Search results for: systems topology
117 Representational Issues in Learning Solution Chemistry at Secondary School
Authors: Lam Pham, Peter Hubber, Russell Tytler
Abstract:
Students’ conceptual understandings of chemistry concepts/phenomena involve capability to coordinate across the three levels of Johnston’s triangle model. This triplet model is based on reasoning about chemical phenomena across macro, sub-micro and symbolic levels. In chemistry education, there is a need for further examining inquiry-based approaches that enhance students’ conceptual learning and problem solving skills. This research adopted a directed inquiry pedagogy based on students constructing and coordinating representations, to investigate senior school students’ capabilities to flexibly move across Johnston’ levels when learning dilution and molar concentration concepts. The participants comprise 50 grade 11 and 20 grade 10 students and 4 chemistry teachers who were selected from 4 secondary schools located in metropolitan Melbourne, Victoria. This research into classroom practices used ethnographic methodology, involved teachers working collaboratively with the research team to develop representational activities and lesson sequences in the instruction of a unit on solution chemistry. The representational activities included challenges (Representational Challenges-RCs) that used ‘representational tools’ to assist students to move across Johnson’s three levels for dilution phenomena. In this report, the ‘representational tool’ called ‘cross and portion’ model was developed and used in teaching and learning the molar concentration concept. Students’ conceptual understanding and problem solving skills when learning with this model are analysed through group case studies of year 10 and 11 chemistry students. In learning dilution concepts, students in both group case studies actively conducted a practical experiment, used their own language and visualisation skills to represent dilution phenomena at macroscopic level (RC1). At the sub-microscopic level, students generated and negotiated representations of the chemical interactions between solute and solvent underpinning the dilution process. At the symbolic level, students demonstrated their understandings about dilution concepts by drawing chemical structures and performing mathematical calculations. When learning molar concentration with a ‘cross and portion’ model (RC2), students coordinated across visual and symbolic representational forms and Johnson’s levels to construct representations. The analysis showed that in RC1, Year 10 students needed more ‘scaffolding’ in inducing to representations to explicit the form and function of sub-microscopic representations. In RC2, Year 11 students showed clarity in using visual representations (drawings) to link to mathematics to solve representational challenges about molar concentration. In contrast, year 10 students struggled to get match up the two systems, symbolic system of mole per litre (‘cross and portion’) and visual representation (drawing). These conceptual problems do not lie in the students’ mathematical calculation capability but rather in students’ capability to align visual representations with the symbolic mathematical formulations. This research also found that students in both group case studies were able to coordinate representations when probed about the use of ‘cross and portion’ model (in RC2) to demonstrate molar concentration of diluted solutions (in RC1). Students mostly succeeded in constructing ‘cross and portion’ models to represent the reduction of molar concentration of the concentration gradients. In conclusion, this research demonstrated how the strategic introduction and coordination of chemical representations across modes and across the macro, sub-micro and symbolic levels, supported student reasoning and problem solving in chemistry.Keywords: cross and portion, dilution, Johnston's triangle, molar concentration, representations
Procedia PDF Downloads 137116 Will My Home Remain My Castle? Tenants’ Interview Topics regarding an Eco-Friendly Refurbishment Strategy in a Neighborhood in Germany
Authors: Karin Schakib-Ekbatan, Annette Roser
Abstract:
According to the Federal Government’s plans, the German building stock should be virtually climate neutral by 2050. Thus, the “EnEff.Gebäude.2050” funding initiative was launched, complementing the projects of the Energy Transition Construction research initiative. Beyond the construction and renovation of individual buildings, solutions must be found at the neighborhood level. The subject of the presented pilot project is a building ensemble from the Wilhelminian period in Munich, which is planned to be refurbished based on a socially compatible, energy-saving, innovative-technical modernization concept. The building ensemble, with about 200 apartments, is part of the building cooperative. To create an optimized network and possible synergies between researchers and projects of the funding initiative, a Scientific Accompanying Research was established for cross-project analyses of findings and results in order to identify further research needs and trends. Thus, the project is characterized by an interdisciplinary approach that combines constructional, technical, and socio-scientific expertise based on a participatory understanding of research by involving the tenants at an early stage. The research focus is on getting insights into the tenants’ comfort requirements, attitudes, and energy-related behaviour. Both qualitative and quantitative methods are applied based on the Technology-Acceptance-Model (TAM). The core of the refurbishment strategy is a wall heating system intended to replace conventional radiators. A wall heating provides comfortable and consistent radiant heat instead of convection heat, which often causes drafts and dust turbulence. Besides comfort and health, the advantage of wall heating systems is an energy-saving operation. All apartments would be supplied by a uniform basic temperature control system (around perceived room temperature of 18 °C resp. 64,4 °F), which could be adapted to individual preferences via individual heating options (e. g. infrared heating). The new heating system would affect the furnishing of the walls, in terms of not allowing the wall surface to be covered too much with cupboards or pictures. Measurements and simulations of the energy consumption of an installed wall heating system are currently being carried out in a show apartment in this neighborhood to investigate energy-related, economical aspects as well as thermal comfort. In March, interviews were conducted with a total of 12 people in 10 households. The interviews were analyzed by MAXQDA. The main issue of the interview was the fear of reduced self-efficacy within their own walls (not having sufficient individual control over the room temperature or being very limited in furnishing). Other issues concerned the impact that the construction works might have on their daily life, such as noise or dirt. Despite their basically positive attitude towards a climate-friendly refurbishment concept, tenants were very concerned about the further development of the project and they expressed a great need for information events. The results of the interviews will be used for project-internal discussions on technical and psychological aspects of the refurbishment strategy in order to design accompanying workshops with the tenants as well as to prepare a written survey involving all households of the neighbourhood.Keywords: energy efficiency, interviews, participation, refurbishment, residential buildings
Procedia PDF Downloads 126115 Workflow Based Inspection of Geometrical Adaptability from 3D CAD Models Considering Production Requirements
Authors: Tobias Huwer, Thomas Bobek, Gunter Spöcker
Abstract:
Driving forces for enhancements in production are trends like digitalization and individualized production. Currently, such developments are restricted to assembly parts. Thus, complex freeform surfaces are not addressed in this context. The need for efficient use of resources and near-net-shape production will require individualized production of complex shaped workpieces. Due to variations between nominal model and actual geometry, this can lead to changes in operations in Computer-aided process planning (CAPP) to make CAPP manageable for an adaptive serial production. In this context, 3D CAD data can be a key to realizing that objective. Along with developments in the geometrical adaptation, a preceding inspection method based on CAD data is required to support the process planner by finding objective criteria to make decisions about the adaptive manufacturability of workpieces. Nowadays, this kind of decisions is depending on the experience-based knowledge of humans (e.g. process planners) and results in subjective decisions – leading to a variability of workpiece quality and potential failure in production. In this paper, we present an automatic part inspection method, based on design and measurement data, which evaluates actual geometries of single workpiece preforms. The aim is to automatically determine the suitability of the current shape for further machining, and to provide a basis for an objective decision about subsequent adaptive manufacturability. The proposed method is realized by a workflow-based approach, keeping in mind the requirements of industrial applications. Workflows are a well-known design method of standardized processes. Especially in applications like aerospace industry standardization and certification of processes are an important aspect. Function blocks, providing a standardized, event-driven abstraction to algorithms and data exchange, will be used for modeling and execution of inspection workflows. Each analysis step of the inspection, such as positioning of measurement data or checking of geometrical criteria, will be carried out by function blocks. One advantage of this approach is its flexibility to design workflows and to adapt algorithms specific to the application domain. In general, within the specified tolerance range it will be checked if a geometrical adaption is possible. The development of particular function blocks is predicated on workpiece specific information e.g. design data. Furthermore, for different product lifecycle phases, appropriate logics and decision criteria have to be considered. For example, tolerances for geometric deviations are different in type and size for new-part production compared to repair processes. In addition to function blocks, appropriate referencing systems are important. They need to support exact determination of position and orientation of the actual geometries to provide a basis for precise analysis. The presented approach provides an inspection methodology for adaptive and part-individual process chains. The analysis of each workpiece results in an inspection protocol and an objective decision about further manufacturability. A representative application domain is the product lifecycle of turbine blades containing a new-part production and a maintenance process. In both cases, a geometrical adaptation is required to calculate individual production data. In contrast to existing approaches, the proposed initial inspection method provides information to decide between different potential adaptive machining processes.Keywords: adaptive, CAx, function blocks, turbomachinery
Procedia PDF Downloads 298114 Thermal Characterisation of Multi-Coated Lightweight Brake Rotors for Passenger Cars
Authors: Ankit Khurana
Abstract:
The sufficient heat storage capacity or ability to dissipate heat is the most decisive parameter to have an effective and efficient functioning of Friction-based Brake Disc systems. The primary aim of the research was to analyse the effect of multiple coatings on lightweight disk rotors surface which not only alleviates the mass of vehicle & also, augments heat transfer. This research is projected to aid the automobile fraternity with an enunciated view over the thermal aspects in a braking system. The results of the project indicate that with the advent of modern coating technologies a brake system’s thermal curtailments can be removed and together with forced convection, heat transfer processes can see a drastic improvement leading to increased lifetime of the brake rotor. Other advantages of modifying the surface of a lightweight rotor substrate will be to reduce the overall weight of the vehicle, decrease the risk of thermal brake failure (brake fade and fluid vaporization), longer component life, as well as lower noise and vibration characteristics. A mathematical model was constructed in MATLAB which encompassing the various thermal characteristics of the proposed coatings and substrate materials required to approximate the heat flux values in a free and forced convection environment; resembling to a real-time braking phenomenon which could easily be modelled into a full cum scaled version of the alloy brake rotor part in ABAQUS. The finite element of a brake rotor was modelled in a constrained environment such that the nodal temperature between the contact surfaces of the coatings and substrate (Wrought Aluminum alloy) resemble an amalgamated solid brake rotor element. The initial results obtained were for a Plasma Electrolytic Oxidized (PEO) substrate wherein the Aluminum alloy gets a hard ceramic oxide layer grown on its transitional phase. The rotor was modelled and then evaluated in real-time for a constant ‘g’ braking event (based upon the mathematical heat flux input and convective surroundings), which reflected the necessity to deposit a conducting coat (sacrificial) above the PEO layer in order to inhibit thermal degradation of the barrier coating prematurely. Taguchi study was then used to bring out certain critical factors which may influence the maximum operating temperature of a multi-coated brake disc by simulating brake tests: a) an Alpine descent lasting 50 seconds; b) an Autobahn stop lasting 3.53 seconds; c) a Six–high speed repeated stop in accordance to FMVSS 135 lasting 46.25 seconds. Thermal Barrier coating thickness and Vane heat transfer coefficient were the two most influential factors and owing to their design and manufacturing constraints a final optimized model was obtained which survived the 6-high speed stop test as per the FMVSS -135 specifications. The simulation data highlighted the merits for preferring Wrought Aluminum alloy 7068 over Grey Cast Iron and Aluminum Metal Matrix Composite in coherence with the multiple coating depositions.Keywords: lightweight brakes, surface modification, simulated braking, PEO, aluminum
