Search results for: torse forming vector field
9265 Hybrid Bimodal Magnetic Force Microscopy
Authors: Fernández-Brito David, Lopez-Medina Javier Alonso, Murillo-Bracamontes Eduardo Antonio, Palomino-Ovando Martha Alicia, Gervacio-Arciniega José Juan
Abstract:
Magnetic Force Microscopy (MFM) is an Atomic Force Microscopy (AFM) technique that characterizes, at a nanometric scale, the magnetic properties of ferromagnetic materials. Conventional MFM works by scanning in two different AFM modes. The first one is tapping mode, in which the cantilever has short-range force interactions with the sample, with the purpose to obtain the topography. Then, the lift AFM mode starts, raising the cantilever to maintain a fixed distance between the tip and the surface of the sample, only interacting with the magnetic field forces of the sample, which are long-ranged. In recent years, there have been attempts to improve the MFM technique. Bimodal MFM was first theoretically developed and later experimentally proven. In bimodal MFM, the AFM internal piezoelectric is used to cause the cantilever oscillations in two resonance modes simultaneously, the first mode detects the topography, while the second is more sensitive to the magnetic forces between the tip and the sample. However, it has been proven that the cantilever vibrations induced by the internal AFM piezoelectric ceramic are not optimal, affecting the bimodal MFM characterizations. Moreover, the Secondary Resonance Magnetic Force Microscopy (SR-MFM) was developed. In this technique, a coil located below the sample generates an external magnetic field. This alternating magnetic field excites the cantilever at a second frequency to apply the Bimodal MFM mode. Nonetheless, for ferromagnetic materials with a low coercive field, the external field used in SR-MFM technique can modify the magnetic domains of the sample. In this work, a Hybrid Bimodal MFM (HB-MFM) technique is proposed. In HB-MFM, the bimodal MFM is used, but the first resonance frequency of the cantilever is induced by the magnetic field of the ferromagnetic sample due to its vibrations caused by a piezoelectric element placed under the sample. The advantages of this new technique are demonstrated through the preliminary results obtained by HB-MFM on a hard disk sample. Additionally, traditional two pass MFM and HB-MFM measurements were compared.Keywords: magnetic force microscopy, atomic force microscopy, magnetism, bimodal MFM
Procedia PDF Downloads 779264 Multipurpose Agricultural Robot Platform: Conceptual Design of Control System Software for Autonomous Driving and Agricultural Operations Using Programmable Logic Controller
Authors: P. Abhishesh, B. S. Ryuh, Y. S. Oh, H. J. Moon, R. Akanksha
Abstract:
This paper discusses about the conceptual design and development of the control system software using Programmable logic controller (PLC) for autonomous driving and agricultural operations of Multipurpose Agricultural Robot Platform (MARP). Based on given initial conditions by field analysis and desired agricultural operations, the structural design development of MARP is done using modelling and analysis tool. PLC, being robust and easy to use, has been used to design the autonomous control system of robot platform for desired parameters. The robot is capable of performing autonomous driving and three automatic agricultural operations, viz. hilling, mulching, and sowing of seeds in the respective order. The input received from various sensors on the field is later transmitted to the controller via ZigBee network to make the changes in the control program to get desired field output. The research is conducted to provide assistance to farmers by reducing labor hours for agricultural activities by implementing automation. This study will provide an alternative to the existing systems with machineries attached behind tractors and rigorous manual operations on agricultural field at effective cost.Keywords: agricultural operations, autonomous driving, MARP, PLC
Procedia PDF Downloads 3679263 Machine Learning Techniques in Bank Credit Analysis
Authors: Fernanda M. Assef, Maria Teresinha A. Steiner
Abstract:
The aim of this paper is to compare and discuss better classifier algorithm options for credit risk assessment by applying different Machine Learning techniques. Using records from a Brazilian financial institution, this study uses a database of 5,432 companies that are clients of the bank, where 2,600 clients are classified as non-defaulters, 1,551 are classified as defaulters and 1,281 are temporarily defaulters, meaning that the clients are overdue on their payments for up 180 days. For each case, a total of 15 attributes was considered for a one-against-all assessment using four different techniques: Artificial Neural Networks Multilayer Perceptron (ANN-MLP), Artificial Neural Networks Radial Basis Functions (ANN-RBF), Logistic Regression (LR) and finally Support Vector Machines (SVM). For each method, different parameters were analyzed in order to obtain different results when the best of each technique was compared. Initially the data were coded in thermometer code (numerical attributes) or dummy coding (for nominal attributes). The methods were then evaluated for each parameter and the best result of each technique was compared in terms of accuracy, false positives, false negatives, true positives and true negatives. This comparison showed that the best method, in terms of accuracy, was ANN-RBF (79.20% for non-defaulter classification, 97.74% for defaulters and 75.37% for the temporarily defaulter classification). However, the best accuracy does not always represent the best technique. For instance, on the classification of temporarily defaulters, this technique, in terms of false positives, was surpassed by SVM, which had the lowest rate (0.07%) of false positive classifications. All these intrinsic details are discussed considering the results found, and an overview of what was presented is shown in the conclusion of this study.Keywords: artificial neural networks (ANNs), classifier algorithms, credit risk assessment, logistic regression, machine Learning, support vector machines
Procedia PDF Downloads 1079262 Transient Modeling of Velocity Profile and Heat Transfer of Electrohydrodynamically Augmented Micro Heat Pipe
Authors: H. Shokouhmand, M. Tajerian
Abstract:
At this paper velocity profile modeling and heat transfer in the micro heat pipes by using electrohydrodynamic (EHD) field at the transient regime have been studied. In the transient flow, one dimensional and two phase fluid flow and heat transfer for micro heat pipes with square cross section, have been studied. At this model Coulomb and dielectrophoretic forces are considered. Coupled, non-linear equations governed on the model (continuity, momentum, and energy equations) have been solved simultaneously by numerical methods. Transient behavior of affecting parameters e.g. substrate temperature, velocity of coolant liquid, radius of curvature and coolant liquid pressure, has been verified. By obtaining and plotting the mentioned parameters, it has been shown that the EHD field enhances the heat transfer process. So, the time required to reach the steady state regime decreases from 16 seconds to 2.4 seconds after applying EHD field. Another result has been observed implicitly that by increasing the heat input the effect of EHD field became more significant. The numerical results of model predict the experimental results available in the literature successfully, and it has been observed there is a good agreement between them.Keywords: micro heat pipe, transient modeling, electrohydrodynamics, capillary, meniscus
Procedia PDF Downloads 2669261 Removal of Iron (II) from Wastewater in Oil Field Using 3-(P-Methyl) Phenyl-5-Thionyl-1,2,4-Triazoline Assembled on Silver Nanoparticles
Authors: E. M. S. Azzam, S. A. Ahmed, H. H. Mohamed, M. A. Adly, E. A. M. Gad
Abstract:
In this work we prepared 3-(p-methyl) phenyl-5-thionyl-1,2,4-triazoline (C1). The nanostructure of the prepared C1 compound was fabricated by assembling on silver nanoparticles. The UV and TEM analyses confirm the assembling of C1 compound on silver nanoparticles. The effect of C1 compound on the removal of Iron (II) from Iron contaminated samples and industrial wastewater samples (produced water from oil processing facility) were studied before and after their assembling on silver nanoparticles. The removal of Iron was studied at different concentrations of FeSO4 solution (5, 14 and 39 mg/l) and field sample concentration (661 mg/l). In addition, the removal of Iron (II) was investigated at different times. The Prepared compound and its nanostructure with AgNPs show highly efficient in removing the Iron ions. Quantum chemical descriptors using DFT was discussed. The output of the study pronounces that the C1 molecule can act as chelating agent for Iron (II).Keywords: triazole derivatives, silver nanoparticles, iron (II), oil field
Procedia PDF Downloads 6629260 Biodiversity Interactions Between C3 and C4 Plants under Agroforestry Cropping System
Authors: Ezzat Abd El Lateef
Abstract:
Agroforestry means combining the management of trees with productive agricultural activities, especially in semiarid regions where crop yield increases are limited in agroforestry systems due to the fertility and microclimate improvements and the large competitive effect of trees with crops for water and nutrients, in order to assess the effect of agroforestry of some field crops with citrus trees as an approach to establish biodiversity in fruit tree plantations. Three field crops, i.e., maize, soybean and sunflower, were inter-planted with seedless orange trees (4*4 m) or were planted as solid plantings. The results for the trees indicated a larger fruit yield was obtained when soybean and sunflowers were interplant with citrus. Statistically significant effects (P<0.05) were found for maize grain and biological yields, with increased yields when grown as solid planting. There were no differences in the yields of soya bean and sunflower, where the yields were very similar between the two cropping systems. It is evident from the trials that agroforestry is an efficient concept to increase biodiversity through the interaction of trees with the interplant field crop species. Maize, unlike the other crops, was more sensitive to shade conditions under agroforestry practice and not preferred in the biodiversity system. The potential of agroforestry to improve or increase biodiversity is efficient as the understorey crops are usually C4 species, and the overstorey trees are invariably C3 species in agroforestry. Improvement in interplant species is most likely if the understorey crop is a C3 species, which are usually light saturated in the open, and partial shade may have little effect on assimilation or by a concurrent reduction in transpiration. It could be concluded that agroforestry is an efficient concept to increase biodiversity through the interaction of trees with the interplant field crop species. Some field crops could be employed successfully, like soybean or sunflowers, while others like maize are sensitive to incorporate in agroforestry system.Keywords: agroforestry, field crops, C3 and C4 plants, yield
Procedia PDF Downloads 1849259 Novel Recombinant Betasatellite Associated with Vein Thickening Symptoms on Okra Plants in Saudi Arabia
Authors: Adel M. Zakri, Mohammed A. Al-Saleh, Judith. K. Brown, Ali M. Idris
Abstract:
Betasatellites are small circular single stranded DNA molecules found associated with begomoviruses on field symptomatic plants. Their genome size is about half that of the helper begomovirus, ranging between 1.3 and 1.4 kb. The helper begomoviruses are usually members of the family Geminiviridae. Okra leaves showing vein thickening were collected from okra plants growing in Jazan, Saudi Arabia. Total DNA was extracted from leaves and used as a template to amplify circular DNA using rolling circle amplification (RCA) technology. Products were digested with PstI to linearize the helper viral genome(s), and associated DNA satellite(s), yielding a 2.8kbp and 1.4kbp fragment, respectively. The linearized fragments were cloned into the pGEM-5Zf (+) vector and subjected to DNA sequencing. The 2.8 kb fragment was identified as Cotton leaf curl Gezira virus genome, at 2780bp, an isolate closely related to strains reported previously from Saudi Arabia. A clone obtained from the 1.4 kb fragments he 1.4kb was blasted to GeneBank database found to be a betasatellite. The genome of betasatellite was 1357-bp in size. It was found to be a recombinant containing one fragment (877-bp) that shared 91% nt identity with Cotton leaf curl Gezira betasatellite [KM279620], and a smaller fragment [133--bp) that shared 86% nt identity with Tomato leaf curl Sudan virus [JX483708]. This satellite is thus a recombinant between a malvaceous-infecting satellite and a solanaceous-infecting begomovirus.Keywords: begomovirus, betasatellites, cotton leaf curl Gezira virus, okra plants
