Search results for: Tobit regression model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18777

Search results for: Tobit regression model

17847 Prediction of Road Accidents in Qatar by 2022

Authors: M. Abou-Amouna, A. Radwan, L. Al-kuwari, A. Hammuda, K. Al-Khalifa

Abstract:

There is growing concern over increasing incidences of road accidents and consequent loss of human life in Qatar. In light to the future planned event in Qatar, World Cup 2022; Qatar should put into consideration the future deaths caused by road accidents, and past trends should be considered to give a reasonable picture of what may happen in the future. Qatar roads should be arranged and paved in a way that accommodate high capacity of the population in that time, since then there will be a huge number of visitors from the world. Qatar should also consider the risk issues of road accidents raised in that period, and plan to maintain high level to safety strategies. According to the increase in the number of road accidents in Qatar from 1995 until 2012, an analysis of elements affecting and causing road accidents will be effectively studied. This paper aims to identify and criticize the factors that have high effect on causing road accidents in the state of Qatar, and predict the total number of road accidents in Qatar 2022. Alternative methods are discussed and the most applicable ones according to the previous researches are selected for further studies. The methods that satisfy the existing case in Qatar were the multiple linear regression model (MLR) and artificial neutral network (ANN). Those methods are analyzed and their findings are compared. We conclude that by using MLR the number of accidents in 2022 will become 355,226 accidents, and by using ANN 216,264 accidents. We conclude that MLR gave better results than ANN because the artificial neutral network doesn’t fit data with large range varieties.

Keywords: road safety, prediction, accident, model, Qatar

Procedia PDF Downloads 258
17846 Location Choice of Firms in an Unequal Length Streets Model: Game Theory Approach as an Extension of the Spoke Model

Authors: Kiumars Shahbazi, Salah Salimian, Abdolrahim Hashemi Dizaj

Abstract:

Locating is one of the key elements in success and survival of industrial centers and has great impact on cost reduction of establishment and launching of various economic activities. In this study, streets with unequal length model have been used that is the classic extension of Spoke model; however with unlimited number of streets with uneven lengths. The results showed that the spoke model is a special case of streets with unequal length model. According to the results of this study, if the strategy of enterprises and firms is to select both price and location, there would be no balance in the game. Furthermore, increased length of streets leads to increased profit of enterprises and with increased number of streets, the enterprises choose locations that are far from center (the maximum differentiation), and the enterprises' output will decrease. Moreover, the enterprise production rate will incline toward zero when the number of streets goes to infinity, and complete competition outcome will be achieved.

Keywords: locating, Nash equilibrium, streets with unequal length model, streets with unequal length model

Procedia PDF Downloads 203
17845 Static Analysis Deployment Model for Code Quality on Research and Development Projects of Software Development

Authors: Jeong-Hyun Park, Young-Sik Park, Hyo-Teag Jung

Abstract:

This paper presents static analysis deployment model for code quality on R&D Projects of SW Development. The proposed model includes the scope of R&D projects and index for static analysis of source code, operation model and execution process, environments and infrastructure system for R&D projects of SW development. There is the static analysis result of pilot project as case study based on the proposed deployment model and environment, and strategic considerations for success operation of the proposed static analysis deployment model for R&D Projects of SW Development. The proposed static analysis deployment model in this paper will be adapted and improved continuously for quality upgrade of R&D projects, and customer satisfaction of developed source codes and products.

Keywords: static analysis, code quality, coding rules, automation tool

Procedia PDF Downloads 520
17844 The Spherical Geometric Model of Absorbed Particles: Application to the Electron Transport Study

Authors: A. Bentabet, A. Aydin, N. Fenineche

Abstract:

The mean penetration depth has a most important in the absorption transport phenomena. Analytical model of light ion backscattering coefficients from solid targets have been made by Vicanek and Urbassek. In the present work, we showed a mathematical expression (deterministic model) for Z1/2. In advantage, in the best of our knowledge, relatively only one analytical model exit for electron or positron mean penetration depth in solid targets. In this work, we have presented a simple geometric spherical model of absorbed particles based on CSDA scheme. In advantage, we have showed an analytical expression of the mean penetration depth by combination between our model and the Vicanek and Urbassek theory. For this, we have used the Relativistic Partial Wave Expansion Method (RPWEM) and the optical dielectric model to calculate the elastic cross sections and the ranges respectively. Good agreement was found with the experimental and theoretical data.

Keywords: Bentabet spherical geometric model, continuous slowing down approximation, stopping powers, ranges, mean penetration depth

Procedia PDF Downloads 641
17843 Expert Review on Conceptual Design Model of iTV Advertising towards Impulse Purchase

Authors: Azizah Che Omar

Abstract:

Various studies have proposed factors of impulse purchase in different advertising mediums like website, mobile, traditional retail store and traditional television. However, to the best of researchers’ knowledge, none of the impulse purchase model is dedicated towards impulse purchase tendency for interactive TV (iTV) advertising. Therefore, the proposed model conceptual design model of interactive television advertising toward impulse purchase (iTVAdIP) was developed. The focus of this study is to evaluate the conceptual design model of iTVAdIP through expert review. As a result, the finding showed that majority of expert reviews agreed that the conceptual design model iTVAdIP is applicable to the development of interactive television advertising and it will increase the effectiveness of advertising. This study also shows the conceptual design model of iTVAdIP that has been reviewed.

