Search results for: predictive biomarker
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1253

Search results for: predictive biomarker

353 Applying the Regression Technique for ‎Prediction of the Acute Heart Attack ‎

Authors: Paria Soleimani, Arezoo Neshati

Abstract:

Myocardial infarction is one of the leading causes of ‎death in the world. Some of these deaths occur even before the patient ‎reaches the hospital. Myocardial infarction occurs as a result of ‎impaired blood supply. Because the most of these deaths are due to ‎coronary artery disease, hence the awareness of the warning signs of a ‎heart attack is essential. Some heart attacks are sudden and intense, but ‎most of them start slowly, with mild pain or discomfort, then early ‎detection and successful treatment of these symptoms is vital to save ‎them. Therefore, importance and usefulness of a system designing to ‎assist physicians in the early diagnosis of the acute heart attacks is ‎obvious.‎ The purpose of this study is to determine how well a predictive ‎model would perform based on the only patient-reportable clinical ‎history factors, without using diagnostic tests or physical exams. This ‎type of the prediction model might have application outside of the ‎hospital setting to give accurate advice to patients to influence them to ‎seek care in appropriate situations. For this purpose, the data were ‎collected on 711 heart patients in Iran hospitals. 28 attributes of clinical ‎factors can be reported by patients; were studied. Three logistic ‎regression models were made on the basis of the 28 features to predict ‎the risk of heart attacks. The best logistic regression model in terms of ‎performance had a C-index of 0.955 and with an accuracy of 94.9%. ‎The variables, severe chest pain, back pain, cold sweats, shortness of ‎breath, nausea, and vomiting were selected as the main features.‎

Keywords: Coronary heart disease, Acute heart attacks, Prediction, Logistic ‎regression‎

Procedia PDF Downloads 450
352 Time Series Simulation by Conditional Generative Adversarial Net

Authors: Rao Fu, Jie Chen, Shutian Zeng, Yiping Zhuang, Agus Sudjianto

Abstract:

Generative Adversarial Net (GAN) has proved to be a powerful machine learning tool in image data analysis and generation. In this paper, we propose to use Conditional Generative Adversarial Net (CGAN) to learn and simulate time series data. The conditions include both categorical and continuous variables with different auxiliary information. Our simulation studies show that CGAN has the capability to learn different types of normal and heavy-tailed distributions, as well as dependent structures of different time series. It also has the capability to generate conditional predictive distributions consistent with training data distributions. We also provide an in-depth discussion on the rationale behind GAN and the neural networks as hierarchical splines to establish a clear connection with existing statistical methods of distribution generation. In practice, CGAN has a wide range of applications in market risk and counterparty risk analysis: it can be applied to learn historical data and generate scenarios for the calculation of Value-at-Risk (VaR) and Expected Shortfall (ES), and it can also predict the movement of the market risk factors. We present a real data analysis including a backtesting to demonstrate that CGAN can outperform Historical Simulation (HS), a popular method in market risk analysis to calculate VaR. CGAN can also be applied in economic time series modeling and forecasting. In this regard, we have included an example of hypothetical shock analysis for economic models and the generation of potential CCAR scenarios by CGAN at the end of the paper.

Keywords: conditional generative adversarial net, market and credit risk management, neural network, time series

Procedia PDF Downloads 144
351 Classification for Obstructive Sleep Apnea Syndrome Based on Random Forest

Authors: Cheng-Yu Tsai, Wen-Te Liu, Shin-Mei Hsu, Yin-Tzu Lin, Chi Wu

Abstract:

Background: Obstructive Sleep apnea syndrome (OSAS) is a common respiratory disorder during sleep. In addition, Body parameters were identified high predictive importance for OSAS severity. However, the effects of body parameters on OSAS severity remain unclear. Objective: In this study, the objective is to establish a prediction model for OSAS by using body parameters and investigate the effects of body parameters in OSAS. Methodologies: Severity was quantified as the polysomnography and the mean hourly number of greater than 3% dips in oxygen saturation during examination in a hospital in New Taipei City (Taiwan). Four levels of OSAS severity were classified by the apnea and hypopnea index (AHI) with American Academy of Sleep Medicine (AASM) guideline. Body parameters, including neck circumference, waist size, and body mass index (BMI) were obtained from questionnaire. Next, dividing the collecting subjects into two groups: training and testing groups. The training group was used to establish the random forest (RF) to predicting, and test group was used to evaluated the accuracy of classification. Results: There were 3330 subjects recruited in this study, whom had been done polysomnography for evaluating severity for OSAS. A RF of 1000 trees achieved correctly classified 79.94 % of test cases. When further evaluated on the test cohort, RF showed the waist and BMI as the high import factors in OSAS. Conclusion It is possible to provide patient with prescreening by body parameters which can pre-evaluate the health risks.

Keywords: apnea and hypopnea index, Body parameters, obstructive sleep apnea syndrome, Random Forest

Procedia PDF Downloads 154
350 Executive Function Assessment with Aboriginal Australians

Authors: T. Keiller, E. Hindman, P. Hassmen, K. Radford, L. Lavrencic

Abstract:

Background: Psychosocial disadvantage is associated with impaired cognitive abilities, with executive functioning (EF) abilities particularly vulnerable. EF abilities strongly predict general daily functioning, educational and career prospects, and health choices. A reliable and valid assessment of EF is important to support appropriate care and intervention strategies. However, evidence-based EF assessment tools for use with Aboriginal Australians are limited. Aim and Method: This research aims to develop and validate a culturally appropriate EF tool for use with indigenous Australians. To this end, Study One aims to review current literature examining the benefits and disadvantages of current EF assessment tools for use with Indigenous Australians. Study Two aims to collate expert opinion on the strengths and weaknesses of various current EF assessment tools for use with Indigenous Australians using Delphi methodology with experienced psychologists (n = 10). The initial two studies will inform the development of a culturally appropriate assessment tool. Study Three aims to evaluate the psychometric properties of the tool with an Indigenous sample living in the New South Wales Mid-North Coast. The study aims to quantify the predictive validity of this tool via comparison to functionality predictors and neuropsychological assessment scores. Study Four aims to collect qualitative data surrounding the feasibility and acceptability of the tool among indigenous Australians and health professionals. Expected Results: Findings from this research are likely to inform cognitive assessment practices and tool selection for health professionals conducting cognitive assessments with Indigenous Australians. Improved assessment of EF will inform appropriate care and intervention strategies for individuals with EF deficits.

