Search results for: online and adaptive learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9902

Search results for: online and adaptive learning

422 Lexico-semantic and Morphosyntactic Analyses of Student-generated Paraphrased Academic Texts

Authors: Hazel P. Atilano

Abstract:

In this age of AI-assisted teaching and learning, there seems to be a dearth of research literature on the linguistic analysis of English as a Second Language (ESL) student-generated paraphrased academic texts. This study sought to examine the lexico-semantic, morphosyntactic features of paraphrased academic texts generated by ESL students. Employing a descriptive qualitative design, specifically linguistic analysis, the study involved a total of 85 students from senior high school, college, and graduate school enrolled in research courses. Data collection consisted of a 60-minute real-time, on-site paraphrasing practice exercise using excerpts from discipline-specific literature reviews of 150 to 200 words. A focus group discussion (FGD) was conducted to probe into the challenges experienced by the participants. The writing exercise yielded a total of 516 paraphrase pairs. A total of 176 paraphrase units (PUs) and 340 non-paraphrase pairs (NPPs) were detected. Findings from the linguistic analysis of PUs reveal that the modifications made to the original texts are predominantly syntax-based (Diathesis Alterations and Coordination Changes) and a combination of Miscellaneous Changes (Change of Order, Change of Format, and Addition/Deletion). Results of the analysis of paraphrase extremes (PE) show that Identical Structures resulting from the use of synonymous substitutions, with no significant change in the structural features of the original, is the most frequently occurring instance of PE. The analysis of paraphrase errors reveals that synonymous substitutions resulting in identical structures are the most frequently occurring error that leads to PE. Another type of paraphrasing error involves semantic and content loss resulting from the deletion or addition of meaning-altering content. Three major themes emerged from the FGD: (1) The Challenge of Preserving Semantic Content and Fidelity; (2) The Best Words in the Best Order: Grappling with the Lexico-semantic and Morphosyntactic Demands of Paraphrasing; and (3) Contending with Limited Vocabulary, Poor Comprehension, and Lack of Practice. A pedagogical paradigm was designed based on the major findings of the study for a sustainable instructional intervention.

Keywords: academic text, lexico-semantic analysis, linguistic analysis, morphosyntactic analysis, paraphrasing

Procedia PDF Downloads 64
421 Feminine Gender Identity in Nigerian Music Education: Trends, Challenges and Prospects

Authors: Julius Oluwayomi Oluwadamilare, Michael Olutayo Olatunji

Abstract:

In the African traditional societies, women have always played the role of a teacher, albeit informally. This is evident in the upbringing of their babies. As mothers, they also serve as the first teachers to teach their wards lessons through day-to-day activities. Furthermore, women always play the role of a musician during naming ceremonies, in the singing of lullabies, during initiation rites of adolescent boys and girls into adulthood, and in preparing their children especially daughters (and sons) for marriage. They also perform this role during religious and cultural activities, chieftaincy title/coronation ceremonies, singing of dirges during funeral ceremonies, and so forth. This traditional role of the African/Nigerian women puts them at a vantage point to contribute maximally to the teaching and learning of music at every level of education. The need for more women in the field of music education in Nigeria cannot be overemphasized. Today, gender equality is a major discourse in most countries of the world, Nigeria inclusive. Statistical data in the field of education and music education reveal the high ratio of male teachers/lecturers over their female counterparts in Nigerian tertiary institutions. The percentage is put at 80% Male and a distant 20% Female! This paper, therefore, examines feminine gender in Nigerian music education by tracing the involvement of women in musical practice from the pre-colonial to the post-colonial periods. The study employed both primary and secondary sources of data collection. The primary source included interviews conducted with 19 music lecturers from 8 purposively selected tertiary institutions from 4 geo-political zones of Nigeria. In addition, observation method was employed in the selected institutions. The results show, inter alia, that though there is a remarkable improvement in the rate of admission of female students into the music programme of Nigerian tertiary institutions, there is still an imbalance in the job placement in these institutions especially in the Colleges of Education which is the main focus of this research. Religious and socio-cultural factors are highly traceable to this development. This paper recommends the need for more female music teachers to be employed in the Nigerian tertiary institutions in line with the provisions stated in the Millennium Development Goals (MDGs) of the Federal Republic of Nigeria.

Keywords: gender, education, music, women

Procedia PDF Downloads 203
420 The Impact of Dog-Assisted Wellbeing Intervention on Student Motivation and Affective Engagement in the Primary and Secondary School Setting

Authors: Yvonne Howard

Abstract:

This project currently under development is centered around current learning processes, including a thorough literature review and ongoing practical experiences gained as a deputy head in a school. These daily experiences with students engaging in animal-assisted interventions and the school therapy dog form a strong base for this research. The primary objective of this research is to comprehensively explore the impact of dog-assisted well-being interventions on student motivation and affective engagement within primary and secondary school settings. The educational domain currently encounters a significant challenge due to the lack of substantial research in this area. Despite the perceived positive outcomes of such interventions being acknowledged and shared in various settings, the evidence supporting their effectiveness in an educational context remains limited. This study aims to bridge the gap in the research and shed light on the potential benefits of dog-assisted well-being interventions in promoting student motivation and affective engagement. The significance of this topic recognizes that education is not solely confined to academic achievement but encompasses the overall well-being and emotional development of students. Over recent years, there has been a growing interest in animal-assisted interventions, particularly in healthcare settings. This interest has extended to the educational context. While the effectiveness of these interventions in these areas has been explored in other fields, the educational sector lacks comprehensive research in this regard. Through a systematic and thorough research methodology, this study seeks to contribute valuable empirical data to the field, providing evidence to support informed decision-making regarding the implementation of dog-assisted well-being interventions in schools. This research will utilize a mixed-methods design, combining qualitative and quantitative measures to assess the research objectives. The quantitative phase will include surveys and standardized scales to measure student motivation and affective engagement, while the qualitative phase will involve interviews and observations to gain in-depth insights from students, teachers, and other stakeholders. The findings will contribute evidence-based insights, best practices, and practical guidelines for schools seeking to incorporate dog-assisted interventions, ultimately enhancing student well-being and improving educational outcomes.

Keywords: therapy dog, wellbeing, engagement, motivation, AAI, intervention, school

Procedia PDF Downloads 76
419 Experiences and Challenges of Community Participation in Urban Renewal Projects: A Case Study of Bhendi Bazzar, Mumbai, India

Authors: Madhura Yadav

Abstract:

Urban redevelopment planning initiatives in developing countries have been largely criticised due to top-down planning approach and lack of involvement of the targeted beneficiaries which have led to a challenging situation which is contrary to the perceived needs of beneficiaries. Urban renewal projects improve the lives of people and meaningful participation of community plays a pivotal role. Public perceptions on satisfaction and participation have been given less priority in the investigation, which hinders effective planning and implementation of urban renewal projects. Moreover, challenges of community participation in urban renewal projects are less documented, particularly in relation to public participation and satisfaction. There is a need for new paradigm shift focusing on community participatory approach in urban renewal projects. The over 125-year-old Bhendi Bazar in Mumbai, India is the country’s first ever cluster redevelopment project, popularly known as Bhendi Bazaar redevelopment and it will be one of the largest projects for urban rejuvenation of one of Mumbai’s oldest and dying inner city areas. The project is led by the community trust, inputs were taken from various stakeholders, including residents, commercial tenants and expert consultants to shape the master plan and design of the project. The project started in 2016 but there is a significant delay in implementing the project. The study aimed at studying and assessing public perceptions on satisfaction and the relationship between community participation and community satisfaction in Bhendi Bazaar of Mumbai, India. Furthermore, the study will outline the challenges and problems of community participation in urban renewal projects and it suggests recommendations for the future. The qualitative and quantitative methods such as reconnaissance survey, key informant interviews, focus group discussions, walking interviews, a narrative inquiry is used for analysis of data. Preliminary findings revealed that all tenants are satisfied for the redevelopment of an area but the willingness of residential tenants to move in transit accommodation has made the projects successful and reductant of some residential and commercial tenants, regulatory provisions rising to face challenges in implementation. Experiences from the case study can help to understand dynamics behind public participation and government. At the same time, they serve as an inspiration and learning opportunity for future projects to ensure that they are sustainable not only from an economic standpoint but also, a social perspective.