Keywords: impulse purchase, interactive television advertising, persuasive

Procedia PDF Downloads 355
17842 Cr (VI) Adsorption on Ce0.25Zr0.75O2.nH2O-Kinetics and Thermodynamics

Authors: Carlos Alberto Rivera-corredor, Angie Dayana Vargas-Ceballos, Edison Gilpavas, Izabela Dobrosz-Gómez, Miguel Ángel Gómez-García

Abstract:

Hexavalent chromium, Cr (VI) is present in the effluents from different industries such as electroplating, mining, leather tanning, etc. This compound is of great academic and industrial concern because of its toxic and carcinogenic behavior. Its dumping to both environmental and public health for animals and humans causes serious problems in water sources. The amount of Cr (VI) in industrial wastewaters ranges from 0.5 to 270,000 mgL-1. According to the Colombian standard for water quality (NTC-813-2010), the maximum allowed concentration for the Cr (VI) in drinking water is 0.05 mg L-1. To comply with this limit, it is essential that industries treat their effluent to reduce the Cr (VI) to acceptable levels. Numerous methods have been reported for the treatment removing metal ions from aqueous solutions such as: reduction, ion exchange, electrodialysis, etc. Adsorption has become a promising method for the purification of metal ions in water, since its application corresponds with an economic and efficient technology. The absorbent selection and the kinetic and thermodynamic study of the adsorption conditions are key to the development of a suitable adsorption technology. The Ce0.25Zr0.75O2.nH2O presents higher adsorption capacity between a series of hydrated mixed oxides Ce1-xZrxO2 (x = 0, 0.25, 0.5, 0.75, 1). This work presents the kinetic and thermodynamic study of Cr (VI) adsorption on Ce0.25Zr0.75O2.nH2O. Experiments were performed under the following experimental conditions: initial Cr (VI) concentration = 25, 50 and 100 mgL-1, pH = 2, adsorbent charge = 4 gL-1, stirring time = 60 min, temperature=20, 28 and 40 °C. The Cr (VI) concentration was spectrophotometrically estimated by the method of difenilcarbazide with monitoring the absorbance at 540 nm. The Cr (VI) adsorption over hydrated Ce0.25Zr0.75O2.nH2O models was analyzed using pseudo-first and pseudo-second order kinetics. The Langmuir and Freundlich models were used to model the experimental data. The convergence between the experimental values and those predicted by the model, is expressed as a linear regression correlation coefficient (R2) and was employed as the model selection criterion. The adsorption process followed the pseudo-second order kinetic model and obeyed the Langmuir isotherm model. The thermodynamic parameters were calculated as: ΔH°=9.04 kJmol-1,ΔS°=0.03 kJmol-1 K-1, ΔG°=-0.35 kJmol-1 and indicated the endothermic and spontaneous nature of the adsorption process, governed by physisorption interactions.

Keywords: adsorption, hexavalent chromium, kinetics, thermodynamics

Procedia PDF Downloads 299
17841 Presenting the Mathematical Model to Determine Retention in the Watersheds

Authors: S. Shamohammadi, L. Razavi

Abstract:

This paper based on the principle concepts of SCS-CN model, a new mathematical model for computation of retention potential (S) presented. In the mathematical model, not only precipitation-runoff concepts in SCS-CN model are precisely represented in a mathematical form, but also new concepts, called “maximum retention” and “total retention” is introduced, and concepts of potential retention capacity, maximum retention, and total retention have been separated from each other. In the proposed model, actual retention (F), maximum actual retention (Fmax), total retention (S), maximum retention (Smax), and potential retention (Sp), for the first time clearly defined, so that Sp is not variable, but a function of morphological characteristics of the watershed. Indeed, based on the mathematical relation of the conceptual curve of SCS-CN model, the proposed model provides a new method for the computation of actual retention in watershed and it simply determined runoff based on. In the corresponding relations, in addition to Precipitation (P), Initial retention (Ia), cumulative values of actual retention capacity (F), total retention (S), runoff (Q), antecedent moisture (M), potential retention (Sp), total retention (S), we introduced Fmax and Fmin referring to maximum and minimum actual retention, respectively. As well as, ksh is a coefficient which depends on morphological characteristics of the watershed. Advantages of the modified version versus the original model include a better precision, higher performance, easier calibration and speed computing.

