Search results for: electrical percolation threshold
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2691

Search results for: electrical percolation threshold

2691 Relation between Electrical Properties and Application of Chitosan Nanocomposites

Authors: Evgen Prokhorov, Gabriel Luna-Barcenas

Abstract:

The polysaccharide chitosan (CS) is an attractive biopolymer for the stabilization of several nanoparticles in acidic aqueous media. This is due in part to the presence of abundant primary NH2 and OH groups which may lead to steric or chemical stabilization. Applications of most CS nanocomposites are based upon the interaction of high surface area nanoparticles (NPs) with different substance. Therefore, agglomeration of NPs leads to decreasing effective surface area such that it may decrease the efficiency of nanocomposites. The aim of this work is to measure nanocomposite’s electrical conductivity phenomena that will allow one to formulate optimal concentrations of conductivity NPs in CS-based nanocomposites. Additionally, by comparing the efficiency of such nanocomposites, one can guide applications in the biomedical (antibacterial properties and tissue regeneration) and sensor fields (detection of copper and nitrate ions in aqueous solutions). It was shown that the best antibacterial (CS-AgNPs, CS-AgNPs-carbon nanotubes) and would healing properties (CS-AuNPs) are observed in nanocomposites with concentrations of NPs near the percolation threshold. In this regard, the best detection limit in potentiometric and impedimetric sensors for detection of copper ions (using CS-AuNPs membrane) and nitrate ions (using CS-clay membrane) in aqueous solutions have been observed for membranes with concentrations of NPs near percolation threshold. It is well known that at the percolation concentration of NPs an abrupt increasing of conductivity is observed due to the presence of physical contacts between NPs; above this concentration, agglomeration of NPs takes place such that a decrease in the effective surface and performance of nanocomposite appear. The obtained relationship between electrical percolation threshold and performance of polymer nanocomposites with conductivity NPs is important for the design and optimization of polymer-based nanocomposites for different applications.

Keywords: chitosan, conductivity nanoparticles, percolation threshold, polymer nanocomposites

Procedia PDF Downloads 179
2690 Effect of the Vertical Pressure on the ‎Electrical Behaviour of the Micro-Copper ‎Polyurethane Composite Films

Authors: Saeid Mehvari, Yolanda Sanchez-Vicente, Sergio González Sánchez, Khalid Lafdi

Abstract:

Abstract- Materials with a combination of transparency, electrical conductivity, and flexibility are required in the ‎growing electronic sector. In this research, electrically conductive and flexible films have been prepared. These ‎composite films consist of dispersing micro-copper particles into polyurethane (PU) matrix. Two sets of samples were ‎made using both spin coating technique (sample thickness lower than 30 μm) and materials casting (sample thickness ‎lower than 100 μm). Copper concentrations in the PU matrix varied from 0.5 to 20% by volume. The dispersion of ‎micro-copper particles into polyurethane (PU) matrix were characterised using optical microscope and scanning electron ‎microscope. The electrical conductivity measurement was carried out using home-made multimeter set up under ‎pressures from 1 to 20 kPa through thickness and in plane direction. It seems that samples made by casting were not ‎conductive. However, the sample made by spin coating shows through-thickness conductivity when they are under ‎pressure. The results showed that spin-coated films with higher concentration of 2 vol. % of copper displayed a ‎significant increase in the conductivity value, known as percolation threshold. The maximum conductivity of 7.2 × 10-1 ‎S∙m-1 was reached at concentrations of filler with 20 vol. % at 20kPa. A semi-empirical model with adjustable ‎coefficients was used to fit and predict the electrical behaviour of composites. For the first time, the finite element ‎method based on the representative volume element (FE-RVE) was successfully used to predict their electrical ‎behaviour under applied pressures. ‎

Keywords: electrical conductivity, micro copper, numerical simulation, percolation threshold, polyurethane, RVE model

Procedia PDF Downloads 154
2689 Flexible, Hydrophobic and Mechanical Strong Poly(Vinylidene Fluoride): Carbon Nanotube Composite Films for Strain-Sensing Applications

Authors: Sudheer Kumar Gundati, Umasankar Patro

Abstract:

Carbon nanotube (CNT) – polymer composites have been extensively studied due to their exceptional electrical and mechanical properties. In the present study, poly(vinylidene fluoride) (PVDF) – multi-walled CNT composites were prepared by melt-blending technique using pristine (ufCNT) and a modified dilute nitric acid-treated CNTs (fCNT). Due to this dilute acid-treatment, the fCNTs were found to show significantly improved dispersion and retained their electrical property. The fCNT showed an electrical percolation threshold (PT) of 0.15 wt% in the PVDF matrix as against 0.35 wt% for ufCNT. The composites were made into films of thickness ~0.3 mm by compression-molding and the resulting composite films were subjected to various property evaluations. It was found that the water contact angle (WCA) of the films increased with CNT weight content in composites and the composite film surface became hydrophobic (e.g., WCA ~104° for 4 wt% ufCNT and 111.5° for 0.5 wt% fCNT composites) in nature; while the neat PVDF film showed hydrophilic behavior (WCA ~68°). Significant enhancements in the mechanical properties were observed upon CNT incorporation and there is a progressive increase in the tensile strength and modulus with increase in CNT weight fraction in composites. The composite films were tested for strain-sensing applications. For this, a simple and non-destructive method was developed to demonstrate the strain-sensing properties of the composites films. In this method, the change in electrical resistance was measured using a digital multimeter by applying bending strain by oscillation. It was found that by applying dynamic bending strain, there is a systematic change in resistance and the films showed piezo-resistive behavior. Due to the high flexibility of these composite films, the change in resistance was reversible and found to be marginally affected, when large number of tests were performed using a single specimen. It is interesting to note that the composites with CNT content notwithstanding their type near the percolation threshold (PT) showed better strain-sensing properties as compared to the composites with CNT contents well-above the PT. On account of the excellent combination of the various properties, the composite films offer a great promise as strain-sensors for structural health-monitoring.

