Search results for: chest compression
245 Experimental Investigation of the Effect of Glass Granulated Blast Furnace Slag on Pavement Quality Concrete Pavement Made of Recycled Asphalt Pavement Material
Authors: Imran Altaf Wasil, Dinesh Ganvir
Abstract:
Due to a scarcity of virgin aggregates, the use of reclaimed asphalt pavement (RAP) as a substitute for natural aggregates has gained popularity. Despite the fact that RAP is recycled in asphalt pavement, there is still excess RAP, and its use in concrete pavements has expanded in recent years. According to a survey, 98 percent of India's pavements are flexible. As a result, the maintenance and reconstruction of such pavements generate RAP, which can be reused in concrete pavements as well as surface course, base course, and sub-base of flexible pavements. Various studies on the properties of reclaimed asphalt pavement and its optimal requirements for usage in concrete has been conducted throughout the years. In this study a total of four different mixes were prepared by partially replacing natural aggregates by RAP in different proportions. It was found that with the increase in the replacement level of Natural aggregates by RAP the mechanical and durability properties got reduced. In order to increase the mechanical strength of mixes 40% Glass Granulated Blast Furnace Slag (GGBS) was used and it was found that with replacement of cement by 40% of GGBS, there was an enhancement in the mechanical and durability properties of RAP inclusive PQC mixes. The reason behind the improvement in the properties is due to the processing technique used in order to remove the contaminant layers present in the coarse RAP aggregates. The replacement level of Natural aggregate with RAP was done in proportions of 20%, 40% and 60% along with the partial replacement of cement by 40% GGBS. It was found that all the mixes surpassed the design target value of 40 MPa in compression and 4.5 MPa in flexure making it much more economical and feasible.Keywords: reclaimed asphalt pavement, pavement quality concrete, glass granulated blast furnace slag, mechanical and durability properties
Procedia PDF Downloads 117244 DIF-JACKET: a Thermal Protective Jacket for Firefighters
Authors: Gilda Santos, Rita Marques, Francisca Marques, João Ribeiro, André Fonseca, João M. Miranda, João B. L. M. Campos, Soraia F. Neves
Abstract:
Every year, an unacceptable number of firefighters are seriously burned during firefighting operations, with some of them eventually losing their life. Although thermal protective clothing research and development has been searching solutions to minimize firefighters heat load and skin burns, currently commercially available solutions focus in solving isolated problems, for example, radiant heat or water-vapor resistance. Therefore, episodes of severe burns and heat strokes are still frequent. Taking this into account, a consortium composed by Portuguese entities has joined synergies to develop an innovative protective clothing system by following a procedure based on the application of numerical models to optimize the design and using a combinationof protective clothing components disposed in different layers. Recently, it has been shown that Phase Change Materials (PCMs) can contribute to the reduction of potential heat hazards in fire extinguish operations, and consequently, their incorporation into firefighting protective clothing has advantages. The greatest challenge is to integrate these materials without compromising garments ergonomics and, at the same time, accomplishing the International Standard of protective clothing for firefighters – laboratory test methods and performance requirements for wildland firefighting clothing. The incorporation of PCMs into the firefighter's protective jacket will result in the absorption of heat from the fire and consequently increase the time that the firefighter can be exposed to it. According to the project studies and developments, to favor a higher use of the PCM storage capacityand to take advantage of its high thermal inertia more efficiently, the PCM layer should be closer to the external heat source. Therefore, in this stage, to integrate PCMs in firefighting clothing, a mock-up of a vest specially designed to protect the torso (back, chest and abdomen) and to be worn over a fire-resistant jacketwas envisaged. Different configurations of PCMs, as well as multilayer approaches, were studied using suitable joining technologies such as bonding, ultrasound, and radiofrequency. Concerning firefighter’s protective clothing, it is important to balance heat protection and flame resistance with comfort parameters, namely, thermaland water-vapor resistances. The impact of the most promising solutions regarding thermal comfort was evaluated to refine the performance of the global solutions. Results obtained with experimental bench scale model and numerical simulation regarding the integration of PCMs in a vest designed as protective clothing for firefighters will be presented.Keywords: firefighters, multilayer system, phase change material, thermal protective clothing
Procedia PDF Downloads 166243 A Theoretical and Experimental Evaluation of a Solar-Powered Off-Grid Air Conditioning System for Residential Buildings
Authors: Adam Y. Sulaiman, Gerard I.Obasi, Roma Chang, Hussein Sayed Moghaieb, Ming J. Huang, Neil J. Hewitt
Abstract:
Residential air-conditioning units are essential for quality indoor comfort in hot climate countries. Nevertheless, because of their non-renewable energy sources and the contribution of ecologically unfriendly working fluids, these units are a major source of CO2 emissions in these countries. The utilisation of sustainable technologies nowadays is essential to reduce the adverse effects of CO2 emissions by replacing conventional technologies. This paper investigates the feasibility of running an off-grid solar-powered air-conditioning bed unit using three low GWP refrigerants (R32, R290, and R600a) to supersede conventional refrigerants.A prototype air conditioning unit was built to supply cold air to a canopy that was connected to it. The assembled unit was designed to distribute cold air to a canopy connected to it. This system is powered by two 400 W photovoltaic panels, with battery storage supplying power to the unit at night-time. Engineering Equation Solver (EES) software is used to mathematically model the vapor compression cycle (VCC) and predict the unit's energetic and exergetic performance. The TRNSYS software was used to simulate the electricity storage performance of the batteries, whereas the IES-VE was used to determine the amount of solar energy required to power the unit. The article provides an analytical design guideline, as well as a comprehensible process system. Combining a renewable energy source to power an AC based-VCC provides an excellent solution to the real problems of high-energy consumption in warm-climate countries.Keywords: air-conditioning, refrigerants, PV panel, energy storages, VCC, exergy
Procedia PDF Downloads 176242 Comparative Parametric and Emission Characteristics of Single Cylinder Spark Ignition Engine Using Gasoline, Ethanol, and H₂O as Micro Emulsion Fuels
Authors: Ufaith Qadri, M Marouf Wani
Abstract:
In this paper, the performance and emission characteristics of a Single Cylinder Spark Ignition engine have been investigated. The research is based on micro emulsion application as fuel in a gasoline engine. We have analyzed many micro emulsion compositions in various proportions, for predicting the performance of the Spark Ignition engine. This new technology of fuel modifications is emerging very rapidly as lot of research is going on in the field of micro emulsion fuels in Compression Ignition engines, but the micro emulsion fuel used in a Gasoline engine is very rare. The use of micro emulsion as fuel in a Spark Ignition engine is virtually unexplored. So, our main goal is to see the performance and emission characteristics of micro emulsions as fuel, in Spark Ignition engines, and finding which composition is more efficient. In this research, we have used various micro emulsion fuels whose composition varies for all the three blends, and their performance and emission characteristic were predicted in AVL Boost software. Conventional Gasoline fuel 90%, 80% and 85% were blended with co-surfactant Ethanol in different compositions, and water was used as an additive for making it crystal clear transparent micro emulsion fuel, which is thermodynamically stable. By comparing the performances of engines, the power has shown similarity for micro emulsion fuel and conventional Gasoline fuel. On the other hand, Torque and BMEP shows increase for all the micro emulsion fuels. Micro emulsion fuel shows higher thermal efficiency and lower Specific Fuel Consumption for all the compositions as compared to the Gasoline fuel. Carbon monoxide and Hydro carbon emissions were also measured. The result shows that emissions decrease for all the composition of micro emulsion fuels, and proved to be the most efficient fuel both in terms of performance and emission characteristics.Keywords: AVL Boost, emissions, microemulsions, performance, Spark Ignition (SI) engine
