are as follows: 1) We are able to build a generalized inverse of any complex rectangular matrix which satisfies the convergence condition requested in iterative algorithms for solving a system of linear equations. This completes the (short) list of generalized inverse having this property, after Kaczmarz and Cimmino matrices. Theoretical results on both the characterization of the type of generalized inverse obtained and the convergence are derived. 2) Thanks to its properties, this matrix can be efficiently used in different solving schemes as Richardson-Tanabe or preconditioned conjugate gradients. 3) By using Lp norms, we propose generalized Kaczmarz’s type matrices. We also show how Cimmino's matrix can be considered as a particular case consisting in choosing the Euclidian norm in an asymmetrical structure. 4) Regarding numerical results obtained on some pathological well-known test-cases (Hilbert, Nakasaka, …), some of the proposed algorithms are empirically shown to be more efficient on ill-conditioned problems and more robust to error propagation than the known classical techniques we have tested (Gauss, Moore-Penrose inverse, minimum residue, conjugate gradients, Kaczmarz, Cimmino). We end on a very early prospective application of our approach based on stochastic matrices aiming at computing some parameters (such as the extreme values, the mean, the variance, …) of the solution of a linear system prior to its resolution. Such an approach, if it were to be efficient, would be a source of information on the solution of a system of linear equations.

Keywords: conditioning, generalized inverse, linear system, norms, stochastic matrix

Procedia PDF Downloads 136
21033 Internet of Things Based Process Model for Smart Parking System

Authors: Amjaad Alsalamah, Liyakathunsia Syed

Abstract:

Transportation is an essential need for many people to go to their work, school, and home. In particular, the main common method inside many cities is to drive the car. Driving a car can be an easy job to reach the destination and load all stuff in a reasonable time. However, deciding to find a parking lot for a car can take a long time using the traditional system that can issue a paper ticket for each customer. The old system cannot guarantee a parking lot for all customers. Also, payment methods are not always available, and many customers struggled to find their car among a numerous number of cars. As a result, this research focuses on providing an online smart parking system in order to save time and budget. This system provides a flexible management system for both parking owner and customers by receiving all request via the online system and it gets an accurate result for all available parking and its location.

Keywords: smart parking system, IoT, tracking system, process model, cost, time

Procedia PDF Downloads 336
21032 Control of a Quadcopter Using Genetic Algorithm Methods

Authors: Mostafa Mjahed

Abstract:

This paper concerns the control of a nonlinear system using two different methods, reference model and genetic algorithm. The quadcopter is a nonlinear unstable system, which is a part of aerial robots. It is constituted by four rotors placed at the end of a cross. The center of this cross is occupied by the control circuit. Its motions are governed by six degrees of freedom: three rotations around 3 axes (roll, pitch and yaw) and the three spatial translations. The control of such system is complex, because of nonlinearity of its dynamic representation and the number of parameters, which it involves. Numerous studies have been developed to model and stabilize such systems. The classical PID and LQ correction methods are widely used. If the latter represent the advantage to be simple because they are linear, they reveal the drawback to require the presence of a linear model to synthesize. It also implies the complexity of the established laws of command because the latter must be widened on all the domain of flight of these quadcopter. Note that, if the classical design methods are widely used to control aeronautical systems, the Artificial Intelligence methods as genetic algorithms technique receives little attention. In this paper, we suggest comparing two PID design methods. Firstly, the parameters of the PID are calculated according to the reference model. In a second phase, these parameters are established using genetic algorithms. By reference model, we mean that the corrected system behaves according to a reference system, imposed by some specifications: settling time, zero overshoot etc. Inspired from the natural evolution of Darwin's theory advocating the survival of the best, John Holland developed this evolutionary algorithm. Genetic algorithm (GA) possesses three basic operators: selection, crossover and mutation. We start iterations with an initial population. Each member of this population is evaluated through a fitness function. Our purpose is to correct the behavior of the quadcopter around three axes (roll, pitch and yaw) with 3 PD controllers. For the altitude, we adopt a PID controller.

