Search results for: experimental set up
2649 Molecular Docking Assessment of Pesticides Binding to Bacterial Chitinases
Authors: Diana Larisa Vladoiu, Vasile Ostafe, Adriana Isvoran
Abstract:
Molecular docking calculations reveal that pesticides provide favorable interactions with the bacterial chitinases. Pesticides interact with both hydrophilic and aromatic residues involved in the active site of the enzymes, their positions partially overlapping the substrate and the inhibitors locations. Molecular docking outcomes, in correlation with experimental literature data, suggest that the pesticides may be degraded or having an inhibitor effect on the activity of these enzymes, depending of the application dose and rate.Keywords: chitinases, inhibition, molecular docking, pesticides
Procedia PDF Downloads 5532648 Battery/Supercapacitor Emulator for Chargers Functionality Testing
Authors: S. Farag, A. Kuperman
Abstract:
In this paper, design of solid-state battery/super capacitor emulator based on dc-dc boost converter is described. The emulator mimics charging behavior of any storage device based on a predefined behavior set by the user. The device is operated by a two-level control structure: high-level emulating controller and low-level input voltage controller. Simulation and experimental results are shown to demonstrate the emulator operation.Keywords: battery, charger, energy, storage, super capacitor
Procedia PDF Downloads 4002647 Numerical Simulations for Nitrogen Flow in Piezoelectric Valve
Authors: Pawel Flaszynski, Piotr Doerffer, Jan Holnicki-Szulc, Grzegorz Mikulowski
Abstract:
Results of numerical simulations for transonic flow in a piezoelectric valve are presented. The valve is the main part of an adaptive pneumatic shock absorber. Flow structure in the valve domain and the influence of the flow non-uniformity in the valve on a mass flow rate is investigated. Numerical simulation results are compared with experimental data.Keywords: pneumatic valve, transonic flow, numerical simulations, piezoelectric valve
Procedia PDF Downloads 5152646 Application of Optical Method for Calcul of Deformed Object Samples
Authors: R. Daira
Abstract:
The electronic speckle interferometry technique used to measure the deformations of scatterers process is based on the subtraction of interference patterns. A speckle image is first recorded before deformation of the object in the RAM of a computer, after a second deflection. The square of the difference between two images showing correlation fringes observable in real time directly on monitor. The interpretation these fringes to determine the deformation. In this paper, we present experimental results of deformation out of the plane of two samples in aluminum, electronic boards and stainless steel.Keywords: optical method, holography, interferometry, deformation
Procedia PDF Downloads 4052645 Adsorption of Lead (II) and Copper (II) Ions onto Marula Nuts Activated Carbon
Authors: Lucky Malise, Hilary Rutto, Tumisang Seodigeng
Abstract:
Heavy metal contamination in waste water is a very serious issue affecting a lot of industrialized countries due to the health and environmental impact of these heavy metals on human life and the ecosystem. Adsorption using activated carbon is the most promising method for the removal of heavy metals from waste water but commercial activated carbon is expensive which gives rise to the need for alternatively activated carbon derived from cheap precursors, agricultural wastes, or byproducts from other processes. In this study activated bio-carbon derived from the carbonaceous material obtained from the pyrolysis of Marula nut shells was chemically activated and used as an adsorbent for the removal of lead (II) and copper (II) ions from aqueous solution. The surface morphology and chemistry of the adsorbent before and after chemical activation with zinc chloride impregnation were studied using SEM and FTIR analysis respectively and the results obtained indicate that chemical activation with zinc chloride improves the surface morphology of the adsorbent and enhances the intensity of the surface oxygen complexes on the surface of the adsorbent. The effect of process parameters such as adsorbent dosage, pH value of the solution, initial metal concentration, contact time, and temperature on the adsorption of lead (II) and copper (II) ions onto Marula nut activated carbon were investigated, and their optimum operating conditions were also determined. The experimental data was fitted to both the Langmuir and Freundlich isotherm models, and the data fitted best on the Freundlich isotherm model for both metal ions. The adsorption kinetics were also evaluated, and the experimental data fitted the pseudo-first order kinetic model better than the pseudo second-order kinetic model. The adsorption thermodynamics were also studied and the results indicate that the adsorption of lead and copper ions is spontaneous and exothermic in nature, feasible, and also involves a dissociative mechanism in the temperature range of 25-45 °C.Keywords: adsorption, isotherms, kinetics, marula nut shells activated carbon, thermodynamics
Procedia PDF Downloads 2752644 Investigation of External Pressure Coefficients on Large Antenna Parabolic Reflector Using Computational Fluid Dynamics
Authors: Varun K, Pramod B. Balareddy
Abstract:
Estimation of wind forces plays a significant role in the in the design of large antenna parabolic reflectors. Reflector surface accuracies are very sensitive to the gain of the antenna system at higher frequencies. Hence accurate estimation of wind forces becomes important, which is primary input for design and analysis of the reflector system. In the present work, numerical simulation of wind flow using Computational Fluid Dynamics (CFD) software is used to investigate the external pressure coefficients. An extensive comparative study has been made between the CFD results and the published wind tunnel data for different wind angle of attacks (α) acting over concave to convex surfaces respectively. Flow simulations using CFD are carried out to estimate the coefficients of Drag, Lift and Moment for the parabolic reflector. Coefficients of pressures (Cp) over the front and the rear face of the reflector are extracted over surface of the reflector to study the net pressure variations. These resultant pressure variations are compared with the published wind tunnel data for different angle of attacks. It was observed from the CFD simulations, both convex and concave face of reflector system experience a band of pressure variations for the positive and negative angle of attacks respectively. In the published wind tunnel data, Pressure variations over convex surfaces are assumed to be uniform and vice versa. Chordwise and spanwise pressure variations were calculated and compared with the published experimental data. In the present work, it was observed that the maximum pressure coefficients for α ranging from +30° to -90° and α=+90° was lower. For α ranging from +45° to +75°, maximum pressure coefficients were higher as compared to wind tunnel data. This variation is due to non-uniform pressure distribution observed over front and back faces of reflector. Variations in Cd, Cl and Cm over α=+90° to α=-90° was in close resemblance with the experimental data.Keywords: angle of attack, drag coefficient, lift coefficient, pressure coefficient
Procedia PDF Downloads 2582643 Effects of Merging Personal and Social Responsibility with Sports Education Model on Students' Game Performance and Responsibility
Authors: Yi-Hsiang Pan, Chen-Hui Huang, Wei-Ting Hsu
Abstract:
The purposes of the study were to understand these topics as follows: 1. To explore the effect of merging teaching personal and social responsibility (TPSR) with sports education model on students' game performance and responsibility. 2. To explore the effect of sports education model on students' game performance and responsibility. 3. To compare the difference between "merging TPSR with sports education model" and "sports education model" on students' game performance and responsibility. The participants include three high school physical education teachers and six physical education classes. Every teacher teaches an experimental group and a control group. The participants had 121 students, including 65 students in the experimental group and 56 students in the control group. The research methods had game performance assessment, questionnaire investigation, interview, focus group meeting. The research instruments include personal and social responsibility questionnaire and game performance assessment instrument. Paired t-test test and MANCOVA were used to test the difference between "merging TPSR with sports education model" and "sports education model" on students' learning performance. 1) "Merging TPSR with sports education model" showed significant improvements in students' game performance, and responsibilities with self-direction, helping others, cooperation. 2) "Sports education model" also had significant improvements in students' game performance, and responsibilities with effort, self-direction, helping others. 3.) There was no significant difference in game performance and responsibilities between "merging TPSR with sports education model" and "sports education model". 4)."Merging TPSR with sports education model" significantly improve learning atmosphere and peer relationships, it may be developed in the physical education curriculum. The conclusions were as follows: Both "Merging TPSR with sports education model" and "sports education model" can help improve students' responsibility and game performance. However, "Merging TPSR with sports education model" can reduce the competitive atmosphere in highly intensive games between students. The curricular projects of hybrid TPSR-Sport Education model is a good approach for moral character education.Keywords: curriculum and teaching model, sports self-efficacy, sport enthusiastic, character education
Procedia PDF Downloads 3132642 Musical Instruments Classification Using Machine Learning Techniques
Authors: Bhalke D. G., Bormane D. S., Kharate G. K.
Abstract:
This paper presents classification of musical instrument using machine learning techniques. The classification has been carried out using temporal, spectral, cepstral and wavelet features. Detail feature analysis is carried out using separate and combined features. Further, instrument model has been developed using K-Nearest Neighbor and Support Vector Machine (SVM). Benchmarked McGill university database has been used to test the performance of the system. Experimental result shows that SVM performs better as compared to KNN classifier.Keywords: feature extraction, SVM, KNN, musical instruments
Procedia PDF Downloads 4802641 Reconstruction of Binary Matrices Satisfying Neighborhood Constraints by Simulated Annealing
Authors: Divyesh Patel, Tanuja Srivastava
Abstract:
This paper considers the NP-hard problem of reconstructing binary matrices satisfying exactly-1-4-adjacency constraint from its row and column projections. This problem is formulated into a maximization problem. The objective function gives a measure of adjacency constraint for the binary matrices. The maximization problem is solved by the simulated annealing algorithm and experimental results are presented.Keywords: discrete tomography, exactly-1-4-adjacency, simulated annealing, binary matrices
Procedia PDF Downloads 4072640 Investigation of Performance of Organic Acids on Carbonate Rocks (Experimental Study in Ahwaz Oilfield)
Authors: Azad Jarrahian, Ehsan Heidaryan
Abstract:
Matrix acidizing treatments can yield impressive production increase if properly applied. In this study, carbonate samples taken from Ahwaz Oilfield have undergone static solubility, sludge, emulsion, and core flooding tests. In each test interaction of acid and rock is reported and at the end it has been shown that how initial permeability and type of acid affects the overall treatment efficiency.Keywords: carbonate acidizing, organic acids, spending rate, acid penetration, incomplete spending.