Keywords: urban renewal, Bhendi Bazaar, community participation, satisfaction, social perspective

Procedia PDF Downloads 177
418 A Study on the Effect of Design Factors of Slim Keyboard’s Tactile Feedback

Authors: Kai-Chieh Lin, Chih-Fu Wu, Hsiang Ling Hsu, Yung-Hsiang Tu, Chia-Chen Wu

Abstract:

With the rapid development of computer technology, the design of computers and keyboards moves towards a trend of slimness. The change of mobile input devices directly influences users’ behavior. Although multi-touch applications allow entering texts through a virtual keyboard, the performance, feedback, and comfortableness of the technology is inferior to traditional keyboard, and while manufacturers launch mobile touch keyboards and projection keyboards, the performance has not been satisfying. Therefore, this study discussed the design factors of slim pressure-sensitive keyboards. The factors were evaluated with an objective (accuracy and speed) and a subjective evaluation (operability, recognition, feedback, and difficulty) depending on the shape (circle, rectangle, and L-shaped), thickness (flat, 3mm, and 6mm), and force (35±10g, 60±10g, and 85±10g) of the keyboard. Moreover, MANOVA and Taguchi methods (regarding signal-to-noise ratios) were conducted to find the optimal level of each design factor. The research participants, by their typing speed (30 words/ minute), were divided in two groups. Considering the multitude of variables and levels, the experiments were implemented using the fractional factorial design. A representative model of the research samples were established for input task testing. The findings of this study showed that participants with low typing speed primarily relied on vision to recognize the keys, and those with high typing speed relied on tactile feedback that was affected by the thickness and force of the keys. In the objective and subjective evaluation, a combination of keyboard design factors that might result in higher performance and satisfaction was identified (L-shaped, 3mm, and 60±10g) as the optimal combination. The learning curve was analyzed to make a comparison with a traditional standard keyboard to investigate the influence of user experience on keyboard operation. The research results indicated the optimal combination provided input performance to inferior to a standard keyboard. The results could serve as a reference for the development of related products in industry and for applying comprehensively to touch devices and input interfaces which are interacted with people.

Keywords: input performance, mobile device, slim keyboard, tactile feedback

Procedia PDF Downloads 298
417 Teaching Behaviours of Effective Secondary Mathematics Teachers: A Study in Dhaka, Bangladesh

Authors: Asadullah Sheikh, Kerry Barnett, Paul Ayres

Abstract:

Despite significant progress in access, equity and public examination success, poor student performance in mathematics in secondary schools has become a major concern in Bangladesh. A substantial body of research has emphasised the important contribution of teaching practices to student achievement. However, this has not been investigated in Bangladesh. Therefore, the study sought to find out the effectiveness of mathematics teaching practices as a means of improving secondary school mathematics in Dhaka Municipality City (DMC) area, Bangladesh. The purpose of this study was twofold, first, to identify the 20 highest performing secondary schools in mathematics in DMC, and second, to investigate the teaching practices of mathematics teachers in these schools. A two-phase mixed method approach was adopted. In the first phase, secondary source data were obtained from the Board of Intermediate and Secondary Education (BISE), Dhaka and value-added measures used to identify the 20 highest performing secondary schools in mathematics. In the second phase, a concurrent mixed method design, where qualitative methods were embedded within a dominant quantitative approach was utilised. A purposive sampling strategy was used to select fifteen teachers from the 20 highest performing secondary schools. The main sources of data were classroom teaching observations, and teacher interviews. The data from teacher observations were analysed with descriptive and nonparametric statistics. The interview data were analysed qualitatively. The main findings showed teachers adopt a direct teaching approach which incorporates orientation, structuring, modelling, practice, questioning and teacher-student interaction that creates an individualistic learning environment. The variation in developmental levels of teaching skill indicate that teachers do not necessarily use the qualitative (i.e., focus, stage, quality and differentiation) aspects of teaching behaviours effectively. This is the first study to investigate teaching behaviours of effective secondary mathematics teachers within Dhaka, Bangladesh. It contributes in an international dimension to the field of educational effectiveness and raise questions about existing constructivist approaches. Further, it contributes to important insights about teaching behaviours that can be used to inform the development of evidence-based policy and practice on quality teaching in Bangladesh.

Keywords: effective teaching, mathematics, secondary schools, student achievement, value-added measures

Procedia PDF Downloads 238
416 Developing a Decision-Making Tool for Prioritizing Green Building Initiatives

Authors: Tayyab Ahmad, Gerard Healey

Abstract:

Sustainability in built environment sector is subject to many development constraints. Building projects are developed under different requirements of deliverables which makes each project unique. For an owner organization, i.e., a higher-education institution, involved in a significant building stock, it is important to prioritize some of the sustainability initiatives over the others in order to align the sustainable building development with organizational goals. The point-based green building rating tools i.e. Green Star, LEED, BREEAM are becoming increasingly popular and are well-acknowledged worldwide for verifying a sustainable development. It is imperative to synthesize a multi-criteria decision-making tool that can capitalize on the point-based methodology of rating systems while customizing the sustainable development of building projects according to the individual requirements and constraints of the client organization. A multi-criteria decision-making tool for the University of Melbourne is developed that builds on the action-learning and experience of implementing Green Buildings at the University of Melbourne. The tool evaluates the different sustainable building initiatives based on the framework of Green Star rating tool of Green Building Council of Australia. For each different sustainability initiative the decision-making tool makes an assessment based on at least five performance criteria including the ease with which a sustainability initiative can be achieved and the potential of a sustainability initiative to enhance project objectives, reduce life-cycle costs, enhance University’s reputation, and increase the confidence in quality construction. The use of a weighted aggregation mathematical model in the proposed tool can have a considerable role in the decision-making process of a Green Building project by indexing the Green Building initiatives in terms of organizational priorities. The index value of each initiative will be based on its alignment with some of the key performance criteria. The usefulness of the decision-making tool is validated by conducting structured interviews with some of the key stakeholders involved in the development of sustainable building projects at the University of Melbourne. The proposed tool is realized to help a client organization in deciding that within limited resources which sustainability initiatives and practices are more important to be pursued than others.

Keywords: higher education institution, multi-criteria decision-making tool, organizational values, prioritizing sustainability initiatives, weighted aggregation model

Procedia PDF Downloads 232
415 Research Networks and Knowledge Sharing: An Exploratory Study of Aquaculture in Europe

Authors: Zeta Dooly, Aidan Duane

Abstract:

The collaborative European funded research and development landscape provides prime environmental conditions for multi-disciplinary teams to learn and enhance their knowledge beyond the capability of training and learning within their own organisation cocoons. Whilst the emergence of the academic entrepreneur has changed the focus of educational institutions to that of quasi-businesses, the training and professional development of lecturers and academic staff are often not formalised to the same level as industry. This research focuses on industry and academic collaborative research funded by the European Commission. The impact of research is scalable if an optimum research network is created and managed effectively. This paper investigates network embeddedness, the nature of relationships, links, and nodes within a research network, and the enhancement of the network’s knowledge. The contribution of this paper extends our understanding of establishing and maintaining effective collaborative research networks. The effects of network embeddedness are recognized in the literature as pertinent to innovation and the economy. Network theory literature claims that networks are essential to innovative clusters such as Silicon valley and innovation in high tech industries. This research provides evidence to support the impact collaborative research has on the disparate individuals toward their innovative contributions to their organisations and their own professional development. This study adopts a qualitative approach and uncovers some of the challenges of multi-disciplinary research through case study insights. The contribution of this paper recommends the establishment of scaffolding to accommodate cooperation in research networks, role appointment, and addressing contextual complexities early to avoid problem cultivation. Furthermore, it suggests recommendations in relation to network formation, intra-network challenges in relation to open data, competition, friendships, and competency enhancement. The network capability is enhanced by the adoption of the relevant theories; network theory, open innovation, and social exchange, with the understanding that the network structure has an impact on innovation and social exchange in research networks. The research concludes that there is an opportunity to deepen our understanding of the impact of network reuse and network hoping that provides scaffolding for the network members to enhance and build upon their knowledge using a progressive approach.