Keywords: quadcopter, genetic algorithm, PID, fitness, model, control, nonlinear system

Procedia PDF Downloads 431
21031 Multi-Modal Film Boiling Simulations on Adaptive Octree Grids

Authors: M. Wasy Akhtar

Abstract:

Multi-modal film boiling simulations are carried out on adaptive octree grids. The liquid-vapor interface is captured using the volume-of-fluid framework adjusted to account for exchanges of mass, momentum, and energy across the interface. Surface tension effects are included using a volumetric source term in the momentum equations. The phase change calculations are conducted based on the exact location and orientation of the interface; however, the source terms are calculated using the mixture variables to be consistent with the one field formulation used to represent the entire fluid domain. The numerical model on octree representation of the computational grid is first verified using test cases including advection tests in severely deforming velocity fields, gravity-based instabilities and bubble growth in uniformly superheated liquid under zero gravity. The model is then used to simulate both single and multi-modal film boiling simulations. The octree grid is dynamically adapted in order to maintain the highest grid resolution on the instability fronts using markers of interface location, volume fraction, and thermal gradients. The method thus provides an efficient platform to simulate fluid instabilities with or without phase change in the presence of body forces like gravity or shear layer instabilities.

Keywords: boiling flows, dynamic octree grids, heat transfer, interface capturing, phase change

Procedia PDF Downloads 246
21030 Farmers' Perception of the Effects of Climate Change on Rice Production in Nasarawa State, Nigeria

Authors: P. O. Fatoki, R. S. Olaleye, B. O. Adeniji

Abstract:

The study investigated farmers’ perception of the effects of climate change on rice production in Nasarawa State, Nigeria. Multi-stage sampling technique was used in selecting a total of 248 rice farmers from the study area. Data for the study were collected through the use of interview schedule. The data were analysed using both descriptive and inferential statistics. Results showed that majority (71.8%) of the respondents were married and the mean age of the respondents was 44.54 years. The results also showed that most adapted strategies for mitigating the effects of climate change on rice production were change of planting and harvesting date (67.7%), movement to another site (63.7%) and increased or reduced land size (58.5%). Relationship between the roles of extension agents in mitigating climate change effects on rice production and farmers’ perception were significant as revealed Chi-Square analysis from the study ; Dissemination of information ( = 2.16, P < 0.05) and use of demonstration methods ( = 2.15, P < 0.05). Poisson regression analysis revealed that educational status, farm size, experience and yield had significant relationship with the perception of the effects of climate change at 0.01 significance level while household size was as well significant at 0.05. It is recommended that some of the adaptive strategies and practices for mitigating the effects of climate change in rice production should be improved, while the extension outfits should be strengthened to ensure adequate dissemination of relevant information on climate change with a view to mitigate its effects on rice production.

Keywords: perception, rice farmers, climate change, mitigation, adaptive strategies

Procedia PDF Downloads 357
21029 Europium Chelates as a Platform for Biosensing

Authors: Eiman A. Al-Enezi, Gin Jose, Sikha Saha, Paul Millner

Abstract:

Rare earth nanotechnology has gained a considerable amount of interest in the field of biosensing due to the unique luminescence properties of lanthanides. Chelating rare earth ions plays a significant role in biological labelling applications including medical diagnostics, due to their different excitation and emission wavelengths, variety of their spectral properties, sharp emission peaks and long fluorescence lifetimes. We aimed to develop a platform for biosensors based on Europium (Eu³⁺) chelates against biomarkers of cardiac injury (heart-type fatty acid binding protein; H-FABP3) and stroke (glial fibrillary acidic protein; GFAP). Additional novelty in this project is the use of synthetic binding proteins (Affimers), which could offer an excellent alternative targeting strategy to the existing antibodies. Anti-GFAP and anti-HFABP3 Affimer binders were modified to increase the number of carboxy functionalities. Europium nitrate then incubated with the modified Affimer. The luminescence characteristics of the Eu³⁺ complex with modified Affimers and antibodies against anti-GFAP and anti-HFABP3 were measured against different concentrations of the respective analytes on excitation wavelength of 395nm. Bovine serum albumin (BSA) was used as a control against the IgG/Affimer Eu³⁺ complexes. The emission spectrum of Eu³⁺ complex resulted in 5 emission peaks ranging between 550-750 nm with the highest intensity peaks were at 592 and 698 nm. The fluorescence intensity of Eu³⁺ chelates with the modified Affimer or antibodies increased significantly by 4-7 folder compared to the emission spectrum of Eu³⁺ complex. The fluorescence intensity of the Affimer complex was quenched proportionally with increased analyte concentration, but this did not occur with antibody complex. In contrast, the fluorescence intensity for Eu³⁺ complex increased slightly against increased concentration of BSA. These data demonstrate that modified Affimers Eu³⁺ complexes can function as nanobiosensors with potential diagnostic and analytical applications.