Keywords: aboriginal Australians, assessment tool, cognition, executive functioning

Procedia PDF Downloads 281
349 The Effect of Perceived Environmental Uncertainty on Corporate Entrepreneurship Performance: A Field Study in a Large Industrial Zone in Turkey

Authors: Adem Öğüt, M. Tahir Demirsel

Abstract:

Rapid changes and developments today, besides the opportunities and facilities they offer to the organization, may also be a source of danger and difficulties due to the uncertainty. In order to take advantage of opportunities and to take the necessary measures against possible uncertainties, organizations must always follow the changes and developments that occur in the business environment and develop flexible structures and strategies for the alternative cases. Perceived environmental uncertainty is an outcome of managers’ perceptions of the combined complexity, instability and unpredictability in the organizational environment. An environment that is perceived to be complex, changing rapidly, and difficult to predict creates high levels of uncertainty about the appropriate organizational responses to external circumstances. In an uncertain and complex environment, organizations experiencing cutthroat competition may be successful by developing their corporate entrepreneurial ability. Corporate entrepreneurship is a process that includes many elements such as innovation, creating new business, renewal, risk-taking and being predictive. Successful corporate entrepreneurship is a critical factor which has a significant contribution to gain a sustainable competitive advantage, to renew the organization and to adapt the environment. In this context, the objective of this study is to investigate the effect of perceived environmental uncertainty of managers on corporate entrepreneurship performance. The research was conducted on 222 business executives in one of the major industrial zones of Turkey, Konya Organized Industrial Zone (KOS). According to the results, it has been observed that there is a positive statistically significant relationship between perceived environmental uncertainty and corporate entrepreneurial activities.

Keywords: corporate entrepreneurship, entrepreneurship, industrial zone, perceived environmental uncertainty, uncertainty

Procedia PDF Downloads 314
348 Evaluation of Machine Learning Algorithms and Ensemble Methods for Prediction of Students’ Graduation

Authors: Soha A. Bahanshal, Vaibhav Verdhan, Bayong Kim

Abstract:

Graduation rates at six-year colleges are becoming a more essential indicator for incoming fresh students and for university rankings. Predicting student graduation is extremely beneficial to schools and has a huge potential for targeted intervention. It is important for educational institutions since it enables the development of strategic plans that will assist or improve students' performance in achieving their degrees on time (GOT). A first step and a helping hand in extracting useful information from these data and gaining insights into the prediction of students' progress and performance is offered by machine learning techniques. Data analysis and visualization techniques are applied to understand and interpret the data. The data used for the analysis contains students who have graduated in 6 years in the academic year 2017-2018 for science majors. This analysis can be used to predict the graduation of students in the next academic year. Different Predictive modelings such as logistic regression, decision trees, support vector machines, Random Forest, Naïve Bayes, and KNeighborsClassifier are applied to predict whether a student will graduate. These classifiers were evaluated with k folds of 5. The performance of these classifiers was compared based on accuracy measurement. The results indicated that Ensemble Classifier achieves better accuracy, about 91.12%. This GOT prediction model would hopefully be useful to university administration and academics in developing measures for assisting and boosting students' academic performance and ensuring they graduate on time.

Keywords: prediction, decision trees, machine learning, support vector machine, ensemble model, student graduation, GOT graduate on time

Procedia PDF Downloads 73
347 Assessment of Serum Osteopontin, Osteoprotegerin and Bone-Specific Alp as Markers of Bone Turnover in Patients with Disorders of Thyroid Function in Nigeria, Sub-Saharan Africa

Authors: Oluwabori Emmanuel Olukoyejo, Ogra Victor Ogra, Bosede Amodu, Tewogbade Adeoye Adedeji

Abstract:

Background: Disorders of thyroid function are the second most common endocrine disorders worldwide, with a direct relationship with metabolic bone diseases. These metabolic bone complications are often subtle but manifest as bone pains and an increased risk of fractures. The gold standard for diagnosis, Dual Energy X-ray Absorptiometry (DEXA), is limited in this environment due to unavailability, cumbersomeness and cost. However, bone biomarkers have shown prospects in assessing alterations in bone remodeling, which has not been studied in this environment. Aim: This study evaluates serum levels of bone-specific alkaline phosphatase (bone-specific ALP), osteopontin and osteoprotegerin biomarkers of bone turnover in patients with disorders of thyroid function. Methods: This is a cross-sectional study carried out over a period of one and a half years. Forty patients with thyroid dysfunctions, aged 20 to 50 years, and thirty-eight age and sex-matched healthy euthyroid controls were included in this study. Patients were further stratified into hyperthyroid and hypothyroid groups. Bone-specific ALP, osteopontin, and osteoprotegerin, alongside serum total calcium, ionized calcium and inorganic phosphate, were assayed for all patients and controls. A self-administered questionnaire was used to obtain data on sociodemographic and medical history. Then, 5 ml of blood was collected in a plain bottle and serum was harvested following clotting and centrifugation. Serum samples were assayed for B-ALP, osteopontin, and osteoprotegerin using the ELISA technique. Total calcium and ionized calcium were assayed using an ion-selective electrode, while the inorganic phosphate was assayed with automated photometry. Results: The hyperthyroid and hypothyroid patient groups had significantly increased median serum B-ALP (30.40 and 26.50) ng/ml and significantly lower median OPG (0.80 and 0.80) ng/ml than the controls (10.81 and 1.30) ng/ml respectively, p < 0.05. However, serum osteopontin in the hyperthyroid group was significantly higher and significantly lower in the hypothyroid group when compared with the controls (11.00 and 2.10 vs 3.70) ng/ml, respectively, p < 0.05. Both hyperthyroid and hypothyroid groups had significantly higher mean serum total calcium, ionized calcium and inorganic phosphate than the controls (2.49 ± 0.28, 1.27 ± 0.14 and 1.33 ± 0.33) mmol/l and (2.41 ± 0.04, 1.20 ± 0.04 and 1.15 ± 0.16) mmol/l vs (2.27 ± 0.11, 1.17 ± 0.06 and 1.08 ± 0.16) mmol/l respectively, p < 0.05. Conclusion: Patients with disorders of thyroid function have metabolic imbalances of all the studied bone markers, suggesting a higher bone turnover. The routine bone markers will be an invaluable tool for monitoring bone health in patients with thyroid dysfunctions, while the less readily available markers can be introduced as supplementary tools. Moreover, bone-specific ALP, osteopontin and osteoprotegerin were found to be the strongest independent predictors of metabolic bone markers’ derangements in patients with thyroid dysfunctions.