Keywords: research networks, competency building, network theory, case study

Procedia PDF Downloads 125
414 A Virtual Set-Up to Evaluate Augmented Reality Effect on Simulated Driving

Authors: Alicia Yanadira Nava Fuentes, Ilse Cervantes Camacho, Amadeo José Argüelles Cruz, Ana María Balboa Verduzco

Abstract:

Augmented reality promises being present in future driving, with its immersive technology let to show directions and maps to identify important places indicating with graphic elements when the car driver requires the information. On the other side, driving is considered a multitasking activity and, for some people, a complex activity where different situations commonly occur that require the immediate attention of the car driver to make decisions that contribute to avoid accidents; therefore, the main aim of the project is the instrumentation of a platform with biometric sensors that allows evaluating the performance in driving vehicles with the influence of augmented reality devices to detect the level of attention in drivers, since it is important to know the effect that it produces. In this study, the physiological sensors EPOC X (EEG), ECG06 PRO and EMG Myoware are joined in the driving test platform with a Logitech G29 steering wheel and the simulation software City Car Driving in which the level of traffic can be controlled, as well as the number of pedestrians that exist within the simulation obtaining a driver interaction in real mode and through a MSP430 microcontroller achieves the acquisition of data for storage. The sensors bring a continuous analog signal in time that needs signal conditioning, at this point, a signal amplifier is incorporated due to the acquired signals having a sensitive range of 1.25 mm/mV, also filtering that consists in eliminating the frequency bands of the signal in order to be interpretative and without noise to convert it from an analog signal into a digital signal to analyze the physiological signals of the drivers, these values are stored in a database. Based on this compilation, we work on the extraction of signal features and implement K-NN (k-nearest neighbor) classification methods and decision trees (unsupervised learning) that enable the study of data for the identification of patterns and determine by classification methods different effects of augmented reality on drivers. The expected results of this project include are a test platform instrumented with biometric sensors for data acquisition during driving and a database with the required variables to determine the effect caused by augmented reality on people in simulated driving.

Keywords: augmented reality, driving, physiological signals, test platform

Procedia PDF Downloads 140
413 Recurrent Fevers with Weight Gain - Possible Rapid onset Obesity with Hypoventilation, Hypothalamic Dysfunction and Autonomic Dysregulation Syndrome

Authors: Lee Rui, Rajeev Ramachandran

Abstract:

The approach to recurrent fevers in the paediatric or adolescent age group is not a straightforward one. Causes range from infectious diseases to rheumatological conditions to endocrinopathies, and are usually accompanied by weight loss rather than weight gain. We present an interesting case of a 16-year-old girl brought by her mother to the General Pediatrics Clinic for concerns of recurrent fever paired with significant weight gain over 1.5 years, with no identifiable cause found despite extensive work-up by specialists ranging from Rheumatologists to Oncologists. This case provides a learning opportunity on the approach to weight gain paired with persistent fevers in a paediatric population, one which is not commonly encountered and prompts further evaluation and consideration of less common diagnoses. In a span of 2 years, the girl’s weight had increased from 55 kg at 13 years old (75th centile) to 73.9 kg at 16 years old (>97th centile). About 1 year into her rapid weight gain, she started developing recurrent fevers of documented temperatures > 37.5 – 38.6 every 2-3 days, resulting in school absenteeism when she was sent home after temperature-taking in school found her to be febrile. The rapid onset of weight gain paired with unexplained fevers prompted the treating physician to consider the diagnosis of ROHHAD syndrome. Rapid onset obesity with hypoventilation, hypothalamic dysfunction and autonomic dysregulation (ROHHAD) syndrome is a rare disorder first described in 2007. It is characterized by dysfunction of the autonomic and endocrine system, characterized by hyperphagia and rapid-onset weight gain. This rapid weight gain is classically followed by hypothalamic manifestations with neuroendocrine deficiencies, hypo-ventilatory breathing abnormalities, and autonomic dysregulation. ROHHAD is challenging to diagnose with and diagnosis is made based mostly on clinical judgement. However if truly diagnosed, the condition is characterized by high morbidity and mortality rates. Early recognition of sleep disorders breathing and targeted therapeutic interventions helps limit morbidity and mortality associated with ROHHAD syndrome. This case poses an interesting diagnostic challenge and a diagnosis of ROHHAD has to be considered, given the serious complications that can come with disease progression while conditions such as Munchausen’s or drug fever remain as diagnoses of exclusion until we have exhausted all other possible conditions.

Keywords: pediatrics, endocrine, weight gain, recurrent fever, adolescent

Procedia PDF Downloads 102
412 Examining Reading Comprehension Skills Based on Different Reading Comprehension Frameworks and Taxonomies

Authors: Seval Kula-Kartal

Abstract:

Developing students’ reading comprehension skills is an aim that is difficult to accomplish and requires to follow long-term and systematic teaching and assessment processes. In these processes, teachers need tools to provide guidance to them on what reading comprehension is and which comprehension skills they should develop. Due to a lack of clear and evidence-based frameworks defining reading comprehension skills, especially in Turkiye, teachers and students mostly follow various processes in the classrooms without having an idea about what their comprehension goals are and what those goals mean. Since teachers and students do not have a clear view of comprehension targets, strengths, and weaknesses in students’ comprehension skills, the formative feedback processes cannot be managed in an effective way. It is believed that detecting and defining influential comprehension skills may provide guidance both to teachers and students during the feedback process. Therefore, in the current study, some of the reading comprehension frameworks that define comprehension skills operationally were examined. The aim of the study is to develop a simple and clear framework that can be used by teachers and students during their teaching, learning, assessment, and feedback processes. The current study is qualitative research in which documents related to reading comprehension skills were analyzed. Therefore, the study group consisted of recourses and frameworks which made big contributions to theoretical and operational definitions of reading comprehension. A content analysis was conducted on the resources included in the study group. To determine the validity of the themes and sub-categories revealed as the result of content analysis, three educational assessment experts were asked to examine the content analysis results. The Fleiss’ Cappa coefficient revealed that there is consistency among themes and categories defined by three different experts. The content analysis of the reading comprehension frameworks revealed that comprehension skills could be examined under four different themes. The first and second themes focus on understanding information given explicitly or implicitly within a text. The third theme includes skills used by the readers to make connections between their personal knowledge and the information given in the text. Lastly, the fourth theme focus on skills used by readers to examine the text with a critical view. The results suggested that fundamental reading comprehension skills can be examined under four themes. Teachers are recommended to use these themes in their reading comprehension teaching and assessment processes. Acknowledgment: This research is supported by Pamukkale University Scientific Research Unit within the project, whose title is Developing A Reading Comprehension Rubric.