Procedia PDF Downloads 408113 High Purity Lignin for Asphalt Applications: Using the Dawn Technology™ Wood Fractionation Process
Authors: Ed de Jong
Abstract:
Avantium is a leading technology development company and a frontrunner in renewable chemistry. Avantium develops disruptive technologies that enable the production of sustainable high value products from renewable materials and actively seek out collaborations and partnerships with like-minded companies and academic institutions globally, to speed up introductions of chemical innovations in the marketplace. In addition, Avantium helps companies to accelerate their catalysis R&D to improve efficiencies and deliver increased sustainability, growth, and profits, by providing proprietary systems and services to this regard. Many chemical building blocks and materials can be produced from biomass, nowadays mainly from 1st generation based carbohydrates, but potential for competition with the human food chain leads brand-owners to look for strategies to transition from 1st to 2nd generation feedstock. The use of non-edible lignocellulosic feedstock is an equally attractive source to produce chemical intermediates and an important part of the solution addressing these global issues (Paris targets). Avantium’s Dawn Technology™ separates the glucose, mixed sugars, and lignin available in non-food agricultural and forestry residues such as wood chips, wheat straw, bagasse, empty fruit bunches or corn stover. The resulting very pure lignin is dense in energy and can be used for energy generation. However, such a material might preferably be deployed in higher added value applications. Bitumen, which is fossil based, are mostly used for paving applications. Traditional hot mix asphalt emits large quantities of the GHG’s CO₂, CH₄, and N₂O, which is unfavorable for obvious environmental reasons. Another challenge for the bitumen industry is that the petrochemical industry is becoming more and more efficient in breaking down higher chain hydrocarbons to lower chain hydrocarbons with higher added value than bitumen. This has a negative effect on the availability of bitumen. The asphalt market, as well as governments, are looking for alternatives with higher sustainability in terms of GHG emission. The usage of alternative sustainable binders, which can (partly) replace the bitumen, contributes to reduce GHG emissions and at the same time broadens the availability of binders. As lignin is a major component (around 25-30%) of lignocellulosic material, which includes terrestrial plants (e.g., trees, bushes, and grass) and agricultural residues (e.g., empty fruit bunches, corn stover, sugarcane bagasse, straw, etc.), it is globally highly available. The chemical structure shows resemblance with the structure of bitumen and could, therefore, be used as an alternative for bitumen in applications like roofing or asphalt. Applications such as the use of lignin in asphalt need both fundamental research as well as practical proof under relevant use conditions. From a fundamental point of view, rheological aspects, as well as mixing, are key criteria. From a practical point of view, behavior in real road conditions is key (how easy can the asphalt be prepared, how easy can it be applied on the road, what is the durability, etc.). The paper will discuss the fundamentals of the use of lignin as bitumen replacement as well as the status of the different demonstration projects in Europe using lignin as a partial bitumen replacement in asphalts and will especially present the results of using Dawn Technology™ lignin as partial replacement of bitumen.Keywords: biorefinery, wood fractionation, lignin, asphalt, bitumen, sustainability
Procedia PDF Downloads 155112 Encapsulated Bioflavonoids: Nanotechnology Driven Food Waste Utilization
Authors: Niharika Kaushal, Minni Singh
Abstract:
Citrus fruits fall into the category of those commercially grown fruits that constitute an excellent repository of phytochemicals with health-promoting properties. Fruits belonging to the citrus family, when processed by industries, produce tons of agriculture by-products in the form of peels, pulp, and seeds, which normally have no further usage and are commonly discarded. In spite of this, such residues are of paramount importance due to their richness in valuable compounds; therefore, agro-waste is considered a valuable bioresource for various purposes in the food sector. A range of biological properties, including anti-oxidative, anti-cancerous, anti-inflammatory, anti-allergenicity, and anti-aging activity, have been reported for these bioactive compounds. Taking advantage of these inexpensive residual sources requires special attention to extract bioactive compounds. Mandarin (Citrus nobilis X Citrus deliciosa) is a potential source of bioflavonoids with antioxidant properties, and it is increasingly regarded as a functional food. Despite these benefits, flavonoids suffer from a barrier of pre-systemic metabolism in gastric fluid, which impedes their effectiveness. Therefore, colloidal delivery systems can completely overcome the barrier in question. This study involved the extraction and identification of key flavonoids from mandarin biomass. Using a green chemistry approach, supercritical fluid extraction at 330 bar, temperature 40C, and co-solvent 10% ethanol was employed for extraction, and the identification of flavonoids was made by mass spectrometry. As flavonoids are concerned with a limitation, the obtained extract was encapsulated in polylactic-co-glycolic acid (PLGA) matrix using a solvent evaporation method. Additionally, the antioxidant potential was evaluated by the 2,2-diphenylpicrylhydrazyl (DPPH) assay. A release pattern of flavonoids was observed over time using simulated gastrointestinal fluids. From the results, it was observed that the total flavonoids extracted from the mandarin biomass were estimated to be 47.3 ±1.06 mg/ml rutin equivalents as total flavonoids. In the extract, significantly, polymethoxyflavones (PMFs), tangeretin and nobiletin were identified, followed by hesperetin and naringin. The designed flavonoid-PLGA nanoparticles exhibited a particle size between 200-250nm. In addition, the bioengineered nanoparticles had a high entrapment efficiency of nearly 80.0% and maintained stability for more than a year. Flavonoid nanoparticles showed excellent antioxidant activity with an IC50 of 0.55μg/ml. Morphological studies revealed the smooth and spherical shape of nanoparticles as visualized by Field emission scanning electron microscopy (FE-SEM). Simulated gastrointestinal studies of free extract and nanoencapsulation revealed the degradation of nearly half of the flavonoids under harsh acidic conditions in the case of free extract. After encapsulation, flavonoids exhibited sustained release properties, suggesting that polymeric encapsulates are efficient carriers of flavonoids. Thus, such technology-driven and biomass-derived products form the basis for their use in the development of functional foods with improved therapeutic potential and antioxidant properties. As a result, citrus processing waste can be considered a new resource that has high value and can be used for promoting its utilization.Keywords: citrus, agrowaste, flavonoids, nanoparticles
Procedia PDF Downloads 130111 Extension of Moral Agency to Artificial Agents
Authors: Sofia Quaglia, Carmine Di Martino, Brendan Tierney
Abstract:
Artificial Intelligence (A.I.) constitutes various aspects of modern life, from the Machine Learning algorithms predicting the stocks on Wall streets to the killing of belligerents and innocents alike on the battlefield. Moreover, the end goal is to create autonomous A.I.; this means that the presence of humans in the decision-making process will be absent. The question comes naturally: when an A.I. does something wrong when its behavior is harmful to the community and its actions go against the law, which is to be held responsible? This research’s subject matter in A.I. and Robot Ethics focuses mainly on Robot Rights and its ultimate objective is to answer the questions: (i) What is the function of rights? (ii) Who is a right holder, what is personhood and the requirements needed to be a moral agent (therefore, accountable for responsibility)? (iii) Can an A.I. be a moral agent? (ontological requirements) and finally (iv) if it ought to be one (ethical implications). With the direction to answer this question, this research project was done via a collaboration between the School of Computer Science in the Technical University of Dublin that oversaw the technical aspects of this work, as well as the Department of Philosophy in the University of Milan, who supervised the philosophical framework and argumentation of the project. Firstly, it was found that all rights are positive and based on consensus; they change with time based on circumstances. Their function is to protect the social fabric and avoid dangerous situations. The same goes for the requirements considered necessary to be a moral agent: those are not absolute; in fact, they are constantly redesigned. Hence, the next logical step was to identify what requirements are regarded as fundamental in real-world judicial systems, comparing them to that of ones used in philosophy. Autonomy, free will, intentionality, consciousness and responsibility were identified as the requirements to be considered a moral agent. The work went on to build a symmetrical system between personhood and A.I. to enable the emergence of the ontological differences between the two. Each requirement is introduced, explained in the most relevant theories of contemporary philosophy, and observed in its manifestation in A.I. Finally, after completing the philosophical and technical analysis, conclusions were drawn. As underlined in the research questions, there are two issues regarding the assignment of moral agency to artificial agent: the first being that all the ontological requirements must be present and secondly being present or not, whether an A.I. ought to be considered as an artificial moral agent. From an ontological point of view, it is very hard to prove that an A.I. could be autonomous, free, intentional, conscious, and responsible. The philosophical accounts are often very theoretical and inconclusive, making it difficult to fully detect these requirements on an experimental level of demonstration. However, from an ethical point of view it makes sense to consider some A.I. as artificial moral agents, hence responsible for their own actions. When considering artificial agents as responsible, there can be applied already existing norms in our judicial system such as removing them from society, and re-educating them, in order to re-introduced them to society. This is in line with how the highest profile correctional facilities ought to work. Noticeably, this is a provisional conclusion and research must continue further. Nevertheless, the strength of the presented argument lies in its immediate applicability to real world scenarios. To refer to the aforementioned incidents, involving the murderer of innocents, when this thesis is applied it is possible to hold an A.I. accountable and responsible for its actions. This infers removing it from society by virtue of its un-usability, re-programming it and, only when properly functioning, re-introducing it successfullyKeywords: artificial agency, correctional system, ethics, natural agency, responsibility
Procedia PDF Downloads 190110 The Use of Artificial Intelligence in the Context of a Space Traffic Management System: Legal Aspects
Authors: George Kyriakopoulos, Photini Pazartzis, Anthi Koskina, Crystalie Bourcha
Abstract:
The need for securing safe access to and return from outer space, as well as ensuring the viability of outer space operations, maintains vivid the debate over the promotion of organization of space traffic through a Space Traffic Management System (STM). The proliferation of outer space activities in recent years as well as the dynamic emergence of the private sector has gradually resulted in a diverse universe of actors operating in outer space. The said developments created an increased adverse impact on outer space sustainability as the case of the growing number of space debris clearly demonstrates. The above landscape sustains considerable threats to outer space environment and its operators that need to be addressed by a combination of scientific-technological measures and regulatory interventions. In this context, recourse to recent technological advancements and, in particular, to Artificial Intelligence (AI) and machine learning systems, could achieve exponential results in promoting space traffic management with respect to collision avoidance as well as launch and re-entry procedures/phases. New technologies can support the prospects of a successful space traffic management system at an international scale by enabling, inter alia, timely, accurate and analytical processing of large data sets and rapid decision-making, more precise space debris identification and tracking and overall minimization of collision risks and reduction of operational costs. What is more, a significant part of space activities (i.e. launch and/or re-entry phase) takes place in airspace rather than in outer space, hence the overall discussion also involves the highly developed, both technically and legally, international (and national) Air Traffic Management System (ATM). Nonetheless, from a regulatory perspective, the use of AI for the purposes of space traffic management puts forward implications that merit particular attention. Key issues in this regard include the delimitation of AI-based activities as space activities, the designation of the applicable legal regime (international space or air law, national law), the assessment of the nature and extent of international legal obligations regarding space traffic coordination, as well as the appropriate liability regime applicable to AI-based technologies when operating for space traffic coordination, taking into particular consideration the dense regulatory developments at EU level. In addition, the prospects of institutionalizing international cooperation and promoting an international governance system, together with the challenges of establishment of a comprehensive international STM regime are revisited in the light of intervention of AI technologies. This paper aims at examining regulatory implications advanced by the use of AI technology in the context of space traffic management operations and its key correlating concepts (SSA, space debris mitigation) drawing in particular on international and regional considerations in the field of STM (e.g. UNCOPUOS, International Academy of Astronautics, European Space Agency, among other actors), the promising advancements of the EU approach to AI regulation and, last but not least, national approaches regarding the use of AI in the context of space traffic management, in toto. Acknowledgment: The present work was co-funded by the European Union and Greek national funds through the Operational Program "Human Resources Development, Education and Lifelong Learning " (NSRF 2014-2020), under the call "Supporting Researchers with an Emphasis on Young Researchers – Cycle B" (MIS: 5048145).Keywords: artificial intelligence, space traffic management, space situational awareness, space debris
Procedia PDF Downloads 261109 Design Aspects for Developing a Microfluidics Diagnostics Device Used for Low-Cost Water Quality Monitoring
Authors: Wenyu Guo, Malachy O’Rourke, Mark Bowkett, Michael Gilchrist
Abstract:
Many devices for real-time monitoring of surface water have been developed in the past few years to provide early warning of pollutions and so to decrease the risk of environmental pollution efficiently. One of the most common methodologies used in the detection system is a colorimetric process, in which a container with fixed volume is filled with target ions and reagents to combine a colorimetric dye. The colorimetric ions can sensitively absorb a specific-wavelength radiation beam, and its absorbance rate is proportional to the concentration of the fully developed product, indicating the concentration of target nutrients in the pre-mixed water samples. In order to achieve precise and rapid detection effect, channels with dimensions in the order of micrometers, i.e., microfluidic systems have been developed and introduced into these diagnostics studies. Microfluidics technology largely reduces the surface to volume ratios and decrease the samples/reagents consumption significantly. However, species transport in such miniaturized channels is limited by the low Reynolds numbers in the regimes. Thus, the flow is extremely laminar state, and diffusion is the dominant mass transport process all over the regimes of the microfluidic channels. The objective of this present work has been to analyse the mixing effect and chemistry kinetics in a stop-flow microfluidic device measuring Nitride concentrations in fresh water samples. In order to improve the temporal resolution of the Nitride microfluidic sensor, we have used computational fluid dynamics to investigate the influence that the effectiveness of the mixing process between the sample and reagent within a microfluidic device exerts on the time to completion of the resulting chemical reaction. This computational approach has been complemented by physical experiments. The kinetics of the Griess reaction involving the conversion of sulphanilic acid to a diazonium salt by reaction with nitrite in acidic solution is set in the Laminar Finite-rate chemical reaction in the model. Initially, a methodology was developed to assess the degree of mixing of the sample and reagent within the device. This enabled different designs of the mixing channel to be compared, such as straight, square wave and serpentine geometries. Thereafter, the time to completion of the Griess reaction within a straight mixing channel device was modeled and the reaction time validated with experimental data. Further simulations have been done to compare the reaction time to effective mixing within straight, square wave and serpentine geometries. Results show that square wave channels can significantly improve the mixing effect and provides a low standard deviations of the concentrations of nitride and reagent, while for straight channel microfluidic patterns the corresponding values are 2-3 orders of magnitude greater, and consequently are less efficiently mixed. This has allowed us to design novel channel patterns of micro-mixers with more effective mixing that can be used to detect and monitor levels of nutrients present in water samples, in particular, Nitride. Future generations of water quality monitoring and diagnostic devices will easily exploit this technology.Keywords: nitride detection, computational fluid dynamics, chemical kinetics, mixing effect
Procedia PDF Downloads 205108 Poly(Trimethylene Carbonate)/Poly(ε-Caprolactone) Phase-Separated Triblock Copolymers with Advanced Properties
Authors: Nikola Toshikj, Michel Ramonda, Sylvain Catrouillet, Jean-Jacques Robin, Sebastien Blanquer
Abstract:
Biodegradable and biocompatible block copolymers have risen as the golden materials in both medical and environmental applications. Moreover, if their architecture is of controlled manner, higher applications can be foreseen. In the meantime, organocatalytic ROP has been promoted as more rapid and immaculate route, compared to the traditional organometallic catalysis, towards efficient synthesis of block copolymer architectures. Therefore, herein we report novel organocatalytic pathway with guanidine molecules (TBD) for supported synthesis of trimethylene carbonate initiated by poly(caprolactone) as pre-polymer. Pristine PTMC-b-PCL-b-PTMC block copolymer structure, without any residual products and clear desired block proportions, was achieved under 1.5 hours at room temperature and verified by NMR spectroscopies and size-exclusion chromatography. Besides, when elaborating block copolymer films, further stability and amelioration of mechanical properties can be achieved via additional reticulation step of precedently methacrylated block copolymers. Subsequently, stimulated by the insufficient studies on the phase-separation/crystallinity relationship in these semi-crystalline block copolymer systems, their intrinsic thermal and morphology properties were investigated by differential scanning calorimetry and atomic force microscopy. Firstly, by DSC measurements, the block copolymers with χABN values superior to 20 presented two distinct glass transition temperatures, close to the ones of the respecting homopolymers, demonstrating an initial indication of a phase-separated system. In the interim, the existence of the crystalline phase was supported by the presence of melting temperature. As expected, the crystallinity driven phase-separated morphology predominated in the AFM analysis of the block copolymers. Neither crosslinking at melted state, hence creation of a dense polymer network, disturbed the crystallinity phenomena. However, the later revealed as sensible to rapid liquid nitrogen quenching directly from the melted state. Therefore, AFM analysis of liquid nitrogen quenched and crosslinked block copolymer films demonstrated a thermodynamically driven phase-separation clearly predominating over the originally crystalline one. These AFM films remained stable with their morphology unchanged even after 4 months at room temperature. However, as demonstrated by DSC analysis once rising the temperature above the melting temperature of the PCL block, neither the crosslinking nor the liquid nitrogen quenching shattered the semi-crystalline network, while the access to thermodynamical phase-separated structures was possible for temperatures under the poly (caprolactone) melting point. Precisely this coexistence of dual crosslinked/crystalline networks in the same copolymer structure allowed us to establish, for the first time, the shape-memory properties in such materials, as verified by thermomechanical analysis. Moreover, the response temperature to the material original shape depended on the block copolymer emplacement, hence PTMC or PCL as end-block. Therefore, it has been possible to reach a block copolymer with transition temperature around 40°C thus opening potential real-life medical applications. In conclusion, the initial study of phase-separation/crystallinity relationship in PTMC-b-PCL-b-PTMC block copolymers lead to the discovery of novel shape memory materials with superior properties, widely demanded in modern-life applications.Keywords: biodegradable block copolymers, organocatalytic ROP, self-assembly, shape-memory
Procedia PDF Downloads 129107 Gene Cloning and Expression of Azoreductases from Azo-Degraders Lysinibacillus macrolides and Bacillus coagulans Isolated from Egyptian Industrial Wastewater
Authors: Omaima A. Sharaf, Wafaa M. Abd El-Rahim, Hassan Moawad, Michael J. Sadowsky
Abstract:
Textile industry is one of the important industries in the worldwide. It is known that the eco-friendly industrial and agricultural activities are significant for socio-economic stability of all countries. The absence of appropriate industrial waste water treatments is essential barrier for sustainable development in food and agricultural sectors especially in developing country like Egypt. Thus, the development of enzymatic bioremediation technology for textile dye removal will enhance the collaboration between scientists who develop the technology and industry where this technology will be implemented towards the safe disposal of the textile dye wastes. Highly efficient microorganisms are of most importance in developing and using highly effective biological treatment processes. Bacterial degradation of azo dyes is generally initiated by an enzymatic step that involves cleavage of azo linkages, usually with the aid of an azoreductase as electron donor. Thus, expanding the spectrum of microorganisms with high enzymatic activities as azoreductases and discovering novel azo-dye degrading enzymes, with enhanced stability and superior catalytic properties, are necessary for many environmental and industrial applications. Consequently, the use of molecular tools has become increasingly integrated into the understanding of enzyme properties and characterization. Researchers have utilized a gene cloning and expression methods as a tool to produce recombinant protein for decolorizing dyes more efficiently. Thus, presumptive evidence for the presence of genes encoding azoreductases in the genomes of selected local, and most potent azo-degrading strains were obtained by using specific oligonucleotides primers. These potent strains have been isolated from textile industrial wastewater in Egypt and identified using 16S rRNA sequence analysis as 'Lysinibacillus macrolidesB8, Brevibacillus parabrevisB11, Bacillus coagulansB7, and B. cereusB5'. PCR products of two full length genes designated as (AZO1;621bp and AZO2;534bp) were detected. BLASTx results indicated that AZO1 gene was corresponding to predicted azoreductase from of Bacillus sp. ABP14, complete genome, multispecies azoreductase [Bacillus], It was submitted to the gene bank by an accession no., BankIt2085371 AZO1 MG923210 (621bp; 207 amino acids). AZO1 was generated from the DNA of our identified strains Lysinibacillus macrolidesB8. On the other hand, AZO2 gene was corresponding to a predicted azoreductase from Bacillus cereus strain S2-8. Gene bank accession no. was BankIt2085839 AZO2 MG932081 (534bp;178 amino acids) and it was amplified from our Bacillus coagulansB7. Both genes were successfully cloned into pCR2.1TOPO (Invitrogen) and in pET28b+ vectors, then they transformed into E. coli DH5α and BL21(DE3) cells for heterologous expression studies. Our recombinant azoreductases (AZO1&AZO2) exhibited potential enzyme activity and efficiently decolorized an azo dye (Direct violet). They exhibited pH stability between 6 and 8 with optimum temperature up to 60°C and 37 °C after induction by 1mM and 1.5mM IPTG, for both AZO1 &AZO2, respectively. These results suggested that further optimization and purification of these recombinant proteins by using different heterologous expression systems will give great potential for the sustainable utilization of these recombinant enzymes in several industrial applications especially in wastewater treatments.Keywords: azoreductases, decolorization, enzyme activity, gene cloning and expression