Keywords: metabolic bone diseases, biomarker, bone turnover, hyperthyroid, hypothyroid, euthyroid

Procedia PDF Downloads 38
346 The Hallmarks of War Propaganda: The Case of Russia-Ukraine Conflict

Authors: Veronika Solopova, Oana-Iuliana Popescu, Tim Landgraf, Christoph Benzmüller

Abstract:

Beginning in 2014, slowly building geopolitical tensions in Eastern Europe led to a full-blown conflict between the Russian Federation and Ukraine that generated an unprecedented amount of news articles and data from social media data, reflecting the opposing ideologies and narratives as a background and the essence of the ongoing war. These polarized informational campaigns have led to countless mutual accusations of misinformation and fake news, shaping an atmosphere of confusion and mistrust for many readers all over the world. In this study, we analyzed scraped news articles from Ukrainian, Russian, Romanian and English-speaking news outlets, on the eve of 24th of February 2022, compared to day five of the conflict (28th of February), to see how the media influenced and mirrored the changes in public opinion. We also contrast the sources opposing and supporting the stands of the Russian government in Ukrainian, Russian and Romanian media spaces. In a data-driven way, we describe how the narratives are spread throughout Eastern and Central Europe. We present predictive linguistic features surrounding war propaganda. Our results indicate that there are strong similarities in terms of rhetoric strategies in the pro-Kremlin media in both Ukraine and Russia, which, while being relatively neutral according to surface structure, use aggressive vocabulary. This suggests that automatic propaganda identification systems have to be tailored for each new case, as they have to rely on situationally specific words. Both Ukrainian and Russian outlets lean towards strongly opinionated news, pointing towards the use of war propaganda in order to achieve strategic goals.

Keywords: linguistic, news, propaganda, Russia, ukraine

Procedia PDF Downloads 122
345 The Determinants of Corporate Hedging Strategy

Authors: Ademola Ajibade

Abstract:

Previous studies have explored several rationales for hedging strategies, but the evidence provided by these studies remains ambiguous. Using a hand-collected dataset of 2460 observations of non-financial firms in eight African countries covering 2013-2022, this paper investigates the determinants and extent of corporate hedge use. In particular, this paper focuses on the link between country-specific conditions and the corporate hedging behaviour of firms. To our knowledge, this represents the first African studies investigating the association between country-specific factors and corporate hedging policy. The evidence based on both univariate and multivariate reveal that country-level corruption and government quality are important indicators of the decisions and extent of hedge use among African firms. However, the connection between country-specific factors as a rationale for corporate hedge use is stronger for firms located in highly corrupt countries. This suggest that firms located in corrupt countries are more motivated to hedge due to the large exposure they face. In addition, we test the risk management theories and observe that CEOs educational qualification and experience shape corporate hedge behaviour. We implement a lagged variables in a panel data setting to address endogeneity concern and implement an interaction term between governance indices and firm-specific variables to test for robustness. Generally, our findings reveal that institutional factors shape risk management decisions and have a predictive power in explaining corporate hedging strategy.

Keywords: corporate hedging, governance quality, corruption, derivatives

Procedia PDF Downloads 92
344 Prediction of Damage to Cutting Tools in an Earth Pressure Balance Tunnel Boring Machine EPB TBM: A Case Study L3 Guadalajara Metro Line (Mexico)

Authors: Silvia Arrate, Waldo Salud, Eloy París

Abstract:

The wear of cutting tools is one of the most decisive elements when planning tunneling works, programming the maintenance stops and saving the optimum stock of spare parts during the evolution of the excavation. Being able to predict the behavior of cutting tools can give a very competitive advantage in terms of costs and excavation performance, optimized to the needs of the TBM itself. The incredible evolution of data science in recent years gives the option to implement it at the time of analyzing the key and most critical parameters related to machinery with the purpose of knowing how the cutting head is performing in front of the excavated ground. Taking this as a case study, Metro Line 3 of Guadalajara in Mexico will develop the feasibility of using Specific Energy versus data science applied over parameters of Torque, Penetration, and Contact Force, among others, to predict the behavior and status of cutting tools. The results obtained through both techniques are analyzed and verified in the function of the wear and the field situations observed in the excavation in order to determine its effectiveness regarding its predictive capacity. In conclusion, the possibilities and improvements offered by the application of digital tools and the programming of calculation algorithms for the analysis of wear of cutting head elements compared to purely empirical methods allow early detection of possible damage to cutting tools, which is reflected in optimization of excavation performance and a significant improvement in costs and deadlines.

Keywords: cutting tools, data science, prediction, TBM, wear

Procedia PDF Downloads 49
343 Synthetic Data-Driven Prediction Using GANs and LSTMs for Smart Traffic Management

Authors: Srinivas Peri, Siva Abhishek Sirivella, Tejaswini Kallakuri, Uzair Ahmad

Abstract:

Smart cities and intelligent transportation systems rely heavily on effective traffic management and infrastructure planning. This research tackles the data scarcity challenge by generating realistically synthetic traffic data from the PeMS-Bay dataset, enhancing predictive modeling accuracy and reliability. Advanced techniques like TimeGAN and GaussianCopula are utilized to create synthetic data that mimics the statistical and structural characteristics of real-world traffic. The future integration of Spatial-Temporal Generative Adversarial Networks (ST-GAN) is anticipated to capture both spatial and temporal correlations, further improving data quality and realism. Each synthetic data generation model's performance is evaluated against real-world data to identify the most effective models for accurately replicating traffic patterns. Long Short-Term Memory (LSTM) networks are employed to model and predict complex temporal dependencies within traffic patterns. This holistic approach aims to identify areas with low vehicle counts, reveal underlying traffic issues, and guide targeted infrastructure interventions. By combining GAN-based synthetic data generation with LSTM-based traffic modeling, this study facilitates data-driven decision-making that improves urban mobility, safety, and the overall efficiency of city planning initiatives.

Keywords: GAN, long short-term memory (LSTM), synthetic data generation, traffic management

Procedia PDF Downloads 15
342 Assessment of a Rapid Detection Sensor of Faecal Pollution in Freshwater

Authors: Ciprian Briciu-Burghina, Brendan Heery, Dermot Brabazon, Fiona Regan

Abstract:

Good quality bathing water is a highly desirable natural resource which can provide major economic, social, and environmental benefits. Both in Ireland and Europe, such water bodies are managed under the European Directive for the management of bathing water quality (BWD). The BWD aims mainly: (i) to improve health protection for bathers by introducing stricter standards for faecal pollution assessment (E. coli, enterococci), (ii) to establish a more pro-active approach to the assessment of possible pollution risks and the management of bathing waters, and (iii) to increase public involvement and dissemination of information to the general public. Standard methods for E. coli and enterococci quantification rely on cultivation of the target organism which requires long incubation periods (from 18h to a few days). This is not ideal when immediate action is required for risk mitigation. Municipalities that oversee the bathing water quality and deploy appropriate signage have to wait for laboratory results. During this time, bathers can be exposed to pollution events and health risks. Although forecasting tools exist, they are site specific and as consequence extensive historical data is required to be effective. Another approach for early detection of faecal pollution is the use of marker enzymes. β-glucuronidase (GUS) is a widely accepted biomarker for E. coli detection in microbiological water quality control. GUS assay is particularly attractive as they are rapid, less than 4 h, easy to perform and they do not require specialised training. A method for on-site detection of GUS from environmental samples in less than 75 min was previously demonstrated. In this study, the capability of ColiSense as an early warning system for faecal pollution in freshwater is assessed. The system successfully detected GUS activity in all of the 45 freshwater samples tested. GUS activity was found to correlate linearly with E. coli (r2=0.53, N=45, p < 0.001) and enterococci (r2=0.66, N=45, p < 0.001) Although GUS is a marker for E. coli, a better correlation was obtained for enterococci. For this study water samples were collected from 5 rivers in the Dublin area over 1 month. This suggests a high diversity of pollution sources (agricultural, industrial, etc) as well as point and diffuse pollution sources were captured in the sample size. Such variety in the source of E. coli can account for different GUS activities/culturable cell and different ratios of viable but not culturable to viable culturable bacteria. A previously developed protocol for the recovery and detection of E. coli was coupled with a miniaturised fluorometer (ColiSense) and the system was assessed for the rapid detection FIB in freshwater samples. Further work will be carried out to evaluate the system’s performance on seawater samples.

Keywords: faecal pollution, β-glucuronidase (GUS), bathing water, E. coli

Procedia PDF Downloads 284
341 Evaluation of Firearm Injury Syndromic Surveillance in Utah

Authors: E. Bennion, A. Acharya, S. Barnes, D. Ferrell, S. Luckett-Cole, G. Mower, J. Nelson, Y. Nguyen

Abstract:

Objective: This study aimed to evaluate the validity of a firearm injury query in the Early Notification of Community-based Epidemics syndromic surveillance system. Syndromic surveillance data are used at the Utah Department of Health for early detection of and rapid response to unusually high rates of violence and injury, among other health outcomes. The query of interest was defined by the Centers for Disease Control and Prevention and used chief complaint and discharge diagnosis codes to capture initial emergency department encounters for firearm injury of all intents. Design: Two epidemiologists manually reviewed electronic health records of emergency department visits captured by the query from April-May 2020, compared results, and sent conflicting determinations to two arbiters. Results: Of the 85 unique records captured, 67 were deemed probable, 19 were ruled out, and two were undetermined, resulting in a positive predictive value of 75.3%. Common reasons for false positives included non-initial encounters and misleading keywords. Conclusion: Improving the validity of syndromic surveillance data would better inform outbreak response decisions made by state and local health departments. The firearm injury definition could be refined to exclude non-initial encounters by negating words such as “last month,” “last week,” and “aftercare”; and to exclude non-firearm injury by negating words such as “pellet gun,” “air gun,” “nail gun,” “bullet bike,” and “exit wound” when a firearm is not mentioned.

Keywords: evaluation, health information system, firearm injury, syndromic surveillance

Procedia PDF Downloads 168
340 Assessment of Dietary Patterns of Saudi Patients with Type 2 Diabetes Mellitus in Ramadan and Non-Ramadan Periods

Authors: Abdullah S. Alghamdi, Khaled Alghamdi, Richard O. Jenkins, Parvez I. Haris

Abstract:

Background: Unhealthy diet is one of the modifiable risk factors for developing type 2 diabetes mellitus (T2DM). Improvement in diet can be beneficial for countering diabetes. For example, HbA1c, an important biomarker for diabetes, can be reduced by 1.1% through only alteration in diet. Ramadan fasting has been reported to provide positive health benefits. However, optimal benefits are not achieved, often due to poor dietary habits and lifestyle. There is a need to better understand the dietary habits of people fasting during Ramadan, so that necessary improvements can be made to develop this form of fasting as a non-pharmacological strategy for management and prevention of T2DM. Aim: This study aimed to assess the dietary patterns of Saudi adult patients with T2DM over three different periods (before, during, and after Ramadan) and relate this to HbA1c levels. Methods: This study recruited 82 Saudi with T2DM, who chose to fast during Ramadan, from the Endocrine and Diabetic Centre of Al Iman General Hospital, Riyadh, Saudi Arabia. Ethical approvals for the study were obtained from De Montfort University and Saudi Ministry of Health. Dietary patterns were assessed by a self-administered questionnaire in each period. This assessment included the diet type and frequency. Blood samples were collected in each period for determination of HbA1c. Results: The number of meals per day for the participants significantly decreased during Ramadan (P < 0.001). The consumption of fruit and vegetables significantly increased during Ramadan (P = 0.017). However, the consumption of sugary drinks significantly increased during and after Ramadan (P = 0.005). Approximately 60% of the patients indicated that they ate sugary foods at least once per week. The consumption of bread and rice was reported to be at least two times per week. The consumption of rice significantly reduced during Ramadan (P = 0.002). The mean HbA1c significantly varied between periods (P = 0.001), with lowest level during Ramadan compared to before and after Ramadan. The increase in the consumption of fruits and vegetables had a medium effect size on the reduction in HbA1c during Ramadan. There was a variance of 7.7% in the mean difference in HbA1c levels between groups (who changed their fruit and vegetable consumption) which can be accounted for by the increase in the consumption of fruits and vegetables. Likewise, 9.3% of the variance in the mean HbA1c difference between the groups was accounted for by a decrease in the consumption of rice. Conclusion: The increase in the frequency of fruit and vegetables intake, and especially the reduction in the frequency of rice consumption, during Ramadan produce beneficial effects in reducing HbA1c level. Therefore, further improving the dietary habits of patients with T2DM, such as reducing their sugary drinks intake, may help them to obtain greater benefits from Ramadan fasting in the management of their diabetes. It is recommended that dietary guidance is provided to the public to maximise health benefits through Ramadan fasting.

Keywords: Diabetes, Diet, Fasting, HbA1c, Ramadan

Procedia PDF Downloads 167
339 Consumer Value and Purchase Behaviour: The Mediating Role of Consumers' Expectations of Corporate Social Responsibility in Durban, South Africa

Authors: Abosede Ijabadeniyi, Jeevarathnam P. Govender

Abstract:

Prevailing strategic Corporate Social Responsibility (CSR) research is predominantly centred around the predictive implications of the construct on behavioural outcomes. This phenomenon limits the depth of our understanding of the trajectory of strategic CSR. The purpose of this paper is to investigate the mediating effects of CSR expectations on the relationship between consumer value and purchase behaviour by identifying the implications of the multidimensionality of CSR (economic, legal, ethical and philanthropic) on the latter. Drawing from the stakeholder theory and its interplay with the prevalence of Ubuntu values; the underlying force which governs the values of South African camaraderie, we hypothesise that the multidimensionality of CSR expectations has positive mediating effects in the relationship between consumer value and purchase behaviour. Partial Least Square (PLS) path modelling was employed, using six measures of the average path coefficient (APC) to test the relationship between the constructs. Results from a sample of mall shoppers of (n=411), based on a survey conducted across five major malls in Durban, South Africa, indicate that only the legal dimension of CSR serves as a mediating factor in the relationship among the constructs. South Africa’s unique history of segregation, leading to the proliferation of spontaneous organisational approach to CSR and higher expectations of organisational legitimacy are identified as antecedents of consumers’ reliance on the law (legal CSR) to redress the ills of the past, sustainable development, and socially responsible behaviour. The paper also highlights theoretical and managerial implications for future research.