Keywords: reading comprehension, assessing reading comprehension, comprehension taxonomies, educational assessment

Procedia PDF Downloads 82
411 Detection and Identification of Antibiotic Resistant Bacteria Using Infra-Red-Microscopy and Advanced Multivariate Analysis

Authors: Uraib Sharaha, Ahmad Salman, Eladio Rodriguez-Diaz, Elad Shufan, Klaris Riesenberg, Irving J. Bigio, Mahmoud Huleihel

Abstract:

Antimicrobial drugs have an important role in controlling illness associated with infectious diseases in animals and humans. However, the increasing resistance of bacteria to a broad spectrum of commonly used antibiotics has become a global health-care problem. Rapid determination of antimicrobial susceptibility of a clinical isolate is often crucial for the optimal antimicrobial therapy of infected patients and in many cases can save lives. The conventional methods for susceptibility testing like disk diffusion are time-consuming and other method including E-test, genotyping are relatively expensive. Fourier transform infrared (FTIR) microscopy is rapid, safe, and low cost method that was widely and successfully used in different studies for the identification of various biological samples including bacteria. The new modern infrared (IR) spectrometers with high spectral resolution enable measuring unprecedented biochemical information from cells at the molecular level. Moreover, the development of new bioinformatics analyses combined with IR spectroscopy becomes a powerful technique, which enables the detection of structural changes associated with resistivity. The main goal of this study is to evaluate the potential of the FTIR microscopy in tandem with machine learning algorithms for rapid and reliable identification of bacterial susceptibility to antibiotics in time span of few minutes. The bacterial samples, which were identified at the species level by MALDI-TOF and examined for their susceptibility by the routine assay (micro-diffusion discs), are obtained from the bacteriology laboratories in Soroka University Medical Center (SUMC). These samples were examined by FTIR microscopy and analyzed by advanced statistical methods. Our results, based on 550 E.coli samples, were promising and showed that by using infrared spectroscopic technique together with multivariate analysis, it is possible to classify the tested bacteria into sensitive and resistant with success rate higher than 85% for eight different antibiotics. Based on these preliminary results, it is worthwhile to continue developing the FTIR microscopy technique as a rapid and reliable method for identification antibiotic susceptibility.

Keywords: antibiotics, E. coli, FTIR, multivariate analysis, susceptibility

Procedia PDF Downloads 263
410 Suggestions to the Legislation about Medical Ethics and Ethics Review in the Age of Medical Artificial Intelligence

Authors: Xiaoyu Sun

Abstract:

In recent years, the rapid development of Artificial Intelligence (AI) has extensively promoted medicine, pharmaceutical, and other related fields. The medical research and development of artificial intelligence by scientific and commercial organizations are on the fast track. The ethics review is one of the critical procedures of registration to get the products approved and launched. However, the SOPs for ethics review is not enough to guide the healthy and rapid development of artificial intelligence in healthcare in China. Ethical Review Measures for Biomedical Research Involving Human Beings was enacted by the National Health Commission of the People's Republic of China (NHC) on December 1st, 2016. However, from a legislative design perspective, it was neither updated timely nor in line with the trends of AI international development. Therefore, it was great that NHC published a consultation paper on the updated version on March 16th, 2021. Based on the most updated laws and regulations in the States and EU, and in-depth-interviewed 11 subject matter experts in China, including lawmakers, regulators, and key members of ethics review committees, heads of Regulatory Affairs in SaMD industry, and data scientists, several suggestions were proposed on top of the updated version. Although the new version indicated that the Ethics Review Committees need to be created by National, Provincial and individual institute levels, the review authorities of different levels were not clarified. The suggestion is that the precise scope of review authorities for each level should be identified based on Risk Analysis and Management Model, such as the complicated leading technology, gene editing, should be reviewed by National Ethics Review Committees, it will be the job of individual institute Ethics Review Committees to review and approve the clinical study with less risk such as an innovative cream to treat acne. Furthermore, to standardize the research and development of artificial intelligence in healthcare in the age of AI, more clear guidance should be given to data security in the layers of data, algorithm, and application in the process of ethics review. In addition, transparency and responsibility, as two of six principles in the Rome Call for AI Ethics, could be further strengthened in the updated version. It is the shared goal among all countries to manage well and develop AI to benefit human beings. Learned from the other countries who have more learning and experience, China could be one of the most advanced countries in artificial intelligence in healthcare.

Keywords: biomedical research involving human beings, data security, ethics committees, ethical review, medical artificial intelligence

Procedia PDF Downloads 166
409 Challenges influencing Nurse Initiated Management of Retroviral Therapy (NIMART) Implementation in Ngaka Modiri Molema District, North West Province, South Africa

Authors: Sheillah Hlamalani Mboweni, Lufuno Makhado

Abstract:

Background: The increasing number of people who tested HIV positive and who demand antiretroviral therapy (ART) prompted the National Department of Health to adopt WHO recommendations of task shifting where Professional Nurses(PNs) initiate ART rather than doctors in the hospital. This resulted in the decentralization of services to primary health care(PHC), generating a need to capacitate PNs on NIMART. After years of training, the impact of NIMART was assessed where it was established that even though there was an increased number who accessed ART, the quality of care is of serious concern. The study aims to answer the following question: What are the challenges influencing NIMART implementation in primary health care. Objectives: This study explores challenges influencing NIMART training and implementation and makes recommendations to improve patient and HIV program outcomes. Methods: A qualitative explorative program evaluation research design. The study was conducted in the rural districts of North West province. Purposive sampling was used to sample PNs trained on NIMART. FGDs were used to collect data with 6-9 participants and data was analysed using ATLAS ti. Results: Five FGDs, n=28 PNs and three program managers were interviewed. The study results revealed two themes: inadequacy in NIMART training and the health care system challenges. Conclusion: The deficiency in NIMART training and health care system challenges is a public health concern as it compromises the quality of HIV management resulting in poor patients’ outcomes and retard the goal of ending the HIV epidemic. These should be dealt with decisively by all stakeholders. Recommendations: The national department of health should improve NIMART training and HIV management: standardization of NIMART training curriculum through the involvement of all relevant stakeholders skilled facilitators, the introduction of pre-service NIMART training in institutions of higher learning, support of PNs by district and program managers, plan on how to deal with the shortage of staff, negative attitude to ensure compliance to guidelines. There is a need to develop a conceptual framework that provides guidance and strengthens NIMART implementation in PHC facilities.

Keywords: antiretroviral therapy, nurse initiated management of retroviral therapy, primary health care, professional nurses

Procedia PDF Downloads 158
408 Hybrid Knowledge and Data-Driven Neural Networks for Diffuse Optical Tomography Reconstruction in Medical Imaging

Authors: Paola Causin, Andrea Aspri, Alessandro Benfenati

Abstract:

Diffuse Optical Tomography (DOT) is an emergent medical imaging technique which employs NIR light to estimate the spatial distribution of optical coefficients in biological tissues for diagnostic purposes, in a noninvasive and non-ionizing manner. DOT reconstruction is a severely ill-conditioned problem due to prevalent scattering of light in the tissue. In this contribution, we present our research in adopting hybrid knowledgedriven/data-driven approaches which exploit the existence of well assessed physical models and build upon them neural networks integrating the availability of data. Namely, since in this context regularization procedures are mandatory to obtain a reasonable reconstruction [1], we explore the use of neural networks as tools to include prior information on the solution. 2. Materials and Methods The idea underlying our approach is to leverage neural networks to solve PDE-constrained inverse problems of the form 𝒒 ∗ = 𝒂𝒓𝒈 𝒎𝒊𝒏𝒒 𝐃(𝒚, 𝒚̃), (1) where D is a loss function which typically contains a discrepancy measure (or data fidelity) term plus other possible ad-hoc designed terms enforcing specific constraints. In the context of inverse problems like (1), one seeks the optimal set of physical parameters q, given the set of observations y. Moreover, 𝑦̃ is the computable approximation of y, which may be as well obtained from a neural network but also in a classic way via the resolution of a PDE with given input coefficients (forward problem, Fig.1 box ). Due to the severe ill conditioning of the reconstruction problem, we adopt a two-fold approach: i) we restrict the solutions (optical coefficients) to lie in a lower-dimensional subspace generated by auto-decoder type networks. This procedure forms priors of the solution (Fig.1 box ); ii) we use regularization procedures of type 𝒒̂ ∗ = 𝒂𝒓𝒈𝒎𝒊𝒏𝒒 𝐃(𝒚, 𝒚̃)+ 𝑹(𝒒), where 𝑹(𝒒) is a regularization functional depending on regularization parameters which can be fixed a-priori or learned via a neural network in a data-driven modality. To further improve the generalizability of the proposed framework, we also infuse physics knowledge via soft penalty constraints (Fig.1 box ) in the overall optimization procedure (Fig.1 box ). 3. Discussion and Conclusion DOT reconstruction is severely hindered by ill-conditioning. The combined use of data-driven and knowledgedriven elements is beneficial and allows to obtain improved results, especially with a restricted dataset and in presence of variable sources of noise.

