Search results for: classification of patterns
3949 Detecting and Secluding Route Modifiers by Neural Network Approach in Wireless Sensor Networks
Authors: C. N. Vanitha, M. Usha
Abstract:
In a real world scenario, the viability of the sensor networks has been proved by standardizing the technologies. Wireless sensor networks are vulnerable to both electronic and physical security breaches because of their deployment in remote, distributed, and inaccessible locations. The compromised sensor nodes send malicious data to the base station, and thus, the total network effectiveness will possibly be compromised. To detect and seclude the Route modifiers, a neural network based Pattern Learning predictor (PLP) is presented. This algorithm senses data at any node on present and previous patterns obtained from the en-route nodes. The eminence of any node is upgraded by their predicted and reported patterns. This paper propounds a solution not only to detect the route modifiers, but also to seclude the malevolent nodes from the network. The simulation result proves the effective performance of the network by the presented methodology in terms of energy level, routing and various network conditions.Keywords: neural networks, pattern learning, security, wireless sensor networks
Procedia PDF Downloads 4043948 The Reasons for Vegetarianism in Estonia and its Effects to Body Composition
Authors: Ülle Parm, Kata Pedamäe, Jaak Jürimäe, Evelin Lätt, Aivar Orav, Anna-Liisa Tamm
Abstract:
Vegetarianism has gained popularity across the world. It`s being chosen for multiple reasons, but among Estonians, these have remained unknown. Previously, attention to bone health and probable nutrient deficiency of vegetarians has been paid and in vegetarians lower body mass index (BMI) and blood cholesterol level has been found but the results are inconclusive. The goal was to explain reasons for choosing vegetarian diet in Estonia and impact of vegetarianism to body composition – BMI, fat percentage (fat%), fat mass (FM), and fat free mass (FFM). The study group comprised of 68 vegetarians and 103 omnivorous. The determining body composition with DXA (Hologic) was concluded in 2013. Body mass (medical electronic scale, A&D Instruments, Abingdon, UK) and height (Martin metal anthropometer to the nearest 0.1 cm) were measured and BMI calculated (kg/m2). General data (physical activity level included) was collected with questionnaires. The main reasons why vegetarianism was chosen were the healthiness of the vegetarian diet (59%) and the wish to fight for animal rights (72%) Food additives were consumed by less than half of vegetarians, more often by men. Vegetarians had lower BMI than omnivores, especially amongst men. Based on BMI classification, vegetarians were less obese than omnivores. However, there were no differences in the FM, FFM and fat percentage figures of the two groups. Higher BMI might be the cause of higher physical activity level among omnivores compared with vegetarians. For classifying people as underweight, normal weight, overweight and obese both BMI and fat% criteria were used. By BMI classification in comparison with fat%, more people in the normal weight group were considered; by using fat% in comparison with BMI classification, however, more people categorized as overweight. It can be concluded that the main reasons for vegetarianism chosen in Estonia are healthiness of the vegetarian diet and the wish to fight for animal rights and vegetarian diet has no effect on body fat percentage, FM and FFM.Keywords: body composition, body fat percentage, body mass index, vegetarianism
Procedia PDF Downloads 4163947 Structural and Vibrational Studies of Ni Alx Fe2-x O4 Ferrites
Authors: Kamel Taıbı, Abdelmadjid Rais
Abstract:
Nickel–Aluminium ferrites with the general formula Ni Alx Fe2-x O4 (0 ≤ x ≤ 1) were studied using X-ray diffraction, Infra Red and Raman spectroscopy. XRD diffraction patterns and their Reitveld refinements show that all samples have a pure single-phase cubic spinel structure. From these patterns, the lattice parameters of these samples have been calculated and compared with those predicted theoretically. Most of the values were found to decrease with increasing Al content. Infra Red spectra showed two significant absorption bands. The high band corresponds to tetrahedral (A) sites and the lower band to octahedral [B] sites, thus confirming the single phase spinel structure. For all compositions, Raman spectra show the five active modes A1g + E1g + 3 T2g of the motion of O2- ions and both the A-site and B-site ions. The Raman frequencies trend with aluminium concentration show a blue shift for all modes consistent with the replacement of Fe3+ by lower mass Al3+. Composition dependence of the Raman frequency modes is discussed in relationship with the cations distribution among the A-sites and B-sites.Keywords: Ni-Al ferrites, spinel structure, XRD, Raman spectroscopy
Procedia PDF Downloads 3733946 AI-Based Techniques for Online Social Media Network Sentiment Analysis: A Methodical Review
Authors: A. M. John-Otumu, M. M. Rahman, O. C. Nwokonkwo, M. C. Onuoha
Abstract:
Online social media networks have long served as a primary arena for group conversations, gossip, text-based information sharing and distribution. The use of natural language processing techniques for text classification and unbiased decision-making has not been far-fetched. Proper classification of this textual information in a given context has also been very difficult. As a result, we decided to conduct a systematic review of previous literature on sentiment classification and AI-based techniques that have been used in order to gain a better understanding of the process of designing and developing a robust and more accurate sentiment classifier that can correctly classify social media textual information of a given context between hate speech and inverted compliments with a high level of accuracy by assessing different artificial intelligence techniques. We evaluated over 250 articles from digital sources like ScienceDirect, ACM, Google Scholar, and IEEE Xplore and whittled down the number of research to 31. Findings revealed that Deep learning approaches such as CNN, RNN, BERT, and LSTM outperformed various machine learning techniques in terms of performance accuracy. A large dataset is also necessary for developing a robust sentiment classifier and can be obtained from places like Twitter, movie reviews, Kaggle, SST, and SemEval Task4. Hybrid Deep Learning techniques like CNN+LSTM, CNN+GRU, CNN+BERT outperformed single Deep Learning techniques and machine learning techniques. Python programming language outperformed Java programming language in terms of sentiment analyzer development due to its simplicity and AI-based library functionalities. Based on some of the important findings from this study, we made a recommendation for future research.Keywords: artificial intelligence, natural language processing, sentiment analysis, social network, text