Procedia PDF Downloads 129106 Improvements and Implementation Solutions to Reduce the Computational Load for Traffic Situational Awareness with Alerts (TSAA)
Authors: Salvatore Luongo, Carlo Luongo
Abstract:
This paper discusses the implementation solutions to reduce the computational load for the Traffic Situational Awareness with Alerts (TSAA) application, based on Automatic Dependent Surveillance-Broadcast (ADS-B) technology. In 2008, there were 23 total mid-air collisions involving general aviation fixed-wing aircraft, 6 of which were fatal leading to 21 fatalities. These collisions occurred during visual meteorological conditions, indicating the limitations of the see-and-avoid concept for mid-air collision avoidance as defined in the Federal Aviation Administration’s (FAA). The commercial aviation aircraft are already equipped with collision avoidance system called TCAS, which is based on classic transponder technology. This system dramatically reduced the number of mid-air collisions involving air transport aircraft. In general aviation, the same reduction in mid-air collisions has not occurred, so this reduction is the main objective of the TSAA application. The major difference between the original conflict detection application and the TSAA application is that the conflict detection is focused on preventing loss of separation in en-route environments. Instead TSAA is devoted to reducing the probability of mid-air collision in all phases of flight. The TSAA application increases the flight crew traffic situation awareness providing alerts of traffic that are detected in conflict with ownship in support of the see-and-avoid responsibility. The relevant effort has been spent in the design process and the code generation in order to maximize the efficiency and performances in terms of computational load and memory consumption reduction. The TSAA architecture is divided into two high-level systems: the “Threats database” and the “Conflict detector”. The first one receives the traffic data from ADS-B device and provides the memorization of the target’s data history. Conflict detector module estimates ownship and targets trajectories in order to perform the detection of possible future loss of separation between ownship and each target. Finally, the alerts are verified by additional conflict verification logic, in order to prevent possible undesirable behaviors of the alert flag. In order to reduce the computational load, a pre-check evaluation module is used. This pre-check is only a computational optimization, so the performances of the conflict detector system are not modified in terms of number of alerts detected. The pre-check module uses analytical trajectories propagation for both target and ownship. This allows major accuracy and avoids the step-by-step propagation, which requests major computational load. Furthermore, the pre-check permits to exclude the target that is certainly not a threat, using an analytical and efficient geometrical approach, in order to decrease the computational load for the following modules. This software improvement is not suggested by FAA documents, and so it is the main innovation of this work. The efficiency and efficacy of this enhancement are verified using fast-time and real-time simulations and by the execution on a real device in several FAA scenarios. The final implementation also permits the FAA software certification in compliance with DO-178B standard. The computational load reduction allows the installation of TSAA application also on devices with multiple applications and/or low capacity in terms of available memory and computational capabilitiesKeywords: traffic situation awareness, general aviation, aircraft conflict detection, computational load reduction, implementation solutions, software certification
Procedia PDF Downloads 286105 Planning Railway Assets Renewal with a Multiobjective Approach
Authors: João Coutinho-Rodrigues, Nuno Sousa, Luís Alçada-Almeida
Abstract:
Transportation infrastructure systems are fundamental in modern society and economy. However, they need modernizing, maintaining, and reinforcing interventions which require large investments. In many countries, accumulated intervention delays arise from aging and intense use, being magnified by financial constraints of the past. The decision problem of managing the renewal of large backlogs is common to several types of important transportation infrastructures (e.g., railways, roads). This problem requires considering financial aspects as well as operational constraints under a multidimensional framework. The present research introduces a linear programming multiobjective model for managing railway infrastructure asset renewal. The model aims at minimizing three objectives: (i) yearly investment peak, by evenly spreading investment throughout multiple years; (ii) total cost, which includes extra maintenance costs incurred from renewal backlogs; (iii) priority delays related to work start postponements on the higher priority railway sections. Operational constraints ensure that passenger and freight services are not excessively delayed from having railway line sections under intervention. Achieving a balanced annual investment plan, without compromising the total financial effort or excessively postponing the execution of the priority works, was the motivation for pursuing the research which is now presented. The methodology, inspired by a real case study and tested with real data, reflects aspects of the practice of an infrastructure management company and is generalizable to different types of infrastructure (e.g., railways, highways). It was conceived for treating renewal interventions in infrastructure assets, which is a railway network may be rails, ballasts, sleepers, etc.; while a section is under intervention, trains must run at reduced speed, causing delays in services. The model cannot, therefore, allow for an accumulation of works on the same line, which may cause excessively large delays. Similarly, the lines do not all have the same socio-economic importance or service intensity, making it is necessary to prioritize the sections to be renewed. The model takes these issues into account, and its output is an optimized works schedule for the renewal project translatable in Gantt charts The infrastructure management company provided all the data for the first test case study and validated the parameterization. This case consists of several sections to be renewed, over 5 years and belonging to 17 lines. A large instance was also generated, reflecting a problem of a size similar to the USA railway network (considered the largest one in the world), so it is not expected that considerably larger problems appear in real life; an average of 25 years backlog and ten years of project horizon was considered. Despite the very large increase in the number of decision variables (200 times as large), the computational time cost did not increase very significantly. It is thus expectable that just about any real-life problem can be treated in a modern computer, regardless of size. The trade-off analysis shows that if the decision maker allows some increase in max yearly investment (i.e., degradation of objective ii), solutions improve considerably in the remaining two objectives.Keywords: transport infrastructure, asset renewal, railway maintenance, multiobjective modeling
Procedia PDF Downloads 146104 Challenges to Developing a Trans-European Programme for Health Professionals to Recognize and Respond to Survivors of Domestic Violence and Abuse
Authors: June Keeling, Christina Athanasiades, Vaiva Hendrixson, Delyth Wyndham
Abstract:
Recognition and education in violence, abuse, and neglect for medical and healthcare practitioners (REVAMP) is a trans-European project aiming to introduce a training programme that has been specifically developed by partners across seven European countries to meet the needs of medical and healthcare practitioners. Amalgamating the knowledge and experience of clinicians, researchers, and educators from interdisciplinary and multi-professional backgrounds, REVAMP has tackled the under-resourced and underdeveloped area of domestic violence and abuse. The team designed an online training programme to support medical and healthcare practitioners to recognise and respond appropriately to survivors of domestic violence and abuse at their point of contact with a health provider. The REVAMP partner countries include Europe: France, Lithuania, Germany, Greece, Iceland, Norway, and the UK. The training is delivered through a series of interactive online modules, adapting evidence-based pedagogical approaches to learning. Capturing and addressing the complexities of the project impacted the methodological decisions and approaches to evaluation. The challenge was to find an evaluation methodology that captured valid data across all partner languages to demonstrate the extent of the change in knowledge and understanding. Co-development by all team members was a lengthy iterative process, challenged by a lack of consistency in terminology. A mixed methods approach enabled both qualitative and quantitative data to be collected, at the start, during, and at the conclusion of the training for the purposes of evaluation. The module content and evaluation instrument were accessible in each partner country's language. Collecting both types of data provided a high-level snapshot of attainment via the quantitative dataset and an in-depth understanding of the impact of the training from the qualitative dataset. The analysis was mixed methods, with integration at multiple interfaces. The primary focus of the analysis was to support the overall project evaluation for the funding agency. A key project outcome was identifying that the trans-European approach posed several challenges. Firstly, the project partners did not share a first language or a legal or professional approach to domestic abuse and neglect. This was negotiated through complex, systematic, and iterative interaction between team members so that consensus could be achieved. Secondly, the context of the data collection in several different cultural, educational, and healthcare systems across Europe challenged the development of a robust evaluation. The participants in the pilot evaluation shared that the training was contemporary, well-designed, and of great relevance to inform practice. Initial results from the evaluation indicated that the participants were drawn from more than eight partner countries due to the online nature of the training. The primary results indicated a high level of engagement with the content and achievement through the online assessment. The main finding was that the participants perceived the impact of domestic abuse and neglect in very different ways in their individual professional contexts. Most significantly, the participants recognised the need for the training and the gap that existed previously. It is notable that a mixed-methods evaluation of a trans-European project is unusual at this scale.Keywords: domestic violence, e-learning, health professionals, trans-European
Procedia PDF Downloads 85103 The Development, Use and Imapct of an Open Source, Web-Based, Video-Annoation Tool to Provide Job-Embedded Professional Development for Educators: The Coaching Companion
Authors: Gail Joseph
Abstract:
In the United States, to advance the quality and education requirements of PreK teachers, there are concerns regarding barriers for existing early childhood educators to access formal degrees and ongoing professional development. Barriers exist related to affordability and access. Affordability is a key factor that impacts teachers access to degree programs. The lack of financial resources makes it difficult for many qualified candidates to begin, and complete, degree programs. Even if funding was not an issue, accessibility remains a pressing issue in higher education. Some common barriers include geography, long work hours, lack of professional community, childcare, and clear articulation agreements. Greater flexibility is needed to allow all early childhood professionals to pursue college coursework that takes into consideration the many competing demands on their schedules. For these busy professionals, it is particularly important that professional development opportunities are available “on demand” and are seen as relevant to their work. Courses that are available during non-traditional hours make attendance more accessible, and professional development that is relevant to what they need to know and be able to do to be effective in their current positions increase access to and the impact of ongoing professional education. EarlyEdU at the University of Washington provides institutes of higher education and state professional development systems with free comprehensive, competency based college courses based on the latest science of how to optimize child learning and outcomes across developmental domains. The coursework embeds an intentional teaching framework which requires teachers to know what to do in the moment, see effective teaching in themselves and others, enact these practices in the classroom, reflect on what works and what does not, and improve with thoughtful practices. Reinforcing the Intentional Teaching Framework in EarlyEdU courses is the Coaching Companion, an open source, web-based video annotation learning tool that supports coaching in higher education by enabling students to view and refine their teaching practices. The tool is integrated throughout EarlyEdU courses. With the Coaching Companion, students see upload teaching interactions on video and then reflect on the degree to which they incorporate evidence-based practices. Coaching Companion eliminates the traditional separation of theory and practice in college-based teacher preparation. Together, the Intentional Teaching Framework and the Coaching Companion transform the course instructor into a job-embedded coach. The instructor watches student interactions with children on video using the Coaching Companion and looks specifically for interactions defined in course assignments, readings, and lectures. Based on these observations, the instructor offers feedback and proposes next steps. Developed on federal and philanthropic funds, all EarlyEdU courses and the Coaching Companion are available for free to 2= and 4-year colleges and universities with early childhood degrees, as well as to state early learning and education departments to increase access to high quality professional development. We studied the impact of the Coaching Companion in two courses and demonstrated a significant increase in the quality of teacher-child interactions as measured by the PreK CLASS quality teaching assessment. Implications are discussed related to policy and practice.Keywords: education technology, distance education, early childhood education, professional development
