Search results for: voltage and current sensing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10728

Search results for: voltage and current sensing

9828 Chemical Bath Deposition Technique (CBD) of Cds Used in Closed Space Sublimation (CSS) of CdTe Solar Cell

Authors: Zafar Mahmood, Fahimullah Babar, Surriyia Naz, Hafiz Ur Rehman

Abstract:

Cadmium Sulphide (CdS) was deposited on a Tec 15 glass substrate with the help of CBD (chemical bath deposition process) and then cadmium telluride CdTe was deposited on CdS with the help of CSS (closed spaced sublimation technique) for the construction of a solar cell. The thicknesses of all the deposited materials were measured with the help of Elipsometry. The IV graphs were drawn in order to observe the current voltage output. The efficiency of the cell was graphed with the fill factor as well (graphs not given here).The efficiency came out to be approximately 16.5 % and the CIGS (copper- indium –gallium- selenide) maximum efficiency is 20 %.The efficiency of a solar cell can further be enhanced by adapting quality materials, good experimental devices and proper procedures. The grain size was analyzed with the help of scanning electron microscope using RBS (Rutherford backscattering spectroscopy).

Keywords: CBD, CdS, CdTe, CSS

Procedia PDF Downloads 364
9827 Cell Elevator: A Novel Technique for Cell Sorting and Circulating Tumor Cell Detection and Discrimination

Authors: Kevin Zhao, Norman J. Horing

Abstract:

A methodology for cells sorting and circulating tumor cell detection and discrimination is presented in this paper. The technique is based on Dielectrophoresis and microfluidic device theory. Specifically, the sorting of the cells is realized by adjusting the relation among the sedimentation forces, the drag force provided by the fluid, and the Dielectrophortic force that is relevant to the bias voltage applied on the device. The relation leads to manipulation of the elevation of the cells of the same kind to a height by controlling the bias voltage. Once the cells have been lifted to a position next to the bottom of the cell collection channel, the buffer fluid flashes them into the cell collection channel. Repeated elevation of the cells leads to a complete sorting of the cells in the sample chamber. A proof-of-principle example is presented which verifies the feasibility of the methodology.

Keywords: cell sorter, CTC cell, detection and discrimination, dielectrophoresisords, simulation

Procedia PDF Downloads 432
9826 Demonstration of Powering up Low Power Wireless Sensor Network by RF Energy Harvesting System

Authors: Lim Teck Beng, Thiha Kyaw, Poh Boon Kiat, Lee Ngai Meng

Abstract:

This work presents discussion on the possibility of merging two emerging technologies in microwave; wireless power transfer (WPT) and RF energy harvesting. The current state of art of the two technologies is discussed and the strength and weakness of the two technologies is also presented. The equivalent circuit of wireless power transfer is modeled and explained as how the range and efficiency can be further increased by controlling certain parameters in the receiver. The different techniques of harvesting the RF energy from the ambient are also extensive study. Last but not least, we demonstrate that a low power wireless sensor network (WSN) can be power up by RF energy harvesting. The WSN is designed to transmit every 3 minutes of information containing the temperature of the environment and also the voltage of the node. One thing worth mention is both the sensors that are used for measurement are also powering up by the RF energy harvesting system.

Keywords: energy harvesting, wireless power transfer, wireless sensor network and magnetic coupled resonator

Procedia PDF Downloads 519
9825 An Exploration of the Technical and Economic Feasibility of a Stand Alone Solar PV Generated DC Distribution System over AC Distribution System for Use in the Modern as Well as Future Houses of Isolated Areas

Authors: Alpesh Desai, Indrajit Mukhopadhyay

Abstract:

Standalone Photovoltaic (PV) systems are designed and sized to supply certain AC and/or DC electrical loads. In computers, consumer electronics and many small appliances as well as LED lighting the actual power consumed is DC. The DC system, which requires only voltage control, has many advantages such as feasible connection of the distributed energy sources and reduction of the conversion losses for DC-based loads. Also by using the DC power directly the cost of the size of the Inverter and Solar panel reduced hence the overall cost of the system reduced. This paper explores the technical and economic feasibility of supplying electrical power to homes/houses using DC voltage mains within the house. Theoretical calculated results are presented to demonstrate the advantage of DC system over AC system with PV on sustainable rural/isolated development.

Keywords: distribution system, energy efficiency, off-grid, stand-alone PV system, sustainability, techno-socio-economic

Procedia PDF Downloads 263
9824 Design and Development of Power Sources for Plasma Actuators to Control Flow Separation

Authors: Himanshu J. Bahirat, Apoorva S. Janawlekar

Abstract:

Plasma actuators are essential for aerodynamic flow separation control due to their lack of mechanical parts, lightweight, and high response frequency, which have numerous applications in hypersonic or supersonic aircraft. The working of these actuators is based on the formation of a low-temperature plasma between a pair of parallel electrodes by the application of a high-voltage AC signal across the electrodes, after which air molecules from the air surrounding the electrodes are ionized and accelerated through the electric field. The high-frequency operation is required in dielectric discharge barriers to ensure plasma stability. To carry out flow separation control in a hypersonic flow, the optimal design and construction of a power supply to generate dielectric barrier discharges is carried out in this paper. In this paper, it is aspired to construct a simplified circuit topology to emulate the dielectric barrier discharge and study its various frequency responses. The power supply can generate high voltage pulses up to 20kV at the repetitive frequency range of 20-50kHz with an input power of 500W. The power supply has been designed to be short circuit proof and can endure variable plasma load conditions. Its general outline is to charge a capacitor through a half-bridge converter and then later discharge it through a step-up transformer at a high frequency in order to generate high voltage pulses. After simulating the circuit, the PCB design and, eventually, lab tests are carried out to study its effectiveness in controlling flow separation.

