Search results for: underlying dynamics
3100 Horse Exposition to Coxiella burnetii in France: Antibody Dynamics in Serum, Environmental Risk Assessment and Potential Links with Symptomatology
Authors: Joulié Aurélien, Isabelle Desjardins, Elsa Jourdain, Sophie Pradier, Dufour Philippe, Elodie Rousset, Agnès Leblond
Abstract:
Q fever is a worldwide zoonosis caused by the bacterium Coxiella burnetii. It may infect a broad range of host species, including horses. Although the role of horses in C. burnetii infections remains unknown, their use as sentinel species may be interesting to better assess the human risk exposure. Thus, we aimed to assess the C. burnetii horse exposition in a French endemic area by describing the antibody dynamics detected in serum; investigating the pathogen circulation in the horse environment, and exploring potential links with unexplained syndromes. Blood samples were collected in 2015 and 2016 on 338 and 294 horses, respectively and analyzed by ELISA. Ticks collected on horses were identified, and C. burnetii DNA detection was performed by qPCR targeting the IS1111 gene. Blood sample analyses revealed a significant increase of the seroprevalence in horses between both years, from 11% [7.67; 14.43] to 25% [20.06; 29.94]. On 36 seropositive horses in 2015 and 73 in 2016, 5 and four respectively showed clinical signs compatible with a C. burnetii infection (i.e., chronic fever or respiratory disorders, unfitness and unexplained weight loss). DNA was detected in almost 40% of ticks (n=59/148 in 2015 and n=103/305 in 2016) and exceptionally in dust samples (n=2/46 in 2015 and n=1/14 in 2016) every year. The C. burnetti detection in both the serum and the environment of horses confirm their exposure to the bacterium. Therefore, consideration should be given to target a relevant sentinel species to better assess the Q fever surveillance depending on the epidemiological context.Keywords: ELISA, Q fever, qPCR, syndromic surveillance
Procedia PDF Downloads 2693099 Molecular Dynamic Simulation of Cold Spray Process
Authors: Aneesh Joshi, Sagil James
Abstract:
Cold Spray (CS) process is deposition of solid particles over a substrate above a certain critical impact velocity. Unlike thermal spray processes, CS process does not melt the particles thus retaining their original physical and chemical properties. These characteristics make CS process ideal for various engineering applications involving metals, polymers, ceramics and composites. The bonding mechanism involved in CS process is extremely complex considering the dynamic nature of the process. Though CS process offers great promise for several engineering applications, the realization of its full potential is limited by the lack of understanding of the complex mechanisms involved in this process and the effect of critical process parameters on the deposition efficiency. The goal of this research is to understand the complex nanoscale mechanisms involved in CS process. The study uses Molecular Dynamics (MD) simulation technique to understand the material deposition phenomenon during the CS process. Impact of a single crystalline copper nanoparticle on copper substrate is modelled under varying process conditions. The quantitative results of the impacts at different velocities, impact angle and size of the particles are evaluated using flattening ratio, von Mises stress distribution and local shear strain. The study finds that the flattening ratio and hence the quality of deposition was highest for an impact velocity of 700 m/s, particle size of 20 Å and an impact angle of 90°. The stress and strain analysis revealed regions of shear instabilities in the periphery of impact and also revealed plastic deformation of the particles after the impact. The results of this study can be used to augment our existing knowledge in the field of CS processes.Keywords: cold spray process, molecular dynamics simulation, nanoparticles, particle impact
Procedia PDF Downloads 3673098 Study on the Geometric Similarity in Computational Fluid Dynamics Calculation and the Requirement of Surface Mesh Quality
Authors: Qian Yi Ooi
Abstract:
At present, airfoil parameters are still designed and optimized according to the scale of conventional aircraft, and there are still some slight deviations in terms of scale differences. However, insufficient parameters or poor surface mesh quality is likely to occur if these small deviations are embedded in a future civil aircraft with a size that is quite different from conventional aircraft, such as a blended-wing-body (BWB) aircraft with future potential, resulting in large deviations in geometric similarity in computational fluid dynamics (CFD) simulations. To avoid this situation, the study on the CFD calculation on the geometric similarity of airfoil parameters and the quality of the surface mesh is conducted to obtain the ability of different parameterization methods applied on different airfoil scales. The research objects are three airfoil scales, including the wing root and wingtip of conventional civil aircraft and the wing root of the giant hybrid wing, used by three parameterization methods to compare the calculation differences between different sizes of airfoils. In this study, the constants including NACA 0012, a Reynolds number of 10 million, an angle of attack of zero, a C-grid for meshing, and the k-epsilon (k-ε) turbulence model are used. The experimental variables include three airfoil parameterization methods: point cloud method, B-spline curve method, and class function/shape function transformation (CST) method. The airfoil dimensions are set to 3.98 meters, 17.67 meters, and 48 meters, respectively. In addition, this study also uses different numbers of edge meshing and the same bias factor in the CFD simulation. Studies have shown that with the change of airfoil scales, different parameterization methods, the number of control points, and the meshing number of divisions should be used to improve the accuracy of the aerodynamic performance of the wing. When the airfoil ratio increases, the most basic point cloud parameterization method will require more and larger data to support the accuracy of the airfoil’s aerodynamic performance, which will face the severe test of insufficient computer capacity. On the other hand, when using the B-spline curve method, average number of control points and meshing number of divisions should be set appropriately to obtain higher accuracy; however, the quantitative balance cannot be directly defined, but the decisions should be made repeatedly by adding and subtracting. Lastly, when using the CST method, it is found that limited control points are enough to accurately parameterize the larger-sized wing; a higher degree of accuracy and stability can be obtained by using a lower-performance computer.Keywords: airfoil, computational fluid dynamics, geometric similarity, surface mesh quality
Procedia PDF Downloads 2223097 Arabic Character Recognition Using Regression Curves with the Expectation Maximization Algorithm
Authors: Abdullah A. AlShaher
Abstract:
In this paper, we demonstrate how regression curves can be used to recognize 2D non-rigid handwritten shapes. Each shape is represented by a set of non-overlapping uniformly distributed landmarks. The underlying models utilize 2nd order of polynomials to model shapes within a training set. To estimate the regression models, we need to extract the required coefficients which describe the variations for a set of shape class. Hence, a least square method is used to estimate such modes. We then proceed by training these coefficients using the apparatus Expectation Maximization algorithm. Recognition is carried out by finding the least error landmarks displacement with respect to the model curves. Handwritten isolated Arabic characters are used to evaluate our approach.Keywords: character recognition, regression curves, handwritten Arabic letters, expectation maximization algorithm
Procedia PDF Downloads 1453096 Urban Dynamics Modelling of Mixed Land Use for Sustainable Urban Development in Indian Context
Authors: Rewati Raman, Uttam K. Roy
Abstract:
One of the main adversaries of city planning in present times is the ever-expanding problem of urbanization and the antagonistic issues accompanying it. The prevalent challenges in urbanization such as population growth, urban sprawl, poverty, inequality, pollution, congestion, etc. call for reforms in the urban fabric as well as in planning theory and practice. One of the various paradigms of city planning, land use planning, has been the major instruments for spatial planning of cities and regions in India. Zoning regulation based land use planning in the form of land use and development control plans (LUDCP) and development control regulations (DCR) have been considered mainstream guiding principles in land use planning for decades. In spite of many advantages of such zoning based regulations, over a period of time, it has been critiqued by scholars for its own limitations of isolation and lack of vitality, inconvenience in business in terms of proximity to residence and low operating cost, unsuitable environment for small investments, higher travel distance for facilities, amenities and thereby higher expenditure, safety issues etc. Mixed land use has been advocated as a tool to avoid such limitations in city planning by researchers. In addition, mixed land use can offer many advantages like housing variety and density, the creation of an economic blend of compatible land use, compact development, stronger neighborhood character, walkability, and generation of jobs, etc. Alternatively, the mixed land use beyond a suitable balance of use can also bring disadvantages like traffic congestion, encroachments, very high-density housing leading to a slum like condition, parking spill out, non-residential uses operating on residential premises paying less tax, chaos hampering residential privacy, pressure on existing infrastructure facilities, etc. This research aims at studying and outlining the various challenges and potentials of mixed land use zoning, through modeling tools, as a competent instrument for city planning in lieu of the present urban scenario. The methodology of research adopted in this paper involves the study of a mixed land use neighborhood in India, identification of indicators and parameters related to its extent and spatial pattern and the subsequent use of system dynamics as a modeling tool for simulation. The findings from this analysis helped in identifying the various advantages and challenges associated with the dynamic nature of a mixed use urban settlement. The results also confirmed the hypothesis that mixed use neighborhoods are catalysts for employment generation, socioeconomic gains while improving vibrancy, health, safety, and security. It is also seen that certain challenges related to chaos, lack of privacy and pollution prevail in mixed use neighborhoods, which can be mitigated by varying the percentage of mixing as per need, ensuring compatibility of adjoining use, institutional interventions in the form of policies, neighborhood micro-climatic interventions, etc. Therefore this paper gives a consolidated and holistic framework and quantified outcome pertaining to the extent and spatial pattern of mixed land use that should be adopted to ensure sustainable urban planning.Keywords: mixed land use, sustainable development, system dynamics analysis, urban dynamics modelling
Procedia PDF Downloads 1763095 Supply Chain Fit and Firm Performance: The Role of the Environment
Authors: David Gligor
Abstract:
The purpose of this study was to build on Fisher's (1997) seminal article. First, it sought to determine how companies can achieve supply chain fit (i.e., match between the products' characteristics and the underlying supply chain design). Second, it attempted to develop a better understanding of how environmental conditions impact the relationship between supply chain fit and performance. The findings indicate that firm supply chain agility allows organizations to quickly adjust the structure of their supply chains and therefore, achieve supply chain fit. In addition, archival and survey data were used to explore the moderating effects of six environmental uncertainty dimensions: munificence, market dynamism, technological dynamism, technical complexity, product diversity, and geographic dispersion. All environmental variables, except technological dynamism, were found to impact the relationship between supply chain fit and firm performance.Keywords: supply chain fit, environmental uncertainty, supply chain agility, management engineering
Procedia PDF Downloads 5993094 Corrosion Protection and Failure Mechanism of ZrO₂ Coating on Zirconium Alloy Zry-4 under Varied LiOH Concentrations in Lithiated Water at 360°C and 18.5 MPa
Authors: Guanyu Jiang, Donghai Xu, Huanteng Liu
Abstract:
After the Fukushima-Daiichi accident, the development of accident tolerant fuel cladding materials to improve reactor safety has become a hot topic in the field of nuclear industry. ZrO₂ has a satisfactory neutron economy and can guarantee the fission chain reaction process, which enables it to be a promising coating for zirconium alloy cladding. Maintaining a good corrosion resistance in primary coolant loop during normal operations of Pressurized Water Reactors is a prerequisite for ZrO₂ as a protective coating on zirconium alloy cladding. Research on the corrosion performance of ZrO₂ coating in nuclear water chemistry is relatively scarce, and existing reports failed to provide an in-depth explanation for the failure causes of ZrO₂ coating. Herein, a detailed corrosion process of ZrO₂ coating in lithiated water at 360 °C and 18.5 MPa was proposed based on experimental research and molecular dynamics simulation. Lithiated water with different LiOH solutions in the present work was deaerated and had a dissolved oxygen concentration of < 10 ppb. The concentration of Li (as LiOH) was determined to be 2.3 ppm, 70 ppm, and 500 ppm, respectively. Corrosion tests were conducted in a static autoclave. Modeling and corresponding calculations were operated on Materials Studio software. The calculation of adsorption energy and dynamics parameters were undertaken by the Energy task and Dynamics task of the Forcite module, respectively. The protective effect and failure mechanism of ZrO₂ coating on Zry-4 under varied LiOH