Search results for: high intensity exercise
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22032

Search results for: high intensity exercise

21132 Effects of Endurance Training and Thyme Consumption on Neuropeptide Y in Untrained Men

Authors: M. Ghasemi, S.Fazelifar

Abstract:

Abstract Aim: Over-weight is not desirable and has implications for health and in the case of athletes affects performance. Exercise is a strategy used to counteract overweight owing to create a negative energy balance by increasing energy expenditure and influencing appetite regulating hormones. Interestingly, recent studies have revealed inhibitory effects of exercise on the hunger associated with these hormones in healthy subjects Neuropeptide Y(NPY) is a 36 amino acid protein that is a powerful stimulant appetite. NPY is an important central orexigenic hormone predominantly produced by the hypothalamus, and recently found to be secreted in adipose tissue. This neurotransmitter is secreted in the brain and autonomic nervous system. On the other hand, research has shown that thyme in addition to various properties, also affects the appetite. The purpose of this study was to determine Effects of eight weeks endurance training and thyme consumption on neuropeptide Y in untrained men. Methodology: 36 Healthy untrained men (mean body weight 78.25±3.2 kg, height 176±6.8 cm, age 34.32±4.54 years and BMI 29.1±4.3 kg/m2) voluntarily participated in this study . Subjects were randomly divided into four groups: 1. control, 2. Endurance training, 3. Thyme 4. Endurance training + Thyme. Amount of 10cc Blood sampling were obtained pre-test and post-test (after 8 weeks). The taken blood samples were centrifuged at 1500 × g for 15 min then plasma was stored at -20 °C until analysis. Endurance training consisted three session per week with 60% -75% of reserve heart rate for eight weeks. Exclusion criteria were history of gastrointestinal, endocrine, cardiovascular or psychological disease, and consuming any supplementation, alcohol and tobacco products. Descriptive statistics including means, standard deviations, and ranges were calculated for all measures. K-S test to determine the normality of the data and analysis of variance for repeated measures was used to analyze the data. A significant difference in the p<0/05 accepted. Results: Results showed that aerobic training significantly reduced body weight, body mass index, percent body fat, but significant increase observed in maximal oxygen consumption level (p ≤ 0/05). The neuropeptide Y levels were significantly increased after exercise. Analysis of data determined that there was no significant difference between the four groups. Conclusion: Appetite control plays a critical role in the competition between energy consumption and energy expenditure. The results of this study showed that endurance training and thyme consumption can be cause improvement in physiological parameters such as increasing aerobic capacity, reduction of fat mass and improve body composition in untrained men.

Keywords: Endurance training, neuropeptide Y, thyme, untrained men

Procedia PDF Downloads 310
21131 Ultrasound Mechanical Index as a Parameter Affecting of the Ability of Proliferation of Cells

Authors: Z. Hormozi Moghaddam, M. Mokhtari-Dizaji, M. Movahedin, M. E. Ravari

Abstract:

Mechanical index (MI) is used for quantifying acoustic cavitation and the relationship between acoustic pressure and the frequency. In this study, modeling of the MI was applied to provide treatment protocol and to understand the effective physical processes on reproducibility of stem cells. The acoustic pressure and MI equations are modeled and solved to estimate optimal MI for 28, 40, 150 kHz and 1 MHz frequencies. Radial and axial acoustic pressure distribution was extracted. To validate the results of the modeling, the acoustic pressure in the water and near field depth was measured by a piston hydrophone. Results of modeling and experiments show that the model is consistent well to experimental results with 0.91 and 0.90 correlation of coefficient (p<0.05) for 1 MHz and 40 kHz. Low intensity ultrasound with 0.40 MI is more effective on the proliferation rate of the spermatogonial stem cells during the seven days of culture, in contrast, high MI has a harmful effect on the spermatogonial stem cells. This model provides proper treatment planning in vitro and in vivo by estimating the cavitation phenomenon.

Keywords: ultrasound, mechanical index, modeling, stem cell

Procedia PDF Downloads 334
21130 Exploring Reading into Writing: A Corpus-Based Analysis of Postgraduate Students’ Literature Review Essays

Authors: Tanzeela Anbreen, Ammara Maqsood

Abstract:

Reading into writing is one of university students' most required academic skills. The current study explored postgraduate university students’ writing quality using a corpus-based approach. Twelve postgraduate students’ literature review essays were chosen for the corpus-based analysis. These essays were chosen because students had to incorporate multiple reading sources in these essays, which was a new writing exercise for them. The students were provided feedback at least two times which comprised of the written comments by the tutor highlighting the areas of improvement and also by using the ‘track changes’ function. This exercise was repeated two times, and students submitted two drafts. This investigation included only the finally submitted work of the students. A corpus-based approach was adopted to analyse the essays because it promotes autonomous discovery and personalised learning. The aim of this analysis was to understand the existing level of students’ writing before the start of their postgraduate thesis. Text Inspector was used to analyse the quality of essays. With the help of the Text Inspector tool, the vocabulary used in the essays was compared to the English Vocabulary Profile (EVP), which describes what learners know and can do at each Common European Framework of Reference (CEFR) level. Writing quality was also measured for the Flesch reading ease score, which is a standard to describe the ease of understanding the writing content. The results reflected that students found writing essays using multiple sources challenging. In most essays, the vocabulary level achieved was between B1-B2 of the CEFL level. The study recommends that students need extensive training in developing academic writing skills, particularly in writing the literature review type assignment, which requires multiple sources citations.

Keywords: literature review essays, postgraduate students, corpus-based analysis, vocabulary proficiency

Procedia PDF Downloads 73
21129 Study of the Physical Aging of Polyvinyl Chloride (PVC)

Authors: Mohamed Ouazene

Abstract:

The insulating properties of the polymers are widely used in electrical engineering for the production of insulators and various supports, as well as for the insulation of electric cables for medium and high voltage, etc. These polymeric materials have significant advantages both technically and economically. However, although the insulation with polymeric materials has advantages, there are also certain disadvantages such as the influence of the heat which can have a detrimental effect on these materials. Polyvinyl chloride (PVC) is one of the polymers used in a plasticized state in the cable insulation to medium and high voltage. The studied material is polyvinyl chloride (PVC 4000 M) from the Algerian national oil company whose formula is: Industrial PVC 4000 M is in the form of white powder. The test sample is a pastille of 1 mm thick and 1 cm in diameter. The consequences of increasing the temperature of a polymer are modifications; some of them are reversible and others irreversible [1]. The reversible changes do not affect the chemical composition of the polymer, or its structure. They are characterized by transitions and relaxations. The glass transition temperature is an important feature of a polymer. Physical aging of PVC is to maintain the material for a longer or shorter time to its glass transition temperature. The aim of this paper is to study this phenomenon by the method of thermally stimulated depolarization currents. Relaxations within the polymer have been recorded in the form of current peaks. We have found that the intensity decreases for more residence time in the polymer along its glass transition temperature. Furthermore, it is inferred from this work that the phenomenon of physical aging can have important consequences on the properties of the polymer. It leads to a more compact rearrangement of the material and a reconstruction or reinforcement of structural connections.