Keywords: aircraft propulsion, dielectric barrier discharge, flow separation control, power source

Procedia PDF Downloads 128
9823 Dielectric Properties of Mineral Oil Blended with Soyabean Oil for Power Transformers: A Laboratory Investigation

Authors: Deepa S N, Srinivasan a D, Veeramanju K T

Abstract:

The power transformer is a critical equipment in the transmission and distribution network that must be managed to ensure uninterrupted power service. The liquid insulation is essential for the proper functioning of the transformer, as it serves as both coolant and insulating medium, which influences the transformer’s durability. Further, the insulating state of a power transformer has a significant impact on its reliability. Mineral oil derived from petroleum crude oil has been employed as liquid dielectrics for decades due to its superior functional characteristics, however as a resource for the same are getting depleted over the years. Research is undertaken across the globe to identify a viable substitute for mineral oil. Further, alternate insulating oils are being investigated for better environmental impact, biodegradability and economics. Several combinations of vegetable oil derived natural esters are being inspected by researchers across the globe in these domains. In this work, mineral oil is blended with soyabean oil with various proportions and dielectric properties such as dielectric breakdown voltage, relative permittivity, dissipation factor, viscosity, flash and fire point have been investigated according to international standards. A quantitative comparison is made among various samples and is observed that the blended oil sample of equal proportion of mineral oil and soyabean oil, MO50+SO50 exhibits superior dielectric properties such as breakdown voltage of 65kV, dissipation factor of 0.0044, relative permittivity of 3.1680 that are closer to the range of values recommended for power transformer applications. Also, Breakdown voltage values of all the investigated oil samples obeyed the Weibull and Normal probability distribution.

Keywords: blended oil, dielectric breakdown, liquid insulation, power transformer

Procedia PDF Downloads 90
9822 Improvement of Piezoresistive Pressure Sensor Accuracy by Means of Current Loop Circuit Using Optimal Digital Signal Processing

Authors: Peter A. L’vov, Roman S. Konovalov, Alexey A. L’vov

Abstract:

The paper presents the advanced digital modification of the conventional current loop circuit for pressure piezoelectric transducers. The optimal DSP algorithms of current loop responses by the maximum likelihood method are applied for diminishing of measurement errors. The loop circuit has some additional advantages such as the possibility to operate with any type of resistance or reactance sensors, and a considerable increase in accuracy and quality of measurements to be compared with AC bridges. The results obtained are dedicated to replace high-accuracy and expensive measuring bridges with current loop circuits.

Keywords: current loop, maximum likelihood method, optimal digital signal processing, precise pressure measurement

Procedia PDF Downloads 529
9821 Comparative Analysis of the Impact of Urbanization on Land Surface Temperature in the United Arab Emirates

Authors: A. O. Abulibdeh

Abstract:

The aim of this study is to investigate and compare the changes in the Land Surface Temperature (LST) as a function of urbanization, particularly land use/land cover changes, in three cities in the UAE, mainly Abu Dhabi, Dubai, and Al Ain. The scale of this assessment will be at the macro- and micro-levels. At the macro-level, a comparative assessment will take place to compare between the four cities in the UAE. At the micro-level, the study will compare between the effects of different land use/land cover on the LST. This will provide a clear and quantitative city-specific information related to the relationship between urbanization and local spatial intra-urban LST variation in three cities in the UAE. The main objectives of this study are 1) to investigate the development of LST on the macro- and micro-level between and in three cities in the UAE over two decades time period, 2) to examine the impact of different types of land use/land cover on the spatial distribution of LST. Because these three cities are facing harsh arid climate, it is hypothesized that (1) urbanization is affecting and connected to the spatial changes in LST; (2) different land use/land cover have different impact on the LST; and (3) changes in spatial configuration of land use and vegetation concentration over time would control urban microclimate on a city scale and control macroclimate on the country scale. This study will be carried out over a 20-year period (1996-2016) and throughout the whole year. The study will compare between two distinct periods with different thermal characteristics which are the cool/cold period from November to March and warm/hot period between April and October. The best practice research method for this topic is to use remote sensing data to target different aspects of natural and anthropogenic systems impacts. The project will follow classical remote sensing and mapping techniques to investigate the impact of urbanization, mainly changes in land use/land cover, on LST. The investigation in this study will be performed in two stages. Stage one remote sensing data will be used to investigate the impact of urbanization on LST on a macroclimate level where the LST and Urban Heat Island (UHI) will be compared in the three cities using data from the past two decades. Stage two will investigate the impact on microclimate scale by investigating the LST and UHI using a particular land use/land cover type. In both stages, an LST and urban land cover maps will be generated over the study area. The outcome of this study should represent an important contribution to recent urban climate studies, particularly in the UAE. Based on the aim and objectives of this study, the expected outcomes are as follow: i) to determine the increase or decrease of LST as a result of urbanization in these four cities, ii) to determine the effect of different land uses/land covers on increasing or decreasing the LST.