Keywords: consumer value, corporate marketing, corporate social responsibility, purchase behaviour, Ubuntu

Procedia PDF Downloads 371
338 A Physiological Approach for Early Detection of Hemorrhage

Authors: Rabie Fadil, Parshuram Aarotale, Shubha Majumder, Bijay Guargain

Abstract:

Hemorrhage is the loss of blood from the circulatory system and leading cause of battlefield and postpartum related deaths. Early detection of hemorrhage remains the most effective strategy to reduce mortality rate caused by traumatic injuries. In this study, we investigated the physiological changes via non-invasive cardiac signals at rest and under different hemorrhage conditions simulated through graded lower-body negative pressure (LBNP). Simultaneous electrocardiogram (ECG), photoplethysmogram (PPG), blood pressure (BP), impedance cardiogram (ICG), and phonocardiogram (PCG) were acquired from 10 participants (age:28 ± 6 year, weight:73 ± 11 kg, height:172 ± 8 cm). The LBNP protocol consisted of applying -20, -30, -40, -50, and -60 mmHg pressure to the lower half of the body. Beat-to-beat heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean aerial pressure (MAP) were extracted from ECG and blood pressure. Systolic amplitude (SA), systolic time (ST), diastolic time (DT), and left ventricle Ejection time (LVET) were extracted from PPG during each stage. Preliminary results showed that the application of -40 mmHg i.e. moderate stage simulated hemorrhage resulted significant changes in HR (85±4 bpm vs 68 ± 5bpm, p < 0.01), ST (191 ± 10 ms vs 253 ± 31 ms, p < 0.05), LVET (350 ± 14 ms vs 479 ± 47 ms, p < 0.05) and DT (551 ± 22 ms vs 683 ± 59 ms, p < 0.05) compared to rest, while no change was observed in SA (p > 0.05) as a consequence of LBNP application. These findings demonstrated the potential of cardiac signals in detecting moderate hemorrhage. In future, we will analyze all the LBNP stages and investigate the feasibility of other physiological signals to develop a predictive machine learning model for early detection of hemorrhage.

Keywords: blood pressure, hemorrhage, lower-body negative pressure, LBNP, machine learning

Procedia PDF Downloads 167
337 A West Coast Estuarine Case Study: A Predictive Approach to Monitor Estuarine Eutrophication

Authors: Vedant Janapaty

Abstract:

Estuaries are wetlands where fresh water from streams mixes with salt water from the sea. Also known as “kidneys of our planet”- they are extremely productive environments that filter pollutants, absorb floods from sea level rise, and shelter a unique ecosystem. However, eutrophication and loss of native species are ailing our wetlands. There is a lack of uniform data collection and sparse research on correlations between satellite data and in situ measurements. Remote sensing (RS) has shown great promise in environmental monitoring. This project attempts to use satellite data and correlate metrics with in situ observations collected at five estuaries. Images for satellite data were processed to calculate 7 bands (SIs) using Python. Average SI values were calculated per month for 23 years. Publicly available data from 6 sites at ELK was used to obtain 10 parameters (OPs). Average OP values were calculated per month for 23 years. Linear correlations between the 7 SIs and 10 OPs were made and found to be inadequate (correlation = 1 to 64%). Fourier transform analysis on 7 SIs was performed. Dominant frequencies and amplitudes were extracted for 7 SIs, and a machine learning(ML) model was trained, validated, and tested for 10 OPs. Better correlations were observed between SIs and OPs, with certain time delays (0, 3, 4, 6 month delay), and ML was again performed. The OPs saw improved R² values in the range of 0.2 to 0.93. This approach can be used to get periodic analyses of overall wetland health with satellite indices. It proves that remote sensing can be used to develop correlations with critical parameters that measure eutrophication in situ data and can be used by practitioners to easily monitor wetland health.

Keywords: estuary, remote sensing, machine learning, Fourier transform

Procedia PDF Downloads 104
336 Obstetric Outcome after Hysteroscopic Septum Resection in Patients with Uterine Septa of Various Sizes

Authors: Nilanchali Singh, Alka Kriplani, Reeta Mahey, Garima Kachhawa

Abstract:

Objective: Resection of larger uterine septa does improve obstetric performance but whether smaller septa need resection and their impact on obstetric outcome is not clear. We wanted to evaluate the role of septal resection of septa of various sizes in obstetric performance. Methods: This retrospective cohort study comprised of 107 patients with uterine septum. The patients were categorized on the basis of extent of uterine septum into four groups: a) Subsepta (< 1/3rd), b) Septum > 1/3 to ½, c) Septum>1/2 to whole uterine cervix, d) Septum traversing whole of uterine cavity and cervix. Out of these 107 patients, 74 could be contacted telephonically and outcomes recorded. Sensitivity and specificity of investigative modalities were calculated. Results: Infertility was seen in maximum number of cases in complete septa (100%), whereas abortions were seen more commonly, in subsepta (18%). MRI had maximum sensitivity and positive predictive value, followed by hysteron-salpingography. Tubal block, fibroid, endometriosis, pelvic adhesions, ovarian pathologies were seen in some but no definite association of these pathologies was seen with any subgroup of septa. Almost five-year follow-up was recorded in all the subgroups. Significant reduction in infertility was seen in all septal subgroup (p=0.046, 0.032 & 0.05) patients except in subsepta (< 1/3rd uterine cavity) after septum resection. Abortions were significantly reduced (p=0.048) in third subgroup (i.e. septum > ½ to upto internal os) after hysteroscopic septum resection. Take home baby rate was 33% in subsepta and around 50% in the remaining subgroups of septa. Conclusions: Septal resection improves obstetric performance in patients with uterine septa of various sizes. Whether septal resection improves obstetric performance in patients with subsepta or very small septa, is controversial. Larger studies addressing this issue need to be planned.