Keywords: depolarization currents, glass transition temperature, physical aging, polyvinyl chloride (PVC)

Procedia PDF Downloads 389
21128 Colour Formation and Maillard Reactions in Spray-Dried Milk Powders

Authors: Zelin Zhou, Timothy Langrish

Abstract:

Spray drying is the final stage of milk powder production. Traditionally, the quality of spray-dried milk powders has mainly been assessed using their physical properties, such as their moisture contents, while chemical changes occurring during the spray drying process have often been ignored. With growing concerns about food quality, it is necessary to establish a better understanding of heat-induced degradation due to the spray-drying process of skim milk. In this study, the extent of thermal degradation for skim milk in a pilot-scale spray dryer has been investigated using different inlet gas temperatures. The extent of heat-induced damage has been measured by the formation of advanced Maillard reaction products and the loss of soluble proteins at pH 4.6 as assessed by a fluorometric method. A significant increase in the extent of thermal degradation has been found when the inlet gas temperature increased from 170°C to 190°C, suggesting protein unfolding may play an important role in the kinetics of heat-induced degradation for milk in spray dryers. Colour changes of the spray-dried skim milk powders have also been analysed using a standard lighting box. Colourimetric analysis results were expressed in CIELAB colour space with the use of the E index (E) and the Chroma (C) for measuring the difference between colours and the intensity of the colours. A strong linear correlation between the colour intensity of the spray-dried skim milk powders and the formation of advanced Maillard reaction products has been observed.

Keywords: colour formation, Maillard reactions, spray drying, skim milk powder

Procedia PDF Downloads 188
21127 Novel Fluorescent High Density Polyethylene Composites for Fused Deposition Modeling 3D Printing in Packaging Security Features

Authors: Youssef R. Hassan, Mohamed S. Hasanin, Reda M. Abdelhameed

Abstract:

Recently, innovations in packaging security features become more important to see the originality of packaging in industrial application. Luminescent 3d printing materials have been a promising property which can provides a unique opportunity for the design and application of 3D printing. Lack emission of terbium ions, as a source of green emission, in salt form prevent its uses in industrial applications, so searching about stable and highly emitter material become essential. Nowadays, metal organic frameworks (MOFs) play an important role in designing light emitter material. In this work, fluorescent high density polyethylene (FHDPE) composite filament with Tb-benzene 1,3,5-tricarboxylate (Tb-BTC) MOFs for 3D printing have been successfully developed.HDPE pellets were mixed with Tb-BTC and melting extrustion with single screw extruders. It was found that Tb-BTCuniformly dispersed in the HDPE matrix and significantly increased the crystallinity of PE, which not only maintained the good thermal property but also improved the mechanical properties of Tb-BTC@HDPE composites. Notably, the composite filaments emitted ultra-bright green light under UV lamp, and the fluorescence intensity increased as the content of Tb-BTC increased. Finally, several brightly luminescent exquisite articles could be manufactured by fused deposition modeling (FDM) 3D printer with these new fluorescent filaments. In this context, the development of novel fluorescent Tb-BTC@HDPE composites was combined with 3D printing technology to amplified the packaging Security Features.

Keywords: 3D printing, fluorescent, packaging, security

Procedia PDF Downloads 101
21126 Hydrodynamic and Sediment Transport Analysis of Computational Fluid Dynamics Designed Flow Regulating Liner (Smart Ditch)

Authors: Saman Mostafazadeh-Fard, Zohrab Samani, Kenneth Suazo

Abstract:

Agricultural ditch liners are used to prevent soil erosion and reduce seepage losses. This paper introduced an approach to validate a computational fluid dynamics (CFD) platform FLOW-3D code and its use to design a flow-regulating corrugated agricultural ditch liner system (Smart Ditch (SM)). Hydrodynamic and sediment transport analyses were performed on the proposed liner flow using the CFD platform FLOW-3D code. The code's hydrodynamic and scour and sediment transport models were calibrated and validated using lab data with an accuracy of 94 % and 95%, respectively. The code was then used to measure hydrodynamic parameters of sublayer turbulent intensity, kinetic energy, dissipation, and packed sediment mass normalized with respect to sublayer flow velocity. Sublayer turbulent intensity, kinetic energy, and dissipation in the SM flow were significantly higher than CR flow. An alternative corrugated liner was also designed, and sediment transport was measured and compared to SM and CR flows. Normalized packed sediment mass with respect to average sublayer flow velocity was 27.8 % lower in alternative flow compared to SM flow. CFD platform FLOW-3D code could effectively be used to design corrugated ditch liner systems and perform hydrodynamic and sediment transport analysis under various corrugation designs.

Keywords: CFD, hydrodynamic, sediment transport, ditch, liner design

Procedia PDF Downloads 123
21125 Blood Lipid Management: Combined Treatment with Hydrotherapy and Ozone Bubbles Bursting in Water

Authors: M. M. Wickramasinghe

Abstract:

Cholesterol and triglycerides are lipids, mainly essential to maintain the cellular structure of the human body. Cholesterol is also important for hormone production, vitamin D production, proper digestion functions, and strengthening the immune system. Excess fats in the blood circulation, known as hyperlipidemia, become harmful leading to arterial clogging and causing atherosclerosis. Aim of this research is to develop a treatment protocol to efficiently break down and maintain circulatory lipids by improving blood circulation without strenuous physical exercises while immersed in a tub of water. To achieve the target of strong exercise effect, this method involves generating powerful ozone bubbles to spin, collide, and burst in the water. Powerful emission of air into water is capable of transferring locked energy of the water molecules and releasing energy. This method involves water and air-based impact generated by pumping ozone at the speed of 46 lts/sec with a concentration of 0.03-0.05 ppt according to safety standards of The Federal Institute for Drugs and Medical Devices, BfArM, Germany. The direct impact of ozone bubbles on the muscular system and skin becomes the main target and is capable of increasing the heart rate while immersed in water. A total time duration of 20 minutes is adequate to exert a strong exercise effect, improve blood circulation, and stimulate the nervous and endocrine systems. Unstable ozone breakdown into oxygen release onto the surface of the water giving additional benefits and supplying high-quality air rich in oxygen required to maintain efficient metabolic functions. The breathing technique was introduced to improve the efficiency of lung functions and benefit the air exchange mechanism. The temperature of the water is maintained at 39c to 40c to support arterial dilation and enzyme functions and efficiently improve blood circulation to the vital organs. The buoyancy of water and natural hydrostatic pressure release the tension of the body weight and relax the mind and body. Sufficient hydration (3lts of water per day) is an essential requirement to transport nutrients and remove waste byproducts to process through the liver, kidney, and skin. Proper nutritional intake is an added advantage to optimize the efficiency of this method which aids in a fast recovery process. Within 20-30 days of daily treatment, triglycerides, low-density lipoproteins (LDL), and total cholesterol reduction were observed in patients with abnormal levels of lipid profile. Borderline patients were cleared within 10–15 days of treatment. This is a highly efficient system that provides many benefits and is able to achieve a successful reduction of triglycerides, LDL, and total cholesterol within a short period of time. Supported by proper hydration and nutritional balance, this system of natural treatment maintains healthy levels of lipids in the blood and avoids the risk of cerebral stroke, high blood pressure, and heart attacks.

Keywords: atherosclerosis, cholesterol, hydrotherapy, hyperlipidemia, lipid management, ozone therapy, triglycerides

Procedia PDF Downloads 91
21124 A Clinical Cutoff to Identify Metabolically Unhealthy Obese and Normal-Weight Phenotype in Young Adults

Authors: Lívia Pinheiro Carvalho, Luciana Di Thommazo-Luporini, Rafael Luís Luporini, José Carlos Bonjorno Junior, Renata Pedrolongo Basso Vanelli, Manoel Carneiro de Oliveira Junior, Rodolfo de Paula Vieira, Renata Trimer, Renata G. Mendes, Mylène Aubertin-Leheudre, Audrey Borghi-Silva

Abstract:

Rationale: Cardiorespiratory fitness (CRF) and functional capacity in young obese and normal-weight people are associated with metabolic and cardiovascular diseases and mortality. However, it remains unclear whether their metabolically healthy (MH) or at risk (AR) phenotype influences cardiorespiratory fitness in this vulnerable population such as obese adults but also in normal-weight people. HOMA insulin resistance index (HI) and leptin-adiponectin ratio (LA) are strong markers for characterizing those phenotypes that we hypothesized to be associated with physical fitness. We also hypothesized that an easy and feasible exercise test could identify a subpopulation at risk to develop metabolic and related disorders. Methods: Thirty-nine sedentary men and women (20-45y; 18.530 kg.m-2) underwent a clinical evaluation, including the six-minute step test (ST), a well-validated and reliable test for young people. Body composition assessment was done by a tetrapolar bioimpedance in a fasting state and in the folicular phase for women. A maximal cardiopulmonary exercise testing, as well as the ST, evaluated the oxygen uptake at the peak of the test (VO2peak) by an ergospirometer Oxycon Mobile. Lipids, glucose, insulin were analysed and the ELISA method quantified the serum leptin and adiponectin from blood samples. Volunteers were divided in two groups: AR or MH according to a HI cutoff of 1.95, which was previously determined in the literature. T-test for comparison between groups, Pearson´s test to correlate main variables and ROC analysis for discriminating AR from up-and-down cycles in ST (SC) were applied (p<0.05). Results: Higher LA, fat mass (FM) and lower HDL, SC, leg lean mass (LM) and VO2peak were found in AR than in MH. Significant correlations were found between VO2peak and SC (r= 0.80) as well as between LA and FM (r=0.87), VO2peak (r=-0.73), and SC (r=-0.65). Area under de curve showed moderate accuracy (0.75) of SC <173 to discriminate AR phenotype. Conclusion: Our study found that at risk obese and normal-weight subjects showed an unhealthy metabolism as well as a poor CRF and functional daily activity capacity. Additionally, a simple and less costly functional test associated with above-mentioned aspects is able to identify ‘at risk’ subjects for primary intervention with important clinical and health implications.

Keywords: aerobic capacity, exercise, fitness, metabolism, obesity, 6MST

Procedia PDF Downloads 357
21123 Metal-Semiconductor-Metal Photodetector Based on Porous In0.08Ga0.92N

Authors: Saleh H. Abud, Z. Hassan, F. K. Yam

Abstract:

Characteristics of MSM photodetector based on a porous In0.08Ga0.92N thin film were reported. Nanoporous structures of n-type In0.08Ga0.92N/AlN/Si thin films were synthesized by photoelectrochemical (PEC) etching at a ratio of 1:4 of HF:C2H5OH solution for 15 min. The structural and optical properties of pre- and post-etched thin films were investigated. Field emission scanning electron microscope and atomic force microscope images showed that the pre-etched thin film has a sufficiently smooth surface over a large region and the roughness increased for porous film. Blue shift has been observed in photoluminescence emission peak at 300 K for porous sample. The photoluminescence intensity of the porous film indicated that the optical properties have been enhanced. A high work function metals (Pt and Ni) were deposited as a metal contact on the porous films. The rise and recovery times of the devices were investigated at 390 nm chopped light. Finally, the sensitivity and quantum efficiency were also studied.

Keywords: porous InGaN, photoluminescence, SMS photodetector, atomic force microscopy

Procedia PDF Downloads 489
21122 Mixing Enhancement with 3D Acoustic Streaming Flow Patterns Induced by Trapezoidal Triangular Structure Micromixer Using Different Mixing Fluids

Authors: Ayalew Yimam Ali

Abstract:

The T-shaped microchannel is used to mix both miscible or immiscible fluids with different viscosities. However, mixing at the entrance of the T-junction microchannel can be difficult mixing phenomena due to micro-scale laminar flow aspects with the two miscible high-viscosity water-glycerol fluids. One of the most promising methods to improve mixing performance and diffusion mass transfer in laminar flow phenomena is acoustic streaming (AS), which is a time-averaged, second-order steady streaming that can produce rolling motion in the microchannel by oscillating a low-frequency range acoustic transducer and inducing an acoustic wave in the flow field. The newly developed 3D trapezoidal, triangular structure spine used in this study was created using sophisticated CNC machine cutting tools used to create microchannel mold with a 3D trapezoidal triangular structure spine alone the T-junction longitudinal mixing region. In order to create the molds for the 3D trapezoidal structure with the 3D sharp edge tip angles of 30° and 0.3mm trapezoidal, triangular sharp edge tip depth from PMMA glass (Polymethylmethacrylate) with advanced CNC machine and the channel manufactured using PDMS (Polydimethylsiloxane) which is grown up longitudinally on the top surface of the Y-junction microchannel using soft lithography nanofabrication strategies. Flow visualization of 3D rolling steady acoustic streaming and mixing enhancement with high-viscosity miscible fluids with different trapezoidal, triangular structure longitudinal length, channel width, high volume flow rate, oscillation frequency, and amplitude using micro-particle image velocimetry (μPIV) techniques were used to study the 3D acoustic streaming flow patterns and mixing enhancement. The streaming velocity fields and vorticity flow fields show 16 times more high vorticity maps than in the absence of acoustic streaming, and mixing performance has been evaluated at various amplitudes, flow rates, and frequencies using the grayscale value of pixel intensity with MATLAB software. Mixing experiments were performed using fluorescent green dye solution with de-ionized water in one inlet side of the channel, and the de-ionized water-glycerol mixture on the other inlet side of the T-channel and degree of mixing was found to have greatly improved from 67.42% without acoustic streaming to 0.96.83% with acoustic streaming. The results show that the creation of a new 3D steady streaming rolling motion with a high volume flowrate around the entrance was enhanced by the formation of a new, three-dimensional, intense streaming rolling motion with a high-volume flowrate around the entrance junction mixing zone with the two miscible high-viscous fluids which are influenced by laminar flow fluid transport phenomena.

Keywords: micro fabrication, 3d acoustic streaming flow visualization, micro-particle image velocimetry, mixing enhancement.

Procedia PDF Downloads 22
21121 An Exploratory Study on the Impact of Climate Change on Design Rainfalls in the State of Qatar

Authors: Abdullah Al Mamoon, Niels E. Joergensen, Ataur Rahman, Hassan Qasem

Abstract:

Intergovernmental Panel for Climate Change (IPCC) in its fourth Assessment Report AR4 predicts a more extreme climate towards the end of the century, which is likely to impact the design of engineering infrastructure projects with a long design life. A recent study in 2013 developed new design rainfall for Qatar, which provides an improved design basis of drainage infrastructure for the State of Qatar under the current climate. The current design standards in Qatar do not consider increased rainfall intensity caused by climate change. The focus of this paper is to update recently developed design rainfalls in Qatar under the changing climatic conditions based on IPCC's AR4 allowing a later revision to the proposed design standards, relevant for projects with a longer design life. The future climate has been investigated based on the climate models released by IPCC’s AR4 and A2 story line of emission scenarios (SRES) using a stationary approach. Annual maximum series (AMS) of predicted 24 hours rainfall data for both wet (NCAR-CCSM) scenario and dry (CSIRO-MK3.5) scenario for the Qatari grid points in the climate models have been extracted for three periods, current climate 2010-2039, medium term climate (2040-2069) and end of century climate (2070-2099). A homogeneous region of the Qatari grid points has been formed and L-Moments based regional frequency approach is adopted to derive design rainfalls. The results indicate no significant changes in the design rainfall on the short term 2040-2069, but significant changes are expected towards the end of the century (2070-2099). New design rainfalls have been developed taking into account climate change for 2070-2099 scenario and by averaging results from the two scenarios. IPCC’s AR4 predicts that the rainfall intensity for a 5-year return period rain with duration of 1 to 2 hours will increase by 11% in 2070-2099 compared to current climate. Similarly, the rainfall intensity for more extreme rainfall, with a return period of 100 years and duration of 1 to 2 hours will increase by 71% in 2070-2099 compared to current climate. Infrastructure with a design life exceeding 60 years should add safety factors taking the predicted effects from climate change into due consideration.

Keywords: climate change, design rainfalls, IDF, Qatar

Procedia PDF Downloads 394
21120 Modelling the Yield Stress of Magnetorheological Fluids

Authors: Hesam Khajehsaeid, Naeimeh Alagheband

Abstract:

Magnetorheological fluids (MRF) are a category of smart materials. They exhibit a reversible change from a Newtonian-like fluid to a semi-solid state upon application of an external magnetic field. In contrast to ordinary fluids, MRFs can tolerate shear stresses up to a threshold value called yield stress which strongly depends on the strength of the magnetic field, magnetic particles volume fraction and temperature. Even beyond the yield, a magnetic field can increase MR fluid viscosity up to several orders. As yield stress is an important parameter in the design of MR devices, in this work, the effects of magnetic field intensity and magnetic particle concentration on the yield stress of MRFs are investigated. Four MRF samples with different particle concentrations are developed and tested through flow-ramp analysis to obtain the flow curves at a range of magnetic field intensity as well as shear rate. The viscosity of the fluids is determined by means of the flow curves. The results are then used to determine the yield stresses by means of the steady stress sweep method. The yield stresses are then determined by means of a modified form of the dipole model as well as empirical models. The exponential distribution function is used to describe the orientation of particle chains in the dipole model under the action of the external magnetic field. Moreover, the modified dipole model results in a reasonable distribution of chains compared to previous similar models.

Keywords: magnetorheological fluids, yield stress, particles concentration, dipole model

Procedia PDF Downloads 179
21119 A Longitudinal Study to Develop an Emotional Design Framework for Physical Activity Interventions

Authors: Stephanie Hewitt, Leila Sheldrick, Weston Baxter

Abstract:

Multidisciplinary by nature, design research brings together varying research fields to answer globally significant questions. Emotional design, a field which helps us create products that influence people’s behaviour, and sports psychology, containing a growing field of recent research which focuses on understanding the emotions experienced through sport and the effects this has on our health and wellbeing, are two research fields that can be combined through design research to tackle global physical inactivity. The combination of these research fields presents an opportunity to build new tools and methods that could help designers create new interventions to promote positive behaviour change in the form of physical activity uptake, ultimately improving people’s health and wellbeing. This paper proposes a framework that can be used to develop new products and services that focus on not only improving the uptake and upkeep of physical activity but also helping people have a healthy emotional relationship with exercise. To develop this framework, a set of comprehensive maps exploring the relationship between human emotions and physical activity across a range of factors was created. These maps were then further evolved through in-depth interviews, which analysed the reasons behind the emotions felt, how physical activity fits into the daily routine and how important regular exercise is to people. Finally, to progress these findings into a design framework, a longitudinal study was carried out to explore further the emotional relationship people of varying sporting abilities have overtime with physical activity. This framework can be used to design more successful interventions that help people to not only become more active initially but implement long term changes to ensure they stay active.