Procedia PDF Downloads 134102 EGF Serum Level in Diagnosis and Prediction of Mood Disorder in Adolescents and Young Adults
Authors: Monika Dmitrzak-Weglarz, Aleksandra Rajewska-Rager, Maria Skibinska, Natalia Lepczynska, Piotr Sibilski, Joanna Pawlak, Pawel Kapelski, Joanna Hauser
Abstract:
Epidermal growth factor (EGF) is a well-known neurotrophic factor that involves in neuronal growth and synaptic plasticity. The proteomic research provided in order to identify novel candidate biological markers for mood disorders focused on elevated EGF serum level in patients during depression episode. However, the EGF association with mood disorder spectrum among adolescents and young adults has not been studied extensively. In this study, we aim to investigate the serum levels of EGF in adolescents and young adults during hypo/manic, depressive episodes and in remission compared to healthy control group. In our study, we involved 80 patients aged 12-24 years in 2-year follow-up study with a primary diagnosis of mood disorder spectrum, and 35 healthy volunteers matched by age and gender. Diagnoses were established according to DSM-IV-TR criteria using structured clinical interviews: K-SADS for child and adolescents, and SCID for young adults. Clinical and biological evaluations were made at baseline and euthymic mood (at 3th or 6th month of treatment and after 1 and 2 years). The Young Mania Rating Scale and Hamilton Rating Scale for Depression were used for assessment. The study protocols were approved by the relevant ethics committee. Serum protein concentration was determined by Enzyme-Linked Immunosorbent Assays (ELISA) method. Human EGF (cat. no DY 236) DuoSet ELISA kit was used (R&D Systems). Serum EGF levels were analysed with following variables: age, age under 18 and above 18 years old, sex, family history of affective disorders, drug-free vs. medicated. Shapiro-Wilk test was used to test the normality of the data. The homogeneity of variance was calculated with Levene’s test. EGF levels showed non-normal distribution and the homogeneity of variance was violated. Non-parametric tests: Mann-Whitney U test, Kruskall-Wallis ANOVA, Friedman’s ANOVA, Wilcoxon signed rank test, Spearman correlation coefficient was applied in the analyses The statistical significance level was set at p<0.05. Elevated EGF level at baseline (p=0.001) and at month 24 (p=0.02) was detected in study subjects compared with controls. Increased EGF level in women at month 12 (p=0.02) compared to men in study group have been observed. Using Wilcoxon signed rank test differences in EGF levels were detected: decrease from baseline to month 3 (p=0.014) and increase comparing: month 3 vs. 24 (p=0.013); month 6 vs. 12 (p=0.021) and vs. 24 (p=0.008). EGF level at baseline was negatively correlated with depression and mania occurrence at 24 months. EGF level at 24 months was positively correlated with depression and mania occurrence at 12 months. No other correlations of EGF levels with clinical and demographical variables have been detected. The findings of the present study indicate that EGF serum level is significantly elevated in the study group of patients compared to the controls. We also observed fluctuations in EGF levels during two years of disease observation. EGF seems to be useful as an early marker for prediction of diagnosis, course of illness and treatment response in young patients during first episode od mood disorders, which requires further investigation. Grant was founded by National Science Center in Poland no 2011/03/D/NZ5/06146.Keywords: biological marker, epidermal growth factor, mood disorders, prediction
Procedia PDF Downloads 190101 Development and Experimental Validation of Coupled Flow-Aerosol Microphysics Model for Hot Wire Generator
Authors: K. Ghosh, S. N. Tripathi, Manish Joshi, Y. S. Mayya, Arshad Khan, B. K. Sapra
Abstract:
We have developed a CFD coupled aerosol microphysics model in the context of aerosol generation from a glowing wire. The governing equations can be solved implicitly for mass, momentum, energy transfer along with aerosol dynamics. The computationally efficient framework can simulate temporal behavior of total number concentration and number size distribution. This formulation uniquely couples standard K-Epsilon scheme with boundary layer model with detailed aerosol dynamics through residence time. This model uses measured temperatures (wire surface and axial/radial surroundings) and wire compositional data apart from other usual inputs for simulations. The model predictions show that bulk fluid motion and local heat distribution can significantly affect the aerosol behavior when the buoyancy effect in momentum transfer is considered. Buoyancy generated turbulence was found to be affecting parameters related to aerosol dynamics and transport as well. The model was validated by comparing simulated predictions with results obtained from six controlled experiments performed with a laboratory-made hot wire nanoparticle generator. Condensation particle counter (CPC) and scanning mobility particle sizer (SMPS) were used for measurement of total number concentration and number size distribution at the outlet of reactor cell during these experiments. Our model-predicted results were found to be in reasonable agreement with observed values. The developed model is fast (fully implicit) and numerically stable. It can be used specifically for applications in the context of the behavior of aerosol particles generated from glowing wire technique and in general for other similar large scale domains. Incorporation of CFD in aerosol microphysics framework provides a realistic platform to study natural convection driven systems/ applications. Aerosol dynamics sub-modules (nucleation, coagulation, wall deposition) have been coupled with Navier Stokes equations modified to include buoyancy coupled K-Epsilon turbulence model. Coupled flow-aerosol dynamics equation was solved numerically and in the implicit scheme. Wire composition and temperature (wire surface and cell domain) were obtained/measured, to be used as input for the model simulations. Model simulations showed a significant effect of fluid properties on the dynamics of aerosol particles. The role of buoyancy was highlighted by observation and interpretation of nucleation zones in the planes above the wire axis. The model was validated against measured temporal evolution, total number concentration and size distribution at the outlet of hot wire generator cell. Experimentally averaged and simulated total number concentrations were found to match closely, barring values at initial times. Steady-state number size distribution matched very well for sub 10 nm particle diameters while reasonable differences were noticed for higher size ranges. Although tuned specifically for the present context (i.e., aerosol generation from hotwire generator), the model can also be used for diverse applications, e.g., emission of particles from hot zones (chimneys, exhaust), fires and atmospheric cloud dynamics.Keywords: nanoparticles, k-epsilon model, buoyancy, CFD, hot wire generator, aerosol dynamics
Procedia PDF Downloads 143100 Fuzzy Multi-Objective Approach for Emergency Location Transportation Problem
Authors: Bidzina Matsaberidze, Anna Sikharulidze, Gia Sirbiladze, Bezhan Ghvaberidze
Abstract:
In the modern world emergency management decision support systems are actively used by state organizations, which are interested in extreme and abnormal processes and provide optimal and safe management of supply needed for the civil and military facilities in geographical areas, affected by disasters, earthquakes, fires and other accidents, weapons of mass destruction, terrorist attacks, etc. Obviously, these kinds of extreme events cause significant losses and damages to the infrastructure. In such cases, usage of intelligent support technologies is very important for quick and optimal location-transportation of emergency service in order to avoid new losses caused by these events. Timely servicing from emergency service centers to the affected disaster regions (response phase) is a key task of the emergency management system. Scientific research of this field takes the important place in decision-making problems. Our goal was to create an expert knowledge-based intelligent support system, which will serve as an assistant tool to provide optimal solutions for the above-mentioned problem. The inputs to the mathematical model of the system are objective data, as well as expert evaluations. The outputs of the system are solutions for Fuzzy Multi-Objective Emergency Location-Transportation Problem (FMOELTP) for disasters’ regions. The development and testing of the Intelligent Support System were done on the example of an experimental disaster region (for some geographical zone of Georgia) which was generated using a simulation modeling. Four objectives are considered in our model. The first objective is to minimize an expectation of total transportation duration of needed products. The second objective is to minimize the total selection unreliability index of opened humanitarian aid distribution centers (HADCs). The third objective minimizes the number of agents needed to operate the opened HADCs. The fourth objective minimizes the non-covered demand for all demand points. Possibility chance constraints and objective constraints were constructed based on objective-subjective data. The FMOELTP was constructed in a static and fuzzy environment since the decisions to be made are taken immediately after the disaster (during few hours) with the information available at that moment. It is assumed that the requests for products are estimated by homeland security organizations, or their experts, based upon their experience and their evaluation of the disaster’s seriousness. Estimated transportation times are considered to take into account routing access difficulty of the region and the infrastructure conditions. We propose an epsilon-constraint method for finding the exact solutions for the problem. It is proved that this approach generates the exact Pareto front of the multi-objective location-transportation problem addressed. Sometimes for large dimensions of the problem, the exact method requires long computing times. Thus, we propose an approximate method that imposes a number of stopping criteria on the exact method. For large dimensions of the FMOELTP the Estimation of Distribution Algorithm’s (EDA) approach is developed.Keywords: epsilon-constraint method, estimation of distribution algorithm, fuzzy multi-objective combinatorial programming problem, fuzzy multi-objective emergency location/transportation problem
Procedia PDF Downloads 32299 Sensorless Machine Parameter-Free Control of Doubly Fed Reluctance Wind Turbine Generator
Authors: Mohammad R. Aghakashkooli, Milutin G. Jovanovic
Abstract:
The brushless doubly-fed reluctance generator (BDFRG) is an emerging, medium-speed alternative to a conventional wound rotor slip-ring doubly-fed induction generator (DFIG) in wind energy conversion systems (WECS). It can provide competitive overall performance and similar low failure rates of a typically 30% rated back-to-back power electronics converter in 2:1 speed ranges but with the following important reliability and cost advantages over DFIG: the maintenance-free operation afforded by its brushless structure, 50% synchronous speed with the same number of rotor poles (allowing the use of a more compact, and more efficient two-stage gearbox instead of a vulnerable three-stage one), and superior grid integration properties including simpler protection for the low voltage ride through compliance of the fractional converter due to the comparatively higher leakage inductances and lower fault currents. Vector controlled pulse-width-modulated converters generally feature a much lower total harmonic distortion relative to hysteresis counterparts with variable switching rates and as such have been a predominant choice for BDFRG (and DFIG) wind turbines. Eliminating a shaft position sensor, which is often required for control implementation in this case, would be desirable to address the associated reliability issues. This fact has largely motivated the recent growing research of sensorless methods and developments of various rotor position and/or speed estimation techniques for this purpose. The main limitation of all the observer-based control approaches for grid-connected wind power applications of the BDFRG reported in the open literature is the requirement for pre-commissioning procedures and prior knowledge of the machine inductances, which are usually difficult to accurately identify by off-line testing. A model reference adaptive system (MRAS) based sensor-less vector control scheme to be presented will overcome this shortcoming. The true machine parameter independence of the proposed field-oriented algorithm, offering robust, inherently decoupled real and reactive power control of the grid-connected winding, is achieved by on-line estimation of the inductance ratio, the underlying rotor angular velocity and position MRAS observer being reliant upon. Such an observer configuration will be more practical to implement and clearly preferable to the existing machine parameter dependent solutions, and especially bearing in mind that with very little modifications it can be adapted for commercial DFIGs with immediately obvious further industrial benefits and prospects of this work. The excellent encoder-less controller performance with maximum power point tracking in the base speed region will be demonstrated by realistic simulation studies using large-scale BDFRG design data and verified by experimental results on a small laboratory prototype of the WECS emulation facility.Keywords: brushless doubly fed reluctance generator, model reference adaptive system, sensorless vector control, wind energy conversion