Keywords: carbon nanotubes, electrical percolation threshold, mechanical properties, poly(vinylidene fluoride), strain-sensor, water contact angle

Procedia PDF Downloads 211
2688 Improving the Electrical Conductivity of Epoxy Coating Using Carbon Nanotube by Electrodeposition Method

Authors: Mahla Zabet, Navid Zanganeh, Hafez Balavi, Farbod Sharif

Abstract:

Electrodeposition is a method for applying coatings with uniform thickness on complex objects. A conductive surface can be produced using the electrical current in this method. Carbon nanotubes are known to have high electrical conductivity and mechanical properties. In this report, NH2-multiwalled carbon nanotubes (MWCNTs) were used in epoxy resin with different weight percent. The weight percent of incorporated MWCNTS into the matrix was changed in the range of 0.6-3.6 wt% to obtain a series of electrocoatings. The electrocoats were then applied on steel substrates by a cathodic electrodeposition technique. Scanning electron microscopy (SEM) and optical microscopy were used to characterize the electrocoated films. The results illustrated the increase in conductivity by increasing of MWCNT load. However, at the percolation threshold, throwing power was dropped with increase in recoating ability.

Keywords: electrodeposition, carbon nanotube, electrical conductivity, throwing power

Procedia PDF Downloads 379
2687 A New Method Separating Relevant Features from Irrelevant Ones Using Fuzzy and OWA Operator Techniques

Authors: Imed Feki, Faouzi Msahli

Abstract:

Selection of relevant parameters from a high dimensional process operation setting space is a problem frequently encountered in industrial process modelling. This paper presents a method for selecting the most relevant fabric physical parameters for each sensory quality feature. The proposed relevancy criterion has been developed using two approaches. The first utilizes a fuzzy sensitivity criterion by exploiting from experimental data the relationship between physical parameters and all the sensory quality features for each evaluator. Next an OWA aggregation procedure is applied to aggregate the ranking lists provided by different evaluators. In the second approach, another panel of experts provides their ranking lists of physical features according to their professional knowledge. Also by applying OWA and a fuzzy aggregation model, the data sensitivity-based ranking list and the knowledge-based ranking list are combined using our proposed percolation technique, to determine the final ranking list. The key issue of the proposed percolation technique is to filter automatically and objectively the relevant features by creating a gap between scores of relevant and irrelevant parameters. It permits to automatically generate threshold that can effectively reduce human subjectivity and arbitrariness when manually choosing thresholds. For a specific sensory descriptor, the threshold is defined systematically by iteratively aggregating (n times) the ranking lists generated by OWA and fuzzy models, according to a specific algorithm. Having applied the percolation technique on a real example, of a well known finished textile product especially the stonewashed denims, usually considered as the most important quality criteria in jeans’ evaluation, we separate the relevant physical features from irrelevant ones for each sensory descriptor. The originality and performance of the proposed relevant feature selection method can be shown by the variability in the number of physical features in the set of selected relevant parameters. Instead of selecting identical numbers of features with a predefined threshold, the proposed method can be adapted to the specific natures of the complex relations between sensory descriptors and physical features, in order to propose lists of relevant features of different sizes for different descriptors. In order to obtain more reliable results for selection of relevant physical features, the percolation technique has been applied for combining the fuzzy global relevancy and OWA global relevancy criteria in order to clearly distinguish scores of the relevant physical features from those of irrelevant ones.

Keywords: data sensitivity, feature selection, fuzzy logic, OWA operators, percolation technique

Procedia PDF Downloads 567
2686 Preparation and Properties of PP/EPDM Reinforced with Graphene

Authors: M. Haghnegahdar, G. Naderi, M. H. R. Ghoreishy

Abstract:

Polypropylene(PP)/Ethylene Propylene Diene Monomer (EPDM) samples (80/20) containing 0, 0.5, 1, 1.5, 2, 2.5, and 3 (expressed in mass fraction) graphene were prepared using melt compounding method to investigate microstructure, mechanical properties, and thermal stability as well as electrical resistance of samples. X-Ray diffraction data confirmed that graphene platelets are well dispersed in PP/EPDM. Mechanical properties such as tensile strength, impact strength and hardness demonstrated increasing trend by graphene loading which exemplifies substantial reinforcing nature of this kind of nano filler and it's good interaction with polymer chains. At the same time it is found that thermo-oxidative degradation of PP/EPDM nanocomposites is noticeably retarded with the increasing of graphene content. Electrical surface resistivity of the nanocomposite was dramatically changed by forming electrical percolation threshold and leads to change electrical behavior from insulator to semiconductor. Furthermore, these results were confirmed by scanning electron microscopy(SEM), dynamic mechanical thermal analysis (DMTA), and transmission electron microscopy (TEM).