Keywords: septal resection, obstetric outcome, infertility, septum size

Procedia PDF Downloads 319
335 Optimization of Springback Prediction in U-Channel Process Using Response Surface Methodology

Authors: Muhamad Sani Buang, Shahrul Azam Abdullah, Juri Saedon

Abstract:

There is not much effective guideline on development of design parameters selection on springback for advanced high strength steel sheet metal in U-channel process during cold forming process. This paper presents the development of predictive model for springback in U-channel process on advanced high strength steel sheet employing Response Surface Methodology (RSM). The experimental was performed on dual phase steel sheet, DP590 in U-channel forming process while design of experiment (DoE) approach was used to investigates the effects of four factors namely blank holder force (BHF), clearance (C) and punch travel (Tp) and rolling direction (R) were used as input parameters using two level values by applying Full Factorial design (24). From a statistical analysis of variant (ANOVA), result showed that blank holder force (BHF), clearance (C) and punch travel (Tp) displayed significant effect on springback of flange angle (β2) and wall opening angle (β1), while rolling direction (R) factor is insignificant. The significant parameters are optimized in order to reduce the springback behavior using Central Composite Design (CCD) in RSM and the optimum parameters were determined. A regression model for springback was developed. The effect of individual parameters and their response was also evaluated. The results obtained from optimum model are in agreement with the experimental values

Keywords: advance high strength steel, u-channel process, springback, design of experiment, optimization, response surface methodology (rsm)

Procedia PDF Downloads 541
334 Managing Data from One Hundred Thousand Internet of Things Devices Globally for Mining Insights

Authors: Julian Wise

Abstract:

Newcrest Mining is one of the world’s top five gold and rare earth mining organizations by production, reserves and market capitalization in the world. This paper elaborates on the data acquisition processes employed by Newcrest in collaboration with Fortune 500 listed organization, Insight Enterprises, to standardize machine learning solutions which process data from over a hundred thousand distributed Internet of Things (IoT) devices located at mine sites globally. Through the utilization of software architecture cloud technologies and edge computing, the technological developments enable for standardized processes of machine learning applications to influence the strategic optimization of mineral processing. Target objectives of the machine learning optimizations include time savings on mineral processing, production efficiencies, risk identification, and increased production throughput. The data acquired and utilized for predictive modelling is processed through edge computing by resources collectively stored within a data lake. Being involved in the digital transformation has necessitated the standardization software architecture to manage the machine learning models submitted by vendors, to ensure effective automation and continuous improvements to the mineral process models. Operating at scale, the system processes hundreds of gigabytes of data per day from distributed mine sites across the globe, for the purposes of increased improved worker safety, and production efficiency through big data applications.

Keywords: mineral technology, big data, machine learning operations, data lake

Procedia PDF Downloads 112
333 Contribution of Spatial Teledetection to the Geological Mapping of the Imiter Buttonhole: Application to the Mineralized Structures of the Principal Corps B3 (CPB3) of the Imiter Mine (Anti-atlas, Morocco)

Authors: Bouayachi Ali, Alikouss Saida, Baroudi Zouhir, Zerhouni Youssef, Zouhair Mohammed, El Idrissi Assia, Essalhi Mourad

Abstract:

The world-class Imiter silver deposit is located on the northern flank of the Precambrian Imiter buttonhole. This deposit is formed by epithermal veins hosted in the sandstone-pelite formations of the lower complex and in the basic conglomerates of the upper complex, these veins are controlled by a regional scale fault cluster, oriented N70°E to N90°E. The present work on the contribution of remote sensing on the geological mapping of the Imiter buttonhole and application to the mineralized structures of the Principal Corps B3. Mapping on satellite images is a very important tool in mineral prospecting. It allows the localization of the zones of interest in order to orientate the field missions by helping the localization of the major structures which facilitates the interpretation, the programming and the orientation of the mining works. The predictive map also allows for the correction of field mapping work, especially the direction and dimensions of structures such as dykes, corridors or scrapings. The use of a series of processing such as SAM, PCA, MNF and unsupervised and supervised classification on a Landsat 8 satellite image of the study area allowed us to highlight the main facies of the Imite area. To improve the exploration research, we used another processing that allows to realize a spatial distribution of the alteration mineral indices, and the application of several filters on the different bands to have lineament maps.

Keywords: principal corps B3, teledetection, Landsat 8, Imiter II, silver mineralization, lineaments

Procedia PDF Downloads 96
332 Application of Bayesian Model Averaging and Geostatistical Output Perturbation to Generate Calibrated Ensemble Weather Forecast

Authors: Muhammad Luthfi, Sutikno Sutikno, Purhadi Purhadi

Abstract:

Weather forecast has necessarily been improved to provide the communities an accurate and objective prediction as well. To overcome such issue, the numerical-based weather forecast was extensively developed to reduce the subjectivity of forecast. Yet the Numerical Weather Predictions (NWPs) outputs are unfortunately issued without taking dynamical weather behavior and local terrain features into account. Thus, NWPs outputs are not able to accurately forecast the weather quantities, particularly for medium and long range forecast. The aim of this research is to aid and extend the development of ensemble forecast for Meteorology, Climatology, and Geophysics Agency of Indonesia. Ensemble method is an approach combining various deterministic forecast to produce more reliable one. However, such forecast is biased and uncalibrated due to its underdispersive or overdispersive nature. As one of the parametric methods, Bayesian Model Averaging (BMA) generates the calibrated ensemble forecast and constructs predictive PDF for specified period. Such method is able to utilize ensemble of any size but does not take spatial correlation into account. Whereas space dependencies involve the site of interest and nearby site, influenced by dynamic weather behavior. Meanwhile, Geostatistical Output Perturbation (GOP) reckons the spatial correlation to generate future weather quantities, though merely built by a single deterministic forecast, and is able to generate an ensemble of any size as well. This research conducts both BMA and GOP to generate the calibrated ensemble forecast for the daily temperature at few meteorological sites nearby Indonesia international airport.

Keywords: Bayesian Model Averaging, ensemble forecast, geostatistical output perturbation, numerical weather prediction, temperature

Procedia PDF Downloads 282
331 Measurements and Predictions of Hydrates of CO₂-rich Gas Mixture in Equilibrium with Multicomponent Salt Solutions

Authors: Abdullahi Jibril, Rod Burgass, Antonin Chapoy

Abstract:

Carbon dioxide (CO₂) is widely used in reservoirs to enhance oil and gas production, mixing with natural gas and other impurities in the process. However, hydrate formation frequently hinders the efficiency of CO₂-based enhanced oil recovery, causing pipeline blockages and pressure build-ups. Current hydrate prediction methods are primarily designed for gas mixtures with low CO₂ content and struggle to accurately predict hydrate formation in CO₂-rich streams in equilibrium with salt solutions. Given that oil and gas reservoirs are saline, experimental data for CO₂-rich streams in equilibrium with salt solutions are essential to improve these predictive models. This study investigates the inhibition of hydrate formation in a CO₂-rich gas mixture (CO₂, CH₄, N₂, H₂ at 84.73/15/0.19/0.08 mol.%) using multicomponent salt solutions at concentrations of 2.4 wt.%, 13.65 wt.%, and 27.3 wt.%. The setup, test fluids, methodology, and results for hydrates formed in equilibrium with varying salt solution concentrations are presented. Measurements were conducted using an isochoric pressure-search method at pressures up to 45 MPa. Experimental data were compared with predictions from a thermodynamic model based on the Cubic-Plus-Association equation of state (EoS), while hydrate-forming conditions were modeled using the van der Waals and Platteeuw solid solution theory. Water activity was evaluated based on hydrate suppression temperature to assess consistency in the inhibited systems. Results indicate that hydrate stability is significantly influenced by inhibitor concentration, offering valuable guidelines for the design and operation of pipeline systems involved in offshore gas transport of CO₂-rich streams.