Procedia PDF Downloads 6298 Computer-Integrated Surgery of the Human Brain, New Possibilities
Authors: Ugo Galvanetto, Pirto G. Pavan, Mirco Zaccariotto
Abstract:
The discipline of Computer-integrated surgery (CIS) will provide equipment able to improve the efficiency of healthcare systems and, which is more important, clinical results. Surgeons and machines will cooperate in new ways that will extend surgeons’ ability to train, plan and carry out surgery. Patient specific CIS of the brain requires several steps: 1 - Fast generation of brain models. Based on image recognition of MR images and equipped with artificial intelligence, image recognition techniques should differentiate among all brain tissues and segment them. After that, automatic mesh generation should create the mathematical model of the brain in which the various tissues (white matter, grey matter, cerebrospinal fluid …) are clearly located in the correct positions. 2 – Reliable and fast simulation of the surgical process. Computational mechanics will be the crucial aspect of the entire procedure. New algorithms will be used to simulate the mechanical behaviour of cutting through cerebral tissues. 3 – Real time provision of visual and haptic feedback A sophisticated human-machine interface based on ergonomics and psychology will provide the feedback to the surgeon. The present work will address in particular point 2. Modelling the cutting of soft tissue in a structure as complex as the human brain is an extremely challenging problem in computational mechanics. The finite element method (FEM), that accurately represents complex geometries and accounts for material and geometrical nonlinearities, is the most used computational tool to simulate the mechanical response of soft tissues. However, the main drawback of FEM lies in the mechanics theory on which it is based, classical continuum Mechanics, which assumes matter is a continuum with no discontinuity. FEM must resort to complex tools such as pre-defined cohesive zones, external phase-field variables, and demanding remeshing techniques to include discontinuities. However, all approaches to equip FEM computational methods with the capability to describe material separation, such as interface elements with cohesive zone models, X-FEM, element erosion, phase-field, have some drawbacks that make them unsuitable for surgery simulation. Interface elements require a-priori knowledge of crack paths. The use of XFEM in 3D is cumbersome. Element erosion does not conserve mass. The Phase Field approach adopts a diffusive crack model instead of describing true tissue separation typical of surgical procedures. Modelling discontinuities, so difficult when using computational approaches based on classical continuum Mechanics, is instead easy for novel computational methods based on Peridynamics (PD). PD is a non-local theory of mechanics formulated with no use of spatial derivatives. Its governing equations are valid at points or surfaces of discontinuity, and it is, therefore especially suited to describe crack propagation and fragmentation problems. Moreover, PD does not require any criterium to decide the direction of crack propagation or the conditions for crack branching or coalescence; in the PD-based computational methods, cracks develop spontaneously in the way which is the most convenient from an energy point of view. Therefore, in PD computational methods, crack propagation in 3D is as easy as it is in 2D, with a remarkable advantage with respect to all other computational techniques.Keywords: computational mechanics, peridynamics, finite element, biomechanics
Procedia PDF Downloads 8197 Made on Land, Ends Up in the Water "I-Clare" Intelligent Remediation System for Removal of Harmful Contaminants in Water using Modified Reticulated Vitreous Carbon Foam
Authors: Sabina Żołędowska, Tadeusz Ossowski, Robert Bogdanowicz, Jacek Ryl, Paweł Rostkowski, Michał Kruczkowski, Michał Sobaszek, Zofia Cebula, Grzegorz Skowierzak, Paweł Jakóbczyk, Lilit Hovhannisyan, Paweł Ślepski, Iwona Kaczmarczyk, Mattia Pierpaoli, Bartłomiej Dec, Dawid Nidzworski
Abstract:
The circular economy of water presents a pressing environmental challenge in our society. Water contains various harmful substances, such as drugs, antibiotics, hormones, and dioxides, which can pose silent threats. Water pollution has severe consequences for aquatic ecosystems. It disrupts the balance of ecosystems by harming aquatic plants, animals, and microorganisms. Water pollution poses significant risks to human health. Exposure to toxic chemicals through contaminated water can have long-term health effects, such as cancer, developmental disorders, and hormonal imbalances. However, effective remediation systems can be implemented to remove these contaminants using electrocatalytic processes, which offer an environmentally friendly alternative to other treatment methods, and one of them is the innovative iCLARE system. The project's primary focus revolves around a few main topics: Reactor design and construction, selection of a specific type of reticulated vitreous carbon foams (RVC), analytical studies of harmful contaminants parameters and AI implementation. This high-performance electrochemical reactor will be build based on a novel type of electrode material. The proposed approach utilizes the application of reticulated vitreous carbon foams (RVC) with deposited modified metal oxides (MMO) and diamond thin films. The following setup is characterized by high surface area development and satisfactory mechanical and electrochemical properties, designed for high electrocatalytic process efficiency. The consortium validated electrode modification methods that are the base of the iCLARE product and established the procedures for the detection of chemicals detection: - deposition of metal oxides WO3 and V2O5-deposition of boron-doped diamond/nanowalls structures by CVD process. The chosen electrodes (porous Ferroterm electrodes) were stress tested for various parameters that might occur inside the iCLARE machine–corosis, the long-term structure of the electrode surface during electrochemical processes, and energetic efficacy using cyclic polarization and electrochemical impedance spectroscopy (before and after electrolysis) and dynamic electrochemical impedance spectroscopy (DEIS). This tool allows real-time monitoring of the changes at the electrode/electrolyte interphase. On the other hand, the toxicity of iCLARE chemicals and products of electrolysis are evaluated before and after the treatment using MARA examination (IBMM) and HPLC-MS-MS (NILU), giving us information about the harmfulness of using electrode material and the efficiency of iClare system in the disposal of pollutants. Implementation of data into the system that uses artificial intelligence and the possibility of practical application is in progress (SensDx).Keywords: waste water treatement, RVC, electrocatalysis, paracetamol
Procedia PDF Downloads 8996 Multibody Constrained Dynamics of Y-Method Installation System for a Large Scale Subsea Equipment
Authors: Naeem Ullah, Menglan Duan, Mac Darlington Uche Onuoha
Abstract:
The lowering of subsea equipment into the deep waters is a challenging job due to the harsh offshore environment. Many researchers have introduced various installation systems to deploy the payload safely into the deep oceans. In general practice, dual floating vessels are not employed owing to the prevalent safety risks and hazards caused by ever-increasing dynamical effects sourced by mutual interaction between the bodies. However, while keeping in the view of the optimal grounds, such as economical one, the Y-method, the two conventional tugboats supporting the equipment by the two independent strands connected to a tri-plate above the equipment, has been employed to study multibody dynamics of the dual barge lifting operations. In this study, the two tugboats and the suspended payload (Y-method) are deployed for the lowering of subsea equipment into the deep waters as a multibody dynamic system. The two-wire ropes are used for the lifting and installation operation by this Y-method installation system. 6-dof (degree of freedom) for each body are considered to establish coupled 18-dof multibody model by embedding technique or velocity transformation technique. The fundamental and prompt advantage of this technique is that the constraint forces can be eliminated directly, and no extra computational effort is required for the elimination of the constraint forces. The inertial frame of reference is taken at the surface of the water as the time-independent frame of reference, and the floating frames of reference are introduced in each body as the time-dependent frames of reference in order to formulate the velocity transformation matrix. The local transformation of the generalized coordinates to the inertial frame of reference is executed by applying the Euler Angle approach. The spherical joints are articulated amongst the multibody as the kinematic joints. The hydrodynamic force, the two-strand forces, the hydrostatic force, and the mooring forces are taken into consideration as the external forces. The radiation force of the hydrodynamic force is obtained by employing the Cummins equation. The wave exciting part of the hydrodynamic force is obtained by using force response amplitude operators (RAOs) that are obtained by the commercial solver ‘OpenFOAM’. The strand force is obtained by considering the wire rope as an elastic spring. The nonlinear hydrostatic force is obtained by the pressure integration technique at each time step of the wave movement. The mooring forces are evaluated by using Faltinsen analytical approach. ‘The Runge Kutta Method’ of Fourth-Order is employed to evaluate the coupled equations of motion obtained for 18-dof multibody model. The results are correlated with the simulated Orcaflex Model. Moreover, the results from Orcaflex Model are compared with the MOSES Model from previous studies. The MBDS of single barge lifting operation from the former studies are compared with the MBDS of the established dual barge lifting operation. The dynamics of the dual barge lifting operation are found larger in magnitude as compared to the single barge lifting operation. It is noticed that the traction at the top connection point of the cable decreases with the increase in the length, and it becomes almost constant after passing through the splash zone.Keywords: dual barge lifting operation, Y-method, multibody dynamics, shipbuilding, installation of subsea equipment, shipbuilding
Procedia PDF Downloads 20395 Sensing Study through Resonance Energy and Electron Transfer between Föster Resonance Energy Transfer Pair of Fluorescent Copolymers and Nitro-Compounds
Authors: Vishal Kumar, Soumitra Satapathi
Abstract:
Föster Resonance Energy Transfer (FRET) is a powerful technique used to probe close-range molecular interactions. Physically, the FRET phenomenon manifests as a dipole–dipole interaction between closely juxtaposed fluorescent molecules (10–100 Å). Our effort is to employ this FRET technique to make a prototype device for highly sensitive detection of environment pollutant. Among the most common environmental pollutants, nitroaromatic compounds (NACs) are of particular interest because of their durability and toxicity. That’s why, sensitive and selective detection of small amounts of nitroaromatic explosives, in particular, 2,4,6-trinitrophenol (TNP), 2,4-dinitrotoluene (DNT) and 2,4,6-trinitrotoluene (TNT) has been a critical challenge due to the increasing threat of explosive-based terrorism and the need of environmental monitoring of drinking and waste water. In addition, the excessive utilization of TNP in several other areas such as burn ointment, pesticides, glass and the leather industry resulted in environmental accumulation, and is eventually contaminating the soil and aquatic systems. To the date, high number of elegant methods, including fluorimetry, gas chromatography, mass, ion-mobility and Raman spectrometry have been successfully applied for explosive detection. Among these efforts, fluorescence-quenching methods based on the mechanism of FRET show good assembly flexibility, high selectivity and sensitivity. Here, we report a FRET-based sensor system for the highly selective detection of NACs, such as TNP, DNT and TNT. The sensor system is composed of a copolymer Poly [(N,N-dimethylacrylamide)-co-(Boc-Trp-EMA)] (RP) bearing tryptophan derivative in the side chain as donor and dansyl tagged copolymer P(MMA-co-Dansyl-Ala-HEMA) (DCP) as an acceptor. Initially, the inherent fluorescence of RP copolymer is quenched by non-radiative energy transfer to DCP which only happens once the two molecules are within Förster critical distance (R0). The excellent spectral overlap (Jλ= 6.08×10¹⁴ nm⁴M⁻¹cm⁻¹) between donors’ (RP) emission profile and acceptors’ (DCP) absorption profile makes them an exciting and efficient FRET pair i.e. further confirmed by the high rate of energy transfer from RP to DCP i.e. 0.87 ns⁻¹ and lifetime measurement by time correlated single photon counting (TCSPC) to validate the 64% FRET efficiency. This FRET pair exhibited a specific fluorescence response to NACs such as DNT, TNT and TNP with 5.4, 2.3 and 0.4 µM LODs, respectively. The detection of NACs occurs with high sensitivity by photoluminescence quenching of FRET signal induced by photo-induced electron transfer (PET) from electron-rich FRET pair to electron-deficient NAC molecules. The estimated stern-volmer constant (KSV) values for DNT, TNT and TNP are 6.9 × 10³, 7.0 × 10³ and 1.6 × 104 M⁻¹, respectively. The mechanistic details of molecular interactions are established by time-resolved fluorescence, steady-state fluorescence and absorption spectroscopy confirmed that the sensing process is of mixed type, i.e. both dynamic and static quenching as lifetime of FRET system (0.73 ns) is reduced to 0.55, 0.57 and 0.61 ns DNT, TNT and TNP, respectively. In summary, the simplicity and sensitivity of this novel FRET sensor opens up the possibility of designing optical sensor of various NACs in one single platform for developing multimodal sensor for environmental monitoring and future field based study.Keywords: FRET, nitroaromatic, stern-Volmer constant, tryptophan and dansyl tagged copolymer
Procedia PDF Downloads 13694 Digital Adoption of Sales Support Tools for Farmers: A Technology Organization Environment Framework Analysis
Authors: Sylvie Michel, François Cocula
Abstract:
Digital agriculture is an approach that exploits information and communication technologies. These encompass data acquisition tools like mobile applications, satellites, sensors, connected devices, and smartphones. Additionally, it involves transfer and storage technologies such as 3G/4G coverage, low-bandwidth terrestrial or satellite networks, and cloud-based systems. Furthermore, embedded or remote processing technologies, including drones and robots for process automation, along with high-speed communication networks accessible through supercomputers, are integral components of this approach. While farm-level adoption studies regarding digital agricultural technologies have emerged in recent years, they remain relatively limited in comparison to other agricultural practices. To bridge this gap, this study delves into understanding farmers' intention to adopt digital tools, employing the technology, organization, environment framework. A qualitative research design encompassed semi-structured interviews, totaling fifteen in number, conducted with key stakeholders both prior to and following the 2020-2021 COVID-19 lockdowns in France. Subsequently, the interview transcripts underwent thorough thematic content analysis, and the data and verbatim were triangulated for validation. A coding process aimed to systematically organize the data, ensuring an orderly and structured classification. Our research extends its contribution by delineating sub-dimensions within each primary dimension. A total of nine sub-dimensions were identified, categorized as follows: perceived usefulness for communication, perceived usefulness for productivity, and perceived ease of use constitute the first dimension; technological resources, financial resources, and human capabilities constitute the second dimension, while market pressure, institutional pressure, and the COVID-19 situation constitute the third dimension. Furthermore, this analysis enriches the TOE framework by incorporating entrepreneurial orientation as a moderating variable. Managerial orientation emerges as a pivotal factor influencing adoption intention, with producers acknowledging the significance of utilizing digital sales support tools to combat "greenwashing" and elevate their overall brand image. Specifically, it illustrates that producers recognize the potential of digital tools in time-saving and streamlining sales processes, leading to heightened productivity. Moreover, it highlights that the intent to adopt digital sales support tools is influenced by a market mimicry effect. Additionally, it demonstrates a negative association between the intent to adopt these tools and the pressure exerted by institutional partners. Finally, this research establishes a positive link between the intent to adopt digital sales support tools and economic fluctuations, notably during the COVID-19 pandemic. The adoption of sales support tools in agriculture is a multifaceted challenge encompassing three dimensions and nine sub-dimensions. The research delves into the adoption of digital farming technologies at the farm level through the TOE framework. This analysis provides significant insights beneficial for policymakers, stakeholders, and farmers. These insights are instrumental in making informed decisions to facilitate a successful digital transition in agriculture, effectively addressing sector-specific challenges.Keywords: adoption, digital agriculture, e-commerce, TOE framework
Procedia PDF Downloads 6193 Chronic Impact of Silver Nanoparticle on Aerobic Wastewater Biofilm
Authors: Sanaz Alizadeh, Yves Comeau, Arshath Abdul Rahim, Sunhasis Ghoshal
Abstract:
The application of silver nanoparticles (AgNPs) in personal care products, various household and industrial products has resulted in an inevitable environmental exposure of such engineered nanoparticles (ENPs). Ag ENPs, released via household and industrial wastes, reach water resource recovery facilities (WRRFs), yet the fate and transport of ENPs in WRRFs and their potential risk in the biological wastewater processes are poorly understood. Accordingly, our main objective was to elucidate the impact of long-term continuous exposure to AgNPs on biological activity of aerobic wastewater biofilm. The fate, transport and toxicity of 10 μg.L-1and 100 μg.L-1 PVP-stabilized AgNPs (50 nm) were evaluated in an attached growth biological treatment process, using lab-scale moving bed bioreactors (MBBRs). Two MBBR systems for organic matter removal were fed with a synthetic influent and operated at a hydraulic retention time (HRT) of 180 min and 60% volumetric filling ratio of Anox-K5 carriers with specific surface area of 800 m2/m3. Both reactors were operated for 85 days after reaching steady state conditions to develop a mature biofilm. The impact of AgNPs on the biological performance of the MBBRs was characterized over a period of 64 days in terms of the filtered biodegradable COD (SCOD) removal efficiency, the biofilm viability and key enzymatic activities (α-glucosidase and protease). The AgNPs were quantitatively characterized using single-particle inductively coupled plasma mass spectroscopy (spICP-MS), determining simultaneously the particle size distribution, particle concentration and dissolved silver content in influent, bioreactor and effluent samples. The generation of reactive oxygen species and the oxidative stress were assessed as the proposed toxicity mechanism of AgNPs. Results indicated that a low concentration of AgNPs (10 μg.L-1) did not significantly affect the SCOD removal efficiency whereas a significant reduction in treatment efficiency (37%) was observed at 100 μg.L-1AgNPs. Neither the viability nor the enzymatic activities of biofilm were affected at 10 μg.L-1AgNPs but a higher concentration of AgNPs induced cell membrane integrity damage resulting in 31% loss of viability and reduced α-glucosidase and protease enzymatic activities by 31% and 29%, respectively, over the 64-day exposure period. The elevated intercellular ROS in biofilm at a higher AgNPs concentration over time was consistent with a reduced biological biofilm performance, confirming the occurrence of a nanoparticle-induced oxidative stress in the heterotrophic biofilm. The spICP-MS analysis demonstrated a decrease in the nanoparticles concentration over the first 25 days, indicating a significant partitioning of AgNPs into the biofilm matrix in both reactors. The concentration of nanoparticles increased in effluent of both reactors after 25 days, however, indicating a decreased retention capacity of AgNPs in biofilm. The observed significant detachment of biofilm also contributed to a higher release of nanoparticles due to cell-wall destabilizing properties of AgNPs as an antimicrobial agent. The removal efficiency of PVP-AgNPs and the biofilm biological responses were a function of nanoparticle concentration and exposure time. This study contributes to a better understanding of the fate and behavior of AgNPs in biological wastewater processes, providing key information that can be used to predict the environmental risks of ENPs in aquatic ecosystems.Keywords: biofilm, silver nanoparticle, single particle ICP-MS, toxicity, wastewater
Procedia PDF Downloads 26992 Deciphering Information Quality: Unraveling the Impact of Information Distortion in the UK Aerospace Supply Chains
Authors: Jing Jin
Abstract:
The incorporation of artificial intelligence (AI) and machine learning (ML) in aircraft manufacturing and aerospace supply chains leads to the generation of a substantial amount of data among various tiers of suppliers and OEMs. Identifying the high-quality information challenges decision-makers. The application of AI/ML models necessitates access to 'high-quality' information to yield desired outputs. However, the process of information sharing introduces complexities, including distortion through various communication channels and biases introduced by both human and AI entities. This phenomenon significantly influences the quality of information, impacting decision-makers engaged in configuring supply chain systems. Traditionally, distorted information is categorized as 'low-quality'; however, this study challenges this perception, positing that distorted information, contributing to stakeholder goals, can be deemed high-quality within supply chains. The main aim of this study is to identify and evaluate the dimensions of information quality crucial to the UK aerospace supply chain. Guided by a central research question, "What information quality dimensions are considered when defining information quality in the UK aerospace supply chain?" the study delves into the intricate dynamics of information quality in the aerospace industry. Additionally, the research explores the nuanced impact of information distortion on stakeholders' decision-making processes, addressing the question, "How does the information distortion phenomenon influence stakeholders’ decisions regarding information quality in the UK aerospace supply chain system?" This study employs deductive methodologies rooted in positivism, utilizing a cross-sectional approach and a mono-quantitative method -a questionnaire survey. Data is systematically collected from diverse tiers of supply chain stakeholders, encompassing end-customers, OEMs, Tier 0.5, Tier 1, and Tier 2 suppliers. Employing robust statistical data analysis methods, including mean values, mode values, standard deviation, one-way analysis of variance (ANOVA), and Pearson’s correlation analysis, the study interprets and extracts meaningful insights from the gathered data. Initial analyses challenge conventional notions, revealing that information distortion positively influences the definition of information quality, disrupting the established perception of distorted information as inherently low-quality. Further exploration through correlation analysis unveils the varied perspectives of different stakeholder tiers on the impact of information distortion on specific information quality dimensions. For instance, Tier 2 suppliers demonstrate strong positive correlations between information distortion and dimensions like access security, accuracy, interpretability, and timeliness. Conversely, Tier 1 suppliers emphasise strong negative influences on the security of accessing information and negligible impact on information timeliness. Tier 0.5 suppliers showcase very strong positive correlations with dimensions like conciseness and completeness, while OEMs exhibit limited interest in considering information distortion within the supply chain. Introducing social network analysis (SNA) provides a structural understanding of the relationships between information distortion and quality dimensions. The moderately high density of ‘information distortion-by-information quality’ underscores the interconnected nature of these factors. In conclusion, this study offers a nuanced exploration of information quality dimensions in the UK aerospace supply chain, highlighting the significance of individual perspectives across different tiers. The positive influence of information distortion challenges prevailing assumptions, fostering a more nuanced understanding of information's role in the Industry 4.0 landscape.Keywords: information distortion, information quality, supply chain configuration, UK aerospace industry
Procedia PDF Downloads 6791 Horticulture Therapy: A Healing Tool for Combating Depression
Authors: Eric Spruth, Lindsey Herbert, Danielle DiCristofano, Isis Violet Spruth, Drake Von Spruth
Abstract:
Turning dreams into reality, the lifelong passion of Mr. Spruth and the company is to transform garbage-filled courtyards into flourishing flower and vegetable gardens, bringing light, hope, and wellness to not just the space but to the populations served within these public and private spaces. As an Expressive Art Therapist at Cook County Jail, Eric Spruth has implemented gardening projects, mobile radish carts, plant fostering systems, and large-scale murals. Lindsey Herbert, the Manager of Operations and Events at the International Museum of Surgical Science, supports gardening projects with Mr. Spruth along the front lawn of the museum, which will eventually accumulate into a community wellness garden. Mr. Spruth and Ms. Herbert both have dedicated efforts towards fostering awareness of hope and help and accountability for physical and mental wellbeing. Medicinal plants can rightfully be called one of nature’s wonderful healing tools with therapeutic powers. They can inhibit and kill bacteria, lower blood pressure, blood cholesterol, and blood sugar, prevent blood clotting, boost the immune system, and serve as a digestive aid. Some plants have the ability to stimulate the lymphatic system, which expedites the removal of waste products from the body to fight off evil toxins. Many plants are considered effective antioxidants to protect cells against free radical damage, serving to prevent some forms of cancer, heart disease, strokes, and viral infections. Garlic alone can provide us with over two hundred unusual chemicals that have the capability of protecting the human body from a wide variety of diseases. Besides the medicinal qualities of plants, plant and vegetable gardens also have an echoing effect on non-participants to look at something beautiful rather than a concrete courtyard or an unkempt lawn in front of a beautiful building. Plants also purify spaces and affect mood with color therapy. Collective gardening can foster a sense of community and purpose. Additionally, by recognizing the ever-evolving planet with global warming, horticulture therapy teaches important lessons in responsibility, accountability, and sustainability. Growing local food provides an opportunity to be involved in your own mental and physical health and gives you a chance for your own self-resilience, combating depression and a lack of nutrition. In adolescents, the process of watering and caring for plants can teach important life lessons that transcend beyond the garden by providing knowledge on how to care for yourself and how to be an active member of society. It also gives a sense of purpose and pride in transforming a small seed into a plant that can be consumed or enjoyed by others. Mr. Spruth and Ms. Herbert recognize the importance of bringing more green spaces to urban areas, both to serve a nutritional benefit and provide a beautiful transformation to underutilized areas. Gardens can bring beauty, wellness, and hope to dark spaces and provide immeasurable benefits for all.Keywords: growth, hope, mental health, sustainability, transformation, wellness
Procedia PDF Downloads 9490 Evolution of Fluvial-Deltaic System Recorded in Accumulation of Organic Material: From the Example of the Kura River in the South Caspian Basin
Authors: Dadash Huseynov, Elmira Aliyeva, Robert Hoogendoorn, Salomon Kroonenberg
Abstract:
The study of organic material in bottom sediments together with lithologic and biostratigraphic data improves our understanding of the evolution of fluvial and deltaic systems. The modern Kura River delta is located in the Southwest Caspian Sea and is fluvial-dominated. The river distributes its sediment load through three channels oriented North-East, South-East, and South-West. The offshore modern delta consists of thinly bedded or laminated silty clays and dark grey clays. Locally sand and shell-rich horizons occur. Onshore delta is composed of channel-levee sands and floodplain silts and clays. Overall sedimentation rates in the delta determined by the 210Pb method range between 1.5-3.0 cm/yr. We investigated the distribution of organic material in the deltaic sediments in 300 samples selected from 3m deep piston cores. The studies of transparent sections demonstrate that deltaic sediments are enriched in terrestrial debris. It is non-transparent and has an irregular, isometric, or elongated shape, angular edges, black or dark-brown colour, and a clearly expressed fabric. Partially it is dissolved at the edges and is replaced by iron sulphides. Fragments of marine algae have more smooth edges, brown colour. They are transparent; the fabric is rarely preserved. The evidences of dissolution and gelification are well observed. Iron sulphides are common. The recorded third type of organic material has a round, drop-like, or oval shape and belongs to planktonic organisms. Their initial organic material is strongly transformed or replaced by dark organic compounds, probably, neoplasms. The particles are red-brown and transparent. The iron sulphides are not observed. The amount of Corg in the uppermost portion of sediments accumulated in the offshore Kura River delta varies from 0.2 to 1.22%, with median values of 0.6-0.8%. In poorly sorted sediments Corg content changes from 0.24 to 0.97% (average 0.69%), silty-sandy clay - 0.45 to 1.22% (average 0.77%), sandy-silty clay - 0.5 to 0.97% (average 0.67%), silty clay - 0.52 to 0.95% (average 0.70%). The data demonstrate that in sediments deposited during Caspian Sea high stand in 1929, the minimum of Corg content is localised near the mouth of the main south-eastern distributary channel and coincides with the minimum of the clay fraction. At the same time, the maximum of organic matter content locates near the mouth of the eastern channel, which was inactive at that time. In sediments accumulated during the last Caspian Sea low stand in 1977, the area of Corg minimum is attached to the north-eastern distributary’s mouth. It indicates the high activity of this distributary during the Caspian Sea fall. The area of Corg minimum is also recorded around the mouth of the main channel and eastern part of the delta. Maximums of Corg and clay fraction shift towards the basin. During the Caspian high stand in 1995, the minimum of Corg content is again observed in the mouth of the main south-eastern channel. The distribution of organic matter in the modern sediments of the Kura river delta displays the strong time dependence and reflects progradational-retrogradational cycles of evolution of this fluvial-deltaic system.Keywords: high and low stands, Kura River delta, South Caspian Sea, organic matter
Procedia PDF Downloads 12889 Adapting to College: Exploration of Psychological Well-Being, Coping, and Identity as Markers of Readiness
Authors: Marit D. Murry, Amy K. Marks
Abstract:
The transition to college is a critical period that affords abundant opportunities for growth in conjunction with novel challenges for emerging adults. During this time, emerging adults are garnering experiences and acquiring hosts of new information that they are required to synthesize and use to inform life-shaping decisions. This stage is characterized by instability and exploration, which necessitates a diverse set of coping skills to successfully navigate and positively adapt to their evolving environment. However, important sociocultural factors result in differences that occur developmentally for minority emerging adults (i.e., emerging adults with an identity that has been or is marginalized). While the transition to college holds vast potential, not all are afforded the same chances, and many individuals enter into this stage at varying degrees of readiness. Understanding the nuance and diversity of student preparedness for college and contextualizing these factors will better equip systems to support incoming students. Emerging adulthood for ethnic, racial minority students presents itself as an opportunity for growth and resiliency in the face of systemic adversity. Ethnic, racial identity (ERI) is defined as an identity that develops as a function of one’s ethnic-racial group membership. Research continues to demonstrate ERI as a resilience factor that promotes positive adjustment in young adulthood. Adaptive coping responses (e.g., engaging in help-seeking behavior, drawing on personal and community resources) have been identified as possible mechanisms through which ERI buffers youth against stressful life events, including discrimination. Additionally, trait mindfulness has been identified as a significant predictor of general psychological health, and mindfulness practice has been shown to be a self-regulatory strategy that promotes healthy stress responses and adaptive coping strategy selection. The current study employed a person-centered approach to explore emerging patterns across ethnic identity development and psychological well-being criterion variables among college freshmen. Data from 283 incoming college freshmen at Northeastern University were analyzed. The Brief COPE Acceptance and Emotional Support scales, the Five Factor Mindfulness Questionnaire, and MIEM Exploration and Affirmation measures were used to inform the cluster profiles. The TwoStep auto-clustering algorithm revealed an optimal three-cluster solution (BIC = 848.49), which classified 92.6% (n = 262) of participants in the sample into one of the three clusters. The clusters were characterized as ‘Mixed Adjustment’, ‘Lowest Adjustment’, and ‘Moderate Adjustment.’ Cluster composition varied significantly by ethnicity X² (2, N = 262) = 7.74 (p = .021) and gender X² (2, N = 259) = 10.40 (p = .034). The ‘Lowest Adjustment’ cluster contained the highest proportion of students of color, 41% (n = 32), and male-identifying students, 44.2% (n = 34). Follow-up analyses showed higher ERI exploration in ‘Moderate Adjustment’ cluster members, also reported higher levels of psychological distress, with significantly elevated depression scores (p = .011), psychological diagnoses of depression (p = .013), anxiety (p = .005) and psychiatric disorders (p = .025). Supporting prior research, students engaging with identity exploration processes often endure more psychological distress. These results indicate that students undergoing identity development may require more socialization and different services beyond normal strategies.Keywords: adjustment, coping, college, emerging adulthood, ethnic-racial identity, psychological well-being, resilience
Procedia PDF Downloads 11188 Self-Medication with Antibiotics, Evidence of Factors Influencing the Practice in Low and Middle-Income Countries: A Systematic Scoping Review
Authors: Neusa Fernanda Torres, Buyisile Chibi, Lyn E. Middleton, Vernon P. Solomon, Tivani P. Mashamba-Thompson
Abstract:
Background: Self-medication with antibiotics (SMA) is a global concern, with a higher incidence in low and middle-income countries (LMICs). Despite intense world-wide efforts to control and promote the rational use of antibiotics, continuing practices of SMA systematically exposes individuals and communities to the risk of antibiotic resistance and other undesirable antibiotic side effects. Moreover, it increases the health systems costs of acquiring more powerful antibiotics to treat the resistant infection. This review thus maps evidence on the factors influencing self-medication with antibiotics in these settings. Methods: The search strategy for this review involved electronic databases including PubMed, Web of Knowledge, Science Direct, EBSCOhost (PubMed, CINAHL with Full Text, Health Source - Consumer Edition, MEDLINE), Google Scholar, BioMed Central and World Health Organization library, using the search terms:’ Self-Medication’, ‘antibiotics’, ‘factors’ and ‘reasons’. Our search included studies published from 2007 to 2017. Thematic analysis was performed to identify the patterns of evidence on SMA in LMICs. The mixed method quality appraisal tool (MMAT) version 2011 was employed to assess the quality of the included primary studies. Results: Fifteen studies met the inclusion criteria. Studies included population from the rural (46,4%), urban (33,6%) and combined (20%) settings, of the following LMICs: Guatemala (2 studies), India (2), Indonesia (2), Kenya (1), Laos (1), Nepal (1), Nigeria (2), Pakistan (2), Sri Lanka (1), and Yemen (1). The total sample size of all 15 included studies was 7676 participants. The findings of the review show a high prevalence of SMA ranging from 8,1% to 93%. Accessibility, affordability, conditions of health facilities (long waiting, quality of services and workers) as long well as poor health-seeking behavior and lack of information are factors that influence SMA in LMICs. Antibiotics such as amoxicillin, metronidazole, amoxicillin/clavulanic, ampicillin, ciprofloxacin, azithromycin, penicillin, and tetracycline, were the most frequently used for SMA. The major sources of antibiotics included pharmacies, drug stores, leftover drugs, family/friends and old prescription. Sore throat, common cold, cough with mucus, headache, toothache, flu-like symptoms, pain relief, fever, running nose, toothache, upper respiratory tract infections, urinary symptoms, urinary tract infection were the common disease symptoms managed with SMA. Conclusion: Although the information on factors influencing SMA in LMICs is unevenly distributed, the available information revealed the existence of research evidence on antibiotic self-medication in some countries of LMICs. SMA practices are influenced by social-cultural determinants of health and frequently associated with poor dispensing and prescribing practices, deficient health-seeking behavior and consequently with inappropriate drug use. Therefore, there is still a need to conduct further studies (qualitative, quantitative and randomized control trial) on factors and reasons for SMA to correctly address the public health problem in LMICs.Keywords: antibiotics, factors, reasons, self-medication, low and middle-income countries (LMICs)
Procedia PDF Downloads 219