Keywords: land use/land cover, global warming, land surface temperature, remote sensing

Procedia PDF Downloads 248
9820 Jitter Based Reconstruction of Transmission Line Pulse Using On-Chip Sensor

Authors: Bhuvnesh Narayanan, Bernhard Weiss, Tvrtko Mandic, Adrijan Baric

Abstract:

This paper discusses a method to reconstruct internal high-frequency signals through subsampling techniques in an IC using an on-chip sensor. Though there are existing methods to internally probe and reconstruct high frequency signals through subsampling techniques; these methods have been applicable mainly for synchronized systems. This paper demonstrates a method for making such non-intrusive on-chip reconstructions possible also in non-synchronized systems. The TLP pulse is used to demonstrate the experimental validation of the concept. The on-chip sensor measures the voltage in an internal node. The jitter in the input pulse causes a varying pulse delay with respect to the on-chip sampling command. By measuring this pulse delay and by correlating it with the measured on-chip voltage, time domain waveforms can be reconstructed, and the influence of the pulse on the internal nodes can be better understood.

Keywords: on-chip sensor, jitter, transmission line pulse, subsampling

Procedia PDF Downloads 146
9819 Growth Mechanism and Sensing Behaviour of Sn Doped ZnO Nanoprisms Prepared by Thermal Evaporation Technique

Authors: Sudip Kumar Sinha, Saptarshi Ghosh

Abstract:

While there’s a perpetual buzz around zinc oxide (ZnO) superstructures for their unique optical features, the versatile material has been constantly utilized to manifest tailored electronic properties through rendition of distinct morphologies. And yet, the unorthodox approach of implementing the novel 1D nanostructures of ZnO (pristine or doped) for volatile sensing applications has ample scope to accommodate new unconventional morphologies. In the last two decades, solid-state sensors have attracted much curiosity for their relevance in identifying pollutant, toxic and other industrial gases. In particular gas sensors based on metal oxide semiconducting (wide Eg) nanomaterials have recently attracted intensive attention owing to their high sensitivity and fast response and recovery time. These materials when exposed to air, the atmospheric O2 dissociates and get absorb on the surface of the sensors by trapping the outermost shell electrons. Finally a depleted zone on the surface of the sensors is formed, that enhances the potential barrier height at grain boundary . Once a target gas is exposed to the sensor, the chemical interaction between the chemisorbed oxygen and the specific gas liberates the trapped electrons. Therefore altering the amount of adsorbate is a considerable approach to improve the sensitivity of any target gas/vapour molecule. Likewise, this study presents a spontaneous but self catalytic creation of Sn-doped ZnO hexagonal nanoprisms on Si (100) substrates through thermal evaporation-condensation method, and their subsequent deployment for volatile sensing. In particular, the sensors were utilized to detect molecules of ethanol, acetone and ammonia below their permissible exposure limits which returned sensitivities of around 85%, 80% and 50% respectively. The influence of Sn concentration on the growth, microstructural and optical properties of the nanoprisms along with its role in augmenting the sensing parameters has been detailed. The single-crystalline nanostructures have a typical diameter ranging from 300 to 500 nm and a length that extends up to few micrometers. HRTEM images confirmed the hexagonal crystallography for the nanoprisms, while SAED pattern asserted the single crystalline nature. The growth habit is along the low index <0001>directions. It has been seen that the growth mechanism of the as-deposited nanostructures are directly influenced by varying supersaturation ratio, fairly high substrate temperatures, and specified surface defects in certain crystallographic planes, all acting cooperatively decide the final product morphology. Room temperature photoluminescence (PL) spectra of this rod like structures exhibits a weak ultraviolet (UV) emission peak at around 380 nm and a broad green emission peak in the 505 nm regime. An estimate of the sensing parameters against dispensed target molecules highlighted the potential for the nanoprisms as an effective volatile sensing material. The Sn-doped ZnO nanostructures with unique prismatic morphology may find important applications in various chemical sensors as well as other potential nanodevices.

Keywords: gas sensor, HRTEM, photoluminescence, ultraviolet, zinc oxide

Procedia PDF Downloads 240
9818 Geospatial Modeling of Dry Snow Avalanches Distribution Using Geographic Information Systems and Remote Sensing: A Case Study of the Šar Mountains (Balkan Peninsula)

Authors: Uroš Durlević, Ivan Novković, Nina Čegar, Stefanija Stojković

Abstract:

Snow avalanches represent one of the most dangerous natural phenomena in mountain regions worldwide. Material and human casualties caused by snow avalanches can be very significant. In this study, using geographic information systems and remote sensing, the natural conditions of the Šar Mountains were analyzed for geospatial modeling of dry slab avalanches. For this purpose, the Fuzzy Analytic Hierarchy Process (FAHP) multi-criteria analysis method was used, within which fifteen environmental criteria were analyzed and evaluated. Based on the existing analyzes and results, it was determined that a significant area of the Šar Mountains is very highly susceptible to the occurrence of dry slab avalanches. The obtained data can be of significant use to local governments, emergency services, and other institutions that deal with natural disasters at the local level. To our best knowledge, this is one of the first research in the Republic of Serbia that uses the FAHP method for geospatial modeling of dry slab avalanches.

Keywords: GIS, FAHP, Šar Mountains, snow avalanches, environmental protection

Procedia PDF Downloads 92
9817 Multiple-Channel Coulter Counter for Cell Sizing and Enumeration

Authors: Yu Chen, Seong-Jin Kim, Jaehoon Chung

Abstract:

High throughput cells counting and sizing are often required for biomedical applications. Here we report design, fabrication and validating of a micro-machined Coulter counter device with multiple-channel to realize such application for low cost. Multiple vertical through-holes were fabricated on a silicon chip, combined with the PDMS micro-fluidics channel that serves as the sensing channel. In order to avoid the crosstalk introduced by the electrical connection, instead of measuring the current passing through, the potential of each channel is monitored, thus the high throughput is possible. A peak of the output potential can be captured when the cell/particle is passing through the microhole. The device was validated by counting and sizing the polystyrene beads with diameter of 6 μm, 10 μm and 15 μm. With the sampling frequency to be set at 100 kHz, up to 5000 counts/sec for each channel can be realized. The counting and enumeration of MCF7 cancer cells are also demonstrated.