Procedia PDF Downloads 3469258 Increasing Recoverable Oil in Northern Afghanistan Kashkari Oil Field by Low-Salinity Water Flooding
Authors: Zabihullah Mahdi, Khwaja Naweed Seddiqi
Abstract:
Afghanistan is located in a tectonically complex and dynamic area, surrounded by rocks that originated on the mother continent of Gondwanaland. The northern Afghanistan basin, which runs along the country's northern border, has the potential for petroleum generation and accumulation. The Amu Darya basin has the largest petroleum potential in the region. Sedimentation occurred in the Amu Darya basin from the Jurassic to the Eocene epochs. Kashkari oil field is located in northern Afghanistan's Amu Darya basin. The field structure consists of a narrow northeast-southwest (NE-SW) anticline with two structural highs, the northwest limb being mild and the southeast limb being steep. The first oil production well in the Kashkari oil field was drilled in 1976, and a total of ten wells were drilled in the area between 1976 and 1979. The amount of original oil in place (OOIP) in the Kashkari oil field, based on the results of surveys and calculations conducted by research institutions, is estimated to be around 140 MMbbls. The objective of this study is to increase recoverable oil reserves in the Kashkari oil field through the implementation of low-salinity water flooding (LSWF) enhanced oil recovery (EOR) technique. The LSWF involved conducting a core flooding laboratory test consisting of four sequential steps with varying salinities. The test commenced with the use of formation water (FW) as the initial salinity, which was subsequently reduced to a salinity level of 0.1%. Afterward, the numerical simulation model of core scale oil recovery by LSWF was designed by Computer Modelling Group’s General Equation Modeler (CMG-GEM) software to evaluate the applicability of the technology to the field scale. Next, the Kahskari oil field simulation model was designed, and the LSWF method was applied to it. To obtain reasonable results, laboratory settings (temperature, pressure, rock, and oil characteristics) are designed as far as possible based on the condition of the Kashkari oil field, and several injection and production patterns are investigated. The relative permeability of oil and water in this study was obtained using Corey’s equation. In the Kashkari oilfield simulation model, three models: 1. Base model (with no water injection), 2. FW injection model, and 3. The LSW injection model was considered for the evaluation of the LSWF effect on oil recovery. Based on the results of the LSWF laboratory experiment and computer simulation analysis, the oil recovery increased rapidly after the FW was injected into the core. Subsequently, by injecting 1% salinity water, a gradual increase of 4% oil can be observed. About 6.4% of the field is produced by the application of the LSWF technique. The results of LSWF (salinity 0.1%) on the Kashkari oil field suggest that this technology can be a successful method for developing Kashkari oil production.Keywords: low-salinity water flooding, immiscible displacement, Kashkari oil field, two-phase flow, numerical reservoir simulation model
Procedia PDF Downloads 459257 Modification of Escherichia coli PtolT Expression Vector via Site-Directed Mutagenesis
Authors: Yakup Ulusu, Numan Eczacıoğlu, İsa Gökçe, Helen Waller, Jeremy H. Lakey
Abstract:
Besides having the appropriate amino acid sequence to perform the function of proteins, it is important to have correct conformation after this sequence to process. To consist of this conformation depends on the amino acid sequence at the primary structure, hydrophobic interaction, chaperones and enzymes in charge of folding etc. Misfolded proteins are not functional and tend to be aggregated. Cysteine originating disulfide cross-links make stable this conformation of functional proteins. When two of the cysteine amino acids come side by side, disulfide bond is established that forms a cystine bridge. Due to this feature cysteine plays an important role on the formation of three-dimensional structure of many proteins. There are two cysteine amino acids (C44, C69) in the Tol-A-III protein. Unlike protein disulfide bonds from within his own, any non-specific cystine bridge causes a change in the three dimensional structure of the protein. Proteins can be expressed in various host cells as directly or fusion (chimeric). As a result of overproduction of the recombinant proteins, aggregation of insoluble proteins in the host cell can occur by forming a crystal structure called inclusion body. In general fusion proteins are produced for provide affinity tags to make proteins more soluble and production of some toxic proteins via fusion protein expression system like pTolT. Proteins can be modified by using a site-directed mutagenesis. By this way, creation of non-specific disulfide crosslinks can be prevented at fusion protein expression system via the present cysteine replaced by another amino acid such as serine, glycine or etc. To do this, we need; a DNA molecule that contains the gene that encodes for the target protein, required primers for mutation to be designed according to site directed mutagenesis reaction. This study was aimed to be replaced cysteine encoding codon TGT with serine encoding codon AGT. For this sense and reverse primers designed (given below) and used site-directed mutagenesis reaction. Several new copy of the template plasmid DNA has been formed with above mentioned mutagenic primers via polymerase chain reaction (PCR). PCR product consists of both the master template DNA (wild type) and the new DNA sequences containing mutations. Dpn-l endonuclease restriction enzyme which is specific for methylated DNA and cuts them to the elimination of the master template DNA. E. coli cells obtained after transformation were incubated LB medium with antibiotic. After purification of plasmid DNA from E. coli, the presence of the mutation was determined by DNA sequence analysis. Developed this new plasmid is called PtolT-δ.Keywords: site directed mutagenesis, Escherichia coli, pTolT, protein expression