Procedia PDF Downloads 1153945 Method and System of Malay Traditional Women Apparel Pattern Drafting for Hazi Attire
Authors: Haziyah Hussin
Abstract:
Hazi Attire software is purposely designed to be used for pattern drafting of the Malay Traditional Women Apparel. It is software created using LISP Program that works under AutoCAD engine and able to draft various patterns for Malay women apparels from fitted, semi-fitted and loose silhouettes. It is fully automatic and the user can select styles from the menu on the screen and enter the measurements. Within five seconds patterns are ready to be printed and sewn. Hazi Attire is different from other programmes available in the market since it is fully automatic, user-friendly and able to print selected pattern chosen quickly and accurately. With this software (Hazi Attire), the selected styles can be generated the pattern according to made-to-measure or standard sizes. It would benefit the apparel industries by reducing manufacturing lead time and cycle time.Keywords: basic pattern, pattern drafting, toile, Malay traditional women apparel, the measurement parameters, fitted, semi-fitted and loose silhouette
Procedia PDF Downloads 2693944 Semi-Supervised Learning Using Pseudo F Measure
Authors: Mahesh Balan U, Rohith Srinivaas Mohanakrishnan, Venkat Subramanian
Abstract:
Positive and unlabeled learning (PU) has gained more attention in both academic and industry research literature recently because of its relevance to existing business problems today. Yet, there still seems to be some existing challenges in terms of validating the performance of PU learning, as the actual truth of unlabeled data points is still unknown in contrast to a binary classification where we know the truth. In this study, we propose a novel PU learning technique based on the Pseudo-F measure, where we address this research gap. In this approach, we train the PU model to discriminate the probability distribution of the positive and unlabeled in the validation and spy data. The predicted probabilities of the PU model have a two-fold validation – (a) the predicted probabilities of reliable positives and predicted positives should be from the same distribution; (b) the predicted probabilities of predicted positives and predicted unlabeled should be from a different distribution. We experimented with this approach on a credit marketing case study in one of the world’s biggest fintech platforms and found evidence for benchmarking performance and backtested using historical data. This study contributes to the existing literature on semi-supervised learning.Keywords: PU learning, semi-supervised learning, pseudo f measure, classification
Procedia PDF Downloads 2333943 Single Event Transient Tolerance Analysis in 8051 Microprocessor Using Scan Chain
Authors: Jun Sung Go, Jong Kang Park, Jong Tae Kim
Abstract:
As semi-conductor manufacturing technology evolves; the single event transient problem becomes more significant issue. Single event transient has a critical impact on both combinational and sequential logic circuits, so it is important to evaluate the soft error tolerance of the circuits at the design stage. In this paper, we present a soft error detecting simulation using scan chain. The simulation model generates a single event transient randomly in the circuit, and detects the soft error during the execution of the test patterns. We verified this model by inserting a scan chain in an 8051 microprocessor using 65 nm CMOS technology. While the test patterns generated by ATPG program are passing through the scan chain, we insert a single event transient and detect the number of soft errors per sub-module. The experiments show that the soft error rates per cell area of the SFR module is 277% larger than other modules.Keywords: scan chain, single event transient, soft error, 8051 processor
Procedia PDF Downloads 3463942 Spontaneous Message Detection of Annoying Situation in Community Networks Using Mining Algorithm
Authors: P. Senthil Kumari
Abstract:
Main concerns in data mining investigation are social controls of data mining for handling ambiguity, noise, or incompleteness on text data. We describe an innovative approach for unplanned text data detection of community networks achieved by classification mechanism. In a tangible domain claim with humble secrecy backgrounds provided by community network for evading annoying content is presented on consumer message partition. To avoid this, mining methodology provides the capability to unswervingly switch the messages and similarly recover the superiority of ordering. Here we designated learning-centered mining approaches with pre-processing technique to complete this effort. Our involvement of work compact with rule-based personalization for automatic text categorization which was appropriate in many dissimilar frameworks and offers tolerance value for permits the background of comments conferring to a variety of conditions associated with the policy or rule arrangements processed by learning algorithm. Remarkably, we find that the choice of classifier has predicted the class labels for control of the inadequate documents on community network with great value of effect.Keywords: text mining, data classification, community network, learning algorithm
Procedia PDF Downloads 5083941 Text Mining of Veterinary Forums for Epidemiological Surveillance Supplementation
Authors: Samuel Munaf, Kevin Swingler, Franz Brülisauer, Anthony O’Hare, George Gunn, Aaron Reeves
Abstract:
Web scraping and text mining are popular computer science methods deployed by public health researchers to augment traditional epidemiological surveillance. However, within veterinary disease surveillance, such techniques are still in the early stages of development and have not yet been fully utilised. This study presents an exploration into the utility of incorporating internet-based data to better understand the smallholder farming communities within Scotland by using online text extraction and the subsequent mining of this data. Web scraping of the livestock fora was conducted in conjunction with text mining of the data in search of common themes, words, and topics found within the text. Results from bi-grams and topic modelling uncover four main topics of interest within the data pertaining to aspects of livestock husbandry: feeding, breeding, slaughter, and disposal. These topics were found amongst both the poultry and pig sub-forums. Topic modeling appears to be a useful method of unsupervised classification regarding this form of data, as it has produced clusters that relate to biosecurity and animal welfare. Internet data can be a very effective tool in aiding traditional veterinary surveillance methods, but the requirement for human validation of said data is crucial. This opens avenues of research via the incorporation of other dynamic social media data, namely Twitter and Facebook/Meta, in addition to time series analysis to highlight temporal patterns.Keywords: veterinary epidemiology, disease surveillance, infodemiology, infoveillance, smallholding, social media, web scraping, sentiment analysis, geolocation, text mining, NLP
Procedia PDF Downloads 963940 Classification of Random Doppler-Radar Targets during the Surveillance Operations
Authors: G. C. Tikkiwal, Mukesh Upadhyay
Abstract:
During the surveillance operations at war or peace time, the Radar operator gets a scatter of targets over the screen. This may be a tracked vehicle like tank vis-à-vis T72, BMP etc, or it may be a wheeled vehicle like ALS, TATRA, 2.5Tonne, Shaktiman or moving the army, moving convoys etc. The radar operator selects one of the promising targets into single target tracking (STT) mode. Once the target is locked, the operator gets a typical audible signal into his headphones. With reference to the gained experience and training over the time, the operator then identifies the random target. But this process is cumbersome and is solely dependent on the skills of the operator, thus may lead to misclassification of the object. In this paper, we present a technique using mathematical and statistical methods like fast fourier transformation (FFT) and principal component analysis (PCA) to identify the random objects. The process of classification is based on transforming the audible signature of target into music octave-notes. The whole methodology is then automated by developing suitable software. This automation increases the efficiency of identification of the random target by reducing the chances of misclassification. This whole study is based on live data.Keywords: radar target, FFT, principal component analysis, eigenvector, octave-notes, DSP
Procedia PDF Downloads 3933939 Prevalence of Lower Third Molar Impactions and Angulations Among Yemeni Population
Authors: Khawlah Al-Khalidi
Abstract:
Prevalence of lower third molar impactions and angulations among Yemeni population The purpose of this study was to look into the prevalence of lower third molars in a sample of patients from Ibb University Affiliated Hospital, as well as to study and categorise their position by using Pell and Gregory classification, and to look into a possible correlation between their position and the indication for extraction. Materials and methods: This is a retrospective, observational study in which a sample of 200 patients from Ibb University Affiliated Hospital were studied, including patient record validation and orthopantomography performed in screening appointments in people aged 16 to 21. Results and discussion: Males make up 63% of the sample, while people aged 19 to 20 make up 41.2%. Lower third molars were found in 365 of the 365 instances examined, accounting for 91% of the sample under study. According to Pell and Gregory's categorisation, the most common position is IIB, with 37%, followed by IIA with 21%; less common classes are IIIA, IC, and IIIC, with 1%, 3%, and 3%, respectively. It was feasible to determine that 56% of the lower third molars in the sample were recommended for extraction during the screening consultation. Finally, there are differences in third molar location and angulation. There was, however, a link between the available space for third molar eruption and the need for tooth extraction.Keywords: lower third molar, extraction, Pell and Gregory classification, lower third molar impaction
Procedia PDF Downloads 553938 Detecting HCC Tumor in Three Phasic CT Liver Images with Optimization of Neural Network
Authors: Mahdieh Khalilinezhad, Silvana Dellepiane, Gianni Vernazza
Abstract:
The aim of the present work is to build a model based on tissue characterization that is able to discriminate pathological and non-pathological regions from three-phasic CT images. Based on feature selection in different phases, in this research, we design a neural network system that has optimal neuron number in a hidden layer. Our approach consists of three steps: feature selection, feature reduction, and classification. For each ROI, 6 distinct set of texture features are extracted such as first order histogram parameters, absolute gradient, run-length matrix, co-occurrence matrix, autoregressive model, and wavelet, for a total of 270 texture features. We show that with the injection of liquid and the analysis of more phases the high relevant features in each region changed. Our results show that for detecting HCC tumor phase3 is the best one in most of the features that we apply to the classification algorithm. The percentage of detection between these two classes according to our method, relates to first order histogram parameters with the accuracy of 85% in phase 1, 95% phase 2, and 95% in phase 3.Keywords: multi-phasic liver images, texture analysis, neural network, hidden layer
Procedia PDF Downloads 2603937 Low Cost Real Time Robust Identification of Impulsive Signals
Authors: R. Biondi, G. Dys, G. Ferone, T. Renard, M. Zysman
Abstract:
This paper describes an automated implementable system for impulsive signals detection and recognition. The system uses a Digital Signal Processing device for the detection and identification process. Here the system analyses the signals in real time in order to produce a particular response if needed. The system analyses the signals in real time in order to produce a specific output if needed. Detection is achieved through normalizing the inputs and comparing the read signals to a dynamic threshold and thus avoiding detections linked to loud or fluctuating environing noise. Identification is done through neuronal network algorithms. As a setup our system can receive signals to “learn” certain patterns. Through “learning” the system can recognize signals faster, inducing flexibility to new patterns similar to those known. Sound is captured through a simple jack input, and could be changed for an enhanced recording surface such as a wide-area recorder. Furthermore a communication module can be added to the apparatus to send alerts to another interface if needed.Keywords: sound detection, impulsive signal, background noise, neural network