Keywords: Coulter counter, cell enumeration, high through-put, cell sizing

Procedia PDF Downloads 611
9816 Ordered Mesoporous WO₃-TiO₂ Nanocomposites for Enhanced Xylene Gas Detection

Authors: Vijay K. Tomer, Ritu Malik, Satya P. Nehra, Anshu Sharma

Abstract:

Highly ordered mesoporous WO₃-TiO₂ nanohybrids with large intrinsic surface area and highly ordered pore channels were synthesized using mesoporous silica, KIT-6 as hard template using a nanocasting strategy. The nanohybrid samples were characterized by a variety of physico-chemical techniques including X-ray diffraction, Nitrogen adsorption-desorption isotherms, and high resolution transmission electron microscope. The nanohybrids were tested for detection of important indoor Volatile Organic Compounds (VOCs) including acetone, ethanol, n-butanol, toluene, and xylene. The sensing result illustrates that the nanocomposite sensor was highly responsive towards xylene gas at relatively lower operating temperature. A rapid response and recovery time, highly linear response and excellent stability in the concentration ranges from 1 to 100 ppm was observed for xylene gas. It is believed that the promising results of this study can be utilized in the synthesis of ordered mesoporous nanostructures which can extend its configuration for the development of new age e-nose type sensors with enhanced gas-sensing performance.

Keywords: nanohybrids, response, sensor, VOCs, xylene

Procedia PDF Downloads 331
9815 Operational Challenges of Marine Fiber Reinforced Polymer Composite Structures Coupled with Piezoelectric Transducers

Authors: H. Ucar, U. Aridogan

Abstract:

Composite structures become intriguing for the design of aerospace, automotive and marine applications due to weight reduction, corrosion resistance and radar signature reduction demands and requirements. Studies on piezoelectric ceramic transducers (PZT) for diagnostics and health monitoring have gained attention for their sensing capabilities, however PZT structures are prone to fail in case of heavy operational loads. In this paper, we develop a piezo-based Glass Fiber Reinforced Polymer (GFRP) composite finite element (FE) model, validate with experimental setup, and identify the applicability and limitations of PZTs for a marine application. A case study is conducted to assess the piezo-based sensing capabilities in a representative marine composite structure. A FE model of the composite structure combined with PZT patches is developed, afterwards the response and functionality are investigated according to the sea conditions. Results of this study clearly indicate the blockers and critical aspects towards industrialization and wide-range use of PZTs for marine composite applications.

Keywords: FRP composite, operational challenges, piezoelectric transducers, FE modeling

Procedia PDF Downloads 174
9814 A Review on Electrical Behavior of Different Substrates, Electrodes and Membranes in Microbial Fuel Cell

Authors: Bharat Mishra, Sanjay Kumar Awasthi, Raj Kumar Rajak

Abstract:

The devices, which convert the energy in the form of electricity from organic matters, are called microbial fuel cell (MFC). Recently, MFCs have been given a lot of attention due to their mild operating conditions, and various types of biodegradable substrates have been used in the form of fuel. Traditional MFCs were included in anode and cathode chambers, but there are single chamber MFCs. Microorganisms actively catabolize substrate, and bioelectricities are produced. In the field of power generation from non-conventional sources, apart from the benefits of this technique, it is still facing practical constraints such as low potential and power. In this study, most suitable, natural, low cost MFCs components are electrodes (anode and cathode), organic substrates, membranes and its design is selected on the basis of maximum potential (voltage) as an electrical parameter, which indicates a vital role of affecting factor in MFC for sustainable power production.

Keywords: substrates, electrodes, membranes, MFCs design, voltage

Procedia PDF Downloads 306
9813 Numerical Analyze of Corona Discharge on HVDC Transmission Lines

Authors: H. Nouri, A. Tabbel, N. Douib, H. Aitsaid, Y. Zebboudj

Abstract:

This study and the field test comparisons were carried out on the Algerian Derguna-Setif transmission systems. The transmission line of normal voltage 225 kV is 65 km long, transported and uses twin bundle conductors protected with two shield wires of transposed galvanized steel. An iterative finite-element method is used to solve Poisons equation. Two algorithms are proposed for satisfying the current continuity condition and updating the space-charge density. A new approach to the problem of corona discharge in transmission system has been described in this paper. The effect of varying the configurations and wires number is also investigated. The analysis of this steady is important in the design of HVDC transmission lines. The potential and electric field have been calculating in locations singular points of the system.