Procedia PDF Downloads 3789256 CFD Modeling of Boiling in a Microchannel Based On Phase-Field Method
Authors: Rahim Jafari, Tuba Okutucu-Özyurt
Abstract:
The hydrodynamics and heat transfer characteristics of a vaporized elongated bubble in a rectangular microchannel have been simulated based on Cahn-Hilliard phase-field method. In the simulations, the initially nucleated bubble starts growing as it comes in contact with superheated water. The growing shape of the bubble compared with the available experimental data in the literature.Keywords: microchannel, boiling, Cahn-Hilliard method, simulation
Procedia PDF Downloads 4309255 Application of Waterflooding to the Kashkari Oil Field in Northern Afghanistan
Authors: Zabihullah Mahdi, Mahdi Nayab, Sadaf Jalal, Navid Seddiqi
Abstract:
Hydrocarbons represent an important natural resource for the rehabilitation and sustainable development of Afghanistan. In this paper, the use of waterflooding is demonstrated for the petroleum reservoirs of the Kashkari oil field in northern Afghanistan. The technique is based on the Buckley–Leverett frontal-displacement theory, which enables computation of the progress of the waterfront in the reservoir. The relative permeabilities of oil and water, the residual oil saturation, and the irreducible water saturation are obtained from a laboratory experiment. The technique is applied to the laboratory plane-reservoir model to investigate the displacement mechanism and is then compared with the theoretical calculation. Lastly, the technique is applied to the Kashkari oil field to predict the feasible amount of oil that could be produced from this reservoir.Keywords: Buckley–Leverett, waterflooding, petroleum reservoir engineering, two-phase flow, immiscible displacement, porous media, relative permeability
Procedia PDF Downloads 2099254 Novel Ferroelectric Properties as Studied by Boson Mean Field Laser Radiation Induced from a Beer Bottle
Authors: Tadeus Atraskevic, Asch Dalbajobas, Mazahistas Pukuotukas
Abstract:
The novel ferroelectric properties appeared in the recent ten years. Many scientists consider them as non-statement science. Nevertheless, many papers are published. The Mean field theory takes an important place in the theory of ferroelectric materials which can be applied for Boson induced laser systems for ‘Star Track’ soldiers. The novel Laser, which was produced in The Vilnius Bambalio University is a ‘now-how’ among other laser systems. The laser can produce power of 30 kW during 15 seconds. Its size and compatibility distinguishes it among other devices and safety gadgets. Scientists of Bambalio University have already patented the device. The most interesting in this innovations is the process of operation. Merely it may be operated through a bottle a beer what makes the measurement so convenient, that an ordinary scientist can process all stuff without significant effort just by taking pleasure by drinking a bottle of beer. Here we would like to report on the laser system and present our unique developments.Keywords: laser, boson, ferroelectrics, mean field theory
Procedia PDF Downloads 1789253 Confluence of Relations: An Auto-Ethnographic Account of Field Recording in the Anthropocene Age
Authors: Freya Zinovieff
Abstract:
In the age of the Anthropocene, all ecosystems, no matter how remote, is influenced by the relations between humans and technology. These influences are evidenced by current extinction rates, changes in species diversity, and species adaptation to pollution. Field recording is a tool through which we are able to document the extent to which life forms associated with the place are entangled with human-technology relationships. This paper documents the convergence of interaction between technologies, species, and landscape via an auto-ethnographic account of a field recording taken from a cell phone tower in Bali, Indonesia. In the recording, we hear a confluence of relations where critter and technology meet. The electrical hum of the tower merges with frogs and the amaranthine throb of crickets, in such a way that it is hard to tell where technology begins and the voice of creatures ends. The outcomes of this venture resulted in a framework for evaluating the sensorial relations within field recording. The framework calls for the soundscape to be understood as a multilayered ontology through which there is a convergence of multispecies relationships, or entanglements, across time and geographic location. These entanglements are not necessarily obvious. Sometimes quiet, sometimes elusive, sometimes only audible through the mediated conduit of digital technology. The paper argues that to be aware of these entanglements is to open ourselves to a type of beauty that is firmly rooted in the present paradigm of extinction and loss. By virtue of this understanding, we are bestowed with an opportunity to embrace the grave reality of the current sixth mass extinction and move forwards with what activist Joanna Macy calls the compassionate action.Keywords: anthropocene, human-technology relationships, multispecies ethnography, field recording
Procedia PDF Downloads 1549252 System Response of a Variable-Rate Aerial Application System
Authors: Daniel E. Martin, Chenghai Yang
Abstract:
Variable-rate aerial application systems are becoming more readily available; however, aerial applicators typically only use the systems for constant-rate application of materials, allowing the systems to compensate for upwind and downwind ground speed variations. Much of the resistance to variable-rate aerial application system adoption in the U.S. pertains to applicator’s trust in the systems to turn on and off automatically as desired. The objectives of this study were to evaluate a commercially available variable-rate aerial application system under field conditions to demonstrate both the response and accuracy of the system to desired application rate inputs. This study involved planting oats in a 35-acre fallow field during the winter months to establish a uniform green backdrop in early spring. A binary (on/off) prescription application map was generated and a variable-rate aerial application of glyphosate was made to the field. Airborne multispectral imagery taken before and two weeks after the application documented actual field deposition and efficacy of the glyphosate. When compared to the prescription application map, these data provided application system response and accuracy information. The results of this study will be useful for quantifying and documenting the response and accuracy of a commercially available variable-rate aerial application system so that aerial applicators can be more confident in their capabilities and the use of these systems can increase, taking advantage of all that aerial variable-rate technologies have to offer.Keywords: variable-rate, aerial application, remote sensing, precision application