Procedia PDF Downloads 3193936 Comparative Analysis of Patent Protection between Health System and Enterprises in Shanghai, China
Authors: Na Li, Yunwei Zhang, Yuhong Niu
Abstract:
The study discussed the patent protections of health system and enterprises in Shanghai. The comparisons of technical distribution and scopes of patent protections between Shanghai health system and enterprises were used by the methods of IPC classification, co-words analysis and visual social network. Results reflected a decreasing order within IPC A61 area, namely A61B, A61K, A61M, and A61F. A61B required to be further investigated. The highest authorized patents A61B17 of A61B of IPC A61 area was found. Within A61B17, fracture fixation, ligament reconstruction, cardiac surgery, and biopsy detection were regarded as common concerned fields by Shanghai health system and enterprises. However, compared with cardiac closure which Shanghai enterprises paid attention to, Shanghai health system was more inclined to blockages and hemostatic tools. The results also revealed that the scopes of patent protections of Shanghai enterprises were relatively centralized. Shanghai enterprises had a series of comprehensive strategies for protecting core patents. In contrast, Shanghai health system was considered to be lack of strategic patent protections for core patents.Keywords: co-words analysis, IPC classification, patent protection, technical distribution
Procedia PDF Downloads 1333935 Seismic Performance of RC Frames Equipped with Friction Panels Under Different Slip Load Distributions
Authors: Neda Nabid, Iman Hajirasouliha, Sanaz Shirinbar
Abstract:
One of the most challenging issues in earthquake engineering is to find effective ways to reduce earthquake forces and damage to structural and non-structural elements under strong earthquakes. While friction dampers are the most efficient systems to improve the seismic performance of substandard structures, their optimum design is a challenging task. This research aims to find more appropriate slip load distribution pattern for efficient design of friction panels. Non-linear dynamic analyses are performed on 3, 5, 10, 15, and 20-story RC frame using Drain-2dx software to find the appropriate range of slip loads and investigate the effects of different distribution patterns (cantilever, uniform, triangle, and reverse triangle) under six different earthquake records. The results indicate that using triangle load distribution can significantly increase the energy dissipation capacity of the frame and reduce the maximum inter-storey drift, and roof displacement.Keywords: friction panels, slip load, distribution patterns, RC frames, energy dissipation
Procedia PDF Downloads 4323934 Effect of Cement Amount on California Bearing Ratio Values of Different Soil
Authors: Ayse Pekrioglu Balkis, Sawash Mecid
Abstract:
Due to continued growth and rapid development of road construction in worldwide, road sub-layers consist of soil layers, therefore, identification and recognition of type of soil and soil behavior in different condition help to us to select soil according to specification and engineering characteristic, also if necessary sometimes stabilize the soil and treat undesirable properties of soils by adding materials such as bitumen, lime, cement, etc. If the soil beneath the road is not done according to the standards and construction will need more construction time. In this case, a large part of soil should be removed, transported and sometimes deposited. Then purchased sand and gravel is transported to the site and full depth filled and compacted. Stabilization by cement or other treats gives an opportunity to use the existing soil as a base material instead of removing it and purchasing and transporting better fill materials. Classification of soil according to AASHTOO system and USCS help engineers to anticipate soil behavior and select best treatment method. In this study soil classification and the relation between soil classification and stabilization method is discussed, cement stabilization with different percentages have been selected for soil treatment based on NCHRP. There are different parameters to define the strength of soil. In this study, CBR will be used to define the strength of soil. Cement by percentages, 0%, 3%, 7% and 10% added to soil for evaluation effect of added cement to CBR of treated soil. Implementation of stabilization process by different cement content help engineers to select an economic cement amount for the stabilization process according to project specification and characteristics. Stabilization process in optimum moisture content (OMC) and mixing rate effect on the strength of soil in the laboratory and field construction operation have been performed to see the improvement rate in strength and plasticity. Cement stabilization is quicker than a universal method such as removing and changing field soils. Cement addition increases CBR values of different soil types by the range of 22-69%.Keywords: California Bearing Ratio, cement stabilization, clayey soil, mechanical properties
Procedia PDF Downloads 3943933 Identification of Hub Genes in the Development of Atherosclerosis
Authors: Jie Lin, Yiwen Pan, Li Zhang, Zhangyong Xia
Abstract:
Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipids, immune cells, and extracellular matrix in the arterial walls. This pathological process can lead to the formation of plaques that can obstruct blood flow and trigger various cardiovascular diseases such as heart attack and stroke. The underlying molecular mechanisms still remain unclear, although many studies revealed the dysfunction of endothelial cells, recruitment and activation of monocytes and macrophages, and the production of pro-inflammatory cytokines and chemokines in atherosclerosis. This study aimed to identify hub genes involved in the progression of atherosclerosis and to analyze their biological function in silico, thereby enhancing our understanding of the disease’s molecular mechanisms. Through the analysis of microarray data, we examined the gene expression in media and neo-intima from plaques, as well as distant macroscopically intact tissue, across a cohort of 32 hypertensive patients. Initially, 112 differentially expressed genes (DEGs) were identified. Subsequent immune infiltration analysis indicated a predominant presence of 27 immune cell types in the atherosclerosis group, particularly noting an increase in monocytes and macrophages. In the Weighted gene co-expression network analysis (WGCNA), 10 modules with a minimum of 30 genes were defined as key modules, with blue, dark, Oliver green and sky-blue modules being the most significant. These modules corresponded respectively to monocyte, activated B cell, and activated CD4 T cell gene patterns, revealing a strong morphological-genetic correlation. From these three gene patterns (modules morphology), a total of 2509 key genes (Gene Significance >0.2, module membership>0.8) were extracted. Six hub genes (CD36, DPP4, HMOX1, PLA2G7, PLN2, and ACADL) were then identified by intersecting 2509 key genes, 102 DEGs with lipid-related genes from the Genecard database. The bio-functional analysis of six hub genes was estimated by a robust classifier with an area under the curve (AUC) of 0.873 in the ROC plot, indicating excellent efficacy in differentiating between the disease and control group. Moreover, PCA visualization demonstrated clear separation between the groups based on these six hub genes, suggesting their potential utility as classification features in predictive models. Protein-protein interaction (PPI) analysis highlighted DPP4 as the most interconnected gene. Within the constructed key gene-drug network, 462 drugs were predicted, with ursodeoxycholic acid (UDCA) being identified as a potential therapeutic agent for modulating DPP4 expression. In summary, our study identified critical hub genes implicated in the progression of atherosclerosis through comprehensive bioinformatic analyses. These findings not only advance our understanding of the disease but also pave the way for applying similar analytical frameworks and predictive models to other diseases, thereby broadening the potential for clinical applications and therapeutic discoveries.Keywords: atherosclerosis, hub genes, drug prediction, bioinformatics
Procedia PDF Downloads 653932 Engagement Analysis Using DAiSEE Dataset
Authors: Naman Solanki, Souraj Mondal
Abstract:
With the world moving towards online communication, the video datastore has exploded in the past few years. Consequently, it has become crucial to analyse participant’s engagement levels in online communication videos. Engagement prediction of people in videos can be useful in many domains, like education, client meetings, dating, etc. Video-level or frame-level prediction of engagement for a user involves the development of robust models that can capture facial micro-emotions efficiently. For the development of an engagement prediction model, it is necessary to have a widely-accepted standard dataset for engagement analysis. DAiSEE is one of the datasets which consist of in-the-wild data and has a gold standard annotation for engagement prediction. Earlier research done using the DAiSEE dataset involved training and testing standard models like CNN-based models, but the results were not satisfactory according to industry standards. In this paper, a multi-level classification approach has been introduced to create a more robust model for engagement analysis using the DAiSEE dataset. This approach has recorded testing accuracies of 0.638, 0.7728, 0.8195, and 0.866 for predicting boredom level, engagement level, confusion level, and frustration level, respectively.Keywords: computer vision, engagement prediction, deep learning, multi-level classification
Procedia PDF Downloads 1123931 A Five-Year Experience of Intensity Modulated Radiotherapy in Nasopharyngeal Carcinomas in Tunisia
Authors: Omar Nouri, Wafa Mnejja, Fatma Dhouib, Syrine Zouari, Wicem Siala, Ilhem Charfeddine, Afef Khanfir, Leila Farhat, Nejla Fourati, Jamel Daoud
Abstract:
Purpose and Objective: Intensity modulated radiation (IMRT) technique, associated with induction chemotherapy (IC) and/or concomitant chemotherapy (CC), is actually the recommended treatment modality for nasopharyngeal carcinomas (NPC). The aim of this study was to evaluate the therapeutic results and the patterns of relapse with this treatment protocol. Material and methods: A retrospective monocentric study of 145 patients with NPC treated between June 2016 and July 2021. All patients received IMRT with integrated simultaneous boost (SIB) of 33 daily fractions at a dose of 69.96 Gy for high-risk volume, 60 Gy for intermediate risk volume and 54 Gy for low-risk volume. The high-risk volume dose was 66.5 Gy in children. Survival analysis was performed according to the Kaplan-Meier method, and the Log-rank test was used to compare factors that may influence survival. Results: Median age was 48 years (11-80) with a sex ratio of 2.9. One hundred-twenty tumors (82.7%) were classified as stages III-IV according to the 2017 UICC TNM classification. Ten patients (6.9%) were metastatic at diagnosis. One hundred-thirty-five patient (93.1%) received IC, 104 of which (77%) were TPF-based (taxanes, cisplatin and 5 fluoro-uracil). One hundred-thirty-eight patient (95.2%) received CC, mostly cisplatin in 134 cases (97%). After a median follow-up of 50 months [22-82], 46 patients (31.7%) had a relapse: 12 (8.2%) experienced local and/or regional relapse after a median of 18 months [6-43], 29 (20%) experienced distant relapse after a median of 9 months [2-24] and 5 patients (3.4%) had both. Thirty-five patients (24.1%) died, including 5 (3.4%) from a cause other than their cancer. Three-year overall survival (OS), cancer specific survival, disease free survival, metastasis free survival and loco-regional free survival were respectively 78.1%, 81.3%, 67.8%, 74.5% and 88.1%. Anatomo-clinic factors predicting OS were age > 50 years (88.7 vs. 70.5%; p=0.004), diabetes history (81.2 vs. 66.7%; p=0.027), UICC N classification (100 vs. 95 vs. 77.5 vs. 68.8% respectively for N0, N1, N2 and N3; p=0.008), the practice of a lymph node biopsy (84.2 vs. 57%; p=0.05), and UICC TNM stages III-IV (93.8 vs. 73.6% respectively for stage I-II vs. III-IV; p=0.044). Therapeutic factors predicting OS were a number of CC courses (less than 4 courses: 65.8 vs. 86%; p=0.03, less than 5 courses: 71.5 vs. 89%; p=0.041), a weight loss > 10% during treatment (84.1 vs. 60.9%; p=0.021) and a total cumulative cisplatin dose, including IC and CC, < 380 mg/m² (64.4 vs. 87.6%; p=0.003). Radiotherapy delay and total duration did not significantly affect OS. No grade 3-4 late side effects were noted in the evaluable 127 patients (87.6%). The most common toxicity was dry mouth which was grade 2 in 47 cases (37%) and grade 1 in 55 cases (43.3%).Conclusion: IMRT for nasopharyngeal carcinoma granted a high loco-regional control rate for patients during the last five years. However, distant relapses remain frequent and conditionate the prognosis. We identified many anatomo-clinic and therapeutic prognosis factors. Therefore, high-risk patients require a more aggressive therapeutic approach, such as radiotherapy dose escalation or adding adjuvant chemotherapy.Keywords: therapeutic results, prognostic factors, intensity-modulated radiotherapy, nasopharyngeal carcinoma