Keywords: lanthanides, europium, chelates, biosensors

Procedia PDF Downloads 525
21028 Effect of a Reactive Dye-Resin Complex on Dyeing Properties of Cotton Fabrics

Authors: Nurudeen Afolami Ayeni, Kasali Adewale Bello

Abstract:

Study of the effect of dye-resin complexation on the degree of dye absorption were carried out using Procion Blue MX-R to dye cotton fabric in the presence hexamethylol melamine (MR6) and its phosphate derivative (MPR4) for resination. The highest degree of dye exhaustion was obtained at 400C for 1 hour with the resinated fabric showing more affinity for the dye than the ordinary fibre. Improved fastness properties was recorded which show a relatively higher stability of dye-resin complex formed in the fibre.

Keywords: affinity, cotton, dyeing, reactive dye, resination

Procedia PDF Downloads 313
21027 The Link of the Human Immunodeficiency Virus With the Progression of Multiple Sclerosis Disease

Authors: Sina Mahdavi

Abstract:

Multiple sclerosis (MS) is a progressive inflammatory autoimmune disease of the CNS that affects the myelination process in the central nervous system (CNS). Complex interactions of various "environmental or infectious" factors may act as triggers in autoimmunity and disease progression. The association between viral infections, especially human immunodeficiency virus (HIV) and MS is one potential cause that is not well understood. This study aims to summarize the available data on human HIV infection in MS disease progression. In this study, the keywords "Multiple sclerosis", "Human immunodeficiency virus ", and "Central nervous system" in the databases PubMed, and Google Scholar between 2017 and 2022 were searched and 15 articles were chosen, studied, and analyzed. Revealed histologic signs of "MS-like illness" in the setting of HIV, which comprised widespread demyelination with reactive astrocytes, foamy macrophages, and perivascular infiltration with inflammatory cells, all of which are compatible with MS lesions. Human immunodeficiency virus causes dysfunction of the immune system, especially characterized by hypergammaglobulinemia and chronic activation of B cells. Activation of B cells leads to increased synthesis of immunoglobulin and finally to an excess of free light chains. Free light chains may be involved in autoimmune responses against neurons. There is a high expression of HIV during the course of MS, which indicates the relationship between HIV and MS, that this virus can play a role in the development of MS by creating an inflammatory state. Therefore, measures to modulate the expression of HIV may be effective in reducing inflammatory processes in demyelinated areas of MS patients.

Keywords: multiple sclerosis, human immunodeficiency virus, central nervous system, autoimmunity

Procedia PDF Downloads 84
21026 Optimization of Microencapsulation of β-Carotene by Complex Coacervation Technique Using Casein and Gum Tragacanth

Authors: Gargi Ghoshal, Ashay Jain

Abstract:

Microencapsulation of β-carotene was optimized by complex coacervation technique using casein/gum tragacanth (CAS/GT) coating as a function of pH, initial protein to polysaccharide mixing ratio (Pr:Ps), total biopolymer concentration, core material load, zeta potential, and ionic strength. This study was aimed to understand the influence of experimental parameters on the coacervation kinetics, the coacervate yield, and entrapment efficiency. At a Pr:Ps = 2:1, an optimum pH of complex coacervation was found 4.35, at which the intensity of electrostatic interaction was maximum. At these ratios of coating, the phase separation occurred the fastest and the final coacervate yield and entrapment efficiency was the highest. Varying the Pr: Ps shifted the value of optimum pH. This incident was due to the level of charge compensation of the CAS/GT complexes. Finally, electrostatic interaction and formation of coacervates between CAS and GT were confirmed by Fourier transform infra-red (FTIR) spectra. The size and surface properties of coacervates were studied using scanning electron microscopy (SEM). The resultant formulation (β-carotene loaded microcapsules) was evaluated for in vitro release study and antioxidant activity. Stability of encapsulated β-carotene was also evaluated under three levels of temperature (5, 25 and 40 °C) for 3 months. Encapsulation strongly increased the stability of micronutrients. Our results advocate potential of microcapsules as a novel carrier for the safeguard and sustained release of micronutrient.

Keywords: β-carotene, casein, complex coacervation, controlled release, gum tragacanth, microcapsules

Procedia PDF Downloads 267
21025 Modeling the Downstream Impacts of River Regulation on the Grand Lake Meadows Complex using Delft3D FM Suite

Authors: Jaime Leavitt, Katy Haralampides

Abstract:

Numerical modelling has been used to investigate the long-term impact of a large dam on downstream wetland areas, specifically in terms of changing sediment dynamics in the system. The Mactaquac Generating Station (MQGS) is a 672MW run-of-the-river hydroelectric facility, commissioned in 1968 on the mainstem of the Wolastoq|Saint John River in New Brunswick, Canada. New Brunswick Power owns and operates the dam and has been working closely with the Canadian Rivers Institute at UNB Fredericton on a multi-year, multi-disciplinary project investigating the impact the dam has on its surrounding environment. With focus on the downstream river, this research discusses the initialization, set-up, calibration, and preliminary results of a 2-D hydrodynamic model using the Delft3d Flexible Mesh Suite (successor of the Delft3d 4 Suite). The flexible mesh allows the model grid to be structured in the main channel and unstructured in the floodplains and other downstream regions with complex geometry. The combination of grid types improves computational time and output. As the movement of water governs the movement of sediment, the calibrated and validated hydrodynamic model was applied to sediment transport simulations, particularly of the fine suspended sediments. Several provincially significant Protected Natural Areas and federally significant National Wildlife Areas are located 60km downstream of the MQGS. These broad, low-lying floodplains and wetlands are known as the Grand Lake Meadows Complex (GLM Complex). There is added pressure to investigate the impacts of river regulation on these protected regions that rely heavily on natural river processes like sediment transport and flooding. It is hypothesized that the fine suspended sediment would naturally travel to the floodplains for nutrient deposition and replenishment, particularly during the freshet and large storms. The purpose of this research is to investigate the impacts of river regulation on downstream environments and use the model as a tool for informed decision making to protect and maintain biologically productive wetlands and floodplains.

Keywords: hydrodynamic modelling, national wildlife area, protected natural area, sediment transport.

Procedia PDF Downloads 6
21024 Settlement Prediction for Tehran Subway Line-3 via FLAC3D and ANFIS

Authors: S. A. Naeini, A. Khalili

Abstract:

Nowadays, tunnels with different applications are developed, and most of them are related to subway tunnels. The excavation of shallow tunnels that pass under municipal utilities is very important, and the surface settlement control is an important factor in the design. The study sought to analyze the settlement and also to find an appropriate model in order to predict the behavior of the tunnel in Tehran subway line-3. The displacement in these sections is also determined by using numerical analyses and numerical modeling. In addition, the Adaptive Neuro-Fuzzy Inference System (ANFIS) method is utilized by Hybrid training algorithm. The database pertinent to the optimum network was obtained from 46 subway tunnels in Iran and Turkey which have been constructed by the new Austrian tunneling method (NATM) with similar parameters based on type of their soil. The surface settlement was measured, and the acquired results were compared to the predicted values. The results disclosed that computing intelligence is a good substitute for numerical modeling.