Keywords: model, mathematical, retention, watershed, SCS

Procedia PDF Downloads 457
17840 Instructional Leadership, Information and Communications Technology Competencies and Performance of Basic Education Teachers

Authors: Jay Martin L. Dionaldo

Abstract:

This study aimed to develop a causal model on the performance of the basic education teachers in the Division of Malaybalay City for the school year 2018-2019. This study used the responses of 300 randomly selected basic education teachers of Malaybalay City, Bukidnon. They responded to the three sets of questionnaires patterned from the National Education Association (2018) on instructional leadership of teachers, the questionnaire of Caluza et al., (2017) for information and communications technology competencies and the questionnaire on the teachers’ performance using the Individual Performance Commitment and Review Form (IPCRF) adopted by the Department of Education (DepEd). Descriptive statistics such as mean for the description, correlation for a relationship, regression for the extent influence, and path analysis for the model that best fits teachers’ performance were used. Result showed that basic education teachers have a very satisfactory level of performance. Also, the teachers highly practice instructional leadership practices in terms of coaching and mentoring, facilitating collaborative relationships, and community awareness and engagement. On the other hand, they are proficient users of ICT in terms of technology operations and concepts and basic users in terms of their pedagogical indicators. Furthermore, instructional leadership, coaching and mentoring, facilitating collaborative relationships and community awareness and engagement and information and communications technology competencies; technology operations and concept and pedagogy were significantly correlated toward teachers’ performance. Coaching and mentoring, community awareness and engagement, and technology operations and concept were the best predictors of teachers’ performance. The model that best fit teachers’ performance is anchored on coaching and mentoring of the teachers, embedded with facilitating collaborative relationships, community awareness, and engagement, technology operations, and concepts, and pedagogy.

Keywords: information and communications technology, instructional leadership, coaching and mentoring, collaborative relationship

Procedia PDF Downloads 116
17839 Daily Probability Model of Storm Events in Peninsular Malaysia

Authors: Mohd Aftar Abu Bakar, Noratiqah Mohd Ariff, Abdul Aziz Jemain

Abstract:

Storm Event Analysis (SEA) provides a method to define rainfalls events as storms where each storm has its own amount and duration. By modelling daily probability of different types of storms, the onset, offset and cycle of rainfall seasons can be determined and investigated. Furthermore, researchers from the field of meteorology will be able to study the dynamical characteristics of rainfalls and make predictions for future reference. In this study, four categories of storms; short, intermediate, long and very long storms; are introduced based on the length of storm duration. Daily probability models of storms are built for these four categories of storms in Peninsular Malaysia. The models are constructed by using Bernoulli distribution and by applying linear regression on the first Fourier harmonic equation. From the models obtained, it is found that daily probability of storms at the Eastern part of Peninsular Malaysia shows a unimodal pattern with high probability of rain beginning at the end of the year and lasting until early the next year. This is very likely due to the Northeast monsoon season which occurs from November to March every year. Meanwhile, short and intermediate storms at other regions of Peninsular Malaysia experience a bimodal cycle due to the two inter-monsoon seasons. Overall, these models indicate that Peninsular Malaysia can be divided into four distinct regions based on the daily pattern for the probability of various storm events.

Keywords: daily probability model, monsoon seasons, regions, storm events

Procedia PDF Downloads 343
17838 The Role of Team Efficacy and Coaching on the Relationships between Distributive and Procedural Justice and Job Engagement

Authors: Yoonhee Cho, Gye-Hoon Hong

Abstract:

This study focuses on the roles of distributive and procedural justice on job engagement. Additionally, the study focuses on whether situational factors such as team efficacy and team leaders’ coaching moderate the relationship between distributive and procedural justice and job engagement. Ordinary linear regression was used to analyze data from seven South Korean Companies (total N=346). Results confirmed the hypothesized model indicating that both distributive and procedural justices were positively related to job engagement of employees. Team efficacy and team leaders’ coaching moderated the relationship between distributive justice and job engagement whereas it brought non-significant result found for procedural justice. The facts that two types of justice and the interactive effects of two situational variables were different implied that different managerial strategies should be used when job engagement was to be enhanced.

Keywords: coaching, distributive justice, job engagement, procedural justice, team efficacy

Procedia PDF Downloads 554
17837 On Parameter Estimation of Simultaneous Linear Functional Relationship Model for Circular Variables

Authors: N. A. Mokhtar, A. G. Hussin, Y. Z. Zubairi

Abstract:

This paper proposes a new simultaneous simple linear functional relationship model by assuming equal error variances. We derive the maximum likelihood estimate of the parameters in the simultaneous model and the covariance. We show by simulation study the small bias values of the parameters suggest the suitability of the estimation method. As an illustration, the proposed simultaneous model is applied to real data of the wind direction and wave direction measured by two different instruments.