Procedia PDF Downloads 623930 Data Mining Model for Predicting the Status of HIV Patients during Drug Regimen Change
Authors: Ermias A. Tegegn, Million Meshesha
Abstract:
Human Immunodeficiency Virus and Acquired Immunodeficiency Syndrome (HIV/AIDS) is a major cause of death for most African countries. Ethiopia is one of the seriously affected countries in sub Saharan Africa. Previously in Ethiopia, having HIV/AIDS was almost equivalent to a death sentence. With the introduction of Antiretroviral Therapy (ART), HIV/AIDS has become chronic, but manageable disease. The study focused on a data mining technique to predict future living status of HIV/AIDS patients at the time of drug regimen change when the patients become toxic to the currently taking ART drug combination. The data is taken from University of Gondar Hospital ART program database. Hybrid methodology is followed to explore the application of data mining on ART program dataset. Data cleaning, handling missing values and data transformation were used for preprocessing the data. WEKA 3.7.9 data mining tools, classification algorithms, and expertise are utilized as means to address the research problem. By using four different classification algorithms, (i.e., J48 Classifier, PART rule induction, Naïve Bayes and Neural network) and by adjusting their parameters thirty-two models were built on the pre-processed University of Gondar ART program dataset. The performances of the models were evaluated using the standard metrics of accuracy, precision, recall, and F-measure. The most effective model to predict the status of HIV patients with drug regimen substitution is pruned J48 decision tree with a classification accuracy of 98.01%. This study extracts interesting attributes such as Ever taking Cotrim, Ever taking TbRx, CD4 count, Age, Weight, and Gender so as to predict the status of drug regimen substitution. The outcome of this study can be used as an assistant tool for the clinician to help them make more appropriate drug regimen substitution. Future research directions are forwarded to come up with an applicable system in the area of the study.Keywords: HIV drug regimen, data mining, hybrid methodology, predictive model
Procedia PDF Downloads 1413929 Application of Association Rule Using Apriori Algorithm for Analysis of Industrial Accidents in 2013-2014 in Indonesia
Authors: Triano Nurhikmat
Abstract:
Along with the progress of science and technology, the development of the industrialized world in Indonesia took place very rapidly. This leads to a process of industrialization of society Indonesia faster with the establishment of the company and the workplace are diverse. Development of the industry relates to the activity of the worker. Where in these work activities do not cover the possibility of an impending crash on either the workers or on a construction project. The cause of the occurrence of industrial accidents was the fault of electrical damage, work procedures, and error technique. The method of an association rule is one of the main techniques in data mining and is the most common form used in finding the patterns of data collection. In this research would like to know how relations of the association between the incidence of any industrial accidents. Therefore, by using methods of analysis association rule patterns associated with combination obtained two iterations item set (2 large item set) when every factor of industrial accidents with a West Jakarta so industrial accidents caused by the occurrence of an electrical value damage = 0.2 support and confidence value = 1, and the reverse pattern with value = 0.2 support and confidence = 0.75.Keywords: association rule, data mining, industrial accidents, rules
Procedia PDF Downloads 2983928 Local Texture and Global Color Descriptors for Content Based Image Retrieval
Authors: Tajinder Kaur, Anu Bala
Abstract:
An image retrieval system is a computer system for browsing, searching, and retrieving images from a large database of digital images a new algorithm meant for content-based image retrieval (CBIR) is presented in this paper. The proposed method combines the color and texture features which are extracted the global and local information of the image. The local texture feature is extracted by using local binary patterns (LBP), which are evaluated by taking into consideration of local difference between the center pixel and its neighbors. For the global color feature, the color histogram (CH) is used which is calculated by RGB (red, green, and blue) spaces separately. In this paper, the combination of color and texture features are proposed for content-based image retrieval. The performance of the proposed method is tested on Corel 1000 database which is the natural database. The results after being investigated show a significant improvement in terms of their evaluation measures as compared to LBP and CH.Keywords: color, texture, feature extraction, local binary patterns, image retrieval
Procedia PDF Downloads 3653927 Syntactic Errors in Written Assessments of Non-Native English-Speaking Undergraduate Students and Pedagogical Implications in Correcting Grammatical Mistakes
Authors: Cheng Shuk Ling
Abstract:
This paper examines the English syntactic errors and their patterns in the written assignments of a General Education course at City University of Hong Kong. Subjects are 60 local and non-local (exchange) undergraduate students who are all EFL learners and L2 users with diversified education and disciplinary background (i.e. their major of study), which are unrelated to English language studies. The objective of this paper brings to the foreground a broad discussion of EFL/L2 undergraduate learners’ average syntactic ability in terms of written assessment. This paper is an attempt in classifying the patterns and categories of syntactic errors committed by students who were brought up and educated in non-native English-speaking countries. Thus, pedagogical recommendations are offered for both EFL/L2 learners and educators in tertiary education settings in such ways as to calibrate how and in what manner English language as the medium of instruction can lead to more enduring effects in learners within non-native English-speaking countries.Keywords: syntactic errors, english as a foreign language, second language users, pedagogy
Procedia PDF Downloads 823926 An Ensemble Deep Learning Architecture for Imbalanced Classification of Thoracic Surgery Patients
Authors: Saba Ebrahimi, Saeed Ahmadian, Hedie Ashrafi
Abstract:
Selecting appropriate patients for surgery is one of the main issues in thoracic surgery (TS). Both short-term and long-term risks and benefits of surgery must be considered in the patient selection criteria. There are some limitations in the existing datasets of TS patients because of missing values of attributes and imbalanced distribution of survival classes. In this study, a novel ensemble architecture of deep learning networks is proposed based on stacking different linear and non-linear layers to deal with imbalance datasets. The categorical and numerical features are split using different layers with ability to shrink the unnecessary features. Then, after extracting the insight from the raw features, a novel biased-kernel layer is applied to reinforce the gradient of the minority class and cause the network to be trained better comparing the current methods. Finally, the performance and advantages of our proposed model over the existing models are examined for predicting patient survival after thoracic surgery using a real-life clinical data for lung cancer patients.Keywords: deep learning, ensemble models, imbalanced classification, lung cancer, TS patient selection
Procedia PDF Downloads 1443925 The Effect of Different Patterns of Upper, Lower and Whole Body Resistance Exercise Training on Systemic and Vascular Inflammatory Factors in Healthy Untrained Women
Authors: Leyla Sattarzadeh, Shahin Fathi Molk Kian, Maghsoud Peeri, Mohammadali Azarbaijani, Hasan Matin Homaee
Abstract:
Inflammation by various mechanisms may cause atherosclerosis. Systemic circulating inflammatory markers such as C-reactive protein (CRP), pro-inflammatory cytokines such as Interleukin-6 (IL-6), vascular inflammatory markers as adhesion molecules like Intracellular Adhesion Molecule-1 (ICAM-1) and Vascular Cell Adhesion Molecule-1 (VCAM-1) are the predictors of cardiovascular diseases. Regarding the conflicting results about the effect of different patterns of resistance exercise training on these inflammatory markers, present study aimed to examine the effect of different patterns of eight week resistance exercise training on CRP, IL-6, ICAM-1 and VCAM-1 levels in healthy untrained women. 56 healthy volunteered untrained female university students (aged: 21 ± 3 yr., Body Mass Index: 21.5 ± 3.5 kg/m²) were selected purposefully and divided into four groups. At the end of training protocol and after subject drop during the protocol, upper body exercise training (n=11), lower body (n=12) and whole body resistance exercise training group (n=11) completed the eight weeks of training period although the control group (n=7) did anything. Blood samples gathered pre and post-experimental period and CRP, IL-6, ICAM-1 and VCAM-1 levels were evaluated using special laboratory kits, then the difference of pre and post values of each indices analyzed using one-way analysis of variance (α < 0.05). The results of one way ANOVA for difference of pre and post values of CRP, ICAM-1 and VCAM-1 showed no significant changes due to the exercise training, but there were significant differences between groups about IL-6. Tukey post- hoc test indicated that there is significant difference between the differences of pre and post values of IL-6 between lower body exercise training group and control group, and eight weeks of lower body exercise training lead to significant changes in IL-6 values. There were no changes in anthropometric indices. The findings show that the different patterns of upper, lower and whole body exercise training by involving the different amounts of muscles altered the IL-6 values in lower body exercise training group probably because of engaging the bigger amount of muscles, but showed any significant changes about CRP, ICAM-1 and VCAM-1 probably due to intensity and duration of exercise or the lower levels of these markers at baseline of healthy people.Keywords: resistance training, C-reactive protein, interleukin-6, intracellular adhesion molecule-1, vascular cell adhesion molecule-1
Procedia PDF Downloads 1383924 Analysis of Travel Behavior Patterns of Frequent Passengers after the Section Shutdown of Urban Rail Transit - Taking the Huaqiao Section of Shanghai Metro Line 11 Shutdown During the COVID-19 Epidemic as an Example
Authors: Hongyun Li, Zhibin Jiang
Abstract:
The travel of passengers in the urban rail transit network is influenced by changes in network structure and operational status, and the response of individual travel preferences to these changes also varies. Firstly, the influence of the suspension of urban rail transit line sections on passenger travel along the line is analyzed. Secondly, passenger travel trajectories containing multi-dimensional semantics are described based on network UD data. Next, passenger panel data based on spatio-temporal sequences is constructed to achieve frequent passenger clustering. Then, the Graph Convolutional Network (GCN) is used to model and identify the changes in travel modes of different types of frequent passengers. Finally, taking Shanghai Metro Line 11 as an example, the travel behavior patterns of frequent passengers after the Huaqiao section shutdown during the COVID-19 epidemic are analyzed. The results showed that after the section shutdown, most passengers would transfer to the nearest Anting station for boarding, while some passengers would transfer to other stations for boarding or cancel their travels directly. Among the passengers who transferred to Anting station for boarding, most of passengers maintained the original normalized travel mode, a small number of passengers waited for a few days before transferring to Anting station for boarding, and only a few number of passengers stopped traveling at Anting station or transferred to other stations after a few days of boarding on Anting station. The results can provide a basis for understanding urban rail transit passenger travel patterns and improving the accuracy of passenger flow prediction in abnormal operation scenarios.Keywords: urban rail transit, section shutdown, frequent passenger, travel behavior pattern