Procedia PDF Downloads 264241 The Awareness of Cardiovascular Diseases among General Population in Western Regions of Saudi Arabia
Authors: Ali Saeed Alghamdi, Basel Mazen Alsolami, Basel Saeed Alghamdi, Muhanad Saleh Alzahrani Alamri, Salman Anwar Thabet, Abdulhalim J. Kinsara
Abstract:
Objectives: This study measures the knowledge of the cardiovascular disease among the general population in western regions of Saudi Arabia, and it aimed to increase the level of awareness about cardiovascular diseases among the general population by providing an awareness lecture that included information about the risk factors, major symptoms, and prevention of cardiovascular diseases. The lecture has been attached at the end of the questionnaire. Setting: This study was conducted through an online questionnaire that included our aim and main objectives that targeted the general population in the Western regions of Saudi Arabia (Makkah and Madinah regions). Participants: This study participants were 460 collected through an online questionnaire. Methods: All Saudi citizens and residents who live in the western region of Saudi Arabia aged 18 years and above will be invited to participate voluntarily. A pre-structured questionnaire was designed to collect data on age, gender, marital status, education level, occupation, lifestyle habits, and history of heart diseases, with cardiac symptoms and risk factors sections. Results: The majority of respondents were females (74.8%) and Saudis. The knowledge about cardiovascular disease risk factors was weak. Only (18.5%) scores an excellent response regarding risk factors awareness. Lack of exercise, stress, and obesity were the most known risk factors. Regarding cardiovascular disease symptoms, chest pain scores the highest symptom (87.6%) among other symptoms like dyspnea, syncope, and excessive sweating. Participants revealed a poor awareness regarding cardiovascular disease symptoms also (0.9%). However, preventable factors for cardiovascular diseases were more knowledgeable than others categories in this study (60% fall into excellent knowledge). Smoking cessation, normal cholesterol level, and normal blood pressure score the highest preventable methods (92.2%), (88.6%), and (78.7%) respectively. 83.7% of the participant have attended the awareness lecture, and 99 of the attendees reported that the lecture increased their knowledge about cardiovascular disease. Conclusion: This study discussed the level of community awareness of cardiovascular disease in terms of symptoms, risk factors, and protective factors. We found a huge lack of the participant's level of knowledge about the disease and how to prevent it. Moreover, we measure the prevalence of the comorbidities among our participants (diabetes, hypertension, hypercholesterolemia/ hypertriglyceridemia) and their extent of adherence to their medication. In conclusion, this study not only demonstrates awareness of cardiovascular disease risk factors, symptoms, management, and the association between each domain but also provides educational material. Further educational material and campaigns are required to increase awareness and knowledge about cardiovascular diseases.Keywords: awareness, cardiovascular diseases, education, prevention, risk factors
Procedia PDF Downloads 131240 Modeling the Reliability of a Fuel Cell and the Influence of Mechanical Aspects on the Production of Electrical Energy
Authors: Raed Kouta
Abstract:
A fuel cell is a multi-physical system. Its electrical performance depends on chemical, electrochemical, fluid, and mechanical parameters. Many studies focus on physical and chemical aspects. Our study contributes to the evaluation of the influence of mechanical aspects on the performance of a fuel cell. This study is carried out as part of a reliability approach. Reliability modeling allows to consider the uncertainties of the incoming parameters and the probabilistic modeling of the outgoing parameters. The fuel cell studied is the one often used in land, sea, or air transport. This is the Low-Temperature Proton Exchange Membrane Fuel Cell (PEMFC). This battery can provide the required power level. One of the main scientific and technical challenges in mastering the design and production of a fuel cell is to know its behavior in its actual operating environment. The study proposes to highlight the influence on the production of electrical energy: Mechanical design and manufacturing parameters and their uncertainties (Young module, GDL porosity, permeability, etc.). The influence of the geometry of the bipolar plates is also considered. An experimental design is proposed with two types of materials as well as three geometric shapes for three joining pressures. Other experimental designs are also proposed for studying the influence of uncertainties of mechanical parameters on cell performance. - Mechanical (static, dynamic) and thermal (tightening - compression, vibrations (road rolling and tests on vibration-climatic bench, etc.) loads. This study is also carried out according to an experimental scheme on a fuel cell system for vibration loads recorded on a vehicle test track with three temperatures and three expected performance levels. The work will improve the coupling between mechanical, physical, and chemical phenomena.Keywords: fuel cell, mechanic, reliability, uncertainties
Procedia PDF Downloads 188239 Application of Continuum Damage Concept to Simulation of the Interaction between Hydraulic Fractures and Natural Fractures
Authors: Anny Zambrano, German Gonzalez, Yair Quintero
Abstract:
The continuum damage concept is used to study the interaction between hydraulic fractures and natural fractures, the objective is representing the path and relation among this two fractures types and predict its complex behavior without the need to pre-define their direction as occurs in other finite element applications, providing results more consistent with the physical behavior of the phenomenon. The approach uses finite element simulations through Abaqus software to model damage fracturing, the fracturing process by damage propagation in a rock. The modeling the phenomenon develops in two dimensional (2D) so that the fracture will be represented by a line and the crack front by a point. It considers nonlinear constitutive behavior, finite strain, time-dependent deformation, complex boundary conditions, strain hardening and softening, and strain based damage evolution in compression and tension. The complete governing equations are provided and the method is described in detail to permit readers to replicate all results. The model is compared to models that are published and available. Comparisons are focused in five interactions between natural fractures (NF) and hydraulic fractures: Fractured arrested at NF, crossing NF with or without offset, branching at intersecting NFs, branching at end of NF and NF dilation due to shear slippage. The most significant new finding is, that is not necessary to use pre-defined addresses propagation and stress condition can be evaluated as a dominant factor in the process. This is important because it can model in a more real way the generated complex hydraulic fractures, and be a valuable tool to predict potential problems and different geometries of the fracture network in the process of fracturing due to fluid injection.Keywords: continuum damage, hydraulic fractures, natural fractures, complex fracture network, stiffness