Keywords: CO₂-rich streams, hydrates, monoethylene glycol, phase equilibria

Procedia PDF Downloads 21
330 Transcriptomic Analysis of Non-Alcoholic Fatty Liver Disease in Cafeteria Diet Induced Obese Rats

Authors: Mohammad Jamal

Abstract:

Non-alcoholic fatty liver disease (NAFLD) has become one of the most chronic liver diseases, prevalent among people with morbid obesity. NAFLD does not develop clinically significant liver disease, however cirrhosis and liver cancer develop in subset and currently there are no approved therapies for the treatment of NAFLD. The study is aimed to understand the various key genes involved in the mechanism of NAFLD which can be valuable for developing diagnostic and predictive biomarkers based on their histologic stage of liver. The study was conducted on 16 male Sprague Dawley rats. The animals were divided in two groups: control group (n=8) fed on ad libitum normal chow and regular water and the cafeteria group (CAF)) (n=8) fed on high fatty/ carbohydrate diet. The animals received their respective diet from 4 weeks onwards from D.O.B until 25 weeks. Liver was extracted and RT² Profiler PCR Array was used to assess the NAFLD related genes. Histological evaluation was performed using H&E stain in liver tissue sections. Our PCR array results showed that genes involved in anti-inflammatory activity (Ifng, IL10), fatty acid uptake/oxidation (Fabp5), apoptosis (Fas), lipogenesis (Gck and Srebf1), Insulin signalling (Igfbp1) and metabolic pathway (pdk4) were upregulated in the liver of cafeteria fed obese rats. Bloated hepatocytes, displaced nucleus and higher lipid content were seen in the liver of cafeteria fed obese rats. Although Liver biopsies remain the gold standard in evaluating NAFLD, however an approach towards non-invasive markers could be used in understanding the physiology, therapeutic potential, and the targets to combat NAFLD.

Keywords: biomarkers, cafeteria diet, obesity, NAFLD

Procedia PDF Downloads 143
329 Modeling Breathable Particulate Matter Concentrations over Mexico City Retrieved from Landsat 8 Satellite Imagery

Authors: Rodrigo T. Sepulveda-Hirose, Ana B. Carrera-Aguilar, Magnolia G. Martinez-Rivera, Pablo de J. Angeles-Salto, Carlos Herrera-Ventosa

Abstract:

In order to diminish health risks, it is of major importance to monitor air quality. However, this process is accompanied by the high costs of physical and human resources. In this context, this research is carried out with the main objective of developing a predictive model for concentrations of inhalable particles (PM10-2.5) using remote sensing. To develop the model, satellite images, mainly from Landsat 8, of the Mexico City’s Metropolitan Area were used. Using historical PM10 and PM2.5 measurements of the RAMA (Automatic Environmental Monitoring Network of Mexico City) and through the processing of the available satellite images, a preliminary model was generated in which it was possible to observe critical opportunity areas that will allow the generation of a robust model. Through the preliminary model applied to the scenes of Mexico City, three areas were identified that cause great interest due to the presumed high concentration of PM; the zones are those that present high plant density, bodies of water and soil without constructions or vegetation. To date, work continues on this line to improve the preliminary model that has been proposed. In addition, a brief analysis was made of six models, presented in articles developed in different parts of the world, this in order to visualize the optimal bands for the generation of a suitable model for Mexico City. It was found that infrared bands have helped to model in other cities, but the effectiveness that these bands could provide for the geographic and climatic conditions of Mexico City is still being evaluated.

Keywords: air quality, modeling pollution, particulate matter, remote sensing

Procedia PDF Downloads 156
328 The Determinants of Customer’s Purchase Intention of Islamic Credit Card: Evidence from Pakistan

Authors: Nasir Mehmood, Muhammad Yar Khan, Anam Javeed

Abstract:

This study aims to scrutinize the dynamics which tend to impact customer’s purchasing intention of Islamic credit card and nexus of product’s knowledge and religiosity with the attitude of potential Islamic credit card’s customer. The theory of reasoned action strengthened the idea that intentions due to its proven predictive power are most likely to instigate intended consumer behavior. Particularly, the study examines the relationships of perceived financial cost (PFC), subjective norms (SN), and attitude (ATT) with the intention to purchase Islamic credit cards. Using a convenience sampling approach, data have been collected from 450 customers of banks located in Rawalpindi and Islamabad. A five-point Likert scale self-administered questionnaire was used to collect the data. The data were analyzed using the Statistical Package of Social Sciences (SPSS) through the procedures of principal component and multiple regression analysis. The results suggested that customer’s religiosity and product knowledge are strong indicators of attitude towards buying Islamic credit cards. Likewise, subjective norms, attitude, and perceived financial cost have a significant positive impact on customers’ purchase intent of Islamic bank’s credit cards. This study models a useful path for future researchers to further investigate the underlined phenomenon along with a variety of psychodynamic factors which are still in its infancy, at least in the Pakistani banking sector. The study also provides an insight to the practitioners and Islamic bank managers for directing their efforts toward educating customers regarding the use of Islamic credit cards and other financial products.

Keywords: attitude, Islamic credit card, religiosity, subjective norms

Procedia PDF Downloads 145
327 Entrepreneurship Education and Student Entrepreneurial Intention: A Comprehensive Review, Synthesis of Empirical Findings, and Strategic Insights for Future Research Advancements

Authors: Abdul Waris Jalili, Yanqing Wang, Som Suor

Abstract:

This research paper explores the relationship between entrepreneurship education and students' entrepreneurial intentions. It aims to determine if entrepreneurship education reliably predicts students' intention to become entrepreneurs and how and when this relationship occurs. This study aims to investigate the predictive relationship between entrepreneurship education and student entrepreneurial intentions. The goal is to understand the factors that influence this relationship and to identify any mediating or moderating factors. A thorough and systematic search and review of empirical articles published between 2013 and 2023 were conducted. Three databases, Google Scholar, Science Direct, and PubMed, were explored to gather relevant studies. Criteria such as reporting empirical results, publication in English, and addressing the research questions were used to select 35 papers for analysis. The collective findings of the reviewed studies suggest a generally positive relationship between entrepreneurship education and student entrepreneurial intentions. However, recent findings indicate that this relationship may be more complex than previously thought. Mediators and moderators have been identified, highlighting instances where entrepreneurship education indirectly influences student entrepreneurial intentions. The review also emphasizes the need for more robust research designs to establish causality in this field. This research adds to the existing literature by providing a comprehensive review of the relationship between entrepreneurship education and student entrepreneurial intentions. It highlights the complexity of this relationship and the importance of considering mediators and moderators. The study also calls for future research to explore different facets of entrepreneurship education independently and examine complex relationships more comprehensively.