concentrations was further revealed by comparison with the coating corrosion performance in pure water (namely 0 ppm Li). ZrO₂ coating provided a favorable corrosion protection with the occurrence of localized corrosion at low LiOH concentrations. Factors influencing corrosion resistance mainly include pitting corrosion extension, enhanced Li+ permeation, short-circuit diffusion of O²⁻ and ZrO₂ phase transformation. In highly-concentrated LiOH solutions, intergranular corrosion, internal oxidation, and perforation resulted in coating failure. Zr ions were released to coating surface to form flocculent ZrO₂ and ZrO₂ clusters due to the strong diffusion and dissolution tendency of α-Zr in the Zry-4 substrate. Considering that primary water of Pressurized Water Reactors usually includes 2.3 ppm Li, the stability of ZrO₂ make itself a candidate fuel cladding coating material. Under unfavorable conditions with high Li concentrations, more boric acid should be added to alleviate caustic corrosion of ZrO₂ coating once it is used. This work can provide some references to understand the service behavior of nuclear coatings under variable water chemistry conditions and promote the in-pile application of ZrO₂ coating.Keywords: ZrO₂ coating, Zry-4, corrosion behavior, failure mechanism, LiOH concentration
Procedia PDF Downloads 853093 Nimbus Radiance Gate Project: Media Architecture in Sacred Space
Authors: Jorge Duarte de Sá
Abstract:
The project presented in this investigation is part of the multidisciplinary field of Architecture and explores an experience in media architecture, integrated in Arts, Science and Technology. The objective of this work is to create a visual experience comprehending Architecture, Media and Art. It is intended to specifically explore the sacred spaces that are losing social, cultural or religious dynamics and insert new Media technologies to create a new generate momentum, testing tools, techniques and methods of implementation. Given an architectural project methodology, it seems essential that 'the location' should be the starting point for the development of this technological apparatus: the church of Santa Clara in Santarém, Portugal emerged as an experimental space for apparatus, presenting itself as both temple and museum. We also aim to address the concept of rehabilitation through media technologies, directed at interventions that may have an impact on energizing spaces. The idea is emphasized on the rehabilitation of spaces that, one way or another, may gain new dynamics after a media intervention. Thus, we intend to affect the play with a sensitive and spiritual character which endemically, sacred spaces have, by exploring a sensitive aspect of the subject and drawing up new ideas for meditation and spiritual reflection. The work is designed primarily as a visual experience that encompasses the space, the object and the subject. It is a media project supported by a dual structure with two transparent screens operating in a holographic screen which will be projecting two images that complement the translucent overlay film, thus making the merger of two projections. The digitally created content reacts to the presence of observers through infrared cameras, placed strategically. The object revives the memory of the altarpiece as an architectural surface, promoting the expansion of messages through the media technologies.Keywords: architecture, media, sacred, technology
Procedia PDF Downloads 2783092 The Non-Uniqueness of Partial Differential Equations Options Price Valuation Formula for Heston Stochastic Volatility Model
Authors: H. D. Ibrahim, H. C. Chinwenyi, T. Danjuma
Abstract:
An option is defined as a financial contract that provides the holder the right but not the obligation to buy or sell a specified quantity of an underlying asset in the future at a fixed price (called a strike price) on or before the expiration date of the option. This paper examined two approaches for derivation of Partial Differential Equation (PDE) options price valuation formula for the Heston stochastic volatility model. We obtained various PDE option price valuation formulas using the riskless portfolio method and the application of Feynman-Kac theorem respectively. From the results obtained, we see that the two derived PDEs for Heston model are distinct and non-unique. This establishes the fact of incompleteness in the model for option price valuation.Keywords: Black-Scholes partial differential equations, Ito process, option price valuation, partial differential equations
Procedia PDF Downloads 1453091 A Semidefinite Model to Quantify Dynamic Forces in the Powertrain of Torque Regulated Bascule Bridge Machineries
Authors: Kodo Sektani, Apostolos Tsouvalas, Andrei Metrikine
Abstract:
The reassessment of existing movable bridges in The Netherlands has created the need for acceptance/rejection criteria to assess whether the machineries are meet certain design demands. However, the existing design code defines a different limit state design, meant for new machineries which is based on a simple linear spring-mass model. Observations show that existing bridges do not confirm the model predictions. In fact, movable bridges are nonlinear systems consisting of mechanical components, such as, gears, electric motors and brakes. Next to that, each movable bridge is characterized by a unique set of parameters. However, in the existing code various variables that describe the physical characteristics of the bridge are neglected or replaced by partial factors. For instance, the damping ratio ζ, which is different for drawbridges compared to bascule bridges, is taken as a constant for all bridge types. In this paper, a model is developed that overcomes some of the limitations of existing modelling approaches to capture the dynamics of the powertrain of a class of bridge machineries First, a semidefinite dynamic model is proposed, which accounts for stiffness, damping, and some additional variables of the physical system, which are neglected by the code, such as nonlinear braking torques. The model gives an upper bound of the peak forces/torques occurring in the powertrain during emergency braking. Second, a discrete nonlinear dynamic model is discussed, with realistic motor torque characteristics during normal operation. This model succeeds to accurately predict the full time history of the occurred stress state of the opening and closing cycle for fatigue purposes.Keywords: Dynamics of movable bridges, Bridge machinery, Powertrains, Torque measurements
Procedia PDF Downloads 1563090 Study of Structural Behavior and Proton Conductivity of Inorganic Gel Paste Electrolyte at Various Phosphorous to Silicon Ratio by Multiscale Modelling
Authors: P. Haldar, P. Ghosh, S. Ghoshdastidar, K. Kargupta
Abstract:
In polymer electrolyte membrane fuel cells (PEMFC), the membrane electrode assembly (MEA) is consisting of two platinum coated carbon electrodes, sandwiched with one proton conducting phosphoric acid doped polymeric membrane. Due to low mechanical stability, flooding and fuel cell crossover, application of phosphoric acid in polymeric membrane is very critical. Phosphorous and silica based 3D inorganic gel gains the attention in the field of supercapacitors, fuel cells and metal hydrate batteries due to its thermally stable highly proton conductive behavior. Also as a large amount of water molecule and phosphoric acid can easily get trapped in Si-O-Si network cavities, it causes a prevention in the leaching out. In this study, we have performed molecular dynamics (MD) simulation and first principle calculations to understand the structural, electronics and electrochemical and morphological behavior of this inorganic gel at various P to Si ratios. We have used dipole-dipole interactions, H bonding, and van der Waals forces to study the main interactions between the molecules. A 'structure property-performance' mapping is initiated to determine optimum P to Si ratio for best proton conductivity. We have performed the MD simulations at various temperature to understand the temperature dependency on proton conductivity. The observed results will propose a model which fits well with experimental data and other literature values. We have also studied the mechanism behind proton conductivity. And finally we have proposed a structure for the gel paste with optimum P to Si ratio.Keywords: first principle calculation, molecular dynamics simulation, phosphorous and silica based 3D inorganic gel, polymer electrolyte membrane fuel cells, proton conductivity
Procedia PDF Downloads 1293089 Insights into Child Malnutrition Dynamics with the Lens of Women’s Empowerment in India
Authors: Bharti Singh, Shri K. Singh
Abstract:
Child malnutrition is a multifaceted issue that transcends geographical boundaries. Malnutrition not only stunts physical growth but also leads to a spectrum of morbidities and child mortality. It is one of the leading causes of death (~50 %) among children under age five. Despite economic progress and advancements in healthcare, child malnutrition remains a formidable challenge for India. The objective is to investigate the impact of women's empowerment on child nutrition outcomes in India from 2006 to 2021. A composite index of women's empowerment was constructed using Confirmatory Factor Analysis (CFA), a rigorous technique that validates the measurement model by assessing how well-observed variables represent latent constructs. This approach ensures the reliability and validity of the empowerment index. Secondly, kernel density plots were utilised to visualise the distribution of key nutritional indicators, such as stunting, wasting, and overweight. These plots offer insights into the shape and spread of data distributions, aiding in understanding the prevalence and severity of malnutrition. Thirdly, linear polynomial graphs were employed to analyse how nutritional parameters evolved with the child's age. This technique enables the visualisation of trends and patterns over time, allowing for a deeper understanding of nutritional dynamics during different stages of childhood. Lastly, multilevel analysis was conducted to identify vulnerable levels, including State-level, PSU-level, and household-level factors impacting undernutrition. This approach accounts for hierarchical data structures and allows for the examination of factors at multiple levels, providing a comprehensive understanding of the determinants of child malnutrition. Overall, the utilisation of these statistical methodologies enhances the transparency and replicability of the study by providing clear and robust analytical frameworks for data analysis and interpretation. Our study reveals that NFHS-4 and NFHS-5 exhibit an equal density of severely stunted cases. NFHS-5 indicates a limited decline in wasting among children aged five, while the density of severely wasted children remains consistent across NFHS-3, 4, and 5. In 2019-21, women with higher empowerment had a lower risk of their children being undernourished (Regression coefficient= -0.10***; Confidence Interval [-0.18, -0.04]). Gender dynamics also play a significant role, with male children exhibiting a higher susceptibility to undernourishment. Multilevel analysis suggests household-level vulnerability (intra-class correlation=0.21), highlighting the need to address child undernutrition at the household level.Keywords: child nutrition, India, NFHS, women’s empowerment
Procedia PDF Downloads 333088 The Primitive Code-Level Design Patterns for Distributed Programming
Authors: Bing Li
Abstract:
The primitive code-level design patterns (PDP) are the rudimentary programming elements to develop any distributed systems in the generic distributed programming environment, GreatFree. The PDP works with the primitive distributed application programming interfaces (PDA), the distributed modeling, and the distributed concurrency for scaling-up. They not only hide developers from underlying technical details but also support sufficient adaptability to a variety of distributed computing environments. Programming with them, the simplest distributed system, the lightweight messaging two-node client/server (TNCS) system, is constructed rapidly with straightforward and repeatable behaviors, copy-paste-replace (CPR). As any distributed systems are made up of the simplest ones, those PDAs, as well as the PDP, are generic for distributed programming.Keywords: primitive APIs, primitive code-level design patterns, generic distributed programming, distributed systems, highly patterned development environment, messaging
Procedia PDF Downloads 1913087 Mapping Early Buddhist History Through Architecture before Sui Era
Authors: Yin Ruoxi
Abstract:
Buddhism, originating in ancient India, saw its most profound development in China. Similarly, Buddhist architecture, though derived from Indian prototypes, evolved distinctively as the religion reached new regions. The interaction with local traditions led to architectural forms that mirrored the unique cultural and ethnic identities of each area. Before the Sui and Tang dynasties, three prominent styles could be observed: Indian, Central Asian, and those of the northern Central Plains. This paper aims to analyze the spatial distribution of temples and the evolution of temple layouts, which means the general layout and floor plans in architecture study, with the innovation of the Pagoda in China. Through examining these transformations and their underlying causes, this paper seeks to unravel the early stages of Buddhism's adaptation to Chinese cultural contexts before the Sui dynasty.Keywords: Buddhist architecture, early Buddhism in China, change in Buddhism with developing in architecture, temple, pagoda
Procedia PDF Downloads 33086 Analytical Solutions of Josephson Junctions Dynamics in a Resonant Cavity for Extended Dicke Model
Authors: S.I.Mukhin, S. Seidov, A. Mukherjee
Abstract:
The Dicke model is a key tool for the description of correlated states of quantum atomic systems, excited by resonant photon absorption and subsequently emitting spontaneous coherent radiation in the superradiant state. The Dicke Hamiltonian (DH) is successfully used for the description of the dynamics of the Josephson Junction (JJ) array in a resonant cavity under applied current. In this work, we have investigated a generalized model, which is described by DH with a frustrating interaction term. This frustrating interaction term is explicitly the infinite coordinated interaction between all the spin half in the system. In this work, we consider an array of N superconducting islands, each divided into two sub-islands by a Josephson Junction, taken in a charged qubit / Cooper Pair Box (CPB) condition. The array is placed inside the resonant cavity. One important aspect of the problem lies in the dynamical nature of the physical observables involved in the system, such as condensed electric field and dipole moment. It is important to understand how these quantities behave with time to define the quantum phase of the system. The Dicke model without frustrating term is solved to find the dynamical solutions of the physical observables in analytic form. We have used Heisenberg’s dynamical equations for the operators and on applying newly developed Rotating Holstein Primakoff (HP) transformation and DH we have arrived at the four coupled nonlinear dynamical differential equations for the momentum and spin component operators. It is possible to solve the system analytically using two-time scales. The analytical solutions are expressed in terms of Jacobi's elliptic functions for the metastable ‘bound luminosity’ dynamic state with the periodic coherent beating of the dipoles that connect the two double degenerate dipolar ordered phases discovered previously. In this work, we have proceeded the analysis with the extended DH with a frustrating interaction term. Inclusion of the frustrating term involves complexity in the system of differential equations and it gets difficult to solve analytically. We have solved semi-classical dynamic equations using the perturbation technique for small values of Josephson energy EJ. Because the Hamiltonian contains parity symmetry, thus phase transition can be found if this symmetry is broken. Introducing spontaneous symmetry breaking term in the DH, we have derived the solutions which show the occurrence of finite condensate, showing quantum phase transition. Our obtained result matches with the existing results in this scientific field.Keywords: Dicke Model, nonlinear dynamics, perturbation theory, superconductivity
Procedia PDF Downloads 1343085 Social Mobility and Urbanization: Case Study of Well-Educated Urban Migrant's Life Experience in the Era of China's New Urbanization Project
Authors: Xu Heng
Abstract:
Since the financial crisis of 2008 and the resulting Great Recession, the number of China’s unemployed college graduate reached over 500 thousand in 2011. Following the severe situation of college graduate employment, there has been growing public concern about college graduates, especially those with the less-privileged background, and their working and living condition in metropolises. Previous studies indicate that well-educated urban migrants with less-privileged background tend to obtain temporary occupation with less financial income and lower social status. Those vulnerable young migrants are described as ‘Ant Tribe’ by some scholars. However, since the implementation of a new urbanization project, together with the relaxed Hukou system and the acceleration of socio-economic development in middle/small cities, some researchers described well-educated urban migrant’s situation and the prospect of upward social mobility in urban areas in an overly optimistic light. In order to shed more lights on the underlying tensions encountered by China’s well-educated urban migrants in their upward social mobility pursuit, this research mainly focuses on 10 well-educated urban migrants’ life trajectories between their university-to-work transition and their current situation. All selected well-educated urban migrants are young adults with rural background who have already received higher education qualification from first-tier universities of Wuhan City (capital of Hubei Province). Drawing on the in-depth interviews with 10 participants and Inspired by Lahire’s Theory of Plural Actor, this study yields the following preliminary findings; 1) For those migrants who move to super-mega cities (i.e., Beijing, Shenzhen, Guangzhou) or stay in Wuhan after college graduation, their inadequacies of economic and social capital are the structural factors which negatively influence their living condition and further shape their plan for career development. The incompatibility between the sub-fields of urban life and the disposition, which generated from their early socialization, is the main cause for marginalized position in the metropolises. 2) For those migrants who move back to middle/small cities located in their hometown regions, the inconsistency between the disposition, which generated from college life, and the organizational habitus of the workplace is the main cause for their sense of ‘fish out of water’, even though they have obtained the stable occupation of local government or state-owned enterprise. On the whole, this research illuminates how the underlying the structural forces shape well-educated urban migrants’ life trajectories and hinder their upward social mobility under the context of new urbanization project.Keywords: life trajectory, social mobility, urbanization, well-educated urban migrant
Procedia PDF Downloads 2153084 A Geometrical Multiscale Approach to Blood Flow Simulation: Coupling 2-D Navier-Stokes and 0-D Lumped Parameter Models
Authors: Azadeh Jafari, Robert G. Owens
Abstract:
In this study, a geometrical multiscale approach which means coupling together the 2-D Navier-Stokes equations, constitutive equations and 0-D lumped parameter models is investigated. A multiscale approach, suggest a natural way of coupling detailed local models (in the flow domain) with coarser models able to describe the dynamics over a large part or even the whole cardiovascular system at acceptable computational cost. In this study we introduce a new velocity correction scheme to decouple the velocity computation from the pressure one. To evaluate the capability of our new scheme, a comparison between the results obtained with Neumann outflow boundary conditions on the velocity and Dirichlet outflow boundary conditions on the pressure and those obtained using coupling with the lumped parameter model has been performed. Comprehensive studies have been done based on the sensitivity of numerical scheme to the initial conditions, elasticity and number of spectral modes. Improvement of the computational algorithm with stable convergence has been demonstrated for at least moderate Weissenberg number. We comment on mathematical properties of the reduced model, its limitations in yielding realistic and accurate numerical simulations, and its contribution to a better understanding of microvascular blood flow. We discuss the sophistication and reliability of multiscale models for computing correct boundary conditions at the outflow boundaries of a section of the cardiovascular system of interest. In this respect the geometrical multiscale approach can be regarded as a new method for solving a class of biofluids problems, whose application goes significantly beyond the one addressed in this work.Keywords: geometrical multiscale models, haemorheology model, coupled 2-D navier-stokes 0-D lumped parameter modeling, computational fluid dynamics