Keywords: nanocomposite, graphene, microstructure, mechanical properties

Procedia PDF Downloads 300
2685 Percolation Transition in an Agglomeration of Spherical Particles

Authors: Johannes J. Schneider, Mathias S. Weyland, Peter Eggenberger Hotz, William D. Jamieson, Oliver Castell, Alessia Faggian, Rudolf M. Füchslin

Abstract:

Agglomerations of polydisperse systems of spherical particles are created in computer simulations using a simplified stochastic-hydrodynamic model: Particles sink to the bottom of the cylinder, taking into account gravity reduced by the buoyant force, the Stokes friction force, the added mass effect, and random velocity changes. Two types of particles are considered, with one of them being able to create connections to neighboring particles of the same type, thus forming a network within the agglomeration at the bottom of a cylinder. Decreasing the fraction of these particles, a percolation transition occurs. The critical regime is determined by investigating the maximum cluster size and the percolation susceptibility.

Keywords: binary system, maximum cluster size, percolation, polydisperse

Procedia PDF Downloads 15
2684 Natural Emergence of a Core Structure in Networks via Clique Percolation

Authors: A. Melka, N. Slater, A. Mualem, Y. Louzoun

Abstract:

Networks are often presented as containing a “core” and a “periphery.” The existence of a core suggests that some vertices are central and form the skeleton of the network, to which all other vertices are connected. An alternative view of graphs is through communities. Multiple measures have been proposed for dense communities in graphs, the most classical being k-cliques, k-cores, and k-plexes, all presenting groups of tightly connected vertices. We here show that the edge number thresholds for such communities to emerge and for their percolation into a single dense connectivity component are very close, in all networks studied. These percolating cliques produce a natural core and periphery structure. This result is generic and is tested in configuration models and in real-world networks. This is also true for k-cores and k-plexes. Thus, the emergence of this connectedness among communities leading to a core is not dependent on some specific mechanism but a direct result of the natural percolation of dense communities.

Keywords: cliques, core structure, percolation, phase transition

Procedia PDF Downloads 132
2683 Computational Study of Composite Films

Authors: Rudolf Hrach, Stanislav Novak, Vera Hrachova

Abstract:

Composite and nanocomposite films represent the class of promising materials and are often objects of the study due to their mechanical, electrical and other properties. The most interesting ones are probably the composite metal/dielectric structures consisting of a metal component embedded in an oxide or polymer matrix. Behaviour of composite films varies with the amount of the metal component inside what is called filling factor. The structures contain individual metal particles or nanoparticles completely insulated by the dielectric matrix for small filling factors and the films have more or less dielectric properties. The conductivity of the films increases with increasing filling factor and finally a transition into metallic state occurs. The behaviour of composite films near a percolation threshold, where the change of charge transport mechanism from a thermally-activated tunnelling between individual metal objects to an ohmic conductivity is observed, is especially important. Physical properties of composite films are given not only by the concentration of metal component but also by the spatial and size distributions of metal objects which are influenced by a technology used. In our contribution, a study of composite structures with the help of methods of computational physics was performed. The study consists of two parts: -Generation of simulated composite and nanocomposite films. The techniques based on hard-sphere or soft-sphere models as well as on atomic modelling are used here. Characterizations of prepared composite structures by image analysis of their sections or projections follow then. However, the analysis of various morphological methods must be performed as the standard algorithms based on the theory of mathematical morphology lose their sensitivity when applied to composite films. -The charge transport in the composites was studied by the kinetic Monte Carlo method as there is a close connection between structural and electric properties of composite and nanocomposite films. It was found that near the percolation threshold the paths of tunnel current forms so-called fuzzy clusters. The main aim of the present study was to establish the correlation between morphological properties of composites/nanocomposites and structures of conducting paths in them in the dependence on the technology of composite films.

Keywords: composite films, computer modelling, image analysis, nanocomposite films

Procedia PDF Downloads 359
2682 Extremal Laplacian Energy of Threshold Graphs

Authors: Seyed Ahmad Mojallal

Abstract:

Let G be a connected threshold graph of order n with m edges and trace T. In this talk we give a lower bound on Laplacian energy in terms of n, m, and T of G. From this we determine the threshold graphs with the first four minimal Laplacian energies. We also list the first 20 minimal Laplacian energies among threshold graphs. Let σ=σ(G) be the number of Laplacian eigenvalues greater than or equal to average degree of graph G. Using this concept, we obtain the threshold graphs with the largest and the second largest Laplacian energies.