Keywords: corona discharge, finite element method, electric field, HVDC

Procedia PDF Downloads 414
9812 Field-Free Orbital Hall Current-Induced Deterministic Switching in the MO/Co₇₁Gd₂₉/Ru Structure

Authors: Zelalem Abebe Bekele, Kun Lei, Xiukai Lan, Xiangyu Liu, Hui Wen, Kaiyou Wang

Abstract:

Spin-polarized currents offer an efficient means of manipulating the magnetization of a ferromagnetic layer for big data and neuromorphic computing. Research has shown that the orbital Hall effect (OHE) can produce orbital currents, potentially surpassing the counter spin currents induced by the spin Hall effect. However, it’s essential to note that orbital currents alone cannot exert torque directly on a ferromagnetic layer, necessitating a conversion process from orbital to spin currents. Here, we present an efficient method for achieving perpendicularly magnetized spin-orbit torque (SOT) switching by harnessing the localized orbital Hall current generated from a Mo layer within a Mo/CoGd device. Our investigation reveals a remarkable enhancement in the interface-induced planar Hall effect (PHE) within the Mo/CoGd bilayer, resulting in the generation of a z-polarized planar current for manipulating the magnetization of CoGd layer without the need for an in-plane magnetic field. Furthermore, the Mo layer induces out-of-plane orbital current, boosting the in-plane and out-of-plane spin polarization by converting the orbital current into spin current within the dual-property CoGd layer. At the optimal Mo layer thickness, a low critical magnetization switching current density of 2.51×10⁶ A cm⁻² is achieved. This breakthrough opens avenues for all-electrical control energy-efficient magnetization switching through orbital current, advancing the field of spin-orbitronics.

Keywords: spin-orbit torque, orbital hall effect, spin hall current, orbital hall current, interface-generated planar hall current, anisotropic magnetoresistance

Procedia PDF Downloads 56
9811 Garnet-based Bilayer Hybrid Solid Electrolyte for High-Voltage Cathode Material Modified with Composite Interface Enabler on Lithium-Metal Batteries

Authors: Kumlachew Zelalem Walle, Chun-Chen Yang

Abstract:

Solid-state lithium metal batteries (SSLMBs) are considered promising candidates for next-generation energy storage devices due to their superior energy density and excellent safety. However, recent findings have shown that the formation of lithium (Li) dendrites in SSLMBs still exhibits a terrible growth ability, which makes the development of SSLMBs have to face the challenges posed by the Li dendrite problem. In this work, an inorganic/organic mixture coating material (g-C3N4/ZIF-8/PVDF) was used to modify the surface of lithium metal anode (LMA). Then the modified LMA (denoted as g-C₃N₄@Li) was assembled with lithium nafion (LiNf) coated commercial NCM811 (LiNf@NCM811) using a bilayer hybrid solid electrolyte (Bi-HSE) that incorporated 20 wt.% (vs. polymer) LiNf coated Li6.05Ga0.25La3Zr2O11.8F0.2 ([email protected]) filler faced to the positive electrode and the other layer with 80 wt.% (vs. polymer) filler content faced to the g-C₃N₄@Li. The garnet-type Li6.05Ga0.25La3Zr2O11.8F0.2 (LG0.25LZOF) solid electrolyte was prepared via co-precipitation reaction process from Taylor flow reactor and modified using lithium nafion (LiNf), a Li-ion conducting polymer. The Bi-HSE exhibited high ionic conductivity of 6.8  10–4 S cm–1 at room temperature, and a wide electrochemical window (0–5.0 V vs. Li/Li+). The coin cell was charged between 2.8 to 4.5 V at 0.2C and delivered an initial specific discharge capacity of 194.3 mAh g–1 and after 100 cycles it maintained 81.8% of its initial capacity at room temperature. The presence of a nano-sheet g-C3N4/ZIF-8/PVDF as a composite coating material on the LMA surface suppress the dendrite growth and enhance the compatibility as well as the interfacial contact between anode/electrolyte membrane. The g-C3N4@Li symmetrical cells incorporating this hybrid electrolyte possessed excellent interfacial stability over 1000 h at 0.1 mA cm–2 and a high critical current density (1 mA cm–2). Moreover, the in-situ formation of Li3N on the solid electrolyte interface (SEI) layer as depicted from the XPS result also improves the ionic conductivity and interface contact during the charge/discharge process. Therefore, these novel multi-layered fabrication strategies of hybrid/composite solid electrolyte membranes and modification of the LMA surface using mixed coating materials have potential applications in the preparation of highly safe high-voltage cathodes for SSLMBs.

Keywords: high-voltage cathodes, hybrid solid electrolytes, garnet, graphitic-carbon nitride (g-C3N4), ZIF-8 MOF

Procedia PDF Downloads 69
9810 A Multilevel-Synthesis Approach with Reduced Number of Switches for 99-Level Inverter

Authors: P. Satish Kumar, V. Ramu, K. Ramakrishna

Abstract:

In this paper, an efficient multilevel wave form synthesis technique is proposed and applied to a 99-level inverter. The basic principle of the proposed scheme is that the continuous output voltage levels can be synthesized by the addition or subtraction of the instantaneous voltages generated from different voltage levels. This synthesis technique can be realized by an array of switching devices composing full-bridge inverter modules and proper mixing of each bi-directional switch modules. The most different aspect, compared to the conventional approach, in the synthesis of the multilevel output waveform is the utilization of a combination of bidirectional switches and full bridge inverter modules with reduced number of components. A 99-level inverter consists of three full-bridge modules and six bi-directional switch modules. The validity of the proposed scheme is verified by the simulation.