Procedia PDF Downloads 3613083 Signal Transduction in a Myenteric Ganglion
Authors: I. M. Salama, R. N. Miftahof
Abstract:
A functional element of the myenteric nervous plexus is a morphologically distinct ganglion. Composed of sensory, inter- and motor neurons and arranged via synapses in neuronal circuits, their task is to decipher and integrate spike coded information within the plexus into regulatory output signals. The stability of signal processing in response to a wide range of internal/external perturbations depends on the plasticity of individual neurons. Any aberrations in this inherent property may lead to instability with the development of a dynamics chaos and can be manifested as pathological conditions, such as intestinal dysrhythmia, irritable bowel syndrome. The aim of this study is to investigate patterns of signal transduction within a two-neuronal chain - a ganglion - under normal physiological and structurally altered states. The ganglion contains the primary sensory (AH-type) and motor (S-type) neurons linked through a cholinergic dendro somatic synapse. The neurons have distinguished electrophysiological characteristics including levels of the resting and threshold membrane potentials and spiking activity. These are results of ionic channel dynamics namely: Na+, K+, Ca++- activated K+, Ca++ and Cl-. Mechanical stretches of various intensities and frequencies are applied at the receptive field of the AH-neuron generate a cascade of electrochemical events along the chain. At low frequencies, ν < 0.3 Hz, neurons demonstrate strong connectivity and coherent firing. The AH-neuron shows phasic bursting with spike frequency adaptation while the S-neuron responds with tonic bursts. At high frequency, ν > 0.5 Hz, the pattern of electrical activity changes to rebound and mixed mode bursting, respectively, indicating ganglionic loss of plasticity and adaptability. A simultaneous increase in neuronal conductivity for Na+, K+ and Ca++ ions results in tonic mixed spiking of the sensory neuron and class 2 excitability of the motor neuron. Although the signal transduction along the chain remains stable the synchrony in firing pattern is not maintained and the number of discharges of the S-type neuron is significantly reduced. A concomitant increase in Ca++- activated K+ and a decrease in K+ in conductivities re-establishes weak connectivity between the two neurons and converts their firing pattern to a bistable mode. It is thus demonstrated that neuronal plasticity and adaptability have a stabilizing effect on the dynamics of signal processing in the ganglion. Functional modulations of neuronal ion channel permeability, achieved in vivo and in vitro pharmacologically, can improve connectivity between neurons. These findings are consistent with experimental electrophysiological recordings from myenteric ganglia in intestinal dysrhythmia and suggest possible pathophysiological mechanisms.Keywords: neuronal chain, signal transduction, plasticity, stability
Procedia PDF Downloads 3923082 Sensing to Respond & Recover in Emergency
Authors: Alok Kumar, Raviraj Patil
Abstract:
The ability to respond to an incident of a disastrous event in a vulnerable area is very crucial an aspect of emergency management. The ability to constantly predict the likelihood of an event along with its severity in an area and react to those significant events which are likely to have a high impact allows the authorities to respond by allocating resources optimally in a timely manner. It provides for measuring, monitoring, and modeling facilities that integrate underlying systems into one solution to improve operational efficiency, planning, and coordination. We were particularly involved in this innovative incubation work on the current state of research and development in collaboration. technologies & systems for a disaster.Keywords: predictive analytics, advanced analytics, area flood likelihood model, area flood severity model, level of impact model, mortality score, economic loss score, resource allocation, crew allocation
Procedia PDF Downloads 3213081 Patient-Specific Design Optimization of Cardiovascular Grafts
Authors: Pegah Ebrahimi, Farshad Oveissi, Iman Manavi-Tehrani, Sina Naficy, David F. Fletcher, Fariba Dehghani, David S. Winlaw
Abstract:
Despite advances in modern surgery, congenital heart disease remains a medical challenge and a major cause of infant mortality. Cardiovascular prostheses are routinely used in surgical procedures to address congenital malformations, for example establishing a pathway from the right ventricle to the pulmonary arteries in pulmonary valvar atresia. Current off-the-shelf options including human and adult products have limited biocompatibility and durability, and their fixed size necessitates multiple subsequent operations to upsize the conduit to match with patients’ growth over their lifetime. Non-physiological blood flow is another major problem, reducing the longevity of these prostheses. These limitations call for better designs that take into account the hemodynamical and anatomical characteristics of different patients. We have integrated tissue engineering techniques with modern medical imaging and image processing tools along with mathematical modeling to optimize the design of cardiovascular grafts in a patient-specific manner. Computational Fluid Dynamics (CFD) analysis is done according to models constructed from each individual patient’s data. This allows for improved geometrical design and achieving better hemodynamic performance. Tissue engineering strives to provide a material that grows with the patient and mimic the durability and elasticity of the native tissue. Simulations also give insight on the performance of the tissues produced in our lab and reduce the need for costly and time-consuming methods of evaluation of the grafts. We are also developing a methodology for the fabrication of the optimized designs.Keywords: computational fluid dynamics, cardiovascular grafts, design optimization, tissue engineering
Procedia PDF Downloads 2433080 Dynamics of Smallholder Farmer Adoption of High Value Horticultural Crops in Indonesia
Authors: Suprehatin Suprehatin
Abstract:
Improving the participation of smallholder farmers in horticultural value chains to benefit from the rapidly growing demand for high-value agricultural products is one strategy for raising farm income. However, smallholder farmer participation in Indonesian horticultural value chains is under-researched. To address this knowledge gap, this study aims to describe the current status of horticultural crop adoption in Indonesia and analyze the motivations and dynamics of smallholder farmer participation in horticultural value chains: why some small farmers join these new and potentially profitable chains and continue their participation. This study also examines the characteristics of farmers who adopted and those who did not adopt a new horticultural crop with respect to the household (farmer), farm and institutional characteristics. The analysis was conducted using unique data from a 2013 survey of 960 Indonesian farmers on Java Island that produce a variety of agricultural products. Basic statistical analysis showed relatively low adoption rates (10%) of new horticultural crops amongst 960 selected Indonesian farmers with different decisions made in terms of number and timing of new horticultural crop adoption. Adopters were motivated mainly by higher profit, higher yield, and more cash opportunities. The result also showed that current low rates of horticultural crop adoption are associated with a variety of factors, such as lower levels of education among farmers, resource constraints, lack of information on horticultural crop production and low participation in farmer groups. These findings will be helpful for policymakers when designing policies and programs to promote greater participation of Indonesian smallholder farmers in horticultural value chains. In other words, a revitalisation of agricultural policy beyond staple food is important to seize potential benefits from the ongoing agricultural food market transformation.Keywords: farmer adoption, high value, horticultural crops, Indonesia