Procedia PDF Downloads 343238 Roll Forming Process and Die Design for a Large Size Square Tube
Authors: Jinn-Jong Sheu, Cang-Fu Liang, Cheng-Hsien Yu
Abstract:
This paper proposed the cold roll forming process and the die design methods for a 400mm by 400 mm square tube with 16 mm in thickness. The tubular blank made by cold roll forming is 508mm in diameter. The square tube roll forming process was designed considering the layout of rolls and the compression ratio distribution for each stand. The final tube corner radius and the edge straightness in the front end of the tube are to be controlled according to the tube specification. A five-stand forming design using four rolls at each stand was proposed to establish the base reference of square tube roll forming quality. Different numbers of pass and roll designs were proposed and compared to the base design in order to find the feasibility of increase pass number to improve the square tube quality. The proposed roll forming processes were simulated using FEM analysis. The thickness variations of the corner and the edge areas were examined. The maximum loads and the torques of each stand were calculated to study the power consumption of the roll forming machine. The simulation results showed the square tube thickness variations and concavity of the edge are acceptable with the JIS tube specifications for the base design. But the maximum loads and torques are very high. By changing the layout and the number of the rolls were able to obtain better tube geometry and decrease the maximum load and torque of each stand. This paper had shown the feasibility of designing the roll forming process and the layout of dies using FEM simulation. The obtained information is helpful to the roll forming machine design for a large size square tube making.Keywords: cold roll forming, FEM analysis, roll forming die design, tube roll forming
Procedia PDF Downloads 313237 Design and Characterization of Ecological Materials Based on Demolition and Concrete Waste, Casablanca (Morocco)
Authors: Mourad Morsli, Mohamed Tahiri, Azzedine Samdi
Abstract:
The Cities are the urbanized territories most favorable to the consumption of resources (materials, energy). In Morocco, the economic capital Casablanca is one of them, with its 4M inhabitants and its 60% share in the economic and industrial activity of the kingdom. In the absence of legal status in force, urban development has favored the generation of millions of tons of demolition and construction waste scattered in open spaces causing a significant nuisance to the environment and citizens. Hence the main objective of our work is to valorize concrete waste. The representative wastes are mainly concrete, concrete, and fired clay bricks, ceramic tiles, marble panels, gypsum, and scrap metal. The work carried out includes: geolocation with a combination of artificial intelligence, GIS, and Google Earth, which allowed the estimation of the quantity of these wastes per site; then the sorting, crushing, grinding, and physicochemical characterization of the collected samples allowed the definition of the exploitation ways for each extracted fraction for integrated management of the said wastes. In the present work, we proceeded to the exploitation of the fractions obtained after sieving the representative samples to incorporate them in the manufacture of new ecological materials for construction. These formulations prepared studies have been tested and characterized: physical criteria (specific surface, resistance to flexion and compression) and appearance (cracks, deformation). We will present in detail the main results of our research work and also describe the specific properties of each material developed.Keywords: demolition and construction waste, GIS combination software, inert waste recovery, ecological materials, Casablanca, Morocco
Procedia PDF Downloads 135236 Improvement of the Mechanical Behavior of an Environmental Concrete Based on Demolished
Authors: Larbi Belagraa
Abstract:
The universal need to conserve resources, protect the environment and use energy efficiently must necessarily be felt in the field of concrete technology. The recycling of construction and demolition waste as a source of aggregates for the production of concrete has attracted growing interest from the construction industry. In Algeria, the depletion of natural deposits of aggregates and the difficulties in setting up new quarries; makes it necessary to seek new sources of supply, to meet the need for aggregates for the major projects launched by the Algerian government in the last decades. In this context, this work is a part of the approach to provide answers to concerns about the lack of aggregates for concrete. It also aims to develop the inert fraction of demolition materials and mainly concrete construction demolition waste(C&D) as a source of aggregates for the manufacture of new hydraulic concretes based on recycled aggregates. This experimental study presents the results of physical and mechanical characterizations of natural and recycled aggregates, as well as their influence on the properties of fresh and hardened concrete. The characterization of the materials used has shown that the recycled aggregates have heterogeneity, a high water absorption capacity, and a medium quality hardness. However, the limits prescribed by the standards in force do not disqualify these materials of use for application as recycled aggregate concrete type (RAC). The results obtained from the present study show that acceptable mechanical, compressive, and flexural strengths of RACs are obtained using Superplasticizer SP 45 and 5% replacement of cement with silica fume based on recycled aggregates, compared to those of natural concretes. These mechanical performances demonstrate a characteristic resistance at 28 days in compression within the limits of 30 to 40 MPa without any particular suitable technology .to be adapted in the case.Keywords: recycled aggregates, concrete(RAC), superplasticizer, silica fume, compressive strength
Procedia PDF Downloads 175235 An Integrated Experimental and Numerical Approach to Develop an Electronic Instrument to Study Apple Bruise Damage
Authors: Paula Pascoal-Faria, Rúben Pereira, Elodie Pinto, Miguel Belbut, Ana Rosa, Inês Sousa, Nuno Alves
Abstract:
Apple bruise damage from harvesting, handling, transporting and sorting is considered to be the major source of reduced fruit quality, resulting in loss of profits for the entire fruit industry. The three factors which can physically cause fruit bruising are vibration, compression load and impact, the latter being the most common source of bruise damage. Therefore, prediction of the level of damage, stress distribution and deformation of the fruits under external force has become a very important challenge. In this study, experimental and numerical methods were used to better understand the impact caused when an apple is dropped from different heights onto a plastic surface and a conveyor belt. Results showed that the extent of fruit damage is significantly higher for plastic surface, being dependent on the height. In order to support the development of a biomimetic electronic device for the determination of fruit damage, the mechanical properties of the apple fruit were determined using mechanical tests. Preliminary results showed different values for the Young’s modulus according to the zone of the apple tested. Along with the mechanical characterization of the apple fruit, the development of the first two prototypes is discussed and the integration of the results obtained to construct the final element model of the apple is presented. This work will help to reduce significantly the bruise damage of fruits or vegetables during the entire processing which will allow the introduction of exportation destines and consequently an increase in the economic profits in this sector.Keywords: apple, fruit damage, impact during crop and post-crop, mechanical characterization of the apple, numerical evaluation of fruit damage, electronic device
Procedia PDF Downloads 305234 Novel Bioinspired Design to Capture Smoky CO2 by Reactive Absorption with Aqueous Scrubber
Authors: J. E. O. Hernandez
Abstract:
In the next 20 years, energy production by burning fuels will increase and so will the atmospheric concentration of CO2 and its well-known threats to life on Earth. The technologies available for capturing CO2 are still dubious and this keeps fostering an interest in bio-inspired approaches. The leading one is the application of carbonic anhydrase (CA) –a superfast biocatalyst able to convert up to one million molecules of CO2 into carbonates in water. However, natural CA underperforms when applied to real smoky CO2 in chimneys and, so far, the efforts to create superior CAs in the lab rely on screening methods running under pristine conditions at the micro level, which are far from resembling those in chimneys. For the evolution of man-made enzymes, selection rather than screening would be ideal but this is challenging because of the need for a suitable artificial environment that is also sustainable for our society. Herein we present the stepwise design and construction of a bioprocess (from bench-scale to semi-pilot) for evolutionary selection experiments. In this bioprocess, reaction and adsorption took place simultaneously at atmospheric pressure in a spray tower. The scrubbing solution was fed countercurrently by reusing municipal pressure and it was mainly prepared with water, carbonic anhydrase and calcium chloride. This bioprocess allowed for the enzymatic carbonation of smoky CO2; the reuse of process water and the recovery of solid carbonates without cooling of smoke, pretreatments, solvent amines and compression of CO2. The average yield of solid carbonates was 0.54 g min-1 or 12-fold the amount produced in serum bottles at lab bench scale. This bioprocess could be used as a tailor-made environment for driving the selection of superior CAs. The bioprocess and its match CA could be sustainably used to reduce global warming by CO2 emissions from exhausts.Keywords: biological carbon capture and sequestration, carbonic anhydrase, directed evolution, global warming
Procedia PDF Downloads 193233 Influence of Internal Topologies on Components Produced by Selective Laser Melting: Numerical Analysis
Authors: C. Malça, P. Gonçalves, N. Alves, A. Mateus
Abstract:
Regardless of the manufacturing process used, subtractive or additive, material, purpose and application, produced components are conventionally solid mass with more or less complex shape depending on the production technology selected. Aspects such as reducing the weight of components, associated with the low volume of material required and the almost non-existent material waste, speed and flexibility of production and, primarily, a high mechanical strength combined with high structural performance, are competitive advantages in any industrial sector, from automotive, molds, aviation, aerospace, construction, pharmaceuticals, medicine and more recently in human tissue engineering. Such features, properties and functionalities are attained in metal components produced using the additive technique of Rapid Prototyping from metal powders commonly known as Selective Laser Melting (SLM), with optimized internal topologies and varying densities. In order to produce components with high strength and high structural and functional performance, regardless of the type of application, three different internal topologies were developed and analyzed using numerical computational tools. The developed topologies were numerically submitted to mechanical compression and four point bending testing. Finite Element Analysis results demonstrate how different internal topologies can contribute to improve mechanical properties, even with a high degree of porosity relatively to fully dense components. Results are very promising not only from the point of view of mechanical resistance, but especially through the achievement of considerable variation in density without loss of structural and functional high performance.Keywords: additive manufacturing, internal topologies, porosity, rapid prototyping, selective laser melting
Procedia PDF Downloads 332232 Parameter and Lose Effect Analysis of Beta Stirling Cycle Refrigerating Machine
Authors: Muluken Z. Getie, Francois Lanzetta, Sylvie Begot, Bimrew T. Admassu
Abstract:
This study is aimed at the numerical analysis of the effects of phase angle and losses (shuttle heat loss and gas leakage to the crankcase) that could have an impact on the pressure and temperature of working fluid for a β-type Stirling cycle refrigerating machine. First, the developed numerical model incorporates into the ideal adiabatic analysis, the shuttle heat transfer (heat loss from compression space to expansion space), and gas leakage from the working space to the buffer space into the crankcase. The other losses that may not have a direct effect on the temperature and pressure of working fluid are simply incorporated in a simple analysis. The model is then validated by reversing the model to the engine model and compared with other literature results using (GPU-3) engine. After validating the model with other engine model and experiment results, analysis of the effect of phase angle, shuttle heat lose and gas leakage on temperature, pressure, and performance (power requirement, cooling capacity and coefficient of performance) of refrigerating machine considering the FEMTO 60 Stirling engine as a case study have been conducted. Shuttle heat loss has a greater effect on the temperature of working gas; gas leakage to the crankcase has more effect on the pressure of working spaces and hence both have a considerable impact on the performance of the Stirling cycle refrigerating machine. The optimum coefficient of performance exists between phase angles of 900-950, and optimum cooling capacity could be found between phase angles of 950-980.Keywords: beta configuration, engine model, moderate cooling, stirling refrigerator, and validation
Procedia PDF Downloads 102231 Blunt Abdominal Trauma Management in Adult Patients: An Investigation on Safety of Discharging Patients with Normal Initial Findings
Authors: Rahimi-Movaghar Vafa, Mansouri Pejman, Chardoli Mojtaba, Rezvani Samina
Abstract:
Introduction: Blunt abdominal trauma is one of the leading causes of morbidity and mortality in all age groups, but diagnosis of serious intra-abdominal pathology is difficult and most of the damages are obscure in the initial investigation. There is still controversy about which patients should undergo abdomen/pelvis CT, which patients needs more observation and which patients can be discharged safely The aim of this study was to determine that is it safe to discharge patients with blunt abdominal trauma with normal initial findings. Methods: This non-randomized cross-sectional study was conducted from September 2013 to September 2014 at two levels I trauma centers, Sina hospital and Rasoul-e-Akram hospital (Tehran, Iran). Our inclusion criteria were all patients were admitted for suspicious BAT and our exclusion criteria were patients that have serious head and neck, chest, spine and limb injuries which need surgical intervention, those who have unstable vital signs, pregnant women with a gestational age over 3 months and homeless or without exact home address. 390 patients with blunt trauma abdomen examined and the necessary data, including demographic data, the abdominal examination, FAST result, patients’ lab test results (hematocrit, base deficit, urine analysis) on admission and at 6 and 12 hours after admission were recorded. Patients with normal physical examination, laboratory tests and FAST were discharged from the ED during 12 hours with the explanation of the alarm signs and were followed up after 24 hours and 1 week by a telephone call. Patients with abnormal findings in physical examination, laboratory tests, and FAST underwent abdomino-pelvic CT scan. Results: The study included 390 patients with blunt abdominal trauma between 12 and 80 years of age (mean age, 37.0 ± 13.7 years) and the mean duration of hospitalization in patients was 7.4 ± 4.1 hours. 88.6% of the patients were discharged from hospital before 12 hours. Odds ratio (OR) for having any symptoms for discharge after 6 hours was 0.160 and after 12 hours was 0.117 hours, which is statistically significant. Among the variables age, systolic and diastolic blood pressure, heart rate, respiratory rate, hematocrit and base deficit at admission, 6 hours and 12 hours after admission showed no significant statistical relationship with discharge time. From our 390 patients, 190 patients have normal initial physical examination, lab data and FAST findings that didn’t show any signs or symptoms in their next assessment and in their follow up by the phone call. Conclusion: It is recommended that patients with no symptoms at admission (completely normal physical examination, ultrasound, normal hematocrit and normal base deficit and lack of microscopic hematuria) and good family and social status can be safely discharged from the emergency department.Keywords: blunt abdominal trauma, patient discharge, emergency department, FAST