Keywords: cascaded connection, multilevel inverter, synthesis, total harmonic distortion

Procedia PDF Downloads 532
9809 Predicting OpenStreetMap Coverage by Means of Remote Sensing: The Case of Haiti

Authors: Ran Goldblatt, Nicholas Jones, Jennifer Mannix, Brad Bottoms

Abstract:

Accurate, complete, and up-to-date geospatial information is the foundation of successful disaster management. When the 2010 Haiti Earthquake struck, accurate and timely information on the distribution of critical infrastructure was essential for the disaster response community for effective search and rescue operations. Existing geospatial datasets such as Google Maps did not have comprehensive coverage of these features. In the days following the earthquake, many organizations released high-resolution satellite imagery, catalyzing a worldwide effort to map Haiti and support the recovery operations. Of these organizations, OpenStreetMap (OSM), a collaborative project to create a free editable map of the world, used the imagery to support volunteers to digitize roads, buildings, and other features, creating the most detailed map of Haiti in existence in just a few weeks. However, large portions of the island are still not fully covered by OSM. There is an increasing need for a tool to automatically identify which areas in Haiti, as well as in other countries vulnerable to disasters, that are not fully mapped. The objective of this project is to leverage different types of remote sensing measurements, together with machine learning approaches, in order to identify geographical areas where OSM coverage of building footprints is incomplete. Several remote sensing measures and derived products were assessed as potential predictors of OSM building footprints coverage, including: intensity of light emitted at night (based on VIIRS measurements), spectral indices derived from Sentinel-2 satellite (normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), soil-adjusted vegetation index (SAVI), urban index (UI)), surface texture (based on Sentinel-1 SAR measurements)), elevation and slope. Additional remote sensing derived products, such as Hansen Global Forest Change, DLR`s Global Urban Footprint (GUF), and World Settlement Footprint (WSF), were also evaluated as predictors, as well as OSM street and road network (including junctions). Using a supervised classification with a random forest classifier resulted in the prediction of 89% of the variation of OSM building footprint area in a given cell. These predictions allowed for the identification of cells that are predicted to be covered but are actually not mapped yet. With these results, this methodology could be adapted to any location to assist with preparing for future disastrous events and assure that essential geospatial information is available to support the response and recovery efforts during and following major disasters.

Keywords: disaster management, Haiti, machine learning, OpenStreetMap, remote sensing

Procedia PDF Downloads 125
9808 Improved Network Construction Methods Based on Virtual Rails for Mobile Sensor Network

Authors: Noritaka Shigei, Kazuto Matsumoto, Yoshiki Nakashima, Hiromi Miyajima

Abstract:

Although Mobile Wireless Sensor Networks (MWSNs), which consist of mobile sensor nodes (MSNs), can cover a wide range of observation region by using a small number of sensor nodes, they need to construct a network to collect the sensing data on the base station by moving the MSNs. As an effective method, the network construction method based on Virtual Rails (VRs), which is referred to as VR method, has been proposed. In this paper, we propose two types of effective techniques for the VR method. They can prolong the operation time of the network, which is limited by the battery capabilities of MSNs and the energy consumption of MSNs. The first technique, an effective arrangement of VRs, almost equalizes the number of MSNs belonging to each VR. The second technique, an adaptive movement method of MSNs, takes into account the residual energy of battery. In the simulation, we demonstrate that each technique can improve the network lifetime and the combination of both techniques is the most effective.

Keywords: mobile sensor node, relay of sensing data, residual energy, virtual rail, wireless sensor network

Procedia PDF Downloads 330
9807 Tidal Current Behaviors and Remarkable Bathymetric Change in the South-Western Part of Khor Abdullah, Kuwait

Authors: Ahmed M. Al-Hasem

Abstract:

A study of the tidal current behavior and bathymetric changes was undertaken in order to establish an information base for future coastal management. The average velocity for tidal current was 0.46 m/s and the maximum velocity was 1.08 m/s during ebb tide. During spring tides, maximum velocities range from 0.90 m/s to 1.08 m/s, whereas maximum velocities vary from 0.40 m/s to 0.60 m/s during neap tides. Despite greater current velocities during flood tide, the bathymetric features enhance the dominance of the ebb tide. This can be related to the abundance of fine sediments from the ebb current approaching the study area, and the relatively coarser sediment from the approaching flood current. Significant bathymetric changes for the period from 1985 to 1998 were found with dominance of erosion process. Approximately 96.5% of depth changes occurred within the depth change classes of -5 m to 5 m. The high erosion processes within the study area will subsequently result in high accretion processes, particularly in the north, the location of the proposed Boubyan Port and its navigation channel.

Keywords: bathymetric change, Boubyan island, GIS, Khor Abdullah, tidal current behavior

Procedia PDF Downloads 289
9806 Power Quality Issues: Power Supply Interruptions as Key Constraint to Development in Ekiti State, Nigeria

Authors: Oluwatosin S. Adeoye

Abstract:

The power quality issues in the world today are critical to the development of different nations. Prosperity of each nation depends on availability of constant power supply. Constant power supply is a major challenge in Africa particularly in Nigeria where the generated power is than thirty percent of the required power. The metrics of power quality are voltage dip, flickers, spikes, harmonics and interruptions. The level of interruptions in Ekiti State was examined through the investigation of the causes of power interruptions in the State. The method used was the collection of data from the Distribution Company, assessment through simple programming as a command for plotting the graphs through the use of MATLAB 2015 depicting the behavioural pattern of the interruption for a period of six months in 2016. The result shows that the interrelationship between the interruptions and development. Recommendations were suggested with the objective of solving the problems being set up by interruptions in the State and these include installation of reactors, automatic voltage regulators and effective tap changing system on the lines, busses and transformer substation respectively.