Keywords: Laplacian eigenvalues, Laplacian energy, threshold graphs, extremal graphs

Procedia PDF Downloads 356
2681 Development of High-Performance Conductive Polybenzoxazine/Graphite-Copper Nanoomposite for Electromagnetic Interference Shielding Applications

Authors: Noureddine Ramdani

Abstract:

In recent years, extensive attention has been given to the study of conductive nanocomposites due to their unique properties, which are dependent on their size and shape. The potential applications of these materials include electromagnetic interference shielding, energy storage, photovoltaics, and others. These outstanding properties have led to increased interest and research in this field. In this work, a conductive poly benzoxazine nanocomposite, PBZ/Gr-Cu, was synthesized through a compression molding technique to achieve a high-performance material suitable for electromagnetic interference (EMI) shielding applications. The microstructure of the nanocomposites was analyzed using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The thermal stability, electrical conductivity, and EMI shielding properties of the nanocomposites were evaluated using thermogravimetric analysis, a four-point probe, and a VNA analyzer, respectively. The TGA results revealed that the thermal stability and electrical conductivity of the nanocomposites were significantly enhanced by the incorporation of Gr/Cu nanoparticles. The nanocomposites exhibited a low percolation threshold of about 3.5 wt.% and an increase in carrier concentration and mobility of the carriers with increasing hybrid nanofiller content, causing the composites to behave as n-type semiconductors. These nanocomposites also displayed a high dielectric constant and a high dissipation factor in the frequency range of 8-12 GHz, resulting in higher EMI shielding effectiveness (SE) of 25-44 dB. These characteristics make them promising candidates for lightweight EMI shielding materials in aerospace and radar evasion applications.

Keywords: polybenzoxazine matrix, conductive nanocomposites, electrical conductivity, EMI shielding

Procedia PDF Downloads 51
2680 Poly(Methyl Methacrylate)/Graphene Microparticles Having a Core/Shell Structure Prepared with Carboxylated Graphene as a Pickering Stabilizer

Authors: Gansukh Erdenedelger, Doljinsuren Sukhbaatar, Trung Dung Dao, Byeong-Kyu Lee, Han Mo Jeong

Abstract:

Two kinds of carboxylated thermally reduced graphenes (C-TRGs) having different lateral sizes are examined as a Pickering stabilizer in the suspension polymerization of methyl methacrylate. The size and the shape of the prepared composite particles are irregular due to agglomeration, more evidently when the larger C-TRG is used. In addition, C-TRG is distributed not only on the surface but also inside the composite particles. It indicates that the C-TRG alone is not a stable Pickering agent. However, a very small dosage of acrylic acid remedies all these issues, because acrylic acid interacts with C-TRG and synergizes the stabilizing effect. The compression molded composite of the core/shell poly(methyl methacrylate)/C-TRG particles exhibits a very low percolation threshold of electrical conductivity of 0.03 vol%. It demonstrates that the C-TRG shells of the composite particles effectively form a segregated conductive network throughout the composite.

Keywords: pickering, graphene, polymerization, PMMA

Procedia PDF Downloads 262
2679 Effect of Filler Size and Shape on Positive Temperature Coefficient Effect

Authors: Eric Asare, Jamie Evans, Mark Newton, Emiliano Bilotti

Abstract:

Two types of filler shapes (sphere and flakes) and three different sizes are employed to study the size effect on PTC. The composite is prepared using a mini-extruder with high-density polyethylene (HDPE) as the matrix. A computer modelling is used to fit the experimental results. The percolation threshold decreases with decreasing filler size and this was observed for both the spherical particles as well as the flakes. This was caused by the decrease in interparticle distance with decreasing filler size. The 100 µm particles showed a larger PTC intensity compared to the 5 µm particles for the metal coated glass sphere and flake. The small particles have a large surface area and agglomeration and this makes it difficult for the conductive network to e disturbed. Increasing the filler content decreased the PTC intensity and this is due to an increase in the conductive network within the polymer matrix hence more energy is needed to disrupt the network.

Keywords: positive temperature coefficient (PTC) effect, conductive polymer composite (CPC), electrical conductivity

Procedia PDF Downloads 397
2678 Implication of Multi-Walled Carbon Nanotubes on Polymer/MXene Nanocomposites

Authors: Mathias Aakyiir, Qunhui Zheng, Sherif Araby, Jun Ma

Abstract:

MXene nanosheets stack in polymer matrices, while multi-walled carbon nanotubes (MWCNTs) entangle themselves when used to form composites. These challenges are addressed in this work by forming MXene/MWCNT hybrid nanofillers by electrostatic self-assembly and developing elastomer/MXene/MWCNTs nanocomposites using a latex compounding method. In a 3-phase nanocomposite, MWCNTs serve as bridges between MXene nanosheets, leading to nanocomposites with well-dispersed nanofillers. The high aspect ratio of MWCNTs and the interconnection role of MXene serve as a basis for forming nanocomposites of lower percolation threshold of electrical conductivity from the hybrid fillers compared with the 2-phase composites containing either MXene or MWCNTs only. This study focuses on discussing into detail the interfacial interaction of nanofillers and the elastomer matrix and the outstanding mechanical and functional properties of the resulting nanocomposites. The developed nanocomposites have potential applications in the automotive and aerospace industries.