Procedia PDF Downloads 2813079 Modelling Spatial Dynamics of Terrorism
Authors: André Python
Abstract:
To this day, terrorism persists as a worldwide threat, exemplified by the recent deadly attacks in January 2015 in Paris and the ongoing massacres perpetrated by ISIS in Iraq and Syria. In response to this threat, states deploy various counterterrorism measures, the cost of which could be reduced through effective preventive measures. In order to increase the efficiency of preventive measures, policy-makers may benefit from accurate predictive models that are able to capture the complex spatial dynamics of terrorism occurring at a local scale. Despite empirical research carried out at country-level that has confirmed theories explaining the diffusion processes of terrorism across space and time, scholars have failed to assess diffusion’s theories on a local scale. Moreover, since scholars have not made the most of recent statistical modelling approaches, they have been unable to build up predictive models accurate in both space and time. In an effort to address these shortcomings, this research suggests a novel approach to systematically assess the theories of terrorism’s diffusion on a local scale and provide a predictive model of the local spatial dynamics of terrorism worldwide. With a focus on the lethal terrorist events that occurred after 9/11, this paper addresses the following question: why and how does lethal terrorism diffuse in space and time? Based on geolocalised data on worldwide terrorist attacks and covariates gathered from 2002 to 2013, a binomial spatio-temporal point process is used to model the probability of terrorist attacks on a sphere (the world), the surface of which is discretised in the form of Delaunay triangles and refined in areas of specific interest. Within a Bayesian framework, the model is fitted through an integrated nested Laplace approximation - a recent fitting approach that computes fast and accurate estimates of posterior marginals. Hence, for each location in the world, the model provides a probability of encountering a lethal terrorist attack and measures of volatility, which inform on the model’s predictability. Diffusion processes are visualised through interactive maps that highlight space-time variations in the probability and volatility of encountering a lethal attack from 2002 to 2013. Based on the previous twelve years of observation, the location and lethality of terrorist events in 2014 are statistically accurately predicted. Throughout the global scope of this research, local diffusion processes such as escalation and relocation are systematically examined: the former process describes an expansion from high concentration areas of lethal terrorist events (hotspots) to neighbouring areas, while the latter is characterised by changes in the location of hotspots. By controlling for the effect of geographical, economical and demographic variables, the results of the model suggest that the diffusion processes of lethal terrorism are jointly driven by contagious and non-contagious factors that operate on a local scale – as predicted by theories of diffusion. Moreover, by providing a quantitative measure of predictability, the model prevents policy-makers from making decisions based on highly uncertain predictions. Ultimately, this research may provide important complementary tools to enhance the efficiency of policies that aim to prevent and combat terrorism.Keywords: diffusion process, terrorism, spatial dynamics, spatio-temporal modeling
Procedia PDF Downloads 3513078 Vibration Control of a Horizontally Supported Rotor System by Using a Radial Active Magnetic Bearing
Authors: Vishnu A., Ashesh Saha
Abstract:
The operation of high-speed rotating machinery in industries is accompanied by rotor vibrations due to many factors. One of the primary instability mechanisms in a rotor system is the centrifugal force induced due to the eccentricity of the center of mass away from the center of rotation. These unwanted vibrations may lead to catastrophic fatigue failure. So, there is a need to control these rotor vibrations. In this work, control of rotor vibrations by using a 4-pole Radial Active Magnetic Bearing (RAMB) as an actuator is analysed. A continuous rotor system model is considered for the analysis. Several important factors, like the gyroscopic effect and rotary inertia of the shaft and disc, are incorporated into this model. The large deflection of the shaft and the restriction to axial motion of the shaft at the bearings result in nonlinearities in the system governing equation. The rotor system is modeled in such a way that the system dynamics can be related to the geometric and material properties of the shaft and disc. The mathematical model of the rotor system is developed by incorporating the control forces generated by the RAMB. A simple PD controller is used for the attenuation of system vibrations. An analytical expression for the amplitude and phase equations is derived using the Method of Multiple Scales (MMS). Analytical results are verified with the numerical results obtained using an ‘ode’ solver in-built into MATLAB Software. The control force is found to be effective in attenuating the system vibrations. The multi-valued solutions leading to the jump phenomenon are also eliminated with a proper choice of control gains. Most interestingly, the shape of the backbone curves can also be altered for certain values of control parameters.Keywords: rotor dynamics, continuous rotor system model, active magnetic bearing, PD controller, method of multiple scales, backbone curve
Procedia PDF Downloads 793077 Simulation Of A Renal Phantom Using the MAG 3
Authors: Ati Moncef
Abstract:
We describe in this paper the results of a phantom of dynamics renal with MAG3. Our phantom consisted of (tow shaped of kidneys, 1 liver). These phantoms were scanned with static and dynamic protocols and compared with clinical data. in a normal conditions we use our phantoms it's possible to acquire a renal images when we can be compared with clinical scintigraphy. In conclusion, Renal phantom also can use in the quality control of a renal scintigraphy.Keywords: Renal scintigraphy, MAG3, Nuclear medicine, Gamma Camera.