Keywords: development, frequency, interruption, power, quality

Procedia PDF Downloads 162
9805 Surface Deformation Studies in South of Johor Using the Integration of InSAR and Resistivity Methods

Authors: Sirajo Abubakar, Ismail Ahmad Abir, Muhammad Sabiu Bala, Muhammad Mustapha Adejo, Aravind Shanmugaveloo

Abstract:

Over the years, land subsidence has been a serious threat mostly to urban areas. Land subsidence is the sudden sinking or gradual downward settling of the ground’s surface with little or no horizontal motion. In most areas, land subsidence is a slow process that covers a large area; therefore, it is sometimes left unnoticed. South of Johor is the area of interest for this project because it is going through rapid urbanization. The objective of this research is to evaluate and identify potential deformations in the south of Johor using integrated remote sensing and 2D resistivity methods. Synthetic aperture radar interferometry (InSAR) which is a remote sensing technique has the potential to map coherent displacements at centimeter to millimeter resolutions. Persistent scatterer interferometry (PSI) stacking technique was applied to Sentinel-1 data to detect the earth deformation in the study area. A dipole-dipole configuration resistivity profiling was conducted in three areas to determine the subsurface features in that area. This subsurface features interpreted were then correlated with the remote sensing technique to predict the possible causes of subsidence and uplifts in the south of Johor. Based on the results obtained, West Johor Bahru (0.63mm/year) and Ulu Tiram (1.61mm/year) are going through uplift due to possible geological uplift. On the other end, East Johor Bahru (-0.26mm/year) and Senai (-1.16mm/year) undergo subsidence due to possible fracture and granitic boulders loading. Land subsidence must be taken seriously as it can cause serious damages to infrastructures and human life. Monitoring land subsidence and taking preventive actions must be done to prevent any disasters.

Keywords: interferometric synthetic aperture radar, persistent scatter, minimum spanning tree, resistivity, subsidence

Procedia PDF Downloads 147
9804 Simulation and Modeling of High Voltage Pulse Transformer

Authors: Zahra Emami, H. Reza Mesgarzade, A. Morad Ghorbami, S. Reza Motahari

Abstract:

This paper presents a method for calculation of parasitic elements consisting of leakage inductance and parasitic capacitance in a high voltage pulse transformer. The parasitic elements of pulse transformers significantly influence the resulting pulse shape of a power modulator system. In order to prevent the effects on the pulse shape before constructing the transformer an electrical model is needed. The technique procedures for computing these elements are based on finite element analysis. The finite element model of pulse transformer is created using software "Ansys Maxwell 3D". Finally, the transformer parasitic elements is calculated and compared with the value obtained from the actual test and pulse modulator is simulated and results is compared with actual test of pulse modulator. The results obtained are very similar with the test values.

Keywords: pulse transformer, simulation, modeling, Maxwell 3D, modulator

Procedia PDF Downloads 458
9803 Analyzing Natural and Social Resources for the Planning of Complex Development Based on Ecotourism: A Case Study from Hungary and Slovakia

Authors: Barnabás Körmöndi

Abstract:

The recent crises have affected societies worldwide, resulting in the irresponsible exploitation of natural resources and the unattainability of sustainability. Regions that are economically underdeveloped, such as the Bodrogköz in Eastern Hungary and Slovakia, experience these issues more severely. The aim of this study is to analyze the natural and social resources of the Bodrogköz area for the planning of complex development based on ecotourism. The objective is to develop ecotourism opportunities in this least developed area of the borderland of Hungary and Slovakia. The study utilizes desk research, deep interviews, focus group meetings, and remote sensing methods. Desk research is aimed at providing a comprehensive understanding of the area, while deep interviews and focus group meetings were conducted to understand the stakeholders' perspectives on the potential for ecotourism. Remote sensing methods were used to better understand changes in the natural environment. The study identified the potential for ecotourism development in the Bodrogköz area due to its near-natural habitats along its bordering rivers and rich cultural heritage. The analysis revealed that ecotourism could promote the region's sustainable development, which is essential for its economic growth. Additionally, the study identified the possible threats to the natural environment during ecotourism development and suggested strategies to mitigate these threats. This study highlights the significance of ecotourism in promoting sustainable development in underdeveloped areas such as the Bodrogköz. It provides a basis for future research on ecotourism development and sustainable planning in similar regions. The analysis is based on the data collected through desk research, deep interviews, focus group meetings, and remote sensing. The assessment was conducted through content analysis, which allowed for the identification of themes and patterns in the data. The study addressed the question of how to develop ecotourism in the least developed area of the borderland of Hungary and Slovakia and promote sustainable development in the region. In conclusion, the study highlights the potential for ecotourism development in Bodrogköz and identifies the natural and social resources that contribute to its development. The study emphasizes the need for sustainable development to promote economic growth and mitigate any environmental threats. The findings can inform the development of future strategic plans for ecotourism, promoting sustainable development in underdeveloped regions.

Keywords: ecotourism, natural resources, remote sensing, social development

Procedia PDF Downloads 64
9802 Numerical Study on the EHD Pump with a Recirculating Channel

Authors: Dong Sik Cho, Yong Kweon Suh

Abstract:

Numerical study has been conducted on the electro-hydrodynamic (EHD) pumping method in terms of a recirculating channel. The method relies on the principle of EHD generated by the electric-field dependent electrical conductivity (Onsager effect). Before considering the full three-dimensional simulation, we solved the two-dimensional problem of EHD flow in a circular channel like a doughnut shape. We observed that when dc voltage was applied a fast and regular flow was produced around electrodes, which is then used as a driving force for the fluid pumping. In this parametric study, the diameters of circular electrodes are varied in the range 0.3mm~3mm and the gap between the electrodes pair is varied in the range 0.3mm~2mm. We found that both the volume flow rate and the pumping efficiency are increased as the distance between the electrodes is decreased. Finally, we also performed the numerical simulation for the three-dimensional channel and found that the averaged flow velocity is in the same order of magnitude as the two-dimensional one.