Keywords: elastomers, multi-walled carbon nanotubes, MXenes, nanocomposites

Procedia PDF Downloads 124
2677 Adaptive Threshold Adjustment of Clear Channel Assessment in LAA Down Link

Authors: Yu Li, Dongyao Wang, Xiaobao Sun, Wei Ni

Abstract:

In long-term evolution (LTE), the carriers around 5GHz are planned to be utilized without licenses to further enlarge system capacity. This feature is termed licensed assisted access (LAA). The channel sensing (clean channel assessment, CCA) is required before any transmission on these unlicensed carriers, in order to make sure the harmonious co-existence of LAA with other radio access technology in the unlicensed band. Obviously, the CCA threshold is very critical, which decides whether the transmission right following CCA is delivered in time and without collisions. An improper CCA threshold may cause buffer overflow of some eNodeBs if the eNodeBs are heavily loaded with the traffic. Thus, to solve these problems, we propose an adaptive threshold adjustment method for CCA in the LAA downlink. Both the load and transmission opportunities are concerned. The trend of the LAA throughput as the threshold varies is obtained, which guides the threshold adjustment. The co-existing between LAA and Wi-Fi is particularly tested. The results from system-level simulation confirm the merits of our design, especially in heavy traffic cases.

Keywords: LTE, LAA, CCA, threshold adjustment

Procedia PDF Downloads 99
2676 Improving Capability of Detecting Impulsive Noise

Authors: Farbod Rohani, Elyar Ghafoori, Matin Saeedkondori

Abstract:

Impulse noise is electromagnetic emission which generated by many house hold appliances that are attached to the electrical network. The main difficulty of impulsive noise (IN) elimination process from communication channels is to distinguish it from the transmitted signal and more importantly choosing the proper threshold bandwidth in order to eliminate the signal. Because of wide band property of impulsive noise, we present a novel method for setting the detection threshold, by taking advantage of the fact that impulsive noise bandwidth is usually wider than that of typical communication channels and specifically OFDM channel. After IN detection procedure, we apply simple windowing mechanisms to eliminate them from the communication channel.

Keywords: impulsive noise, OFDM channel, threshold detecting, windowing mechanisms

Procedia PDF Downloads 308
2675 Modification of Electrical and Switching Characteristics of a Non Punch-Through Insulated Gate Bipolar Transistor by Gamma Irradiation

Authors: Hani Baek, Gwang Min Sun, Chansun Shin, Sung Ho Ahn

Abstract:

Fast neutron irradiation using nuclear reactors is an effective method to improve switching loss and short circuit durability of power semiconductor (insulated gate bipolar transistors (IGBT) and insulated gate transistors (IGT), etc.). However, not only fast neutrons but also thermal neutrons, epithermal neutrons and gamma exist in the nuclear reactor. And the electrical properties of the IGBT may be deteriorated by the irradiation of gamma. Gamma irradiation damages are known to be caused by Total Ionizing Dose (TID) effect and Single Event Effect (SEE), Displacement Damage. Especially, the TID effect deteriorated the electrical properties such as leakage current and threshold voltage of a power semiconductor. This work can confirm the effect of the gamma irradiation on the electrical properties of 600 V NPT-IGBT. Irradiation of gamma forms lattice defects in the gate oxide and Si-SiO2 interface of the IGBT. It was confirmed that this lattice defect acts on the center of the trap and affects the threshold voltage, thereby negatively shifted the threshold voltage according to TID. In addition to the change in the carrier mobility, the conductivity modulation decreases in the n-drift region, indicating a negative influence that the forward voltage drop decreases. The turn-off delay time of the device before irradiation was 212 ns. Those of 2.5, 10, 30, 70 and 100 kRad(Si) were 225, 258, 311, 328, and 350 ns, respectively. The gamma irradiation increased the turn-off delay time of the IGBT by approximately 65%, and the switching characteristics deteriorated.

Keywords: NPT-IGBT, gamma irradiation, switching, turn-off delay time, recombination, trap center

Procedia PDF Downloads 125
2674 Development of a Highly Flexible, Sensitive and Stretchable Polymer Nanocomposite for Strain Sensing

Authors: Shaghayegh Shajari, Mehdi Mahmoodi, Mahmood Rajabian, Uttandaraman Sundararaj, Les J. Sudak

Abstract:

Although several strain sensors based on carbon nanotubes (CNTs) have been reported, the stretchability and sensitivity of these sensors have remained as a challenge. Highly stretchable and sensitive strain sensors are in great demand for human motion monitoring and human-machine interface. This paper reports the fabrication and characterization of a new type of strain sensors based on a stretchable fluoropolymer / CNT nanocomposite system made via melt-mixing technique. Electrical and mechanical characterizations were obtained. The results showed that this nanocomposite sensor has high stretchability up to 280% of strain at an optimum level of filler concentration. The piezoresistive properties and the strain sensing mechanism of the strain sensor were investigated using Electrochemical Impedance Spectroscopy (EIS). High sensitivity was obtained (gauge factor as large as 12000 under 120% applied strain) in particular at the concentrations above the percolation threshold. Due to the tunneling effect, a non- linear piezoresistivity was observed at high concentrations of CNT loading. The nanocomposites with good conductivity and lightweight could be a promising candidate for strain sensing applications.