Keywords: design research, emotional design, emotions, intervention, physical activity, sport psychology

Procedia PDF Downloads 130
21118 High-Quality Flavor of Black Belly Pork under Lightning Corona Discharge Using Tesla Coil for High Voltage Education

Authors: Kyung-Hoon Jang, Jae-Hyo Park, Kwang-Yeop Jang, Dongjin Kim

Abstract:

The Tesla coil is an electrical resonant transformer circuit designed by inventor Nikola Tesla in 1891. It is used to produce high voltage, low current and high frequency alternating current electricity. Tesla experimented with a number of different configurations consisting of two or sometimes three coupled resonant electric circuits. This paper focuses on development and high voltage education to apply a Tesla coil to cuisine for high quality flavor and taste conditioning as well as high voltage education under 50 kV corona discharge. The result revealed that the velocity of roasted black belly pork by Tesla coil is faster than that of conventional methods such as hot grill and steel plate etc. depending on applied voltage level and applied voltage time. Besides, carbohydrate and crude protein increased, whereas natrium and saccharides significantly decreased after lightning surge by Tesla coil. This idea will be useful in high voltage education and high voltage application.

Keywords: corona discharge, Tesla coil, high voltage application, high voltage education

Procedia PDF Downloads 329
21117 Spectroscopic and 1.08mm Laser Properties of Nd3+ Doped Oxy-Fluoro Borate Glasses

Authors: Swapna Koneru, Srinivasa Rao Allam, Vijaya Prakash Gaddem

Abstract:

The different concentrations of neodymium-doped (Nd-doped) oxy fluoroborate (OFB) glasses were prepared by melt quenching method and characterized through optical absorption, emission and decay curve measurements to understand the lasing potentialities of these glasses. Optical absorption spectra were recorded and have been analyzed using Judd–Ofelt theory. The dipole strengths are parameterized in terms of three phenomenological Judd–Ofelt intensity parameters Ωλ (λ=2, 4 and 6) to elucidate the glassy matrix around Nd3+ ion as well as to determine the 4F3/2 metastable state radiative properties such as the transition probability (AR), radiative lifetime (τR), branching ratios (βR) and integrated absorption cross-section (σa) have been measured for most of the fluorescent levels of Nd3+. The emission spectra recorded for these glasses exhibit two peaks at 1085 and 1328 nm corresponding to 4F3/2 to 4I11/2 and 4I13/2 transitions have been obtained for all the glasses upon 808 nm diode laser excitation in the near infrared region. The emission intensity of the 4F3/2 to 4I11/2 transition increases with increase of Nd3+ concentration up to 1 mol% and then concentration quenching is observed for 2.0 mol% of Nd3+ concentration. The lifetimes for the 4F3/2 level are found to decrease with increase in Nd2O3 concentration in the glasses due to the concentration quenching. The decay curves of all these glasses show single exponential behavior. The spectroscopy of Nd3+ in these glasses is well understood and laser properties can be accurately determined from measured spectroscopic properties. The results obtained are compared with reports on similar glasses. The results indicate that the present glasses could be useful for 1.08 µm laser applications.

Keywords: glasses, luminescence, optical properties, photoluminescence spectroscopy

Procedia PDF Downloads 290
21116 Solid-State Synthesis Approach and Optical study of Red Emitting Phosphors Li₃BaSrxCa₁₋ₓEu₂.₇Gd₀.₃(MoO₄)₈ for White LEDs

Authors: Priyansha Sharma, Sibani Mund, Sivakumar Vaidyanathan

Abstract:

Solid-state synthesis methods were used for the synthesis of pure red emissive Li¬3BaSrxCa(1-x)Eu2.7Gd0.3(MoO4)8 (x = 0.0 to 1.0) phosphors, XRD, SEM, and FTIR spectra were used to characterize the materials, and their optical properties were thoroughly investigated. PL studies were examined at different excitations 230 nm, 275nm, 465nm, and 395 nm. All the spectra show similar emissions with the highest transition at 616 nm due to ED transition. The given phosphor Li¬3BaSr0.25Ca0.75Eu2.7Gd0.3(MoO4)8 shows the highest intensity and is thus chosen for the temperature-dependent and Quantum yield study. According to the PL investigation, the phosphor-containing Eu3+ emits red light due to the (5D0 7F2) transition. The excitation analysis shows that all of the Eu3+ activated phosphors exhibited broad absorption due to the charge transfer band, O2-Mo6+, O2-Eu3+ transition, as well as narrow absorption bands related to the Eu3+ ion's 4f-4f electronic transition. Excitation spectra show Charge transfer band at 275 nm shows the highest intensity. The primary band in the spectra refers to Eu3+ ions occupying the lattice's non-centrosymmetric location. All of the compositions are monoclinic crystal structures with space group C2/c and match with reference powder patterns. The thermal stability of the 3BaSr0.25Ca0.75Eu2.7Gd0.3(MoO4)8 phosphor was investigated at (300 k- 500 K) as well as at low temperature from (20 K to 275 K) to be utilized for red and white LED fabrication. The Decay Lifetime of all the phosphor was measured. The best phosphor was used for White and Red LED fabrication.

Keywords: PL, phosphor, quantum yield, white LED

Procedia PDF Downloads 76
21115 Influence of Molecular and Supramolecular Structure on Thermally Stimulated Short-Circuit Currents in Polyvinylidene Fluoride Films

Authors: Temnov D., Volgina E., Gerasimov D.

Abstract:

Relaxation processes in polyvinylidene fluoride (PVDF) films were studied by the method of thermally stimulated fractional polarization currents (TSTF). The films were obtained by extrusion of a polymer melt followed by isometric annealing. PVDF granules of the Kynar-720 brand (Atofina Chemicals, USA) with a molecular weight of Mw=190,000 g•mol-1 were used for the manufacture of films. The annealing temperature was varied in the range from 120 °C to 170 °C in increments of 10 °C. The dependences of the degree of crystallinity of films (χ) and the intensity of thermally stimulated depolarization currents on the annealing temperature (Toc) are investigated. The TSTF spectra were obtained at the TSC II facility (Setaram, France). Measurements were carried out in a helium atmosphere, and the values of currents were determined by a Keithley electrometer. The annealed PVDF films were polarized at an electric field strength of 100 V/mm at a temperature of 31°C, after which they were cooled to 26°C, at which they were kept for 1 minute. During depolarization, the external field was removed, and the short-circuit sample was cooled to 0°C. The thermally stimulated short-circuit current was recorded during linear heating. Relaxation processes in PVDF films were studied in the temperature range from 0 – 70 °C. It is shown that the intensity curve of the peaks of TST FP has a course that is the reverse of the dependence of the degree of crystallinity on the annealing temperature. This allows us to conclude that the relaxation processes occurring in PVDF in the 35°C region are associated with the amorphous part of the structure of PVDF films between the layers of the spherulite crystalline phase.