Keywords: settlement, Subway Line, FLAC3D, ANFIS Method

Procedia PDF Downloads 233
21023 Determination of Poisson’s Ratio and Elastic Modulus of Compression Textile Materials

Authors: Chongyang Ye, Rong Liu

Abstract:

Compression textiles such as compression stockings (CSs) have been extensively applied for the prevention and treatment of chronic venous insufficiency of lower extremities. The involvement of multiple mechanical factors such as interface pressure, frictional force, and elastic materials make the interactions between lower limb and CSs to be complex. Determination of Poisson’s ratio and elastic moduli of CS materials are critical for constructing finite element (FE) modeling to numerically simulate a complex interactive system of CS and lower limb. In this study, a mixed approach, including an analytic model based on the orthotropic Hooke’s Law and experimental study (uniaxial tension testing and pure shear testing), has been proposed to determine Young’s modulus, Poisson’s ratio, and shear modulus of CS fabrics. The results indicated a linear relationship existing between the stress and strain properties of the studied CS samples under controlled stretch ratios (< 100%). The newly proposed method and the determined key mechanical properties of elastic orthotropic CS fabrics facilitate FE modeling for analyzing in-depth the effects of compression material design on their resultant biomechanical function in compression therapy.

Keywords: elastic compression stockings, Young’s modulus, Poisson’s ratio, shear modulus, mechanical analysis

Procedia PDF Downloads 119
21022 Smart Web Services in the Web of Things

Authors: Sekkal Nawel

Abstract:

The Web of Things (WoT), integration of smart technologies from the Internet or network to Web architecture or application, is becoming more complex, larger, and dynamic. The WoT is associated with various elements such as sensors, devices, networks, protocols, data, functionalities, and architectures to perform services for stakeholders. These services operate in the context of the interaction of stakeholders and the WoT elements. Such context is becoming a key information source from which data are of various nature and uncertain, thus leading to complex situations. In this paper, we take interest in the development of intelligent Web services. The key ingredients of this “intelligent” notion are the context diversity, the necessity of a semantic representation to manage complex situations and the capacity to reason with uncertain data. In this perspective, we introduce a multi-layered architecture based on a generic intelligent Web service model dealing with various contexts, which proactively predict future situations and reactively respond to real-time situations in order to support decision-making. For semantic context data representation, we use PR-OWL, which is a probabilistic ontology based on Multi-Entity Bayesian Networks (MEBN). PR-OWL is flexible enough to represent complex, dynamic, and uncertain contexts, the key requirements of the development for the intelligent Web services. A case study was carried out using the proposed architecture for intelligent plant watering to show the role of proactive and reactive contextual reasoning in terms of WoT.

Keywords: smart web service, the web of things, context reasoning, proactive, reactive, multi-entity bayesian networks, PR-OWL

Procedia PDF Downloads 71
21021 Application of GPRS in Water Quality Monitoring System

Authors: V. Ayishwarya Bharathi, S. M. Hasker, J. Indhu, M. Mohamed Azarudeen, G. Gowthami, R. Vinoth Rajan, N. Vijayarangan

Abstract:

Identification of water quality conditions in a river system based on limited observations is an essential task for meeting the goals of environmental management. The traditional method of water quality testing is to collect samples manually and then send to laboratory for analysis. However, it has been unable to meet the demands of water quality monitoring today. So a set of automatic measurement and reporting system of water quality has been developed. In this project specifies Water quality parameters collected by multi-parameter water quality probe are transmitted to data processing and monitoring center through GPRS wireless communication network of mobile. The multi parameter sensor is directly placed above the water level. The monitoring center consists of GPRS and micro-controller which monitor the data. The collected data can be monitor at any instant of time. In the pollution control board they will monitor the water quality sensor data in computer using Visual Basic Software. The system collects, transmits and processes water quality parameters automatically, so production efficiency and economy benefit are improved greatly. GPRS technology can achieve well within the complex environment of poor water quality non-monitored, and more specifically applicable to the collection point, data transmission automatically generate the field of water analysis equipment data transmission and monitoring.

Keywords: multiparameter sensor, GPRS, visual basic software, RS232

Procedia PDF Downloads 412