Keywords: carbon nanotubes, fluoropolymer, piezoresistive, strain sensor

Procedia PDF Downloads 265
2673 Nature of a Supercritical Mesophase

Authors: Hamza Javar Magnier, Leslie V. Woodcock

Abstract:

It has been reported that at temperatures above the critical there is no “continuity of liquid and gas”, as originally hypothesized by van der Waals. Rather, both gas and liquid phases, with characteristic properties as such, extend to supercritical temperatures. Each phase is bounded by the locus of a percolation transition, i.e. a higher-order thermodynamic phase change associated with percolation of gas clusters in a large void, or liquid interstitial vacancies in a large cluster. Between these two-phase bounds, it is reported there exists a mesophase that resembles an otherwise homogeneous dispersion of gas micro-bubbles in liquid (foam) and a dispersion of liquid micro-droplets in gas (mist). Such a colloidal-like state of a pure one-component fluid represents a hitherto unchartered equilibrium state of matter besides pure solid, liquid or gas. Here we provide compelling evidence, from molecular dynamics (MD) simulations, for the existence of this supercritical mesophase and its colloidal nature. We report preliminary results of computer simulations for a model fluid using a simplistic representation of atoms or molecules, i.e. a hard-core repulsion with an attraction so short that the atoms are referred to as “adhesive spheres”. Molecular clusters, and hence percolation transitions, are unambiguously defined. Graphics of color-coded clusters show colloidal characteristics of the supercritical mesophase.

Keywords: critical phenomena, mesophase, supercritical, square-well, critical parameters

Procedia PDF Downloads 397
2672 Threshold Concepts in TESOL: A Thematic Analysis of Disciplinary Guiding Principles

Authors: Neil Morgan

Abstract:

The notion of Threshold Concepts has offered a fertile new perspective on the transformative effects of mastery of particular concepts on student understanding of subject matter and their developing identities as inductees into disciplinary discourse communities. Only by successfully traversing key knowledge thresholds, it is claimed, can neophytes gain access to the more sophisticated understandings of subject matter possessed by mature members of a discipline. This paper uses thematic analysis of disciplinary guiding principles to identify nine candidate Threshold Concepts that appear to underpin effective TESOL practice. The relationship between these candidate TESOL Threshold Concepts, TESOL principles, and TESOL instructional techniques appears to be amenable to a schematic representation based on superordinate categories of TESOL practitioner concern and, as such, offers an alternative to the view of Threshold Concepts as a privileged subset of disciplinary core concepts. The paper concludes by exploring the potential of a Threshold Concepts framework to productively inform TESOL initial teacher education (ITE) and in-service education and training (INSET).

Keywords: TESOL, threshold concepts, TESOL principles, TESOL ITE/INSET, community of practice

Procedia PDF Downloads 107
2671 Criterion-Referenced Test Reliability through Threshold Loss Agreement: Fuzzy Logic Analysis Approach

Authors: Mohammad Ali Alavidoost, Hossein Bozorgian

Abstract:

Criterion-referenced tests (CRTs) are designed to measure student performance against a fixed set of predetermined criteria or learning standards. The reliability of such tests cannot be based on internal reliability. Threshold loss agreement is one way to calculate the reliability of CRTs. However, the selection of master and non-master in such agreement is determined by the threshold point. The problem is if the threshold point witnesses a minute change, the selection of master and non-master may have a drastic change, leading to the change in reliability results. Therefore, in this study, the Fuzzy logic approach is employed as a remedial procedure for data analysis to obviate the threshold point problem. Forty-one Iranian students were selected; the participants were all between 20 and 30 years old. A quantitative approach was used to address the research questions. In doing so, a quasi-experimental design was utilized since the selection of the participants was not randomized. Based on the Fuzzy logic approach, the threshold point would be more stable during the analysis, resulting in rather constant reliability results and more precise assessment.

Keywords: criterion-referenced tests, threshold loss agreement, threshold point, fuzzy logic approach

Procedia PDF Downloads 327
2670 The Impact of Temperature on the Threshold Capillary Pressure of Fine-Grained Shales

Authors: Talal Al-Bazali, S. Mohammad

Abstract:

The threshold capillary pressure of shale caprocks is an important parameter in CO₂ storage modeling. A correct estimation of the threshold capillary pressure is not only essential for CO₂ storage modeling but also important to assess the overall economical and environmental impact of the design process. A standard step by step approach has to be used to measure the threshold capillary pressure of shale and non-wetting fluids at different temperatures. The objective of this work is to assess the impact of high temperature on the threshold capillary pressure of four different shales as they interacted with four different oil based muds, air, CO₂, N₂, and methane. This study shows that the threshold capillary pressure of shale and non-wetting fluid is highly impacted by temperature. An empirical correlation for the dependence of threshold capillary pressure on temperature when different shales interacted with oil based muds and gasses has been developed. This correlation shows that the threshold capillary pressure decreases exponentially as the temperature increases. In this correlation, an experimental constant (α) appears, and this constant may depend on the properties of shale and non-wetting fluid. The value for α factor was found to be higher for gasses than for oil based muds. This is consistent with our intuition since the interfacial tension for gasses is higher than those for oil based muds. The author believes that measured threshold capillary pressure at ambient temperature is misleading and could yield higher values than those encountered at in situ conditions. Therefore one must correct for the impact of temperature when measuring threshold capillary pressure of shale at ambient temperature.