Keywords: simultaneous linear functional relationship model, Fisher information matrix, parameter estimation, circular variables

Procedia PDF Downloads 366
17836 A Study of Population Growth Models and Future Population of India

Authors: Sheena K. J., Jyoti Badge, Sayed Mohammed Zeeshan

Abstract:

A Comparative Study of Exponential and Logistic Population Growth Models in India India is the second most populous city in the world, just behind China, and is going to be in the first place by next year. The Indian population has remarkably at higher rate than the other countries from the past 20 years. There were many scientists and demographers who has formulated various models of population growth in order to study and predict the future population. Some of the models are Fibonacci population growth model, Exponential growth model, Logistic growth model, Lotka-Volterra model, etc. These models have been effective in the past to an extent in predicting the population. However, it is essential to have a detailed comparative study between the population models to come out with a more accurate one. Having said that, this research study helps to analyze and compare the two population models under consideration - exponential and logistic growth models, thereby identifying the most effective one. Using the census data of 2011, the approximate population for 2016 to 2031 are calculated for 20 Indian states using both the models, compared and recorded the data with the actual population. On comparing the results of both models, it is found that logistic population model is more accurate than the exponential model, and using this model, we can predict the future population in a more effective way. This will give an insight to the researchers about the effective models of population and how effective these population models are in predicting the future population.

Keywords: population growth, population models, exponential model, logistic model, fibonacci model, lotka-volterra model, future population prediction, demographers

Procedia PDF Downloads 124
17835 Land Degradation Vulnerability Modeling: A Study on Selected Micro Watersheds of West Khasi Hills Meghalaya, India

Authors: Amritee Bora, B. S. Mipun

Abstract:

Land degradation is often used to describe the land environmental phenomena that reduce land’s original productivity both qualitatively and quantitatively. The study of land degradation vulnerability primarily deals with “Environmentally Sensitive Areas” (ESA) and the amount of topsoil loss due to erosion. In many studies, it is observed that the assessment of the existing status of land degradation is used to represent the vulnerability. Moreover, it is also noticed that in most studies, the primary emphasis of land degradation vulnerability is to assess its sensitivity to soil erosion only. However, the concept of land degradation vulnerability can have different objectives depending upon the perspective of the study. It shows the extent to which changes in land use land cover can imprint their effect on the land. In other words, it represents the susceptibility of a piece of land to degrade its productive quality permanently or in the long run. It is also important to mention that the vulnerability of land degradation is not a single factor outcome. It is a probability assessment to evaluate the status of land degradation and needs to consider both biophysical and human induce parameters. To avoid the complexity of the previous models in this regard, the present study has emphasized on to generate a simplified model to assess the land degradation vulnerability in terms of its current human population pressure, land use practices, and existing biophysical conditions. It is a “Mixed-Method” termed as the land degradation vulnerability index (LDVi). It was originally inspired by the MEDALUS model (Mediterranean Desertification and Land Use), 1999, and Farazadeh’s 2007 revised version of it. It has followed the guidelines of Space Application Center, Ahmedabad / Indian Space Research Organization for land degradation vulnerability. The model integrates the climatic index (Ci), vegetation index (Vi), erosion index (Ei), land utilization index (Li), population pressure index (Pi), and cover management index (CMi) by giving equal weightage to each parameter. The final result shows that the very high vulnerable zone primarily indicates three (3) prominent circumstances; land under continuous population pressure, high concentration of human settlement, and high amount of topsoil loss due to surface runoff within the study sites. As all the parameters of the model are amalgamated with equal weightage further with the help of regression analysis, the LDVi model also provides a strong grasp of each parameter and how far they are competent to trigger the land degradation process.

Keywords: population pressure, land utilization, soil erosion, land degradation vulnerability

Procedia PDF Downloads 166
17834 Discovering the Dimension of Abstractness: Structure-Based Model that Learns New Categories and Categorizes on Different Levels of Abstraction

Authors: Georgi I. Petkov, Ivan I. Vankov, Yolina A. Petrova

Abstract:

A structure-based model of category learning and categorization at different levels of abstraction is presented. The model compares different structures and expresses their similarity implicitly in the forms of mappings. Based on this similarity, the model can categorize different targets either as members of categories that it already has or creates new categories. The model is novel using two threshold parameters to evaluate the structural correspondence. If the similarity between two structures exceeds the higher threshold, a new sub-ordinate category is created. Vice versa, if the similarity does not exceed the higher threshold but does the lower one, the model creates a new category on higher level of abstraction.

Keywords: analogy-making, categorization, learning of categories, abstraction, hierarchical structure

Procedia PDF Downloads 191
17833 The Gasoil Hydrofining Kinetics Constants Identification

Authors: C. Patrascioiu, V. Matei, N. Nicolae

Abstract:

The paper describes the experiments and the kinetic parameters calculus of the gasoil hydrofining. They are presented experimental results of gasoil hidrofining using Mo and promoted with Ni on aluminum support catalyst. The authors have adapted a kinetic model gasoil hydrofining. Using this proposed kinetic model and the experimental data they have calculated the parameters of the model. The numerical calculus is based on minimizing the difference between the experimental sulf concentration and kinetic model estimation.