Procedia PDF Downloads 843923 Clarifier Dialogue Interface to resolve linguistic ambiguities in E-Learning Environment
Authors: Dalila Souilem, Salma Boumiza, Abdelkarim Abdelkader
Abstract:
The Clarifier Dialogue Interface (CDI) is a part of an online teaching system based on human-machine communication in learning situation. This interface used in the system during the learning action specifically in the evaluation step, to clarify ambiguities in the learner's response. The CDI can generate patterns allowing access to an information system, using the selectors associated with lexical units. To instantiate these patterns, the user request (especially learner’s response), must be analyzed and interpreted to deduce the canonical form, the semantic form and the subject of the sentence. For the efficiency of this interface at the interpretation level, a set of substitution operators is carried out in order to extend the possibilities of manipulation with a natural language. A second approach that will be presented in this paper focuses on the object languages with new prospects such as combination of natural language with techniques of handling information system in the area of online education. So all operators, the CDI and other interfaces associated to the domain expertise and teaching strategies will be unified using FRAME representation form.Keywords: dialogue, e-learning, FRAME, information system, natural language
Procedia PDF Downloads 3763922 Analysis of Big Data on Leisure Activities and Depression for the Disabled
Authors: Hee-Jung Seo, Yunjung Lee, Areum Han, Heeyoung Park, Se-Hyuk Park
Abstract:
The purpose of this study was to analyze the relationship between happiness and depression among people with disabilities and to analyze the social phenomenon of leisure activities among them to promote physical and leisure activities for people with disabilities. The research methods included analyzing differences in happiness according to depression classification. A total of 281 people with disabilities were analyzed using SPSS WIN Ver. 29.0. In addition, the SumTrend platform was used to analyze terms related to 'leisure activities for the disabled.' The findings can be summarized into two main points: First, there were significant differences in happiness according to depression classification. Second, there were 20 mentions before COVID-19, 34 mentions after COVID-19, and currently 43 mentions, with high positive rates observed in each period. Based on these results, the following conclusions were drawn: First, measures for people with disabilities include strengthening online resources and services, social distancing response policies, improving accessibility, and providing support and financial assistance. Second, measures for non-disabled individuals emphasize the need for education and information provision, promoting dialogue and interaction, ensuring accessibility, and promoting inclusive cultural awareness and attitude change.Keywords: leisure activities, individuals with disabilities, COVID-19 pandemic, depression
Procedia PDF Downloads 483921 Proteomic Analysis of Excretory Secretory Antigen (ESA) from Entamoeba histolytica HM1: IMSS
Authors: N. Othman, J. Ujang, M. N. Ismail, R. Noordin, B. H. Lim
Abstract:
Amoebiasis is caused by the Entamoeba histolytica and still endemic in many parts of the tropical region, worldwide. Currently, there is no available vaccine against amoebiasis. Hence, there is an urgent need to develop a vaccine. The excretory secretory antigen (ESA) of E. histolytica is a suitable biomarker for the vaccine candidate since it can modulate the host immune response. Hence, the objective of this study is to identify the proteome of the ESA towards finding suitable biomarker for the vaccine candidate. The non-gel based and gel-based proteomics analyses were performed to identify proteins. Two kinds of mass spectrometry with different ionization systems were utilized i.e. LC-MS/MS (ESI) and MALDI-TOF/TOF. Then, the functional proteins classification analysis was performed using PANTHER software. Combination of the LC -MS/MS for the non-gel based and MALDI-TOF/TOF for the gel-based approaches identified a total of 273 proteins from the ESA. Both systems identified 29 similar proteins whereby 239 and 5 more proteins were identified by LC-MS/MS and MALDI-TOF/TOF, respectively. Functional classification analysis showed the majority of proteins involved in the metabolic process (24%), primary metabolic process (19%) and protein metabolic process (10%). Thus, this study has revealed the proteome the E. histolytica ESA and the identified proteins merit further investigations as a vaccine candidate.Keywords: E. histolytica, ESA, proteomics, biomarker
Procedia PDF Downloads 3413920 In-Vitro and Antibacterial Studies for Silicate-Phosphate Glasses Formed with Biosynthesized Silica
Authors: Damandeep Kaur, O.P. Pandey, M.S. Reddy
Abstract:
In the present research, bio-synthesisation of silica particles has been carried out successfully. For this purpose, agriculture waste rice husk (RH) has been utilized. Among several types of agriculture waste, RH is considered to be cost-effective and easily accessible. In the present investigation, a chemical approach has been followed to extract silica nanoparticles. X-Ray Diffraction (XRD) patterns indicated the amorphous nature of silica at lower temperature range. Silica and other mineral contents have been found using energy dispersive spectroscopy (EDS). Morphological and structural studies have been carried out with the use of Field Emission Scanning Electron Microscopy (FE-SEM) and Fourier Transform Infrared Transmission (FTIR) spectroscopy. Further, extracted silica from RH has been used for preparation of the glasses. The appearance of broad humps in XRD patterns confirmed the amorphous nature of prepared glasses. These glasses exhibited enhanced antibacterial effect against both Gram-positive and Gram-negative bacteria. The as-synthesized glass samples can be further used for physical and structural studies for drug loading applications.Keywords: rice husk, biosynthesized silica, bioactive glasses, antibacterial studies
Procedia PDF Downloads 113