Procedia PDF Downloads 366230 Surface Modification of Pineapple Leaf Fibre Reinforced Polylactic Acid Composites
Authors: Januar Parlaungan Siregar, Davindra Brabu Mathivanan, Dandi Bachtiar, Mohd Ruzaimi Mat Rejab, Tezara Cionita
Abstract:
Natural fibres play a significant role in mass industries such as automotive, construction and sports. Many researchers have found that the natural fibres are the best replacement for the synthetic fibres in terms of cost, safety, and degradability due to the shortage of landfill and ingestion of non biodegradable plastic by animals. This study mainly revolved around pineapple leaf fibre (PALF) which is available abundantly in tropical countries and with excellent mechanical properties. The composite formed in this study is highly biodegradable as both fibre and matrix are both derived from natural based products. The matrix which is polylactic acid (PLA) is made from corn starch which gives the upper hand as both material are renewable resources are easier to degrade by bacteria or enzyme. The PALF is treated with different alkaline solution to remove excessive moisture in the fibre to provide better interfacial bonding with PLA. Thereafter the PALF is washed with distilled water several times before placing in vacuum oven at 80°C for 48 hours. The dried PALF later were mixed with PLA using extrusion method using fibre in percentage of 30 by weight. The temperature for all zone were maintained at 160°C with the screw speed of 50 rpm for better bonding and afterwards the products of the mixture were pelletized using pelletizer. The pellets were placed in the specimen-sized mould for hot compression under the temperature of 170°C at 5 MPa for 5 min and subsequently were cold pressed under room temperature at 5 MPa for 5 min. The specimen were tested for tensile and flexure strength according to American Society for Testing and Materials (ASTM) D638 and D790 respectively. The effect of surface modification on PALF with different alkali solution will be investigated and compared.Keywords: natural fibre, PALF, PLA, composite
Procedia PDF Downloads 302229 Biomechanical Performance of the Synovial Capsule of the Glenohumeral Joint with a BANKART Lesion through Finite Element Analysis
Authors: Duvert A. Puentes T., Javier A. Maldonado E., Ivan Quintero., Diego F. Villegas
Abstract:
Mechanical Computation is a great tool to study the performance of complex models. An example of it is the study of the human body structure. This paper took advantage of different types of software to make a 3D model of the glenohumeral joint and apply a finite element analysis. The main objective was to study the change in the biomechanical properties of the joint when it presents an injury. Specifically, a BANKART lesion, which consists in the detachment of the anteroinferior labrum from the glenoid. Stress and strain distribution of the soft tissues were the focus of this study. First, a 3D model was made of a joint without any pathology, as a control sample, using segmentation software for the bones with the support of medical imagery and a cadaveric model to represent the soft tissue. The joint was built to simulate a compression and external rotation test using CAD to prepare the model in the adequate position. When the healthy model was finished, it was submitted to a finite element analysis and the results were validated with experimental model data. With the validated model, it was sensitized to obtain the best mesh measurement. Finally, the geometry of the 3D model was changed to imitate a BANKART lesion. Then, the contact zone of the glenoid with the labrum was slightly separated simulating a tissue detachment. With this new geometry, the finite element analysis was applied again, and the results were compared with the control sample created initially. With the data gathered, this study can be used to improve understanding of the labrum tears. Nevertheless, it is important to remember that the computational analysis are approximations and the initial data was taken from an in vitro assay.Keywords: biomechanics, computational model, finite elements, glenohumeral joint, bankart lesion, labrum
Procedia PDF Downloads 162228 The Richtmyer-Meshkov Instability Impacted by the Interface with Different Components Distribution
Authors: Sheng-Bo Zhang, Huan-Hao Zhang, Zhi-Hua Chen, Chun Zheng
Abstract:
In this paper, the Richtmyer-Meshkov instability has been studied numerically by using the high-resolution Roe scheme based on the two-dimensional unsteady Euler equation, which was caused by the interaction between shock wave and the helium circular light gas cylinder with different component distributions. The numerical results further discuss the deformation process of the gas cylinder, the wave structure of the flow field and quantitatively analyze the characteristic dimensions (length, height, and central axial width) of the gas cylinder, the volume compression ratio of the cylinder over time. In addition, the flow mechanism of shock-driven interface gas mixing is analyzed from multiple perspectives by combining it with the flow field pressure, velocity, circulation, and gas mixing rate. Then the effects of different initial component distribution conditions on interface instability are investigated. The results show when the diffusion interface transit to the sharp interface, the reflection coefficient gradually increases on both sides of the interface. When the incident shock wave interacts with the cylinder, the transmission of the shock wave will transit from conventional transmission to unconventional transmission. At the same time, the reflected shock wave is gradually strengthened, and the transmitted shock wave is gradually weakened, which leads to an increase in the Richtmyer-Meshkov instability. Moreover, the Atwood number on both sides of the interface also increases as the diffusion interface transit to the sharp interface, which leads to an increase in the Rayleigh-Taylor instability and the Kelvin-Helmholtz instability. Therefore, the increase in instability will lead to an increase the circulation, resulting in an increase in the growth rate of gas mixing rate.Keywords: shock wave, He light cylinder, Richtmyer-Meshkov instability, Gaussian distribution
Procedia PDF Downloads 78227 Diagnostic Performance of Mean Platelet Volume in the Diagnosis of Acute Myocardial Infarction: A Meta-Analysis
Authors: Kathrina Aseanne Acapulco-Gomez, Shayne Julieane Morales, Tzar Francis Verame
Abstract:
Mean platelet volume (MPV) is the most accurate measure of the size of platelets and is routinely measured by most automated hematological analyzers. Several studies have shown associations between MPV and cardiovascular risks and outcomes. Although its measurement may provide useful data, MPV remains to be a diagnostic tool that is yet to be included in routine clinical decision making. The aim of this systematic review and meta-analysis is to determine summary estimates of the diagnostic accuracy of mean platelet volume for the diagnosis of myocardial infarction among adult patients with angina and/or its equivalents in terms of sensitivity, specificity, diagnostic odds ratio, and likelihood ratios, and to determine the difference of the mean MPV values between those with MI and those in the non-MI controls. The primary search was done through search in electronic databases PubMed, Cochrane Review CENTRAL, HERDIN (Health Research and Development Information Network), Google Scholar, Philippine Journal of Pathology, and Philippine College of Physicians Philippine Journal of Internal Medicine. The reference list of original reports was also searched. Cross-sectional, cohort, and case-control articles studying the diagnostic performance of mean platelet volume in the diagnosis of acute myocardial infarction in adult patients were included in the study. Studies were included if: (1) CBC was taken upon presentation to the ER or upon admission (within 24 hours of symptom onset); (2) myocardial infarction was diagnosed with serum markers, ECG, or according to accepted guidelines by the Cardiology societies (American Heart Association (AHA), American College of Cardiology (ACC), European Society of Cardiology (ESC); and, (3) if outcomes were measured as significant difference AND/OR sensitivity and specificity. The authors independently screened for inclusion of all the identified potential studies as a result of the search. Eligible studies were appraised using well-defined criteria. Any disagreement between the reviewers was resolved through discussion and consensus. The overall mean MPV value of those with MI (9.702 fl; 95% CI 9.07 – 10.33) was higher than in those of the non-MI control group (8.85 fl; 95% CI 8.23 – 9.46). Interpretation of the calculated t-value of 2.0827 showed that there was a significant difference in the mean MPV values of those with MI and those of the non-MI controls. The summary sensitivity (Se) and specificity (Sp) for MPV were 0.66 (95% CI; 0.59 - 0.73) and 0.60 (95% CI; 0.43 – 0.75), respectively. The pooled diagnostic odds ratio (DOR) was 2.92 (95% CI; 1.90 – 4.50). The positive likelihood ratio of MPV in the diagnosis of myocardial infarction was 1.65 (95% CI; 1.20 – 22.27), and the negative likelihood ratio was 0.56 (95% CI; 0.50 – 0.64). The intended role for MPV in the diagnostic pathway of myocardial infarction would perhaps be best as a triage tool. With a DOR of 2.92, MPV values can discriminate between those who have MI and those without. For a patient with angina presenting with elevated MPV values, it is 1.65 times more likely that he has MI. Thus, it is implied that the decision to treat a patient with angina or its equivalents as a case of MI could be supported by an elevated MPV value.Keywords: mean platelet volume, MPV, myocardial infarction, angina, chest pain
Procedia PDF Downloads 87226 Effect of Maternal Factors and C-Peptide and Insulin Levels in Cord Blood on the Birth Weight of Newborns: A Preliminary Study from Southern Sri Lanka
Authors: M. H. A. D. de Silva, R. P. Hewawasam, M. A. G. Iresha
Abstract:
Macrosomia is common in infants born to not only women diagnosed with gestational diabetes mellitus but also non-diabetic obese women. Maternal Body Mass Index (BMI) correlates with the incidence of large for gestational age infants. Obesity has reached epidemic levels in modern societies. During the past two decades, obesity in children and adolescents has risen significantly in Asian populations including Sri Lanka. There is increasing evidence to believe that infants who are born large for gestational age are more likely to be obese in childhood and adolescence and are at risk of cardiovascular and metabolic complications later in life. It is also established that Asians have lower skeletal muscle mass, low bone mineral content and excess body fat for a given BMI indicating a genetic predisposition in the occurrence of obesity. The objective of this study is to determine the effect of maternal weight, weight gain during pregnancy, c-peptide and insulin concentrations in the cord blood on the birth of appropriate for and large for gestational age infants in a tertiary care center in Southern Sri Lanka. Umbilical cord blood was collected from 90 newborns (Male 40, Female 50; gestational age 35-42 weeks) after double clamping the umbilical cord before separation of the placenta and the concentration of insulin and C-peptide were measured by ELISA technique. Anthropometric parameters of the newborn such as birth weight, length, ponderal index, occipital frontal, chest, hip and calf circumferences were measured, and characteristics of the mother were collected. The relationship between insulin, C-peptide and anthropometrics were assessed by Spearman correlation. The multiple logistic regression analysis examined influences of maternal weight, weight gain during pregnancy, C-peptide and insulin concentrations in cord blood as covariates on the birth of large for gestational age infants. A significant difference (P<0.001) was observed between the insulin levels of infants born large for gestational age (18.73 ± 0.52 µlU/ml) and appropriate for gestational age (13.08 ± 0.56 µlU/ml). Consistently, A significant decrease in concentration (41.68%, P<0.001) was observed between C-peptide levels of infants born large for gestational age and appropriate for gestational age. Cord blood insulin and C-peptide levels had a significant correlation with birth weight (r=0.35, P<0.05) of the newborn at delivery. Maternal weight and BMI which are indicators of maternal nutrition were proven to be directly correlated with birth weight and length. To our knowledge, this relationship was investigated for the first time in a Sri Lankan setting and was also evident in our results. This study confirmed the fact that insulin and C-peptide play a major role in regulating fetal growth. According to the results obtained in this study, we can suggest that the increased BMI of the mother has a direct influence on increased maternal insulin secretion, which may subsequently affect cord insulin and C-peptide levels and also birth weight of the infant.Keywords: C-peptide, insulin, large for gestational age, maternal weight
Procedia PDF Downloads 168225 Research of Actuators of Common Rail Injection Systems with the Use of LabVIEW on a Specially Designed Test Bench
Authors: G. Baranski, A. Majczak, M. Wendeker
Abstract:
Currently, the most commonly used solution to provide fuel to the diesel engines is the Common Rail system. Compared to previous designs, as a due to relatively simple construction and electronic control systems, these systems allow achieving favourable engine operation parameters with particular emphasis on low emission of toxic compounds into the atmosphere. In this system, the amount of injected fuel dose is strictly dependent on the course of parameters of the electrical impulse sent by the power amplifier power supply system injector from the engine controller. The article presents the construction of a laboratory test bench to examine the course of the injection process and the expense in storage injection systems. The test bench enables testing of injection systems with electromagnetically controlled injectors with the use of scientific engineering tools. The developed system is based on LabView software and CompactRIO family controller using FPGA systems and a real time microcontroller. The results of experimental research on electromagnetic injectors of common rail system, controlled by a dedicated National Instruments card, confirm the effectiveness of the presented approach. The results of the research described in the article present the influence of basic parameters of the electric impulse opening the electromagnetic injector on the value of the injected fuel dose. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK ‘PZL-KALISZ’ S.A.’ and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.Keywords: fuel injector, combustion engine, fuel pressure, compression ignition engine, power supply system, controller, LabVIEW
Procedia PDF Downloads 131224 A Zero-Flaring Flowback Solution to Revive Liquid Loaded Gas Wells
Authors: Elsayed Amer, Tarek Essam, Abdullah Hella, Mohammed Al-Ajmi
Abstract:
Hydrocarbon production decline in mature gas fields is inevitable, and mitigating these circumstances is essential to ensure a longer production period. Production decline is not only influenced by reservoir pressure and wellbore integrity; however, associated liquids in the reservoir rock have a considerable impact on the production process. The associated liquid may result in liquid loading, near wellbore damage, condensate banking, fine sand migration, and wellhead pressure depletion. Consequently, the producing well will suffocate, and the liquid column will seize the well from flowing. A common solution in such circumstances is reducing the surface pressure by opening the well to the atmospheric pressure and flaring the produced liquids. This practice may not be applicable to many cases since the atmospheric pressure is not low enough to create a sufficient driving force to flow the well. In addition, flaring the produced hydrocarbon is solving the issue on account of the environment, which is against the world's efforts to mitigate the impact of climate change. This paper presents a novel approach and a case study that utilizes a multi-phase mobile wellhead gas compression unit (MMWGC) to reduce surface pressure to the sub-atmospheric level and transfer the produced hydrocarbons to the sales line. As a result, the liquid column will unload in a zero-flaring manner, and the life of the producing well will extend considerably. The MMWGC unit was able to successfully kick off a dead well to produce up to 10 MMSCFD after reducing the surface pressure for 3 hours. Applying such novelty on a broader scale will not only extend the life of the producing wells yet will also provide a zero-flaring, economically and environmentally preferred solution.Keywords: petroleum engineering, zero-flaring, liquid loading, well revival
Procedia PDF Downloads 101223 Targeted Delivery of Docetaxel Drug Using Cetuximab Conjugated Vitamin E TPGS Micelles Increases the Anti-Tumor Efficacy and Inhibit Migration of MDA-MB-231 Triple Negative Breast Cancer
Authors: V. K. Rajaletchumy, S. L. Chia, M. I. Setyawati, M. S. Muthu, S. S. Feng, D. T. Leong
Abstract:
Triple negative breast cancers (TNBC) can be classified as one of the most aggressive with a high rate of local recurrences and systematic metastases. TNBCs are insensitive to existing hormonal therapy or targeted therapies such as the use of monoclonal antibodies, due to the lack of oestrogen receptor (ER) and progesterone receptor (PR) and the absence of overexpression of human epidermal growth factor receptor 2 (HER2) compared with other types of breast cancers. The absence of targeted therapies for selective delivery of therapeutic agents into tumours, led to the search for druggable targets in TNBC. In this study, we developed a targeted micellar system of cetuximab-conjugated micelles of D-α-tocopheryl polyethylene glycol succinate (vitamin E TPGS) for targeted delivery of docetaxel as a model anticancer drug for the treatment of TNBCs. We examined the efficacy of our micellar system in xenograft models of triple negative breast cancers and explored the effect of the micelles on post-treatment tumours in order to elucidate the mechanism underlying the nanomedicine treatment in oncology. The targeting micelles were found preferentially accumulated in tumours immediately after the administration of the micelles compare to normal tissue. The fluorescence signal gradually increased up to 12 h at the tumour site and sustained for up to 24 h, reflecting the increases in targeted micelles (TPFC) micelles in MDA-MB-231/Luc cells. In comparison, for the non-targeting micelles (TPF), the fluorescence signal was evenly distributed all over the body of the mice. Only a slight increase in fluorescence at the chest area was observed after 24 h post-injection, reflecting the moderate uptake of micelles by the tumour. The successful delivery of docetaxel into tumour by the targeted micelles (TPDC) exhibited a greater degree of tumour growth inhibition than Taxotere® after 15 days of treatment. The ex vivo study has demonstrated that tumours treated with targeting micelles exhibit enhanced cell cycle arrest and attenuated proliferation compared with the control and with those treated non-targeting micelles. Furthermore, the ex vivo investigation revealed that both the targeting and non-targeting micellar formulations shows significant inhibition of cell migration with migration indices reduced by 0.098- and 0.28-fold, respectively, relative to the control. Overall, both the in vivo and ex vivo data increased the confidence that our micellar formulations effectively targeted and inhibited EGF-overexpressing MDA-MB-231 tumours.Keywords: biodegradable polymers, cancer nanotechnology, drug targeting, molecular biomaterials, nanomedicine
Procedia PDF Downloads 281222 Superior Mesenteric Artery Syndrome in Patient with Snake Bites
Authors: Nguyen Dang Duc, Nguyen Phuong Sinh, Lam Nguyen Hong Anh
Abstract:
Superior mesenteric artery (SMA) syndrome is a rare cause of high-section intestinal obstruction. SMA syndrome is characterized by compression of the third segment of the duodenum due to the narrowing of the distance between the superior mesenteric artery and the abdominal aorta. The main clinical signs of SMA syndrome are high intestinal obstruction, such as postprandial vomiting, epigastric pain, early feeling of abdominal fullness, and indigestion. Abdominal computed tomography plays an important role in diagnosis. There are two main methods of treating SMA syndrome that are conservative and surgical treatment. We report a clinical case of an 18-year-old male patient admitted to the hospital because of a Bungarus snake bit in the second hour, to the twelfth day of treatment, the patient developed diarrhea that lasted until the twenty-fourth day of treatment. On the twenty-fifth day of treatment, the patient lost 16 kilograms (from 56 down to 40). The patient had symptoms of vomiting after eating, indigestion, and epigastric pain. On abdominal computed tomography, the angle created by the superior mesenteric artery and the abdominal aorta was 17 degrees, the distance between the two arteries was 3.8 millimeters, light dilation and stagnation of the D1 and D2 segment of the duodenum with gas and watery level inside segment D3 and D4 of the duodenum and this segment was constricted. This patient was diagnosed with superior mesenteric artery syndrome with the Bungarus snake bites. Currently, the patient was treated with feeding through a jejunal tube each other intravenous nutrition. Finally, The patient was discharged and returned to his house on the forty-fifth day of treatment. We reported this clinical case to introduce clinical and paraclinical signs, diagnose, and methods treated for patient having SMA syndrome.Keywords: superior mesenteric artery syndrome, Bungarus snake bites, loss weight
Procedia PDF Downloads 13221 Application of Particle Image Velocimetry in the Analysis of Scale Effects in Granular Soil
Authors: Zuhair Kadhim Jahanger, S. Joseph Antony
Abstract:
The available studies in the literature which dealt with the scale effects of strip footings on different sand packing systematically still remain scarce. In this research, the variation of ultimate bearing capacity and deformation pattern of soil beneath strip footings of different widths under plane-strain condition on the surface of loose, medium-dense and dense sand have been systematically studied using experimental and noninvasive methods for measuring microscopic deformations. The presented analyses are based on model scale compression test analysed using Particle Image Velocimetry (PIV) technique. Upper bound analysis of the current study shows that the maximum vertical displacement of the sand under the ultimate load increases for an increase in the width of footing, but at a decreasing rate with relative density of sand, whereas the relative vertical displacement in the sand decreases for an increase in the width of the footing. A well agreement is observed between experimental results for different footing widths and relative densities. The experimental analyses have shown that there exists pronounced scale effect for strip surface footing. The bearing capacity factors Nγ rapidly decrease up to footing widths B=0.25 m, 0.35 m, and 0.65 m for loose, medium-dense and dense sand respectively, after that there is no significant decrease in Nγ. The deformation modes of the soil as well as the ultimate bearing capacity values have been affected by the footing widths. The obtained results could be used to improve settlement calculation of the foundation interacting with granular soil.Keywords: DPIV, granular mechanics, scale effect, upper bound analysis
Procedia PDF Downloads 153220 Analysis of Surface Hardness, Surface Roughness and near Surface Microstructure of AISI 4140 Steel Worked with Turn-Assisted Deep Cold Rolling Process
Authors: P. R. Prabhu, S. M. Kulkarni, S. S. Sharma, K. Jagannath, Achutha Kini U.