Keywords: electro-hydrodynamic, electric-field, onsager effect, DC voltage

Procedia PDF Downloads 301
9801 BLDC Motor Driven for Solar Photo Voltaic Powered Air Cooling System

Authors: D. Shobha Rani, M. Muralidhar

Abstract:

Solar photovoltaic (SPV) power systems can be employed as electrical power sources to meet the daily residential energy needs of rural areas that have no access to grid systems. In view of this, a standalone SPV powered air cooling system is proposed in this paper, which constitutes a dc-dc boost converter, two voltage source inverters (VSI) connected to two brushless dc (BLDC) motors which are coupled to a centrifugal water pump and a fan blower. A simple and efficient Maximum Power Point Tracking (MPPT) technique based on Silver Mean Method (SMM) is utilized in this paper. The air cooling system is developed and simulated using the MATLAB / Simulink environment considering the dynamic and steady state variation in the solar irradiance.

Keywords: boost converter, solar photovoltaic array, voltage source inverter, brushless DC motor, solar irradiance, maximum power point tracking, silver mean method

Procedia PDF Downloads 272
9800 Health Monitoring of Composite Pile Construction Using Fiber Bragg Gratings Sensor Arrays

Authors: B. Atli-Veltin, A. Vosteen, D. Megan, A. Jedynska, L. K. Cheng

Abstract:

Composite materials combine the advantages of being lightweight and possessing high strength. This is in particular of interest for the development of large constructions, e.g., aircraft, space applications, wind turbines, etc. One of the shortcomings of using composite materials is the complex nature of the failure mechanisms which makes it difficult to predict the remaining lifetime. Therefore, condition and health monitoring are essential for using composite material for critical parts of a construction. Different types of sensors are used/developed to monitor composite structures. These include ultrasonic, thermography, shearography and fiber optic. The first 3 technologies are complex and mostly used for measurement in laboratory or during maintenance of the construction. Optical fiber sensor can be surface mounted or embedded in the composite construction to provide the unique advantage of in-operation measurement of mechanical strain and other parameters of interest. This is identified to be a promising technology for Structural Health Monitoring (SHM) or Prognostic Health Monitoring (PHM) of composite constructions. Among the different fiber optic sensing technologies, Fiber Bragg Grating (FBG) sensor is the most mature and widely used. FBG sensors can be realized in an array configuration with many FBGs in a single optical fiber. In the current project, different aspects of using embedded FBG for composite wind turbine monitoring are investigated. The activities are divided into two parts. Firstly, FBG embedded carbon composite laminate is subjected to tensile and bending loading to investigate the response of FBG which are placed in different orientations with respect to the fiber. Secondly, the demonstration of using FBG sensor array for temperature and strain sensing and monitoring of a 5 m long scale model of a glass fiber mono-pile is investigated. Two different FBG types are used; special in-house fibers and off-the-shelf ones. The results from the first part of the study are showing that the FBG sensors survive the conditions during the production of the laminate. The test results from the tensile and the bending experiments are indicating that the sensors successfully response to the change of strain. The measurements from the sensors will be correlated with the strain gauges that are placed on the surface of the laminates.

Keywords: Fiber Bragg Gratings, embedded sensors, health monitoring, wind turbine towers

Procedia PDF Downloads 243
9799 Flexible, Hydrophobic and Mechanical Strong Poly(Vinylidene Fluoride): Carbon Nanotube Composite Films for Strain-Sensing Applications

Authors: Sudheer Kumar Gundati, Umasankar Patro

Abstract:

Carbon nanotube (CNT) – polymer composites have been extensively studied due to their exceptional electrical and mechanical properties. In the present study, poly(vinylidene fluoride) (PVDF) – multi-walled CNT composites were prepared by melt-blending technique using pristine (ufCNT) and a modified dilute nitric acid-treated CNTs (fCNT). Due to this dilute acid-treatment, the fCNTs were found to show significantly improved dispersion and retained their electrical property. The fCNT showed an electrical percolation threshold (PT) of 0.15 wt% in the PVDF matrix as against 0.35 wt% for ufCNT. The composites were made into films of thickness ~0.3 mm by compression-molding and the resulting composite films were subjected to various property evaluations. It was found that the water contact angle (WCA) of the films increased with CNT weight content in composites and the composite film surface became hydrophobic (e.g., WCA ~104° for 4 wt% ufCNT and 111.5° for 0.5 wt% fCNT composites) in nature; while the neat PVDF film showed hydrophilic behavior (WCA ~68°). Significant enhancements in the mechanical properties were observed upon CNT incorporation and there is a progressive increase in the tensile strength and modulus with increase in CNT weight fraction in composites. The composite films were tested for strain-sensing applications. For this, a simple and non-destructive method was developed to demonstrate the strain-sensing properties of the composites films. In this method, the change in electrical resistance was measured using a digital multimeter by applying bending strain by oscillation. It was found that by applying dynamic bending strain, there is a systematic change in resistance and the films showed piezo-resistive behavior. Due to the high flexibility of these composite films, the change in resistance was reversible and found to be marginally affected, when large number of tests were performed using a single specimen. It is interesting to note that the composites with CNT content notwithstanding their type near the percolation threshold (PT) showed better strain-sensing properties as compared to the composites with CNT contents well-above the PT. On account of the excellent combination of the various properties, the composite films offer a great promise as strain-sensors for structural health-monitoring.

Keywords: carbon nanotubes, electrical percolation threshold, mechanical properties, poly(vinylidene fluoride), strain-sensor, water contact angle

Procedia PDF Downloads 246