Keywords: hydrofining, kinetic, modeling, optimization

Procedia PDF Downloads 438
17832 A Mean–Variance–Skewness Portfolio Optimization Model

Authors: Kostas Metaxiotis

Abstract:

Portfolio optimization is one of the most important topics in finance. This paper proposes a mean–variance–skewness (MVS) portfolio optimization model. Traditionally, the portfolio optimization problem is solved by using the mean–variance (MV) framework. In this study, we formulate the proposed model as a three-objective optimization problem, where the portfolio's expected return and skewness are maximized whereas the portfolio risk is minimized. For solving the proposed three-objective portfolio optimization model we apply an adapted version of the non-dominated sorting genetic algorithm (NSGAII). Finally, we use a real dataset from FTSE-100 for validating the proposed model.

Keywords: evolutionary algorithms, portfolio optimization, skewness, stock selection

Procedia PDF Downloads 198
17831 Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine

Authors: Bingchun Liu, Pei-Chann Chang, Natasha Huang, Dun Li

Abstract:

Machine Learning and Data Mining are the two important tools for extracting useful information and knowledge from large datasets. In machine learning, classification is a wildly used technique to predict qualitative variables and is generally preferred over regression from an operational point of view. Due to the enormous increase in air pollution in various countries especially China, Air Quality Classification has become one of the most important topics in air quality research and modelling. This study aims at introducing a hybrid classification model based on information theory and Support Vector Machine (SVM) using the air quality data of four cities in China namely Beijing, Guangzhou, Shanghai and Tianjin from Jan 1, 2014 to April 30, 2016. China's Ministry of Environmental Protection has classified the daily air quality into 6 levels namely Serious Pollution, Severe Pollution, Moderate Pollution, Light Pollution, Good and Excellent based on their respective Air Quality Index (AQI) values. Using the information theory, information gain (IG) is calculated and feature selection is done for both categorical features and continuous numeric features. Then SVM Machine Learning algorithm is implemented on the selected features with cross-validation. The final evaluation reveals that the IG and SVM hybrid model performs better than SVM (alone), Artificial Neural Network (ANN) and K-Nearest Neighbours (KNN) models in terms of accuracy as well as complexity.

Keywords: machine learning, air quality classification, air quality index, information gain, support vector machine, cross-validation

Procedia PDF Downloads 235
17830 Developing a Total Quality Management Model Using Structural Equation Modeling for Indonesian Healthcare Industry

Authors: Jonny, T. Yuri M. Zagloel

Abstract:

This paper is made to present an Indonesian Healthcare model. Currently, there are nine TQM (Total Quality Management) practices in healthcare industry. However, these practices are not integrated yet. Therefore, this paper aims to integrate these practices as a model by using Structural Equation Modeling (SEM). After administering about 210 questionnaires to various stakeholders of this industry, a LISREL program was used to evaluate the model's fitness. The result confirmed that the model is fit because the p-value was about 0.45 or above required 0.05. This has signified that previously mentioned of nine TQM practices are able to be integrated as an Indonesian healthcare model.

Keywords: healthcare, total quality management (TQM), structural equation modeling (SEM), linear structural relations (LISREL)

Procedia PDF Downloads 292
17829 Solving Dimensionality Problem and Finding Statistical Constructs on Latent Regression Models: A Novel Methodology with Real Data Application

Authors: Sergio Paez Moncaleano, Alvaro Mauricio Montenegro

Abstract:

This paper presents a novel statistical methodology for measuring and founding constructs in Latent Regression Analysis. This approach uses the qualities of Factor Analysis in binary data with interpretations on Item Response Theory (IRT). In addition, based on the fundamentals of submodel theory and with a convergence of many ideas of IRT, we propose an algorithm not just to solve the dimensionality problem (nowadays an open discussion) but a new research field that promises more fear and realistic qualifications for examiners and a revolution on IRT and educational research. In the end, the methodology is applied to a set of real data set presenting impressive results for the coherence, speed and precision. Acknowledgments: This research was financed by Colciencias through the project: 'Multidimensional Item Response Theory Models for Practical Application in Large Test Designed to Measure Multiple Constructs' and both authors belong to SICS Research Group from Universidad Nacional de Colombia.

Keywords: item response theory, dimensionality, submodel theory, factorial analysis

Procedia PDF Downloads 372
17828 Anti-Social Media: Implications of Social Media in the Form of Stressors on Our Daily Lives

Authors: Aimen Batool Bint-E-Rashid, Huma Irfan

Abstract:

This research aims to investigate the role of social media (Snapchat, Facebook, Twitter, etc.) in our daily lives and its implication on our everyday routine in the form of stressors. The study has been validated by a social media survey with 150 social media users belonging to various age groups. The study explores how social media can make an individual anti-social in his or her life offline. To explain the phenomenon, we have proposed and evaluated a model based on social media usage and stressors including burnout and social overload. Results, through correlation and regression tests, have revealed that with increase in social media usage, social overload and burnout also increases. Evidence for the fact that excessive social media usage causes social overload and burnout has been provided in the study.