Keywords: inverse problem in tomography, deep learning, diffuse optical tomography, regularization

Procedia PDF Downloads 73
407 Climate Change Impact on Water Resources Management in Remote Islands Using Hybrid Renewable Energy Systems

Authors: Elissavet Feloni, Ioannis Kourtis, Konstantinos Kotsifakis, Evangelos Baltas

Abstract:

Water inadequacy in small dry islands scattered in the Aegean Sea (Greece) is a major problem regarding Water Resources Management (WRM), especially during the summer period due to tourism. In the present work, various WRM schemes are designed and presented. The WRM schemes take into account current infrastructure and include Rainwater Harvesting tanks and Reverse Osmosis Desalination Units. The energy requirements are covered mainly by wind turbines and/or a seawater pumped storage system. Sizing is based on the available data for population and tourism per island, after taking into account a slight increase in the population (up to 1.5% per year), and it guarantees at least 80% reliability for the energy supply and 99.9% for potable water. Evaluation of scenarios is carried out from a financial perspective, after calculating the Life Cycle Cost (LCC) of each investment for a lifespan of 30 years. The wind-powered desalination plant was found to be the most cost-effective practice, from an economic point of view. Finally, in order to estimate the Climate Change (CC) impact, six different CC scenarios were investigated. The corresponding rate of on-grid versus off-grid energy required for ensuring the targeted reliability for the zero and each climatic scenario was investigated per island. The results revealed that under CC the grid-on energy required would increase and as a result, the reduction in wind turbines and seawater pumped storage systems’ reliability will be in the range of 4 to 44%. However, the range of this percentage change does not exceed 22% per island for all examined CC scenarios. Overall, CC is proposed to be incorporated into the design process for WRM-related projects. Acknowledgements: This research is co-financed by Greece and the European Union (European Social Fund - ESF) through the Operational Program «Human Resources Development, Education and Lifelong Learning 2014-2020» in the context of the project “Development of a combined rain harvesting and renewable energy-based system for covering domestic and agricultural water requirements in small dry Greek Islands” (MIS 5004775).

Keywords: small dry islands, water resources management, climate change, desalination, RES, seawater pumped storage system, rainwater harvesting

Procedia PDF Downloads 114
406 Multiperson Drone Control with Seamless Pilot Switching Using Onboard Camera and Openpose Real-Time Keypoint Detection

Authors: Evan Lowhorn, Rocio Alba-Flores

Abstract:

Traditional classification Convolutional Neural Networks (CNN) attempt to classify an image in its entirety. This becomes problematic when trying to perform classification with a drone’s camera in real-time due to unpredictable backgrounds. Object detectors with bounding boxes can be used to isolate individuals and other items, but the original backgrounds remain within these boxes. These basic detectors have been regularly used to determine what type of object an item is, such as “person” or “dog.” Recent advancement in computer vision, particularly with human imaging, is keypoint detection. Human keypoint detection goes beyond bounding boxes to fully isolate humans and plot points, or Regions of Interest (ROI), on their bodies within an image. ROIs can include shoulders, elbows, knees, heads, etc. These points can then be related to each other and used in deep learning methods such as pose estimation. For drone control based on human motions, poses, or signals using the onboard camera, it is important to have a simple method for pilot identification among multiple individuals while also giving the pilot fine control options for the drone. To achieve this, the OpenPose keypoint detection network was used with body and hand keypoint detection enabled. OpenPose supports the ability to combine multiple keypoint detection methods in real-time with a single network. Body keypoint detection allows simple poses to act as the pilot identifier. The hand keypoint detection with ROIs for each finger can then offer a greater variety of signal options for the pilot once identified. For this work, the individual must raise their non-control arm to be identified as the operator and send commands with the hand on their other arm. The drone ignores all other individuals in the onboard camera feed until the current operator lowers their non-control arm. When another individual wish to operate the drone, they simply raise their arm once the current operator relinquishes control, and then they can begin controlling the drone with their other hand. This is all performed mid-flight with no landing or script editing required. When using a desktop with a discrete NVIDIA GPU, the drone’s 2.4 GHz Wi-Fi connection combined with OpenPose restrictions to only body and hand allows this control method to perform as intended while maintaining the responsiveness required for practical use.

Keywords: computer vision, drone control, keypoint detection, openpose

Procedia PDF Downloads 183
405 Virtual Metrology for Copper Clad Laminate Manufacturing

Authors: Misuk Kim, Seokho Kang, Jehyuk Lee, Hyunchang Cho, Sungzoon Cho

Abstract:

In semiconductor manufacturing, virtual metrology (VM) refers to methods to predict properties of a wafer based on machine parameters and sensor data of the production equipment, without performing the (costly) physical measurement of the wafer properties (Wikipedia). Additional benefits include avoidance of human bias and identification of important factors affecting the quality of the process which allow improving the process quality in the future. It is however rare to find VM applied to other areas of manufacturing. In this work, we propose to use VM to copper clad laminate (CCL) manufacturing. CCL is a core element of a printed circuit board (PCB) which is used in smartphones, tablets, digital cameras, and laptop computers. The manufacturing of CCL consists of three processes: Treating, lay-up, and pressing. Treating, the most important process among the three, puts resin on glass cloth, heat up in a drying oven, then produces prepreg for lay-up process. In this process, three important quality factors are inspected: Treated weight (T/W), Minimum Viscosity (M/V), and Gel Time (G/T). They are manually inspected, incurring heavy cost in terms of time and money, which makes it a good candidate for VM application. We developed prediction models of the three quality factors T/W, M/V, and G/T, respectively, with process variables, raw material, and environment variables. The actual process data was obtained from a CCL manufacturer. A variety of variable selection methods and learning algorithms were employed to find the best prediction model. We obtained prediction models of M/V and G/T with a high enough accuracy. They also provided us with information on “important” predictor variables, some of which the process engineers had been already aware and the rest of which they had not. They were quite excited to find new insights that the model revealed and set out to do further analysis on them to gain process control implications. T/W did not turn out to be possible to predict with a reasonable accuracy with given factors. The very fact indicates that the factors currently monitored may not affect T/W, thus an effort has to be made to find other factors which are not currently monitored in order to understand the process better and improve the quality of it. In conclusion, VM application to CCL’s treating process was quite successful. The newly built quality prediction model allowed one to reduce the cost associated with actual metrology as well as reveal some insights on the factors affecting the important quality factors and on the level of our less than perfect understanding of the treating process.

Keywords: copper clad laminate, predictive modeling, quality control, virtual metrology

Procedia PDF Downloads 349
404 Decision-Making in Higher Education: Case Studies Demonstrating the Value of Institutional Effectiveness Tools

Authors: Carolinda Douglass

Abstract:

Institutional Effectiveness (IE) is the purposeful integration of functions that foster student success and support institutional performance. IE is growing rapidly within higher education as it is increasingly viewed by higher education administrators as a beneficial approach for promoting data-informed decision-making in campus-wide strategic planning and execution of strategic initiatives. Specific IE tools, including, but not limited to, project management; impactful collaboration and communication; commitment to continuous quality improvement; and accountability through rigorous evaluation; are gaining momentum under the auspices of IE. This research utilizes a case study approach to examine the use of these IE tools, highlight successes of this use, and identify areas for improvement in the implementation of IE tools within higher education. The research includes three case studies: (1) improving upon academic program review processes including the assessment of student learning outcomes as a core component of program quality; (2) revising an institutional vision, mission, and core values; and (3) successfully navigating an institution-wide re-accreditation process. Several methods of data collection are embedded within the case studies, including surveys, focus groups, interviews, and document analyses. Subjects of these methods include higher education administrators, faculty, and staff. Key findings from the research include areas of success and areas for improvement in the use of IE tools associated with specific case studies as well as aggregated results across case studies. For example, the use of case management proved useful in all of the case studies, while rigorous evaluation did not uniformly provide the value-added that was expected by higher education decision-makers. The use of multiple IE tools was shown to be consistently useful in decision-making when applied with appropriate awareness of and sensitivity to core institutional culture (for example, institutional mission, local environments and communities, disciplinary distinctions, and labor relations). As IE gains a stronger foothold in higher education, leaders in higher education can make judicious use of IE tools to promote better decision-making and secure improved outcomes of strategic planning and the execution of strategic initiatives.