Abstract:
In the present study, response surface methodology has been used to optimize turn-assisted deep cold rolling process of AISI 4140 steel. A regression model is developed to predict surface hardness and surface roughness using response surface methodology and central composite design. In the development of predictive model, deep cold rolling force, ball diameter, initial roughness of the workpiece, and number of tool passes are considered as model variables. The rolling force and the ball diameter are the significant factors on the surface hardness and ball diameter and numbers of tool passes are found to be significant for surface roughness. The predicted surface hardness and surface roughness values and the subsequent verification experiments under the optimal operating conditions confirmed the validity of the predicted model. The absolute average error between the experimental and predicted values at the optimal combination of parameter settings for surface hardness and surface roughness is calculated as 0.16% and 1.58% respectively. Using the optimal processing parameters, the hardness is improved from 225 to 306 HV, which resulted in an increase in the near surface hardness by about 36% and the surface roughness is improved from 4.84µm to 0.252 µm, which resulted in decrease in the surface roughness by about 95%. The depth of compression is found to be more than 300µm from the microstructure analysis and this is in correlation with the results obtained from the microhardness measurements. Taylor Hobson Talysurf tester, micro Vickers hardness tester, optical microscopy and X-ray diffractometer are used to characterize the modified surface layer.Keywords: hardness, response surface methodology, microstructure, central composite design, deep cold rolling, surface roughness
Procedia PDF Downloads 423219 High Fidelity Interactive Video Segmentation Using Tensor Decomposition, Boundary Loss, Convolutional Tessellations, and Context-Aware Skip Connections
Authors: Anthony D. Rhodes, Manan Goel
Abstract:
We provide a high fidelity deep learning algorithm (HyperSeg) for interactive video segmentation tasks using a dense convolutional network with context-aware skip connections and compressed, 'hypercolumn' image features combined with a convolutional tessellation procedure. In order to maintain high output fidelity, our model crucially processes and renders all image features in high resolution, without utilizing downsampling or pooling procedures. We maintain this consistent, high grade fidelity efficiently in our model chiefly through two means: (1) we use a statistically-principled, tensor decomposition procedure to modulate the number of hypercolumn features and (2) we render these features in their native resolution using a convolutional tessellation technique. For improved pixel-level segmentation results, we introduce a boundary loss function; for improved temporal coherence in video data, we include temporal image information in our model. Through experiments, we demonstrate the improved accuracy of our model against baseline models for interactive segmentation tasks using high resolution video data. We also introduce a benchmark video segmentation dataset, the VFX Segmentation Dataset, which contains over 27,046 high resolution video frames, including green screen and various composited scenes with corresponding, hand-crafted, pixel-level segmentations. Our work presents a improves state of the art segmentation fidelity with high resolution data and can be used across a broad range of application domains, including VFX pipelines and medical imaging disciplines.Keywords: computer vision, object segmentation, interactive segmentation, model compression
Procedia PDF Downloads 120218 Ozone Therapy for Disc Herniation: A Non-surgical Option
Authors: Shahzad Karim Bhatti
Abstract:
Background: Ozone is a combination of oxygen and can be used in treatment of low back pain due to herniated disc. It is a minimally invasive procedure using biochemical properties of ozone resulting in reduced volume of disc and inflammation resulting in significant pain relief. Aim: The purpose of this study was to evaluate the effectiveness of ozone therapy in combination with peri-ganglionic injection of local anesthetic and corticosteroid. Material and Methods: This retrospective study was done at the Interventional Radiology Department of Mayo Hospital, Lahore. A total of 49000 patients were included from January 2008 to March 2022. All the patients presented with clinical signs and symptoms of lumber disc herniation, which was confirmed by a MRI scan of the lumbar sacral spine. The pain reduction was calculated using modified MacNab method. All the patients underwent percutaneous injection of ozone at a concentration of 27 micrograms/ml to lumber disc under fluoroscopic guidance with combination of local anesthetic and corticosteroid in peri-ganglionic space. Results were evaluated by two expert observers who were blinded to patient treatment. Results A satisfactory therapeutic outcome was obtained. 55% of the patients showed complete recovery with resolution of symptoms. 20% of the patients complained of occasional episodic pain with no limitation of occupational activity. 15% of cases showed insufficient improvement. 5% of cases had insufficient improvement and went for surgery. 10% of cases never turned up after the first visit. Conclusion Intradiscal ozone for the treatment of herniated discs has revolutionized percutaneous approach to nerve root compression making it safer, economical and easier to repeat without any side effects than treatments currently used in Pakistan.Keywords: pain, prolapse, Ozone, backpain
Procedia PDF Downloads 30217 Determination of Viscosity and Degree of Hydrogenation of Liquid Organic Hydrogen Carriers by Cavity Based Permittivity Measurement
Authors: I. Wiemann, N. Weiß, E. Schlücker, M. Wensing
Abstract:
A very promising alternative to compression or cryogenics is the chemical storage of hydrogen by liquid organic hydrogen carriers (LOHC). These carriers enable high energy density and allow, at the same time, efficient and safe storage under ambient conditions without leakage losses. Another benefit of this storage medium is the possibility of transporting it using already available infrastructure for the transport of fossil fuels. Efficient use of LOHC is related to precise process control, which requires a number of sensors in order to measure all relevant process parameters, for example, to measure the level of hydrogen loading of the carrier. The degree of loading is relevant for the energy content of the storage carrier and simultaneously represents the modification in the chemical structure of the carrier molecules. This variation can be detected in different physical properties like permittivity, viscosity, or density. E.g., each degree of loading corresponds to different viscosity values. Conventional measurements currently use invasive viscosity measurements or near-line measurements to obtain quantitative information. This study investigates permittivity changes resulting from changes in hydrogenation degree (chemical structure) and temperature. Based on calibration measurements, the degree of loading and temperature of LOHC can thus be determined by comparatively simple permittivity measurements in a cavity resonator. Subsequently, viscosity and density can be calculated. An experimental setup with a heating device and flow test bench was designed. By varying temperature in the range of 293,15 K -393,15 K and flow velocity up to 140 mm/s, corresponding changes in the resonation frequency were determined in the hundredths of the GHz range. This approach allows inline process monitoring of hydrogenation of the liquid organic hydrogen carrier (LOHC).Keywords: hydrogen loading, LOHC, measurement, permittivity, viscosity
Procedia PDF Downloads 81216 Tuberculosis (TB) and Lung Cancer
Authors: Asghar Arif
Abstract:
Lung cancer has been recognized as one of the greatest common cancers, causing the annual mortality rate of about 1.2 million people in the world. Lung cancer is the most prevalent cancer in men and the third-most common cancer among women (after breast and digestive cancers).Recent evidences have shown the inflammatory process as one of the potential factors of cancer. Tuberculosis (TB), pneumonia, and chronic bronchitis are among the most important inflammation-inducing factors in the lungs, among which TB has a more profound role in the emergence of cancer.TB is one of the important mortality factors throughout the world, and 205,000 death cases are reported annually due to this disease. Chronic inflammation and fibrosis due to TB can induce genetic mutation and alternations. Parenchyma tissue of lung is involved in both diseases of TB and lung cancer, and continuous cough in lung cancer, morphological vascular variations, lymphocytosis processes, and generation of immune system mediators such as interleukins, are all among the factors leading to the hypothesis regarding the role of TB in lung cancer Some reports have shown that the induction of necrosis and apoptosis or TB reactivation, especially in patients with immune-deficiency, may result in increasing IL-17 and TNF_α, which will either decrease P53 activity or increase the expression of Bcl-2, decrease Bax-T, and cause the inhibition of caspase-3 expression due to decreasing the expression of mitochondria cytochrome oxidase. It has been also indicated that following the injection of BCG vaccine, the host immune system will be reinforced, and in particular, the rates of gamma interferon, nitric oxide, and interleukin-2 are increased. Therefore, CD4 + lymphocyte function will be improved, and the person will be immune against cancer.Numerous prospective studies have so far been conducted on the role of TB in lung cancer, and it seems that this disease is effective in that particular cancer.One of the main challenges of lung cancer is its correct and timely diagnosis. Unfortunately, clinical symptoms (such as continuous cough, hemoptysis, weight loss, fever, chest pain, dyspnea, and loss of appetite) and radiological images are similar in TB and lung cancer. Therefore, anti-TB drugs are routinely prescribed for the patients in the countries with high prevalence of TB, like Pakistan. Regarding the similarity in clinical symptoms and radiological findings of lung cancer, proper diagnosis is necessary for TB and respiratory infections due to nontuberculousmycobacteria (NTM). Some of the drug resistive TB cases are, in fact, lung cancer or NTM lung infections. Acid-fast staining and histological study of phlegm and bronchial washing, culturing and polymerase chain reaction TB are among the most important solutions for differential diagnosis of these diseases. Briefly, it is assumed that TB is one of the risk factors for cancer. Numerous studies have been conducted in this regard throughout the world, and it has been observed that there is a significant relationship between previous TB infection and lung cancer. However, to prove this hypothesis, further and more extensive studies are required. In addition, as the clinical symptoms and radiological findings of TB, lung cancer, and non-TB mycobacteria lung infections are similar, they can be misdiagnosed as TB.Keywords: TB and lung cancer, TB people, TB servivers, TB and HIV aids
Procedia PDF Downloads 73