Keywords: burnout, emotional exhaustion, fatigue, stressors, social networking, social media, social overload

Procedia PDF Downloads 207
17827 A Research on Flipped-Classroom Teaching Model in English for Academic Purpose Teaching

Authors: Li Shuang

Abstract:

With rigid teaching procedures and limited academic performance assessment methods, traditional teaching model stands in the way of college English reform in China, which features EAP (English for Academic Purpose) teaching. Flipped-classroom teaching, which has been extensively applied to science subjects teaching, however, covers the shortage of traditional teaching model in EAP teaching, via creatively inverting traditional teaching procedures. Besides, the application of flipped-classroom teaching model in EAP teaching also proves that this new teaching philosophy is not confined to science subjects teaching; it goes perfectly well with liberal-arts subjects teaching. Data analysis, desk research survey, and comparative study are referred to in the essay so as to prove its feasibility and advantages in EAP teaching.

Keywords: EAP, traditional teaching method, flipped-classroom teaching model, teaching model design

Procedia PDF Downloads 311
17826 Identifying and Quantifying Factors Affecting Traffic Crash Severity under Heterogeneous Traffic Flow

Authors: Praveen Vayalamkuzhi, Veeraragavan Amirthalingam

Abstract:

Studies on safety on highways are becoming the need of the hour as over 400 lives are lost every day in India due to road crashes. In order to evaluate the factors that lead to different levels of crash severity, it is necessary to investigate the level of safety of highways and their relation to crashes. In the present study, an attempt is made to identify the factors that contribute to road crashes and to quantify their effect on the severity of road crashes. The study was carried out on a four-lane divided rural highway in India. The variables considered in the analysis includes components of horizontal alignment of highway, viz., straight or curve section; time of day, driveway density, presence of median; median opening; gradient; operating speed; and annual average daily traffic. These variables were considered after a preliminary analysis. The major complexities in the study are the heterogeneous traffic and the speed variation between different classes of vehicles along the highway. To quantify the impact of each of these factors, statistical analyses were carried out using Logit model and also negative binomial regression. The output from the statistical models proved that the variables viz., horizontal components of the highway alignment; driveway density; time of day; operating speed as well as annual average daily traffic show significant relation with the severity of crashes viz., fatal as well as injury crashes. Further, the annual average daily traffic has significant effect on the severity compared to other variables. The contribution of highway horizontal components on crash severity is also significant. Logit models can predict crashes better than the negative binomial regression models. The results of the study will help the transport planners to look into these aspects at the planning stage itself in the case of highways operated under heterogeneous traffic flow condition.

Keywords: geometric design, heterogeneous traffic, road crash, statistical analysis, level of safety

Procedia PDF Downloads 302
17825 Climate Related Variability and Stock-Recruitment Relationship of the North Pacific Albacore Tuna

Authors: Ashneel Ajay Singh, Naoki Suzuki, Kazumi Sakuramoto,

Abstract:

The North Pacific albacore (Thunnus alalunga) is a temperate tuna species distributed in the North Pacific which is of significant economic importance to the Pacific Island Nations and Territories. Despite its importance, the stock dynamics and ecological characteristics of albacore still, have gaps in knowledge. The stock-recruitment relationship of the North Pacific stock of albacore tuna was investigated for different density-dependent effects and a regime shift in the stock characteristics in response to changes in environmental and climatic conditions. Linear regression analysis for recruit per spawning biomass (RPS) and recruitment (R) against the female spawning stock biomass (SSB) were significant for the presence of different density-dependent effects and positive for a regime shift in the stock time series. Application of Deming regression to RPS against SSB with the assumption for the presence of observation and process errors in both the dependent and independent variables confirmed the results of simple regression. However, R against SSB results disagreed given variance level of < 3 and agreed with linear regression results given the assumption of variance ≥ 3. Assuming the presence of different density-dependent effects in the albacore tuna time series, environmental and climatic condition variables were compared with R, RPS, and SSB. The significant relationship of R, RPS and SSB were determined with the sea surface temperature (SST), Pacific Decadal Oscillation (PDO) and multivariate El Niño Southern Oscillation (ENSO) with SST being the principal variable exhibiting significantly similar trend with R and RPS. Recruitment is significantly influenced by the dynamics of the SSB as well as environmental conditions which demonstrates that the stock-recruitment relationship is multidimensional. Further investigation of the North Pacific albacore tuna age-class and structure is necessary for further support the results presented here. It is important for fishery managers and decision makers to be vigilant of regime shifts in environmental conditions relating to albacore tuna as it may possibly cause regime shifts in the albacore R and RPS which should be taken into account to effectively and sustainability formulate harvesting plans and management of the species in the North Pacific oceanic region.