Keywords: accreditation, data-informed decision-making, higher education management, institutional effectiveness tools, institutional mission, program review, strategic planning

Procedia PDF Downloads 114
403 Factors Impacting Training and Adult Education Providers’ Business Performance: The Singapore Context

Authors: Zan Chen, D. Kwok

Abstract:

The SkillsFuture Singapore’s mission to develop a responsive and forward-looking Training and Adult Education (TAE) and workforce development system is undergirded by how successful TAE providers are in their business performance and strategies that strengthen their operational efficiency and processes. Therefore, understanding the factors that drive the business performance of TAE providers is critical to the success of SkillsFuture Singapore’s initiatives. This study aims to investigate how business strategy, work autonomy, work intensity and professional development support impact the business performance of private TAE providers. Specifically, the three research questions are: (1) Are there significant relationships between the above-mentioned four factors and TAE providers’ business performance?; (2) Are there significant differences on the four factors between low and high TAE providers’ business performance groups?; and (3) To what extent and in what manner do the four factors predict TAE providers’ business performance? This was part of the first national study on organizations and professionals working in the Training and Adult Education (TAE) sector. Data from 265 private TAE providers where respondents were Chief Executive Officers representatives from the Senior Management were analyzed. The results showed that business strategy (the extent that the organization leads the way in terms of developing new products and services; uses up-to-date learning technologies; customizes its products and services to the client’s needs), work autonomy (the extent that the staff personally have an influence on how hard they work; deciding what tasks they are to do; deciding how they are to do the tasks, and deciding the quality standards to which they work) and professional development support (both monetary and non-monetary support and incentives) had positive and significant relationships with business performance. However, no significant relationship is found between work intensity and business performance. A business strategy, work autonomy and professional development support were significantly higher in the high business performance group compared to the low-performance group among the TAE providers. Results of hierarchical regression analyses controlling for the size of the TAE providers showed significant impacts of business strategy, work autonomy and professional development support on TAE providers’ business performance. Overall, the model accounted for 27% of the variance in TAE providers’ business performance. This study provides policymakers with insights into improving existing policies, designing new initiatives and implementing targeting interventions to support TAE providers. The findings also have implications on how the TAE providers could better formulate their organizational strategies and business models. Finally, limitations of study, along with directions for future research will be discussed in the paper.

Keywords: adult education, business performance, business strategy, training, work autonomy

Procedia PDF Downloads 204
402 Young Adults’ Media Addiction Coping Strategies: A Longitudinal Study

Authors: Johanna Lindstrom, Jacob Mickelsson

Abstract:

Changes in the current media environment are transforming peoples’ everyday media consumption patterns all over the world. Digital media have become a natural, almost unavoidable, part of everyday lives of humans. While this has led to many positive consequences, there is also a growing concern for harmful effects. This paper contributes to knowledge about “the dark side” of media use by considering the topic of media addiction and subsequent coping strategies among young adults. The paper draws on a longitudinal media diary study conducted among young university students between the years 2013 and 2021. A total of 1029 diaries have been collected (approximately 100 each year), aiming at capturing the students’ everyday media behavior. In this paper, reflective narratives in the diaries have been analyzed, aiming at answering the following questions: Which of their own media behaviors do the students perceive as particularly destructive, addictive or problematic? How do they cope with such behaviors? Results from the study indicate a noticeable increase in reflections on addictive media behavior over the years. For example, compared to earlier years, the amount of such reflections significantly started to increase in the diaries in 2016 and 2017, and this trend has continued ever since. Furthermore, the nature of these reflections has changed, displaying a growing concern for one’s own excessive media use and general wellbeing. Media addiction seems particularly difficult to cope with as digital media is literally everywhere and media use in general is described as consistent and habitual, in terms of regularly repeated routines that are fragmented but performed continuously and often unintentionally throughout the day. Reflections on “the dark side” of everyday media consumption become particularly prominent in times of the Covid -19 pandemic. However, this trend was noticeable well before the pandemic started. The study also identifies a countertrend regarding reflections on how to deal and cope with problematic media behavioral patterns. This countertrend portrays a general development of increased awareness of factors that may trigger compulsive behavior and how to avoid or handle such trigger points. The countertrend is particularly evident in recent years, despite the ongoing pandemic and subsequent increases in time spent using media. Addictive media behavior may lead to severe consequences for students’ learning processes and general well-being. Increased awareness of this growing trend and coping strategies are needed on an individual as well as a broader educational level.

Keywords: coping strategies, media addiction, media behavior, well-being

Procedia PDF Downloads 201
401 Evaluate Existing Mental Health Intervention Programs Tailored for International Students in China

Authors: Nargiza Nuralieva

Abstract:

This meta-analysis investigates the effectiveness of mental health interventions tailored for international students in China, with a specific focus on Uzbek students and Silk Road scholarship recipients. The comprehensive literature review synthesizes existing studies, papers, and reports, evaluating the outcomes, limitations, and cultural considerations of these programs. Data selection targets mental health programs for international students, honing in on a subset analysis related to Uzbek students and Silk Road scholarship recipients. The analysis encompasses diverse outcome measures, such as reported stress levels, utilization rates of mental health services, academic performance, and more. Results reveal a consistent and statistically significant reduction in reported stress levels, emphasizing the positive impact of these interventions. Utilization rates of mental health services witness a significant increase, highlighting the accessibility and effectiveness of support. Retention rates show marked improvement, though academic performance yields mixed findings, prompting nuanced exploration. Psychological well-being, quality of life, and overall well-being exhibit substantial enhancements, aligning with the overarching goal of holistic student development. Positive outcomes are observed in increased help-seeking behavior, positive correlations with social support, and significant reductions in anxiety levels. Cultural adaptation and satisfaction with interventions both indicate positive outcomes, underscoring the effectiveness of culturally sensitive mental health support. The findings emphasize the importance of tailored mental health interventions for international students, providing novel insights into the specific needs of Uzbek students and Silk Road scholarship recipients. This research contributes to a nuanced understanding of the multifaceted impact of mental health programs on diverse student populations, offering valuable implications for the design and refinement of future interventions. As educational institutions continue to globalize, addressing the mental health needs of international students remains pivotal for fostering inclusive and supportive learning environments.

Keywords: international students, mental health interventions, cross-cultural support, silk road scholarship, meta-analysis

Procedia PDF Downloads 56
400 Comparison of the Common Factors of the Top Academic Elementary Schools to the Average Elementary Schools in California: Looking beyond School Leadership

Authors: Lindy Valdez, Daryl Parker

Abstract:

Introduction: There has been much research on academic achievement in elementary schools. Most of the research has been on school leadership. While research has focused on the role of leadership on school improvement, little research has examined what variables the top elementary schools have in common. To undertake school improvement, it is important to understand what factors the best schools share. The purpose of this study was to examine data of the “Best Elementary Schools in California,” based on academic achievement as rated by three prominent websites and determine if these schools had any common factors which were different than the statewide averages. The variables examined included access to subject matter specialists (physical education, art, and music), librarians, after school programs, class size, socioeconomic status, and diversity. The participants consisted of the top public elementary schools in California based on the websites i)https://www.niche.com/k12/search/best-schools/, ii)https://www.finder.com/best-schools-california,and iii)https://www.schooldigger.com/go/CA/schoolrank.aspx. The data for subject matter specialists (physical education, art, and music), librarians, after school programs, class size, socioeconomic status, and diversity were collected from these top schools and compared to California statewide averages. Results indicate that top public elementary schools in California have a high number of subject matter specialists that teach physical education, art, and music. These positions are on the decline in the average public elementary school in California, but the top schools have abundant access to these specialists. The physical education specialist has the highest statistically significant difference between the nationwide average and the top schools—librarians, and after school programs are also most commonly high in top public elementary schools in California. The high presence of these programs may be aiding academic achievement in less visible ways. Class size is small, socio-economic status is high, and diversity is low among top public elementary schools in California when compared to the statewide average public elementary schools in California. The single largest area of discrepancy was between physical education specialists in a top school and their state and nationwide averages. The socioeconomic status of schools and parents may be an underlining factor affecting several other variables. This affluence could explain how these schools were able to have access to subject matter specialists, after-school activities, and, therefore, more opportunities for physical activity and greater learning opportunities affecting academic achievement.