Procedia PDF Downloads 4013076 The Impact of COVID-19 Pandemic on Educators in South Africa: Self-Efficacy and Anxiety
Authors: Mostert Jacques, Gulseven Osman, Williams Courtney
Abstract:
The Covid-19 pandemic caused unparalleled disruption in the lives of the majority of the world. This included school closures and introduction of Online Learning. In this article we investigated the impact of distance learning on the self-efficacy and anxiety levels experienced by educators in South Africa. We surveyed 60 respondents from Independent Schools using a Likert Scale rating of 0 to 4. The results suggested that despite experiencing moderate anxiety, educators showed a sense of high self-efficacy during distance learning. This was specifically true for those with underlying health concerns. There was no significant difference between how the different genders experienced anxiety and self-efficacy. Further research into the impact on learners’ anxiety levels during distance learning will provide policymakers and educators with a better understanding of how the use of technology is influencing the effectiveness of teaching, learning, and assessment.Keywords: COVID-19, education, self-efficacy, anxiety
Procedia PDF Downloads 2053075 Digitalized Cargo Coordination to Eliminate Emissions in the Shipping Ecosystem: A System Dynamical Approach
Authors: Henry Schwartz, Bogdan Iancu, Magnus Gustafsson, Johan Lilius
Abstract:
The shipping sector generates significant amounts of carbon emissions on annual basis. The excess amount of carbon dioxide is harmful for both the environment and the society, and partly for that reason, there is acute interest to decrease the volume of anthropogenic carbon dioxide emissions in shipping. The usage of the existing cargo carrying capacity can be maximized, and the share of time used in actual transportation operations could be increased if the whole transportation and logistics chain was optimized with the aid of information sharing done through a centralized marketplace and an information-sharing platform. The outcome of this change would be decreased carbon dioxide emission volumes produced per each metric ton of cargo transported by a vessel. Cargo coordination is a platform under development that matches the need for waterborne transportation services with the ships that operate at a given moment in time. In this research, the transition towards adopting cargo coordination is modelled with system dynamics. The model encompasses the complex supply-demand relationships of ship operators and cargo owners. The built scenarios predict the pace at which different stakeholders start using the digitalized platform and by doing so reduce the amount of annual CO2 emissions generated. To improve the reliability of the results, various sensitivity analyses considering the pace of transition as well as the overall impact on the environment (carbon dioxide emissions per amount of cargo transported) are conducted. The results of the study can be used to support investors and politicians in decision making towards more environmentally sustainable solutions. In addition, the model provides concepts and ideas for a wider discussion considering the paths towards carbon neutral transportation.Keywords: carbon dioxide emissions, energy efficiency, sustainable transportation, system dynamics
Procedia PDF Downloads 1473074 A Surrealist Play of Associations: Neoliberalism, Critical Pedagogy and Surrealism in Secondary English Language Arts
Authors: Stephanie Ho
Abstract:
This project utilizes principles derived from the Surrealist movement to prioritize creative and critical thinking in secondary English Language Arts (ELA). The implementation of Surrealist-style pedagogies within an ELA classroom will be rooted in critical, radical pedagogy, which addresses the injustices caused by economic-oriented educational systems. The use of critical pedagogy will enable the subversive artistic and political aims of Surrealism to be transmitted to a classroom context. Through aesthetic reading strategies, appreciative questioning and dialogue, students will actively critique the power dynamics which structure (and often restrict) their lives. Within the ELA domain, cost-effective approaches often replace the actual “arts” of ELA. This research will therefore explore how Surrealist-oriented pedagogies could restore imaginative freedom and deconstruct conceptual barriers (normative standards, curricular constraints, and status quo power relations) in secondary ELA. This research will also examine how Surrealism can be used as a political and pedagogical model to treat societal problems mirrored in ELA classrooms. The stakeholders are teachers, as they experience constant pressure within their practices. Similarly, students encounter rigorous, results-based pressures. These dynamics contribute to feelings of powerlessness, thus reinforcing a formulaic model of ELA. The ELA curriculum has potential to create laboratories for critical discussion and active movement towards social change. This proposed research strategy of Surrealist-oriented pedagogies could enable students to experiment with social issues and develop senses of agency and voice that reflect awareness of contemporary society while simultaneously building their ELA skills.Keywords: arts-informed pedagogies, language arts, literature, surrealism
Procedia PDF Downloads 1343073 Patchwork City: An Affective Map for a Patchwork Zone
Authors: Maria Lucília Borges
Abstract:
This article presents the creation and design process of the "patchwork map" made for the project “Santo Amaro em Rede” (Santo Amaro on Web). The project was carried out in 2009 by SESC – SP – Brazil (Social Service for the Commerce of São Paulo) in partnership with Instituto Pólis. It is a mapping of socio-cultural dynamics of São Paulo’s South Zone and neighboring municipalities.Keywords: affective map, cartography, São Paulo city, space, patchwork
Procedia PDF Downloads 3803072 Navigating the Ripple Effect: Deconstructing the Multilayered Impact of Fuel Subsidy Removal on Nigeria’s Educational Landscape
Authors: Abimbola Mobolanle Adu, Marcus Tayo Akinlade
Abstract:
This comprehensive study systematically dissects the intricate interplay between the removal of fuel subsidy and its multifaceted repercussions on Nigeria's educational system. Originating in the 1970s, the fuel subsidy policy initially conceived to curtail fuel costs and faced financial unsustainability. In 2023, President Bola Tinubu's administration announced its cessation. The resultant escalation in petroleum product prices precipitated challenges within the education sector, manifesting as heightened administrative costs, increased student fees, amplified dropout rates, and others. Employing a qualitative research methodology, grounded in Critical Theory, the study draws from diverse secondary sources and employs content analysis to unravel the intricate layers of this issue. Critical Theory provides a lens through which the power dynamics, socio-economic structures, and ideological influences shaping policy decisions can be critically examined, offering a deeper understanding of the multifaceted impact. Findings underscore the imperative for strategic interventions, advocating for investments in technology and the exploration of alternative energy sources. The paper concludes by emphasizing the pivotal role of education, advocating for nuanced policies to alleviate the impact on both private and public educational institutions. In essence, this research contributes nuanced insights into the labyrinthine dynamics between fuel subsidy policies and the educational sector, underscoring the exigency for meticulous interventions to fortify the nation's educational foundation.Keywords: administration, education, fuel subsidy, policy, multilayered impact
Procedia PDF Downloads 593071 Directors’ Compensation: Analyzing the Multilevel Factors That Exert the Greatest Influence
Authors: Isabel Acero, Nuria Alcalde
Abstract:
The economic crisis and notorious corporate scandals have caused social indignation and sparked the debate concerning the underlying rationality of the compensation that directors receive. In this context, this study examines the determinants of the remuneration of directors in listed Spanish companies using individualized data. A multilevel methodology appropriate for this type of data has been used that allows us to differentiate between inter-company variations and intra-company variations. The results show that company size is the variable (at the company level) that exerts the greatest influence on the level of director´s compensation. One surprising finding is that the presence of independent directors on the board has a positive influence on remuneration. At the individual level, tenure and experience have a significant influence on the level of compensation, while the director´s level of education does not appear to have an effect on it.Keywords: board of directors, compensation, experience, multilevel, tenure
Procedia PDF Downloads 339