Keywords: entrepreneurship, entrepreneurship education, entrepreneurial intention, entrepreneurial self-efficacy

Procedia PDF Downloads 67
326 Cirrhosis Mortality Prediction as Classification using Frequent Subgraph Mining

Authors: Abdolghani Ebrahimi, Diego Klabjan, Chenxi Ge, Daniela Ladner, Parker Stride

Abstract:

In this work, we use machine learning and novel data analysis techniques to predict the one-year mortality of cirrhotic patients. Data from 2,322 patients with liver cirrhosis are collected at a single medical center. Different machine learning models are applied to predict one-year mortality. A comprehensive feature space including demographic information, comorbidity, clinical procedure and laboratory tests is being analyzed. A temporal pattern mining technic called Frequent Subgraph Mining (FSM) is being used. Model for End-stage liver disease (MELD) prediction of mortality is used as a comparator. All of our models statistically significantly outperform the MELD-score model and show an average 10% improvement of the area under the curve (AUC). The FSM technic itself does not improve the model significantly, but FSM, together with a machine learning technique called an ensemble, further improves the model performance. With the abundance of data available in healthcare through electronic health records (EHR), existing predictive models can be refined to identify and treat patients at risk for higher mortality. However, due to the sparsity of the temporal information needed by FSM, the FSM model does not yield significant improvements. To the best of our knowledge, this is the first work to apply modern machine learning algorithms and data analysis methods on predicting one-year mortality of cirrhotic patients and builds a model that predicts one-year mortality significantly more accurate than the MELD score. We have also tested the potential of FSM and provided a new perspective of the importance of clinical features.

Keywords: machine learning, liver cirrhosis, subgraph mining, supervised learning

Procedia PDF Downloads 134
325 Assessment of Water Pollution in the River Nile (Egypt) by Applying Blood Biomarkers in Two Excellent Model Species Oreochromis niloticus niloticus and Clarias gariepinus

Authors: Alaa G. M. Osman, Abd-El –Baset M. Abd El Reheem, Khaled Y. Abouelfadl, Usama M. Mahmoud, Mohsen A. Moustafa

Abstract:

This study aimed to explore new sites of biomarker research and to establish the use of blood parameters in wild fish populations. Four hundred and twenty fish samples were collected from six sites along the whole course of the river Nile, Egypt. The mean values of erythrocytes, thrombocytes, hemoglobin concentration, hematocrit value, and mean corpuscular volume were significantly lower in the blood of Nile tilapia and African catfish collected from downstream (contaminated) compared to upstream sites. In contrast, mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration in the peripheral blood of both fish species significantly increased from upstream to downstream river Nile. The leukocytes count was significantly decreased in contaminated sites compared to upstream area. Hematological variables in the peripheral blood of Oreochromis niloticus niloticus and Clarias gariepinus exhibited significant (p<0.05) correlation with nearly all the detected chemical and physical parameters along the Nile course. In the present study, lower cellular and nuclear areas and cellular and nuclear shape factor were recorded in the erythrocytes of fish collected from downstream compared to those caught from upstream sites. This was confirmed by higher immature ratios of red cells in the blood of fish sampled from downstream river Nile. Karyorrhetic and enucleated erythrocytes were significantly correlated with physiochemical parameters in water samples collected from the same sites is being higher in the blood of fish collected from downstream sites. To see if there was any correlation between fish altered physiological fitness and environmental stress, we measured serum biochemical variables namely; total protein, cholesterol, triglycerides, calcium, chlorides, alkaline phosphatase activity (ALP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), uric acid activity, creatinine, and serum glucose. The level of all the selected biochemical variables in the blood of O. niloticus niloticus and C. gariepinus were recorded to be significantly higher (p<0.05) in downstream sites. According to the present results, nearly all the detected haematological and blood biochemical variables are suitable indicators of contaminant exposure in O. niloticus niloticus and C. gariepinus. Also the detected erythrocytes malformations in blood collected from Nile tilapia and African catfish were proven to be suitable for bio-monitoring aquatic pollution. The results revealed species-specific differences in sensitivities, suggesting that Nile tilapia may serve as a more sensitive test species compared to African catfish.

Keywords: biomarkers, water pollution, blood parameters, river nile, african catfish, nile tilapia

Procedia PDF Downloads 291
324 Prediction of Antibacterial Peptides against Propionibacterium acnes from the Peptidomes of Achatina fulica Mucus Fractions

Authors: Suwapitch Chalongkulasak, Teerasak E-Kobon, Pramote Chumnanpuen

Abstract:

Acne vulgaris is a common skin disease mainly caused by the Gram–positive pathogenic bacterium, Propionibacterium acnes. This bacterium stimulates inflammation process in human sebaceous glands. Giant African snail (Achatina fulica) is alien species that rapidly reproduces and seriously damages agricultural products in Thailand. There were several research reports on the medical and pharmaceutical benefits of this snail mucus peptides and proteins. This study aimed to in silico predict multifunctional bioactive peptides from A. fulica mucus peptidome using several bioinformatic tools for determination of antimicrobial (iAMPpred), anti–biofilm (dPABBs), cytotoxic (Toxinpred), cell membrane penetrating (CPPpred) and anti–quorum sensing (QSPpred) peptides. Three candidate peptides with the highest predictive score were selected and re-designed/modified to improve the required activities. Structural and physicochemical properties of six anti–P. acnes (APA) peptide candidates were performed by PEP–FOLD3 program and the five aforementioned tools. All candidates had random coiled structure and were named as APA1–ori, APA2–ori, APA3–ori, APA1–mod, APA2–mod and APA3–mod. To validate the APA activity, these peptide candidates were synthesized and tested against six isolates of P. acnes. The modified APA peptides showed high APA activity on some isolates. Therefore, our biomimetic mucus peptides could be useful for preventing acne vulgaris and further examined on other activities important to medical and pharmaceutical applications.

Keywords: Propionibacterium acnes, Achatina fulica, peptidomes, antibacterial peptides, snail mucus

Procedia PDF Downloads 133