Keywords: academic achievement, elementary education, factors, schools

Procedia PDF Downloads 132
399 Integrated Human Resources and Work Environment Management System

Authors: Loreta Kaklauskiene, Arturas Kaklauskas

Abstract:

The Integrated Human Resources and Work Environment Management (HOWE) System optimises employee productivity, improves the work environment, and, at the same time, meets the employer’s strategic goals. The HOWE system has been designed to ensure an organisation can successfully compete in the global market, thanks to the high performance of its employees. The HOWE system focuses on raising workforce productivity and improving work conditions to boost employee performance and motivation. The methods used in our research are linear correlation, INVAR multiple criteria analysis, digital twin, and affective computing. The HOWE system is based on two patents issued in Lithuania (LT 6866, LT 6841) and one European Patent application (No: EP 4 020 134 A1). Our research analyses ways to make human resource management more efficient and boost labour productivity by improving and adapting a personalised work environment. The efficiency of human capital and labour productivity can be increased by applying personalised workplace improvement systems that can optimise lighting colours and intensity, scents, data, information, knowledge, activities, media, games, videos, music, air pollution, humidity, temperature, vibrations, and other workplace aspects. HOWE generates and maintains a personalised workspace for an employee, taking into account the person’s affective, physiological and emotional (APSE) states. The purpose of this project was to create a HOWE for the customisation of quality control in smart workspaces taking into account the user’s APSE states in an integrated manner as a single unit. This customised management of quality control covers the levels of lighting and colour intensities, scents, media, information, activities, learning materials, games, music, videos, temperature, energy efficiency, the carbon footprint of a workspace, humidity, air pollution, vibrations and other aspects of smart spaces. The system is based on Digital Twins technology, seen as a logical extension of BIM.

Keywords: human resource management, health economics, work environment, organizational behaviour and employee productivity, prosperity in work, smart system

Procedia PDF Downloads 72
398 Oleic Acid Enhances Hippocampal Synaptic Efficacy

Authors: Rema Vazhappilly, Tapas Das

Abstract:

Oleic acid is a cis unsaturated fatty acid and is known to be a partially essential fatty acid due to its limited endogenous synthesis during pregnancy and lactation. Previous studies have demonstrated the role of oleic acid in neuronal differentiation and brain phospholipid synthesis. These evidences indicate a major role for oleic acid in learning and memory. Interestingly, oleic acid has been shown to enhance hippocampal long term potentiation (LTP), the physiological correlate of long term synaptic plasticity. However the effect of oleic acid on short term synaptic plasticity has not been investigated. Short term potentiation (STP) is the physiological correlate of short term synaptic plasticity which is the key underlying molecular mechanism of short term memory and neuronal information processing. STP in the hippocampal CA1 region has been known to require the activation of N-methyl-D-aspartate receptors (NMDARs). The NMDAR dependent hippocampal STP as a potential mechanism for short term memory has been a subject of intense interest for the past few years. Therefore in the present study the effect of oleic acid on NMDAR dependent hippocampal STP was determined in mouse hippocampal slices (in vitro) using Multi-electrode array system. STP was induced by weak tetanic Stimulation (one train of 100 Hz stimulations for 0.1s) of the Schaffer collaterals of CA1 region of the hippocampus in slices treated with different concentrations of oleic acid in presence or absence of NMDAR antagonist D-AP5 (30 µM) . Oleic acid at 20 (mean increase in fEPSP amplitude = ~135 % Vs. Control = 100%; P<0.001) and 30 µM (mean increase in fEPSP amplitude = ~ 280% Vs. Control = 100%); P<0.001) significantly enhanced the STP following weak tetanic stimulation. Lower oleic acid concentrations at 10 µM did not modify the hippocampal STP induced by weak tetanic stimulation. The hippocampal STP induced by weak tetanic stimulation was completely blocked by the NMDA receptor antagonist D-AP5 (30µM) in both oleic acid and control treated hippocampal slices. This lead to the conclusion that the hippocampal STP elicited by weak tetanic stimulation and enhanced by oleic acid was NMDAR dependent. Together these findings suggest that oleic acid may enhance the short term memory and neuronal information processing through the modulation of NMDAR dependent hippocampal short-term synaptic plasticity. In conclusion this study suggests the possible role of oleic acid to prevent the short term memory loss and impaired neuronal function throughout development.

Keywords: oleic acid, short-term potentiation, memory, field excitatory post synaptic potentials, NMDA receptor

Procedia PDF Downloads 333
397 Using Mathematical Models to Predict the Academic Performance of Students from Initial Courses in Engineering School

Authors: Martín Pratto Burgos

Abstract:

The Engineering School of the University of the Republic in Uruguay offers an Introductory Mathematical Course from the second semester of 2019. This course has been designed to assist students in preparing themselves for math courses that are essential for Engineering Degrees, namely Math1, Math2, and Math3 in this research. The research proposes to build a model that can accurately predict the student's activity and academic progress based on their performance in the three essential Mathematical courses. Additionally, there is a need for a model that can forecast the incidence of the Introductory Mathematical Course in the three essential courses approval during the first academic year. The techniques used are Principal Component Analysis and predictive modelling using the Generalised Linear Model. The dataset includes information from 5135 engineering students and 12 different characteristics based on activity and course performance. Two models are created for a type of data that follows a binomial distribution using the R programming language. Model 1 is based on a variable's p-value being less than 0.05, and Model 2 uses the stepAIC function to remove variables and get the lowest AIC score. After using Principal Component Analysis, the main components represented in the y-axis are the approval of the Introductory Mathematical Course, and the x-axis is the approval of Math1 and Math2 courses as well as student activity three years after taking the Introductory Mathematical Course. Model 2, which considered student’s activity, performed the best with an AUC of 0.81 and an accuracy of 84%. According to Model 2, the student's engagement in school activities will continue for three years after the approval of the Introductory Mathematical Course. This is because they have successfully completed the Math1 and Math2 courses. Passing the Math3 course does not have any effect on the student’s activity. Concerning academic progress, the best fit is Model 1. It has an AUC of 0.56 and an accuracy rate of 91%. The model says that if the student passes the three first-year courses, they will progress according to the timeline set by the curriculum. Both models show that the Introductory Mathematical Course does not directly affect the student’s activity and academic progress. The best model to explain the impact of the Introductory Mathematical Course on the three first-year courses was Model 1. It has an AUC of 0.76 and 98% accuracy. The model shows that if students pass the Introductory Mathematical Course, it will help them to pass Math1 and Math2 courses without affecting their performance on the Math3 course. Matching the three predictive models, if students pass Math1 and Math2 courses, they will stay active for three years after taking the Introductory Mathematical Course, and also, they will continue following the recommended engineering curriculum. Additionally, the Introductory Mathematical Course helps students to pass Math1 and Math2 when they start Engineering School. Models obtained in the research don't consider the time students took to pass the three Math courses, but they can successfully assess courses in the university curriculum.