Keywords: Albacore tuna, Thunnus alalunga, recruitment, spawning stock biomass, recruits per spawning biomass, sea surface temperature, pacific decadal oscillation, El Niño southern oscillation, density-dependent effects, regime shift

Procedia PDF Downloads 307
17824 Analytical Model to Predict the Shear Capacity of Reinforced Concrete Beams Externally Strengthened with CFRP Composites Conditions

Authors: Rajai Al-Rousan

Abstract:

This paper presents a proposed analytical model for predicting the shear strength of reinforced concrete beams strengthened with CFRP composites as external reinforcement. The proposed analytical model can predict the shear contribution of CFRP composites of RC beams with an acceptable coefficient of correlation with the tested results. Based on the comparison of the proposed model with the published well-known models (ACI model, Triantafillou model, and Colotti model), the ACI model had a wider range of 0.16 to 10.08 for the ratio between tested and predicted ultimate shears at failure. Also, an acceptable range of 0.27 to 2.78 for the ratio between tested and predicted ultimate shears by the Triantafillou model. Finally, the best prediction (the ratio between the tested and predicted ones) of the ultimate shear capacity is observed by using Colotti model with a range of 0.20 to 1.78. Thus, the contribution of the CFRP composites as external reinforcement can be predicted with high accuracy by using the proposed analytical model.

Keywords: predicting, shear capacity, reinforced concrete, beams, strengthened, externally, CFRP composites

Procedia PDF Downloads 229
17823 Drivers of Adoption Intensity of Certified Maize Varieties in Northern Guinea Savannah of Nigeria: A Triple Hurdle Model Approach

Authors: Kalat P. Duniya

Abstract:

A number of technologies expected to increase maize productivity have been introduced by several research programs at national and international level. To this end, the study sought to identify the factors influencing adoption intensity of certified maize varieties. The data used were obtained from a sample household survey of 406 maize farmers, conducted in the northern guinea savannah of Nigeria through multistage stratified sampling, structured questionnaire. A triple hurdle model was adopted to estimate the determinants of adoption intensity; considering awareness, adoption, and intensity as three separate stages. The result showed that the drivers of farmers’ awareness, adoption, and intensity of usage may not necessarily be the same, and where they are, not of the same magnitude and direction. However, factors which were found to be statistically significant were age, education, membership of association and frequency of extension advice. In addition, awareness and adoption of the technologies were likely to be increased with male respondents. Farmers that were members of either community organizations or cooperative organizations had a higher tendency of being aware and adopting certified maize seed varieties. It was also discovered that though some of the farmers were fully aware of the existence of some certified maize varieties, majority lacked detailed knowledge and technical know-how. There is a need for creation of awareness through an excellent trained extension and restructuring of the educational sector to improve on the adoption process as well as improve maize productivity in the country.

Keywords: adoption, awareness, maize farmers, Nigeria, regression

Procedia PDF Downloads 174
17822 Parametric Study of Vertical Diffusion Stills for Water Desalination

Authors: A. Seleem, M. Mortada, M. El-Morsi, M. Younan

Abstract:

Diffusion stills have been effective in water desalination. The present work represents a model of the distillation process by using vertical single-effect diffusion stills. A semi-analytical model has been developed to model the process. A software computer code using Engineering Equation Solver EES software has been developed to solve the equations of the developed model. An experimental setup has been constructed, and used for the validation of the model. The model is also validated against former literature results. The results obtained from the present experimental test rig, and the data from the literature, have been compared with the results of the code to find its best range of validity. In addition, a parametric analysis of the system has been developed using the model to determine the effect of operating conditions on the system's performance. The dominant parameters that affect the productivity of the still are the hot plate temperature that ranges from (55-90 °C) and feed flow rate in range of (0.00694-0.0211 kg/m2-s).

Keywords: analytical model, solar distillation, sustainable water systems, vertical diffusion still

Procedia PDF Downloads 405
17821 Assessment of Pre-Processing Influence on Near-Infrared Spectra for Predicting the Mechanical Properties of Wood

Authors: Aasheesh Raturi, Vimal Kothiyal, P. D. Semalty

Abstract:

We studied mechanical properties of Eucalyptus tereticornis using FT-NIR spectroscopy. Firstly, spectra were pre-processed to eliminate useless information. Then, prediction model was constructed by partial least squares regression. To study the influence of pre-processing on prediction of mechanical properties for NIR analysis of wood samples, we applied various pretreatment methods like straight line subtraction, constant offset elimination, vector-normalization, min-max normalization, multiple scattering. Correction, first derivative, second derivatives and their combination with other treatment such as First derivative + straight line subtraction, First derivative+ vector normalization and First derivative+ multiplicative scattering correction. The data processing methods in combination of preprocessing with different NIR regions, RMSECV, RMSEP and optimum factors/rank were obtained by optimization process of model development. More than 350 combinations were obtained during optimization process. More than one pre-processing method gave good calibration/cross-validation and prediction/test models, but only the best calibration/cross-validation and prediction/test models are reported here. The results show that one can safely use NIR region between 4000 to 7500 cm-1 with straight line subtraction, constant offset elimination, first derivative and second derivative preprocessing method which were found to be most appropriate for models development.