Procedia PDF Downloads 4779251 A Bayesian Classification System for Facilitating an Institutional Risk Profile Definition
Authors: Roman Graf, Sergiu Gordea, Heather M. Ryan
Abstract:
This paper presents an approach for easy creation and classification of institutional risk profiles supporting endangerment analysis of file formats. The main contribution of this work is the employment of data mining techniques to support set up of the most important risk factors. Subsequently, risk profiles employ risk factors classifier and associated configurations to support digital preservation experts with a semi-automatic estimation of endangerment group for file format risk profiles. Our goal is to make use of an expert knowledge base, accuired through a digital preservation survey in order to detect preservation risks for a particular institution. Another contribution is support for visualisation of risk factors for a requried dimension for analysis. Using the naive Bayes method, the decision support system recommends to an expert the matching risk profile group for the previously selected institutional risk profile. The proposed methods improve the visibility of risk factor values and the quality of a digital preservation process. The presented approach is designed to facilitate decision making for the preservation of digital content in libraries and archives using domain expert knowledge and values of file format risk profiles. To facilitate decision-making, the aggregated information about the risk factors is presented as a multidimensional vector. The goal is to visualise particular dimensions of this vector for analysis by an expert and to define its profile group. The sample risk profile calculation and the visualisation of some risk factor dimensions is presented in the evaluation section.Keywords: linked open data, information integration, digital libraries, data mining
Procedia PDF Downloads 4329250 Sainte Sophie Landfill: Field-Scale Assessment of Municipal Solid Waste Mechanical Characteristics
Authors: Wameed Alghazali, Shawn Kenny, Paul J. Van Geel
Abstract:
Settlement of municipal solid waste (MSW) in landfills can be represented by mechanical settlement, which is instantaneous and time-dependent creep components, and biodegradation-induced settlement. Mechanical settlement is governed by the physical characteristics of MSW and the applied overburden pressure. Several research studies used oedometers and different size compression cells to evaluate the primary and mechanical creep compression indices/ratios. However, MSW is known for its heterogeneity, which means data obtained from laboratory testing are not necessary to be a good representation of the mechanical response observed in the field. Furthermore, most of the laboratory tests found in the literature were conducted on shredded samples of MSW to obtain specimens that are suitable for the testing setup. It is believed that shredding MSW samples changes the physical and mechanical properties of the waste. In this study, settlement field data was collected during the filling stage of Ste. Sophie landfill was used to estimate the primary and mechanical creep compression ratios. The field results from Ste. Sophie landfill indicated that both the primary and mechanical creep compression ratios of MSW are not constants but decrease with the increase in the applied vertical stress.Keywords: mechanical creep compression ratio, municipal solid waste, primary compression ratio, stress level
Procedia PDF Downloads 1009249 Analysis of the Scattered Fields by Dielectric Sphere Inside Different Dielectric Mediums: The Case of the Source and Observation Point Is Reciprocal
Authors: Emi̇ne Avşar Aydin, Nezahat Günenç Tuncel, A. Hami̇t Serbest
Abstract:
The electromagnetic scattering from a canonical structure is an important issue in electromagnetic theory. In this study, the electromagnetic scattering from a dielectric sphere with oblique incidence is investigated. The incident field is considered as a plane wave with H polarized. The scattered and transmitted field expressions with unknown coefficients are written. The unknown coefficients are obtained by using exact boundary conditions. Then, the sphere is considered as having frequency dependent dielectric permittivity. The frequency dependence is shown by Cole-Cole model. The far scattered field expressions are found respect to different incidence angles in the 1-8 GHz frequency range. The observation point is the angular distance of pi from an incident wave. While an incident wave comes with a certain angle, observation point turns from 0 to 360 degrees. According to this, scattered field amplitude is maximum at the location of the incident wave, scattered field amplitude is minimum at the across incident wave. Also, the scattered fields are plotted versus frequency to show frequency-dependence explicitly. Graphics are shown for some incident angles compared with the Harrington's solution. Thus, the results are obtained faster and more reliable with reciprocal rotation. It is expected that when there is another sphere with different properties in the outer sphere, the presence and location of the sphere will be detected faster. In addition, this study leads to use for biomedical applications in the future.Keywords: scattering, dielectric sphere, oblique incidence, reciprocal rotation
Procedia PDF Downloads 3039248 Effects and Mechanization of a High Gradient Magnetic Separation Process for Particulate and Microbe Removal from Ballast Water
Authors: Zhijun Ren, Zhang Lin, Zhao Ye, Zuo Xiangyu, Mei Dongxing
Abstract:
As a pretreatment process of ballast water treatment, the performance of high gradient magnetic separation (HGMS) technology for the removal of particulates and microorganisms was studied. The results showed that HGMS process could effectively remove suspended particles larger than 5 µm and had ability to resist impact load. Microorganism could also be effectively removed by HGMS process, and the removal effect increased with increasing magnetic field strength. The maximum removal rates for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were 4016.1% and 9675.3% higher, respectively, than without the magnetic field. In addition, the superoxide dismutase (SOD) activity of the microbes decreased by 32.2% when the magnetic field strength was 15.4 mT for 72 min. The microstructure of the stainless steel wool was investigated, and the results showed that particle removal by HGMS has common function by the magnetic force of the high-strength, high-gradient magnetic field on weakly magnetic particles in the water, and on the stainless steel wool.Keywords: HGMS, particulates, superoxide dismutase (SOD) activity, steel wool magnetic medium
Procedia PDF Downloads 4559247 Statistical Characteristics of Distribution of Radiation-Induced Defects under Random Generation
Authors: P. Selyshchev
Abstract:
We consider fluctuations of defects density taking into account their interaction. Stochastic field of displacement generation rate gives random defect distribution. We determinate statistical characteristics (mean and dispersion) of random field of point defect distribution as function of defect generation parameters, temperature and properties of irradiated crystal.Keywords: irradiation, primary defects, interaction, fluctuations
Procedia PDF Downloads 3469246 Fragment Domination for Many-Objective Decision-Making Problems
Authors: Boris Djartov, Sanaz Mostaghim
Abstract:
This paper presents a number-based dominance method. The main idea is how to fragment the many attributes of the problem into subsets suitable for the well-established concept of Pareto dominance. Although other similar methods can be found in the literature, they focus on comparing the solutions one objective at a time, while the focus of this method is to compare entire subsets of the objective vector. Given the nature of the method, it is computationally costlier than other methods and thus, it is geared more towards selecting an option from a finite set of alternatives, where each solution is defined by multiple objectives. The need for this method was motivated by dynamic alternate airport selection (DAAS). In DAAS, pilots, while en route to their destination, can find themselves in a situation where they need to select a new landing airport. In such a predicament, they need to consider multiple alternatives with many different characteristics, such as wind conditions, available landing distance, the fuel needed to reach it, etc. Hence, this method is primarily aimed at human decision-makers. Many methods within the field of multi-objective and many-objective decision-making rely on the decision maker to initially provide the algorithm with preference points and weight vectors; however, this method aims to omit this very difficult step, especially when the number of objectives is so large. The proposed method will be compared to Favour (1 − k)-Dom and L-dominance (LD) methods. The test will be conducted using well-established test problems from the literature, such as the DTLZ problems. The proposed method is expected to outperform the currently available methods in the literature and hopefully provide future decision-makers and pilots with support when dealing with many-objective optimization problems.Keywords: multi-objective decision-making, many-objective decision-making, multi-objective optimization, many-objective optimization
Procedia PDF Downloads 949245 Artificial Neural Network Based Approach in Prediction of Potential Water Pollution Across Different Land-Use Patterns
Authors: M.Rüştü Karaman, İsmail İşeri, Kadir Saltalı, A.Reşit Brohi, Ayhan Horuz, Mümin Dizman
Abstract:
Considerable relations has recently been given to the environmental hazardous caused by agricultural chemicals such as excess fertilizers. In this study, a neural network approach was investigated in the prediction of potential nitrate pollution across different land-use patterns by using a feedforward multilayered computer model of artificial neural network (ANN) with proper training. Periodical concentrations of some anions, especially nitrate (NO3-), and cations were also detected in drainage waters collected from the drain pipes placed in irrigated tomato field, unirrigated wheat field, fallow and pasture lands. The soil samples were collected from the irrigated tomato field and unirrigated wheat field on a grid system with 20 m x 20 m intervals. Site specific nitrate concentrations in the soil samples were measured for ANN based simulation of nitrate leaching potential from the land profiles. In the application of ANN model, a multi layered feedforward was evaluated, and data sets regarding with training, validation and testing containing the measured soil nitrate values were estimated based on spatial variability. As a result of the testing values, while the optimal structures of 2-15-1 was obtained (R2= 0.96, P < 0.01) for unirrigated field, the optimal structures of 2-10-1 was obtained (R2= 0.96, P < 0.01) for irrigated field. The results showed that the ANN model could be successfully used in prediction of the potential leaching levels of nitrate, based on different land use patterns. However, for the most suitable results, the model should be calibrated by training according to different NN structures depending on site specific soil parameters and varied agricultural managements.Keywords: artificial intelligence, ANN, drainage water, nitrate pollution
Procedia PDF Downloads 3159244 Rapid Processing Techniques Applied to Sintered Nickel Battery Technologies for Utility Scale Applications
Authors: J. D. Marinaccio, I. Mabbett, C. Glover, D. Worsley
Abstract:
Through use of novel modern/rapid processing techniques such as screen printing and Near-Infrared (NIR) radiative curing, process time for the sintering of sintered nickel plaques, applicable to alkaline nickel battery chemistries, has been drastically reduced from in excess of 200 minutes with conventional convection methods to below 2 minutes using NIR curing methods. Steps have also been taken to remove the need for forming gas as a reducing agent by implementing carbon as an in-situ reducing agent, within the ink formulation.Keywords: batteries, energy, iron, nickel, storage