Keywords: machine-learning, engineering, university, education, computational models

Procedia PDF Downloads 93
396 The People's Tribunal: Empowerment by Survivors for Survivors of Child Abuse

Authors: Alan Collins

Abstract:

This study explains how The People’s Tribunal empowered survivors of child abuse. It examines how People’s tribunals can be effective mean of empowerment; the challenges of empowerment – expectation v. reality; the findings and how they reflect other inquiry findings; and the importance of listening and learning from survivors. UKCSAPT “The People’s Tribunal” was established by survivors of child sex abuse and members of civil society to investigate historic cases of institutional sex abuse. The independent inquiry, led by a panel of four judges, listened to evidence spanning four decades from survivors and experts. A common theme throughout these accounts showed that a series of institutional failures prevented abuse from being reported; and that there are clear links between children being rendered vulnerable by these failures and predatory abuse on an organised scale. It made a series of recommendations including the establishment of a permanent and open forum for victims to share experiences and give evidence, better links between mental health services and police investigations, and training for police and judiciary professionals on the effects of undisclosed sexual abuse. The main findings of the UKCSAPT report were:-There are clear links between children rendered vulnerable by institutional failures and predatory abuse on an organised scale, even if these links often remain obscure. -UK governmental institutions have failed to provide survivors with meaningful opportunities for either healing or justice. -The vital mental health needs of survivors are not being met and this undermines both their psychological recovery and access to justice. -Police and other authorities often lack the training to understand the complex reasons for the inability of survivors to immediately disclose a history of abuse. -Without far-reaching changes in institutional culture and practices, the sexual abuse of children will continue to be a significant scourge in the UK. The report also outlined a series of recommendations for improving reporting and mental health provision, and access to justice for victims were made, including: -A permanent, government-funded popular tribunal should be established to enable survivors to come forward and tell their stories. -Survivors giving evidence should be assigned an advocate to assist their access to justice. -Mental health services should be linked to police investigations to help victims disclose abuse. -Victims who fear reprisals should be provided with a channel though which to give evidence anonymously.

Keywords: empowerment, survivors, sexual, abuse

Procedia PDF Downloads 257
395 Comprehensive Longitudinal Multi-omic Profiling in Weight Gain and Insulin Resistance

Authors: Christine Y. Yeh, Brian D. Piening, Sarah M. Totten, Kimberly Kukurba, Wenyu Zhou, Kevin P. F. Contrepois, Gucci J. Gu, Sharon Pitteri, Michael Snyder

Abstract:

Three million deaths worldwide are attributed to obesity. However, the biomolecular mechanisms that describe the link between adiposity and subsequent disease states are poorly understood. Insulin resistance characterizes approximately half of obese individuals and is a major cause of obesity-mediated diseases such as Type II diabetes, hypertension and other cardiovascular diseases. This study makes use of longitudinal quantitative and high-throughput multi-omics (genomics, epigenomics, transcriptomics, glycoproteomics etc.) methodologies on blood samples to develop multigenic and multi-analyte signatures associated with weight gain and insulin resistance. Participants of this study underwent a 30-day period of weight gain via excessive caloric intake followed by a 60-day period of restricted dieting and return to baseline weight. Blood samples were taken at three different time points per patient: baseline, peak-weight and post weight loss. Patients were characterized as either insulin resistant (IR) or insulin sensitive (IS) before having their samples processed via longitudinal multi-omic technologies. This comparative study revealed a wealth of biomolecular changes associated with weight gain after using methods in machine learning, clustering, network analysis etc. Pathways of interest included those involved in lipid remodeling, acute inflammatory response and glucose metabolism. Some of these biomolecules returned to baseline levels as the patient returned to normal weight whilst some remained elevated. IR patients exhibited key differences in inflammatory response regulation in comparison to IS patients at all time points. These signatures suggest differential metabolism and inflammatory pathways between IR and IS patients. Biomolecular differences associated with weight gain and insulin resistance were identified on various levels: in gene expression, epigenetic change, transcriptional regulation and glycosylation. This study was not only able to contribute to new biology that could be of use in preventing or predicting obesity-mediated diseases, but also matured novel biomedical informatics technologies to produce and process data on many comprehensive omics levels.

Keywords: insulin resistance, multi-omics, next generation sequencing, proteogenomics, type ii diabetes

Procedia PDF Downloads 427
394 Reverse Engineering Genius: Through the Lens of World Language Collaborations

Authors: Cynthia Briggs, Kimberly Gerardi

Abstract:

Over the past six years, the authors have been working together on World Language Collaborations in the Middle School French Program at St. Luke's School in New Canaan, Connecticut, USA. Author 2 brings design expertise to the projects, and both teachers have utilized the fabrication lab, emerging technologies, and collaboration with students. Each year, author 1 proposes a project scope, and her students are challenged to design and engineer a signature project. Both partners have improved the iterative process to ensure deeper learning and sustained student inquiry. The projects range from a 1:32 scale model of the Eiffel Tower that was CNC routed to a fully functional jukebox that plays francophone music, lights up, and can hold up to one thousand songs powered by Raspberry Pi. The most recent project is a Fragrance Marketplace, culminating with a pop-up store for the entire community to discover. Each student will learn the history of fragrance and the chemistry behind making essential oils. Students then create a unique brand, marketing strategy, and concept for their signature fragrance. They are further tasked to use the industrial design process (bottling, packaging, and creating a brand name) to finalize their product for the public Marketplace. Sometimes, these dynamic projects require maintenance and updates. For example, our wall-mounted, three-foot francophone clock is constantly changing. The most recent iteration uses Chat GPT to program the Arduino to reconcile the real-time clock shield and keep perfect time as each hour passes. The lights, motors, and sounds from the clock are authentic to each region, represented with laser-cut embellishments. Inspired by Michel Parmigiani, the history of Swiss watch-making, and the precision of time instruments, we aim for perfection with each passing minute. The authors aim to share exemplary work that is possible with students of all ages. We implemented the reverse engineering process to focus on student outcomes to refine our collaborative process. The products that our students create are prime examples of how the design engineering process is applicable across disciplines. The authors firmly believe that the past and present of World cultures inspire innovation.

Keywords: collaboration, design thinking, emerging technologies, world language

Procedia PDF Downloads 43
393 Participatory Planning of the III Young Sea Meeting: An Experience of the Young Albatroz Collective

Authors: Victor V. Ribeiro, Thais C. Lopes, Rafael A. A. Monteiro

Abstract:

The Albatroz, Baleia Jubarte, Coral Vivo, Golfinho Rotador and Tamar projects make up the Young Sea Network (YSN), part of the BIOMAR Network, which aims to integrate the environmental youths of the Brazilian coast. For this, three editions of the Young Sea Meeting (YSM) were performed. Seeking to stimulate belonging, self-knowledge, participation, autonomy and youth protagonism, the Albatroz Project hosted the III YSM, in Bertioga (SP), in April 2019 and aimed to collectively plan the meeting. Five pillars of Environmental Education were used: identity, community, dialogue, power to act and happiness, the OCA Method and the Young Educates Young; Young Chooses Young; and One Generation Learns from the Other principals. In December 2018, still in the II YSM, the participatory planning of the III YSM began. Two "representatives" of each group were voluntarily elected to facilitate joint decisions, propose, receive and communicate demands from their groups and coordinators. The Young Albatroz Collective (YAC) facilitated the organization process as a whole. The purpose of the meeting was collectively constructed, answering the following question: "What is the YSM for?". Only two of the five pairs of representatives responded. There was difficulty gathering the young people in each group, because it was the end of the year, with people traveling. Thus, due to the short planning time, the YAC built a pre-programming to be validated by the other groups, defining as the objective of the meeting the strengthening of youth protagonism within the YSN. In the planning process, the YAC held 20 meetings, with 60 hours of face-to-face work, in three months, and two technical visits to the headquarters of the III YSM. The participatory dynamics of consultation, when it occurred, required up to two weeks, evidencing the limits of participation. The project coordinations stated that they were not being included in the process by their young people. There is a need to work more to be able to aloud the participation, developing skills and understanding about its principles. This training must take place in an articulated way between the network, implying the important role of the five projects in jointly developing and implementing educator processes with this objective in a national dimension, but without forgetting the specificities of each young group. Finally, it is worth highlighting the great potential of the III YSM by stimulating the exercise of leading environmental youth in more than 50 young people from Brazilian coast, linked to the YSN, stimulating the learning and mobilization of young people in favor of coastal and marine conservation.

Keywords: Marine Conservation, Environmental Education, Youth, Participation, Planning

Procedia PDF Downloads 165