Keywords: capillary pressure, shale, temperature, thresshold

Procedia PDF Downloads 335
2669 Developing Biocompatible Iridium Oxide Electrodes for Bone-Guided Extra-Cochlear Implant

Authors: Yung-Shan Lu, Chia-Fone Lee, Shang-Hsuan Li, Chien-Hao Liu

Abstract:

Recently, various bioelectronic devices have been developed for neurologic disease treatments via electro-stimulations such as cochlear implants and retinal prosthesis. Since the electric signal needs electrodes to be transmitted to an organism, electrodes play an important role of stimulations. The materials of stimulation electrodes affect the efficiency of the delivered currents. The higher the efficiency of the electrodes, the lower the threshold current can be used to stimulate the organism which minimizes the potential damages to the adjacent tissues. In this study, we proposed a biocompatible composite electrode composed of high-charge-capacity iridium oxide (IrOₓ) film for a bone-guide extra-cochlear implant. IrOₓ was exploited to decrease the threshold current due to its high capacitance and low impedance. The IrOₓ electrode was fabricated via microelectromechanical systems (MEMS) photolithography and examined with in-vivo tests with guinea pigs. Based on the measured responses of brain waves to sound, the results demonstrated that IrOₓ electrodes have a lower threshold current compared with the Platinum (Pt) electrodes. The research results are expected to be beneficial for implantable and biocompatible electrodes for electrical stimulations.

Keywords: cochlear implants, electrode, electrical stimulation, iridium oxide

Procedia PDF Downloads 158
2668 Combined Localization, Beamforming, and Interference Threshold Estimation in Underlay Cognitive System

Authors: Omar Nasr, Yasser Naguib, Mohamed Hafez

Abstract:

This paper aims at providing an innovative solution for blind interference threshold estimation in an underlay cognitive network to be used in adaptive beamforming by secondary user Transmitter and Receiver. For the task of threshold estimation, blind detection of modulation and SNR are used. For the sake of beamforming several localization algorithms are compared to settle on best one for cognitive environment. Beamforming algorithms as LCMV (Linear Constraint Minimum Variance) and MVDR (Minimum Variance Distortion less) are also proposed and compared. The idea of just nulling the primary user after knowledge of its location is discussed against the idea of working under interference threshold.

Keywords: cognitive radio, underlay, beamforming, MUSIC, MVDR, LCMV, threshold estimation

Procedia PDF Downloads 549
2667 Assessment the Infiltration of the Wastewater Ponds and Its Impact on the Water Quality of Pleistocene Aquifer at El Sadat City Using 2-D Electrical Resistivity Tomography and Water Chemistry

Authors: Abeer A. Kenawy, Usama Massoud, El-Said A. Ragab, Heba M. El-Kosery

Abstract:

2-D Electrical Resistivity Tomography (ERT) and hydrochemical study have been conducted at El Sadat industrial city. The study aims to investigate the area around the wastewater ponds to determine the possibility of water percolation from the wastewater ponds to the Pleistocene aquifer and to inspect the effect of this seepage on the groundwater chemistry. Pleistocene aquifer is the main groundwater reservoir in this area, where El Sadat city and its vicinities depend totally on this aquifer for water supplies needed for drinking, agricultural, and industrial activities. In this concern, seven ERT profiles were measured around the wastewater ponds. Besides, 10 water samples were collected from the ponds and the nearby groundwater wells. The water samples have been chemically analyzed for major cations, anions, nutrients, and heavy elements. Also, the physical parameters (pH, Alkalinity, EC, TDS) of the water samples were measured. Inspection of the ERT sections shows that they exhibit lower resistivity values towards the water ponds and higher values in opposite sides. In addition, the water table was detected at shallower depths at the same sides of lower resistivity. This could indicate a wastewater infiltration to the groundwater aquifer near the oxidation ponds. Correlation of the physical parameters and ionic concentrations of the wastewater samples with those of the groundwater samples indicates that; the ionic levels are randomly varying and no specific trend could be obtained. In addition, the wastewater samples shows some ionic levels lower than those detected in other groundwater samples. Besides, the nitrate level is higher in samples taken from the cultivated land than the wastewater samples due to the over using of nitrogen fertilizers. Then, we can say that the infiltrated water from wastewater ponds are not the main controller of the groundwater chemistry in this area, but rather the variable ionic concentrations could be attributed to local, natural, and anthropogenic processes.

Keywords: El Sadat city, ERT, hydrochemistry, percolation, wastewater ponds

Procedia PDF Downloads 311
2666 Aggregation of Fractal Aggregates Inside Fractal Cages in Irreversible Diffusion Limited Cluster Aggregation Binary Systems

Authors: Zakiya Shireen, Sujin B. Babu

Abstract:

Irreversible diffusion-limited cluster aggregation (DLCA) of binary sticky spheres was simulated by modifying the Brownian Cluster Dynamics (BCD). We randomly distribute N spheres in a 3D box of size L, the volume fraction is given by Φtot = (π/6)N/L³. We identify NA and NB number of spheres as species A and B in our system both having identical size. In these systems, both A and B particles undergo Brownian motion. Irreversible bond formation happens only between intra-species particles and inter-species interact only through hard-core repulsions. As we perform simulation using BCD we start to observe binary gels. In our study, we have observed that species B always percolate (cluster size equal to L) as expected for the monomeric case and species A does not percolate below a critical ratio which is different for different volume fractions. We will also show that the accessible volume of the system increases when compared to the monomeric case, which means that species A is aggregating inside the cage created by B. We have also observed that for moderate Φtot the system undergoes a transition from flocculation region to percolation region indicated by the change in fractal dimension from 1.8 to 2.5. For smaller ratio of A, it stays in the flocculation regime even though B have already crossed over to the percolation regime. Thus, we observe two fractal dimension in the same system.