Keywords: molecular and supramolecular structure, thermally stimulated currents, polyvinylidene fluoride films, relaxation processes

Procedia PDF Downloads 48
21114 High Arousal and Athletic Performance

Authors: Turki Mohammed Al Mohaid

Abstract:

High arousal may lead to inhibited athletic performance, or high positive arousal may enhance performance is controversial. To evaluate and review this issue, 31 athletes (all male) were induced into high pre-determined goal arousal and high arousal without pre-determined goal motivational states and tested on a standard grip strength task. Paced breathing was used to change psychological and physiological arousal. It was noted that significant increases in grip strength performance occurred when arousal was high and experienced as delighted, happy, and pleasant excitement in those with no pre-determined goal motivational states. Blood pressure, heart rate, and other indicators of physiological activity were not found to mediate between psychological arousal and performance. In a situation where athletic performance necessitates maximal motor strength over a short period, performance benefits of high arousal may be enhanced by designing a specific motivational state.

Keywords: high arousal, athletic, performance, physiological

Procedia PDF Downloads 117
21113 Synthesis, Microstructure and Photoluminescence Properties of Yttrium Orthovanadates: Influences of Silica Nano-Particles and Nano-Layers

Authors: Seyed Mahdi Rafiaei

Abstract:

In this investigation, firstly Eu3+ doped YVO4 phosphor was synthesized using solid-state method. Then silica was coated on the surface of particles via sol-gel method. To study the influence of SiO2 addition on microstructure and photoluminescence characteristics of YVO4:4% Eu3+ phosphor materials, we employed X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), High-Resolution Transmitted Electron Microscope (HRTEM), Focused Ion Beam (FIB), Brunauer Emmett Teller (BET), Inductively coupled plasma (ICP), Electron Spin Resonance (ESR) and Photoluminescence (PL) equipments. The XPS characterization confirmed the formation of Y–O–Si and V-O-Si bondings between YVO4:Eu3+ phosphor particle and SiO2 coating. In addition, it was found that although the amounts of added SiO2 were not remarkable, but it resulted in enhancement of emission intensity of the phosphors. Finally by employing ESR analysis, it was shown that surface oxygen vacancies, result in reduction of V5+ to the lower valence state of V4+.

Keywords: solid state, sol-gel, silica, coating, photoluminescence

Procedia PDF Downloads 217
21112 Modeling of a Concentrating Photovoltaic Module with and without Cooling System

Authors: Intissar Benrhouma, Marta Victoria, Ignacio Anton, Bechir Chaouachi

Abstract:

Concentrating photovoltaic systems CPV use optical elements, such as Fresnel lenses, to concentrate solar intensity. The concentrated solar energy is delivered to the solar cell from 20 to 100 W/cm². Some of this energy is converted to electricity, while the rest must be disposed of as a residual heat. Solar cells cooling should be a necessary part of CPV modeling because these systems allowed increasing the power received by the cell. This high power can rise the electrons’ potential causing the heating of the cell, which reduces the global module’s efficiency. This work consists of modeling a concentrating photovoltaic module with and without a cooling system. We have established a theoretical model based on energy balances carried out on a photovoltaic module using solar radiation concentration cells. Subsequently, we developed a calculation program on Matlab which allowed us to simulate the functioning of this module. The obtained results show that the addition of a cooling system to the module improves greatly the performance of our CPV system.

Keywords: solar energy, photovoltaic, concentration, cooling, performance improvement

Procedia PDF Downloads 398
21111 Total Lipid of Mutant Synechococcus sp. PCC 7002

Authors: Azlin S Azmi, Mus’ab Zainal, Sarina Sulaiman, Azura Amid, Zaki Zainudin

Abstract:

Microalgae lipid is a promising feedstock for biodiesel production. The objective of this work was to study growth factors affecting marine mutant Synechococcus sp. (PCC 7002) for high lipid production. Four growth factors were investigated; nitrogen-phosporus-potassium (NPK) concentration, light intensity, temperature and NaNO3 concentration on mutant strain growth and lipid production were studied. Design Expert v8.0 was used to design the experimental and analyze the data. The experimental design selected was Min-Run Res IV which consists of 12 runs and the response surfaces measured were specific growth rate and lipid concentration. The extraction of lipid was conducted by chloroform/methanol solvents system. Based on the study, mutant Synechococcus sp. PCC 7002 gave the highest specific growth rate of 0.0014 h-1 at 0% NPK, 2500 lux, 40oC and 0% NaNO3. On the other hand, the highest lipid concentration was obtained at 0% NPK, 3500 lux, 30°C and 1% NaNO3.

Keywords: Cyanobacteria, lipid, mutant, marine Synechococcus sp. (PCC 7002), specific growth rate

Procedia PDF Downloads 338
21110 Energy Efficiency Measures in Canada’s Iron and Steel Industry

Authors: A. Talaei, M. Ahiduzzaman, A. Kumar

Abstract:

In Canada, an increase in the production of iron and steel is anticipated for satisfying the increasing demand of iron and steel in the oil sands and automobile industries. It is predicted that GHG emissions from iron and steel sector will show a continuous increase till 2030 and, with emissions of 20 million tonnes of carbon dioxide equivalent, the sector will account for more than 2% of total national GHG emissions, or 12% of industrial emissions (i.e. 25% increase from 2010 levels). Therefore, there is an urgent need to improve the energy intensity and to implement energy efficiency measures in the industry to reduce the GHG footprint. This paper analyzes the current energy consumption in the Canadian iron and steel industries and identifies energy efficiency opportunities to improve the energy intensity and mitigate greenhouse gas emissions from this industry. In order to do this, a demand tree is developed representing different iron and steel production routs and the technologies within each rout. The main energy consumer within the industry is found to be flared heaters accounting for 81% of overall energy consumption followed by motor system and steam generation each accounting for 7% of total energy consumption. Eighteen different energy efficiency measures are identified which will help the efficiency improvement in various subsector of the industry. In the sintering process, heat recovery from coolers provides a high potential for energy saving and can be integrated in both new and existing plants. Coke dry quenching (CDQ) has the same advantages. Within the blast furnace iron-making process, injection of large amounts of coal in the furnace appears to be more effective than any other option in this category. In addition, because coal-powered electricity is being phased out in Ontario (where the majority of iron and steel plants are located) there will be surplus coal that could be used in iron and steel plants. In the steel-making processes, the recovery of Basic Oxygen Furnace (BOF) gas and scrap preheating provides considerable potential for energy savings in BOF and Electric Arc Furnace (EAF) steel-making processes, respectively. However, despite the energy savings potential, the BOF gas recovery is not applicable in existing plants using steam recovery processes. Given that the share of EAF in steel production is expected to increase the application potential of the technology will be limited. On the other hand, the long lifetime of the technology and the expected capacity increase of EAF makes scrap preheating a justified energy saving option. This paper would present the results of the assessment of the above mentioned options in terms of the costs and GHG mitigation potential.

Keywords: Iron and Steel Sectors, Energy Efficiency Improvement, Blast Furnace Iron-making Process, GHG Mitigation

Procedia PDF Downloads 398
21109 Modeling and Monitoring of Agricultural Influences on Harmful Algal Blooms in Western Lake Erie

Authors: Xiaofang Wei

Abstract:

Harmful Algal Blooms are a recurrent disturbing occurrence in Lake Erie that has caused significant negative impacts on water quality and aquatic ecosystem around Great Lakes areas in the United States. Targeting the recent HAB events in western Lake Erie, this paper utilizes satellite imagery and hydrological modeling to monitor HAB cyanobacteria blooms and analyze the impacts of agricultural activities from Maumee watershed, the biggest watershed of Lake Erie and agriculture dominant.SWAT (Soil & Water Assessment Tool) Model for Maumee watershed was established with DEM, land use data, crop data layer, soil data, and weather data, and calibrated with Maumee River gauge stations data for streamflow and nutrients. Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH) was applied to remove atmospheric attenuation and cyanobacteria Indices were calculated from Landsat OLI imagery to study the intensity of HAB events in the years 2015, 2017, and 2019. The agricultural practice and nutrients management within the Maumee watershed was studied and correlated with HAB cyanobacteria indices to study the relationship between HAB intensity and nutrient loadings. This study demonstrates that hydrological models and satellite imagery are effective tools in HAB monitoring and modeling in rivers and lakes.

Keywords: harmful algal bloom, landsat OLI imagery, SWAT, HAB cyanobacteria

Procedia PDF Downloads 177
21108 The Role of Ideophones: Phonological and Morphological Characteristics in Literature

Authors: Cristina Bahón Arnaiz

Abstract:

Many Asian languages, such as Korean and Japanese, are well-known for their wide use of sound symbolic words or ideophones. This is a very particular characteristic which enriches its lexicon hugely. Ideophones are a class of sound symbolic words that utilize sound symbolism to express aspects, states, emotions, or conditions that can be experienced through the senses, such as shape, color, smell, action or movement. Ideophones have very particular characteristics in terms of sound symbolism and morphology, which distinguish them from other words. The phonological characteristics of ideophones are vowel ablaut or vowel gradation and consonant mutation. In the case of Korean, there are light vowels and dark vowels. Depending on the type of vowel that is used, the meaning will slightly change. Consonant mutation, also known as consonant ablaut, contributes to the level of intensity, emphasis, and volume of an expression. In addition to these phonological characteristics, there is one main morphological singularity, which is reduplication and it carries the meaning of continuity, repetition, intensity, emphasis, and plurality. All these characteristics play an important role in both linguistics and literature as they enhance the meaning of what is trying to be expressed with incredible semantic detail, expressiveness, and rhythm. The following study will analyze the ideophones used in a single paragraph of a Korean novel, which add incredible yet subtle detail to the meaning of the words, and advance the expressiveness and rhythm of the text. The results from analyzing one paragraph from a novel, after presenting the phonological and morphological characteristics of Korean ideophones, will evidence the important role that ideophones play in literature. 

Keywords: ideophones, mimetic words, phonomimes, phenomimes, psychomimes, sound symbolism

Procedia PDF Downloads 151
21107 Development of a Comprehensive Energy Model for Canada

Authors: Matthew B. Davis, Amit Kumar

Abstract:

With potentially dangerous impacts of climate change on the horizon, Canada has an opportunity to take a lead role on the international stage to demonstrate how energy use intensity and greenhouse gas emission intensity may be effectively reduced. Through bottom-up modelling of Canada’s energy sector using Long-range Energy Alternative Planning (LEAP) software, it can be determined where efforts should to be concentrated to produce the most positive energy management results. By analyzing a provincially integrated Canada, one can develop strategies to minimize the country’s economic downfall while transitioning to lower-emission energy technologies. Canada’s electricity sector plays an important role in accommodating these transitionary technologies as fossil-fuel based power production is prevalent in many parts of the country and is responsible for a large portion (17%) of Canada’s greenhouse gas emissions. Current findings incorporate an in-depth model of Canada’s current energy supply and demand sectors, as well as a business-as-usual scenario up to the year 2035. This allows for in-depth analysis of energy flow from resource potential, to extraction, to fuel and electricity production, to energy end use and emissions in Canada’s residential, transportation, commercial, institutional, industrial, and agricultural sectors. Bottom-up modelling techniques such as these are useful to critically analyze and compare the various possible scenarios of implementing sustainable energy measures. This work can aid government in creating effective energy and environmental policies, as well as guide industry to what technology or process changes would be most worthwhile to pursue.