Procedia PDF Downloads 4449243 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra
Authors: Bitewulign Mekonnen
Abstract:
Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network
Procedia PDF Downloads 979242 Macroeconomic Policies Followed in Turkey after the Crisis 2001 and the Effect of These Policies on Foreign Trade: Sample of the Province Konya
Authors: Bilge Afşar, Zeynep Karaçor, Burcu Guvenek
Abstract:
The aim of this study is to examine and analyze the effect of macroeconomic policies on foreign trade. In the study, the effect of the macroeconomic policies applied in Turkey after 2001 on foreign trade was scrutinized carrying out a survey study in the sample of the province Konya. In the survey study, the survey was administered to a total of 209 exporter firms, which are the members of Konya Chamber of Commerce. While 51 of the firms, to which the survey was administered, exported below $ 100,000, 158 of them are the firms exporting above $ 100,000. Survey was realized in the way of face to face interview with the firms in the rate of 79%. 47% of the institutions forming the mass were reached. In forming survey questionnaire, in general, 5-point Likert scale was used. In order to assess the study results, SPSS 15 package program was utilized. In the survey, foreign trade activities of the firms in Konya were analyzed; and the problems they face, while performing foreign trade, and those needing to be carried out for increasing foreign trade volume of Konya were revealed by determining how and at what degree they were affected from the macroeconomic policies applied. Thus, foreign trade structure and state of the province Konya were attempted to be analyzed. In the survey study, it emerges that although the problems Konya faces in foreign trade overlap with the problems across Turkey, the province Konya seems to be affected relatively less from the last crisis with its equity capital in either trade or other areas. Until the year 2008, while Konya is in a position of the province continuously increasing its export, also with the effect of global crisis, in 2009, a fall was seen in the amount of export. The results emerging in the survey study also confirm this case. In parallel with demand inadequacy and recession all over the world, firms experience trouble. However, again according to our survey result, foreign market weight of firms shifted from EU countries to Russia, East Bloc, and Middle East countries. This prevented Konya from negative affecting from EU crisis at maximum level. That is, Russian and Middle East market express significance for Konya. That market is diversified, and being relatively rid of dependence to EU is extremely important in terms of Konya export.Keywords: economy, foreign trade, economic crise, macro economic politicies
Procedia PDF Downloads 3019241 A CMOS-Integrated Hall Plate with High Sensitivity
Authors: Jin Sup Kim, Min Seo
Abstract:
An improved cross-shaped hall plate with high sensitivity is described in this paper. Among different geometries that have been simulated and measured using Helmholtz coil. The paper describes the physical hall plate design and implementation in a 0.18-µm CMOS technology. In this paper, the biasing is a constant voltage mode. In the voltage mode, magnetic field is converted into an output voltage. The output voltage is typically in the order of micro- to millivolt and therefore, it must be amplified before being transmitted to the outside world. The study, design and performance optimization of hall plate has been carried out with the COMSOL Multiphysics. It is used to estimate the voltage distribution in the hall plate with and without magnetic field and to optimize the geometry. The simulation uses the nominal bias current of 1mA. The applied magnetic field is in the range from 0 mT to 20 mT. Measured results of the one structure over the 10 available samples show for the best sensitivity of 2.5 %/T at 20mT.Keywords: cross-shaped hall plate, sensitivity, CMOS technology, Helmholtz coil
Procedia PDF Downloads 1999240 Quantom Magnetic Effects of P-B Fusion in Plasma Focus Devices
Authors: M. Habibi
Abstract:
The feasibility of proton-boron fusion in plasmoids caused by magneto hydrodynamics instabilities in plasma focus devices is studied analytically. In plasmoids, fusion power for 76 keV < Ti < 1500 keV exceeds bremsstrahlung loss (W/Pb=5.39). In such situation gain factor and the ratio of Te to Ti for a typical 150 kJ plasma focus device will be 7.8 and 4.8 respectively. Also with considering the ion viscous heating effect, W/Pb and Ti/Te will be 2.7 and 6 respectively. Strong magnetic field will reduces ion-electron collision rate due to quantization of electron orbits. While approximately there is no change in electron-ion collision rate, the effect of quantum magnetic field makes ions much hotter than electrons which enhance the fraction of fusion power to bremsstrahlung loss. Therefore self-sustained p-11B fusion reactions would be possible and it could be said that p-11B fuelled plasma focus device is a clean and efficient source of energy.Keywords: plasmoids, p11B fuel, ion viscous heating, quantum magnetic field, plasma focus device
Procedia PDF Downloads 4689239 Machine Learning Techniques in Seismic Risk Assessment of Structures
Authors: Farid Khosravikia, Patricia Clayton
Abstract:
The main objective of this work is to evaluate the advantages and disadvantages of various machine learning techniques in two key steps of seismic hazard and risk assessment of different types of structures. The first step is the development of ground-motion models, which are used for forecasting ground-motion intensity measures (IM) given source characteristics, source-to-site distance, and local site condition for future events. IMs such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available. Second, it is investigated how machine learning techniques could be beneficial for developing probabilistic seismic demand models (PSDMs), which provide the relationship between the structural demand responses (e.g., component deformations, accelerations, internal forces, etc.) and the ground motion IMs. In the risk framework, such models are used to develop fragility curves estimating exceeding probability of damage for pre-defined limit states, and therefore, control the reliability of the predictions in the risk assessment. In this study, machine learning algorithms like artificial neural network, random forest, and support vector machine are adopted and trained on the demand parameters to derive PSDMs for them. It is observed that such models can provide more accurate estimates of prediction in relatively shorter about of time compared to conventional methods. Moreover, they can be used for sensitivity analysis of fragility curves with respect to many modeling parameters without necessarily requiring more intense numerical response-history analysis.Keywords: artificial neural network, machine learning, random forest, seismic risk analysis, seismic hazard analysis, support vector machine
Procedia PDF Downloads 1109238 Rathke’s Cleft Cyst Presenting as Unilateral Visual Field Defect
Authors: Ritesh Verma, Manisha Rathi, Chand Singh Dhull, Sumit Sachdeva, Jitender Phogat
Abstract:
A Rathke's cleft cyst is a benign growth found on the pituitary gland in the brain, specifically a fluid-filled cyst in the posterior portion of the anterior pituitary gland. It occurs when the Rathke's pouch does not develop properly and ranges in size from 2 to 40mm in diameter. A 38-year-old male presented to the outpatient department with loss of vision in the inferior quadrant of the left eye since 15 days. Visual acuity was 6/6 in the right eye and 6/9 in the left eye. Visual field analysis by HFA-24-2 revealed an inferior field defect extending to the supero-temporal quadrant in the left eye. MRI brain and orbit was advised to the patient and it revealed a well defined cystic pituitary adenoma indenting left optic nerve near optic chiasm consistent with the diagnosis of Rathke’s cleft cyst (RCC). The patient was referred to neurosurgery department for further management. Symptoms vary greatly between individuals having RCCs. RCCs can be non-functioning, functioning, or both. Besides headaches, neurocognitive deficits are almost always present but have a high rate of immediate reversal if the cyst is properly treated or drained.Keywords: pituitary tumors, rathke’s cleft cyst, visual field defects, vision loss
Procedia PDF Downloads 2109237 Comparison of Support Vector Machines and Artificial Neural Network Classifiers in Characterizing Threatened Tree Species Using Eight Bands of WorldView-2 Imagery in Dukuduku Landscape, South Africa
Authors: Galal Omer, Onisimo Mutanga, Elfatih M. Abdel-Rahman, Elhadi Adam
Abstract:
Threatened tree species (TTS) play a significant role in ecosystem functioning and services, land use dynamics, and other socio-economic aspects. Such aspects include ecological, economic, livelihood, security-based, and well-being benefits. The development of techniques for mapping and monitoring TTS is thus critical for understanding the functioning of ecosystems. The advent of advanced imaging systems and supervised learning algorithms has provided an opportunity to classify TTS over fragmenting landscape. Recently, vegetation maps have been produced using advanced imaging systems such as WorldView-2 (WV-2) and robust classification algorithms such as support vectors machines (SVM) and artificial neural network (ANN). However, delineation of TTS in a fragmenting landscape using high resolution imagery has widely remained elusive due to the complexity of the species structure and their distribution. Therefore, the objective of the current study was to examine the utility of the advanced WV-2 data for mapping TTS in the fragmenting Dukuduku indigenous forest of South Africa using SVM and ANN classification algorithms. The results showed the robustness of the two machine learning algorithms with an overall accuracy (OA) of 77.00% (total disagreement = 23.00%) for SVM and 75.00% (total disagreement = 25.00%) for ANN using all eight bands of WV-2 (8B). This study concludes that SVM and ANN classification algorithms with WV-2 8B have the potential to classify TTS in the Dukuduku indigenous forest. This study offers relatively accurate information that is important for forest managers to make informed decisions regarding management and conservation protocols of TTS.Keywords: artificial neural network, threatened tree species, indigenous forest, support vector machines
Procedia PDF Downloads 5199236 The Evaluation of Gravity Anomalies Based on Global Models by Land Gravity Data
Authors: M. Yilmaz, I. Yilmaz, M. Uysal
Abstract:
The Earth system generates different phenomena that are observable at the surface of the Earth such as mass deformations and displacements leading to plate tectonics, earthquakes, and volcanism. The dynamic processes associated with the interior, surface, and atmosphere of the Earth affect the three pillars of geodesy: shape of the Earth, its gravity field, and its rotation. Geodesy establishes a characteristic structure in order to define, monitor, and predict of the whole Earth system. The traditional and new instruments, observables, and techniques in geodesy are related to the gravity field. Therefore, the geodesy monitors the gravity field and its temporal variability in order to transform the geodetic observations made on the physical surface of the Earth into the geometrical surface in which positions are mathematically defined. In this paper, the main components of the gravity field modeling, (Free-air and Bouguer) gravity anomalies are calculated via recent global models (EGM2008, EIGEN6C4, and GECO) over a selected study area. The model-based gravity anomalies are compared with the corresponding terrestrial gravity data in terms of standard deviation (SD) and root mean square error (RMSE) for determining the best fit global model in the study area at a regional scale in Turkey. The least SD (13.63 mGal) and RMSE (15.71 mGal) were obtained by EGM2008 for the Free-air gravity anomaly residuals. For the Bouguer gravity anomaly residuals, EIGEN6C4 provides the least SD (8.05 mGal) and RMSE (8.12 mGal). The results indicated that EIGEN6C4 can be a useful tool for modeling the gravity field of the Earth over the study area.Keywords: free-air gravity anomaly, Bouguer gravity anomaly, global model, land gravity
Procedia PDF Downloads 175