Keywords: BCD, fractals, percolation, sticky spheres

Procedia PDF Downloads 254
2665 Assessment of the Electrical, Mechanical, and Thermal Nociceptive Thresholds for Stimulation and Pain Measurements at the Bovine Hind Limb

Authors: Samaneh Yavari, Christiane Pferrer, Elisabeth Engelke, Alexander Starke, Juergen Rehage

Abstract:

Background: Three nociceptive thresholds of thermal, electrical, and mechanical thresholds commonly use to evaluate the local anesthesia in many species, for instance, cow, horse, cat, dog, rabbit, and so on. Due to the lack of investigations to evaluate and/or validate such those nociceptive thresholds, our plan was the comparison of two-foot local anesthesia methods of Intravenous Regional Anesthesia (IVRA) and our modified four-point Nerve Block Anesthesia (NBA). Materials and Methods: Eight healthy nonpregnant nondairy Holstein Frisian cows in a cross-over study design were selected for this study. All cows divided into two different groups to receive two local anesthesia techniques of IVRA and our modified four-point NBA. Three thermal, electrical, and mechanical force and pinpricks were applied to evaluate the quality of local anesthesia methods before and after local anesthesia application. Results: The statistical evaluation demonstrated that our four-point NBA has a qualification to select as a standard foot local anesthesia. However, the recorded results of our study revealed no significant difference between two groups of local anesthesia techniques of IVRA and modified four-point NBA related to quality and duration of anesthesia stimulated by electrical, mechanical and thermal nociceptive stimuli. Conclusion and discussion: All three nociceptive threshold stimuli of electrical, mechanical and heat nociceptive thresholds can be applied to measure and evaluate the efficacy of foot local anesthesia of dairy cows. However, our study revealed no superiority of those three nociceptive methods to evaluate the duration and quality of bovine foot local anesthesia methods. Veterinarians to investigate the duration and quality of their selected anesthesia method can use any of those heat, mechanical, and electrical methods.

Keywords: mechanical, thermal, electrical threshold, IVRA, NBA, hind limb, dairy cow

Procedia PDF Downloads 218
2664 Percolation of Financial Services into the Villages in India: Mirroring of Beneficiaries Responses

Authors: Radhakumari Challa

Abstract:

In India the commercial banks have taken the initiative of visiting the villages and helping the villagers open the no-frill accounts as part of the mission towards achieving the total financial inclusion. As an extension to the first phase of the study conducted a year back which revealed that the required awareness that the no-frill accounts creation is the initiative of the government to transfer either the financial assistance or other benefits of economic development directly was lacking among the villagers, the present study is undertaken to review the change in perceptions of beneficiaries in villages over a year period. The study reveals that that there is increase in the awareness among villagers regarding the purpose for which no-frills accounts are opened, about the method of operating these accounts. Awareness about their right for accessing all the financial services is also found to be on the rise.

Keywords: business correspondence, financial inclusion no-frill account, percolation

Procedia PDF Downloads 329
2663 Assessment of Highly Sensitive Dielectric Modulated GaN-FinFET for Label-Free Biosensing Applications

Authors: Ajay Kumar, Neha Gupta

Abstract:

This work presents the sensitivity assessment of Gallium Nitride (GaN) material-based FinFET by dielectric modulation in the nanocavity gap for label-free biosensing applications. The significant deflection is observed in the electrical characteristics such as drain current (ID), transconductance (gm), surface potential, energy band profile, electric field, sub-threshold slope (SS), and threshold voltage (Vth) in the presence of biomolecules owing to GaN material. Further, the device sensitivity is evaluated to identify the effectiveness of the proposed biosensor and its capability to detect the biomolecules with high precision or accuracy. Higher sensitivity is observed for Gelatin (k=12) in terms of on-current (SION), threshold voltage (SVth), and switching ratio (SSR) by 104.88%, 82.12%, and 119.73%, respectively. This work is performed using a powerful tool 3D Sentaurus TCAD using a well-calibrated structure. All the results pave the way for GaN-FinFET as a viable candidate for label-free dielectric modulated biosensor applications.

Keywords: biosensor, biomolecules, FinFET, sensitivity

Procedia PDF Downloads 156
2662 Fabrication and Analysis of Vertical Double-Diffused Metal Oxide Semiconductor (VDMOS)

Authors: Deepika Sharma, Bal Krishan

Abstract:

In this paper, the structure of N-channel VDMOS was designed and analyzed using Silvaco TCAD tools by varying N+ source doping concentration, P-Body doping concentration, gate oxide thickness and the diffuse time. VDMOS is considered to be ideal power switches due to its high input impedance and fast switching speed. The performance of the device was analyzed from the Ids vs Vgs curve. The electrical characteristics such as threshold voltage, gate oxide thickness and breakdown voltage for the proposed device structures were extarcted. Effect of epitaxial layer on various parameters is also observed.

Keywords: on-resistance, threshold voltage, epitaxial layer, breakdown voltage

Procedia PDF Downloads 293