Keywords: energy management, LEAP, energy end-use, GHG emissions

Procedia PDF Downloads 301
21106 Punishment on top of Punishment - Impact of Inmate Misconduct

Authors: Nazirah Hassan, Andrew Kendrick

Abstract:

Punishment inside the penal institution has always been practiced in order to maintain discipline and keep order. Nonetheless, criminologists have long debated that the enforcement of discipline by punishing inmates is often ineffective and has a detrimental impact on inmates’ conduct. This paper uses data from a sample of 289 incarcerated young offenders to investigate the prevalence of institutional misconduct. It explores punitive cultural practices inside institutions and how this culture affects the inmates’ conduct during confinement. The project focused on male and female young offenders aged 12 to 21 years old, in eight juvenile justice institutions. The research collected quantitative and qualitative data using a mixed-method approach. All participants completed the Direct and Indirect Prisoner behavior Checklist-Scaled Version Revised (DIPC-SCALED-R). In addition, exploratory interviews were carried out with sixteen inmates and eight institutional staff. Results of the questionnaire survey show that almost half of the inmates reported a higher level of involvement in perpetration. It demonstrates a remarkable convergence of direct, rather than indirect, perpetration. Also, inmates reported a higher level of tobacco used and behavior associated with negative attitudes towards staff and institutional rules. In addition to this, the qualitative data suggests that the punitive culture encourages the onset of misconduct by increasing the stressful and oppressive conditions within the institution. In general, physical exercise and locking up inmates are two forms of punishment that were ubiquitous throughout the institutions. Interestingly, physical exercise is not only enforced by institutional staff but also inmates. These findings are discussed in terms of existing literature and their practical implications are considered.

Keywords: institutional punishment, incarcerated young offenders, punitive culture, institutional misconduct

Procedia PDF Downloads 243
21105 Novel Ultrasensitive Point of Care Device for Diagnosis of Human Schistosomiasis Mansoni

Authors: Ibrahim Aly, Waleed Elawamy, Hanan Taher, Amira Matar

Abstract:

Schistosomiasis is infection with blood flukes of the genus Schistosoma, which are acquired trans-cutaneously by swimming or wading in contaminated freshwater. The present study was proposed to produce ultra-sensitive, field-friendly high-throughput rapid immunochromatography diagnostic device for accurate detection of asymptomatic parasite carriers in schistosomiasis pre-elimination settings.For assessing diagnostic potential of rapid device, 50 blood samples from patients with schistosomiasis mansoni, 29 other proven parasitic diseases and 25 blood samples as negative control were from healthy individuals were used. The sensitivity of Quantitative antigen-capture nano-ELISAwas 82 %, and specificity was 87.1 %, where the sensitivity of Nano Dot- ELISA was 86 % and specificity was 90.7 %. The sensitivity of diagnostic device was 78 % and specificity was 85.2 %, with PPV and NPV of 86.2 % and 83.1 %, respectively.The Point of care device resulted in a good performance for the diagnosis of low-intensity infections, it was able to identify 19 out of 25 (76 %) individuals with ⩽7 eggs, 10 out of 14 individuals (71.4 %) with 11–99 eggs and 100 % of individuals with 100–399 eggs.

Keywords: schistosomiasis, immunochromatography, naon-dot-ELISa, diagnostis device

Procedia PDF Downloads 76
21104 Microwave Heating and Catalytic Activity of Iron/Carbon Materials for H₂ Production from the Decomposition of Plastic Wastes

Authors: Peng Zhang, Cai Liang

Abstract:

The non-biodegradable plastic wastes have posed severe environmental and ecological contaminations. Numerous technologies, such as pyrolysis, incineration, and landfilling, have already been employed for the treatment of plastic waste. Compared with conventional methods, microwave has displayed unique advantages in the rapid production of hydrogen from plastic wastes. Understanding the interaction between microwave radiation and materials would promote the optimization of several parameters for the microwave reaction system. In this work, various carbon materials have been investigated to reveal microwave heating performance and the ensuing catalytic activity. Results showed that the diversity in the heating characteristic was mainly due to the dielectric properties and the individual microstructures. Furthermore, the gaps and steps among the surface of carbon materials would lead to the distortion of the electromagnetic field, which correspondingly induced plasma discharging. The intensity and location of local plasma were also studied. For high-yield H₂ production, iron nanoparticles were selected as the active sites, and a series of iron/carbon bifunctional catalysts were synthesized. Apart from the high catalytic activity, the iron particles in nano-size close to the microwave skin depth would transfer microwave irradiation to the heat, intensifying the decomposition of plastics. Under microwave radiation, iron is supported on activated carbon material with 10wt.% loading exhibited the best catalytic activity for H₂ production. Specifically, the plastics were rapidly heated up and subsequently converted into H₂ with a hydrogen efficiency of 85%. This work demonstrated a deep understanding of microwave reaction systems and provided the optimization for plastic treatment.

Keywords: plastic waste, recycling, hydrogen, microwave

Procedia PDF Downloads 71
21103 Biomass Enhancement of Stevia (Stevia rebaudiana Bertoni) Shoot Culture in Temporary Immersion System (TIS) RITA® Bioreactor Optimized in Two Different Immersion Periods

Authors: Agustine Melviana, Rizkita Esyanti

Abstract:

Stevia plant contains steviol glycosides which is estimated to be 300 times sweeter than sucrose. However in Indonesia, conventional (in vivo) propagation of Stevia rebaudiana was not effective due to a poor result. Therefore, alternative methods to propagate S. rebaudiana plants is needed, one of it is using in vitro method. Multiplication with a large quantity of stevia biomass in relatively short period can be conducted by using TIS RITA® (Recipient for Automated Temporary Immersion System). The objective of this study was to evaluate the effect of immersion period of the medium on growth and the medium bioconversion into the production of shoot biomass. The study was conducted to determine the effect of different intensity period of medium to enhance biomass of stevia shoots. Shoot culture of S. rebaudiana was grown in full strength MS medium supplemented with 1 ppm Kinetin. RITA® bioreactors were set up with two different immersion periods, 15 min (RITA® 15) and 30 min (RITA® 30), scheduled every 6 hours and incubated for 21 days. The result indicated that immersion period affected the biomass and growth rate (µ). Thirty-minutes immersion showed greater percentage of shoot multiplication (93.44 ± 0.83%), percentage of leaf growth (85.24 ± 5.99%), growth rate (0.042 ± 0.001 g/day), and productivity (0.066 g/L medium/day) compared to that immersed in RITA® 15 min (76.90 ± 4.85%; 79.73 ± 7.76; 0.045 ± 0.004 g/day, and 0.045 g/L medium/day respectively). Enhancement of biomass in RITA® 30 reached 1,702 ± 0,114 gr, whereas in RITA® 15 only 0,953 ± 0,093 gr. Additionally, the pattern of sucrose, mineral, and inorganic compounds consumption followed the growth of plant biomass for both systems. In conclusion, the bioconversion efficiency from medium to biomass in RITA® 30 is better than RITA® 15.

Keywords: intensity period, shoot culture, Stevia rebaudiana, TIS RITA®

Procedia PDF Downloads 253