Keywords: FT-NIR, mechanical properties, pre-processing, PLS

Procedia PDF Downloads 361
17820 Physical Activity Self-Efficacy among Pregnant Women with High Risk for Gestational Diabetes Mellitus: A Cross-Sectional Study

Authors: Xiao Yang, Ji Zhang, Yingli Song, Hui Huang, Jing Zhang, Yan Wang, Rongrong Han, Zhixuan Xiang, Lu Chen, Lingling Gao

Abstract:

Aim and Objectives: To examine physical activity self-efficacy, identify its predictors, and further explore the mechanism of action among the predictors in mainland Chinese pregnant women with high risk for gestational diabetes mellitus (GDM). Background: Physical activity could protect pregnant women from developing GDM. Physical activity self-efficacy was the key predictor of physical activity. Design: A cross-sectional study was conducted from October 2021 to May 2022 in Zhengzhou, China. Methods: 252 eligible pregnant women completed the Pregnancy Physical Activity Self-efficacy Scale, the Social Support for Physical Activity Scale, the Knowledge on Physical Activity Questionnaire, the 7-item Generalized Anxiety Disorder scale, the Edinburgh Postnatal Depression Scale, and a socio-demographic data sheet. Multiple linear regression was applied to explore the predictors of physical activity self-efficacy. Structural equation modeling was used to explore the mechanism of action among the predictors. Results: Chinese pregnant women with a high risk for GDM reported a moderate level of physical activity self-efficacy. The best-fit regression analysis revealed four variables explained 17.5% of the variance in physical activity self-efficacy. Social support for physical activity was the strongest predictor, followed by knowledge of the physical activity, intention to do physical activity, and anxiety symptoms. The model analysis indicated that knowledge of physical activity could release anxiety and depressive symptoms and then increase physical activity self-efficacy. Conclusion: The present study revealed a moderate level of physical activity self-efficacy. Interventions targeting pregnant women with high risk for GDM need to include the predictors of physical activity self-efficacy. Relevance to clinical practice: To facilitate pregnant women with high risk for GDM to engage in physical activity, healthcare professionals may find assess physical activity self-efficacy and intervene as soon as possible on their first antenatal visit. Physical activity intervention programs focused on self-efficacy may be conducted in further research.

Keywords: physical activity, gestational diabetes, self-efficacy, predictors

Procedia PDF Downloads 101
17819 2D and 3D Unsteady Simulation of the Heat Transfer in the Sample during Heat Treatment by Moving Heat Source

Authors: Zdeněk Veselý, Milan Honner, Jiří Mach

Abstract:

The aim of the performed work is to establish the 2D and 3D model of direct unsteady task of sample heat treatment by moving source employing computer model on the basis of finite element method. The complex boundary condition on heat loaded sample surface is the essential feature of the task. Computer model describes heat treatment of the sample during heat source movement over the sample surface. It is started from the 2D task of sample cross section as a basic model. Possibilities of extension from 2D to 3D task are discussed. The effect of the addition of third model dimension on the temperature distribution in the sample is showed. Comparison of various model parameters on the sample temperatures is observed. Influence of heat source motion on the depth of material heat treatment is shown for several velocities of the movement. Presented computer model is prepared for the utilization in laser treatment of machine parts.

Keywords: computer simulation, unsteady model, heat treatment, complex boundary condition, moving heat source

Procedia PDF Downloads 393
17818 An Investigation of Commitment to Marital Relationship Precedents through Self-Expansion in Students from the Medical Science University of Iran

Authors: Mehravar Javid, Laura Reid Harris, Zahra Khodadadi, Rachel Walton

Abstract:

The study aimed to explore commitment precedence through self-expansion among students at the Medical Science University of Shiraz, Iran. Method: The statistical population was comprised of students at Shiraz University of Medical Science during the academic years 2013 to 2014. Using random sampling, 133 married students (50 males and 83 females) were selected. The commitment condition of this studied group was assessed using Adam and Jones' (1999) Marital Commitment Dimensions Scale (DCI), and self-expansion was measured using Aron and Lewandowski's (2002) Self-Expansion Questionnaire. Simple regression analyses investigated commitment precedence via self-expansion. Results: The data revealed a positive correlation between total commitment (r=0.35, p < 0.01), the subscales of commitment to the spouse (r=0.43, p < 0.01), and commitment to marriage (r=0.31, p < 0.01). Regression analyses indicated that perceived self-expansion positively correlated with commitment to marital relationships in married students. The findings suggest that an increased possibility of self-expansion in a marital relationship corresponds with heightened commitment.

Keywords: commitment to marital relationship, married students, relationship dynamics, self-expansion

Procedia PDF Downloads 67