Procedia PDF Downloads 4382639 Effects of Sleep Deprivation on Athletic Performance in Nigeria Colleges of Education Games
Authors: Rasheed Owolabi Oloyede, Joseph Olusegun Adelusi, Seun Oluwadare
Abstract:
Sleep has been found to have many recuperative and restorative beneficial effects on athletic recovery. When a person is deprived of sleep this can have many effects on their immune and endocrine systems. Both of these systems are extremely important for the recovery process of any athlete and when we deprive ourselves of sleep, we are depriving ourselves of recovery. This study examined how sleep deprivation can hinder sport performance among selected athletes representing Adeyemi College of Education at Nigeria Colleges of Education Games (NICEGA) competitions at Minna. A total of 32 athletes were sampled for the study. They were exposed to two different activities. Each activity was performed before and after sleep deprivation, the activities were 100m dash, shuttle relay. The athletes were randomly assigned to two groups that are experimental and control groups. Pretest were conducted on both groups before apply treatment to the other group. A day before the activities to be performed the control group was denied of sleep between 10p.m to 5a.m for a period of 6 weeks. The analysis of the data showed that athletes performance in the two selected activities performed on equal basis before the sleep deprivation. After sleep deprivation the performance of experimental group was a little better than the control group that were denied of sleep. It was concluded that sleep allows the body to spend less energy resources on body processes needed while awake, it was concluded that sleep deprivation enables the body system work effectively. The body can expend needed energy, balance and adequate reaction time if it is allowed to have enough rest. Lack of adequate sleep results to dullness of the brain, nervousness and anxiety which all have negative effect on performance of activities by athletes. Based on the findings, it was recommended that extend nightly sleep for several week to reduce your sleep debt before competition. Maintain a low sleep debt by obtaining a sufficient amount of nightly sleep (seven to eight hours for adults, nine or more hours for teens and young adults). Keep a regular sleep-wake schedule, going to bed and waking up at the same times every day.Keywords: activities, deprivation, performance, sleep
Procedia PDF Downloads 3502638 Effects of Supplementary Cementitious Materials on Early Age Thermal Properties of Cement Paste
Authors: Maryam Ghareh Chaei, Masuzyo Chilwesa, Ali Akbarnezhad, Arnaud Castel, Redmond Lloyd, Stephen Foster
Abstract:
Cement hydration is an exothermic chemical reaction generally leading to a rise in concrete’s temperature. This internal heating of concrete may, in turn, lead to a temperature difference between the hotter interior and the cooler exterior of concrete and thus differential thermal stresses in early ages which could be particularly significant in mass concrete. Such differential thermal stresses result in early age thermal cracking of concrete when exceeding the concrete’s tensile strength. The extent of temperature rise and thus early age differential thermal stresses is generally a function of hydration heat intensity, thermal properties of concrete and size of the concrete element. Both hydration heat intensity and thermal properties of concrete may vary considerably with variations in the type cementitious materials and other constituents. With this in mind, partial replacement of cement with supplementary cementitious materials including fly ash and ground granulated blast furnace slag has been investigated widely as an effective strategy to moderate the heat generation rate and thus reduce the risk of early age thermal cracking of concrete. However, there is currently a lack of adequate literature on effect of partial replacement of cement with fly ash and/or ground granulated blast furnace slag on the thermal properties of concrete. This paper presents the results of an experimental conducted to evaluate the effect of addition of varying percentages of fly ash (up to 60%) and ground granulated blast furnace slag (up to 50%) on the heat capacity and thermal conductivity of early age cement paste. The water to cementitious materials ratio is kept 0.45 for all the paste samples. The results of the experimental studies were used in a numerical analysis performed using Comsol Multiphysics to highlight the effects of variations in the thermal properties of concrete, due to variations in the type of aggregate and content of supplemenraty cementitious materials, on the risk of early age cracking of a concrete raft.Keywords: thermal diffusivity, early age thermal cracking, concrete, supplementary cementitious materials
Procedia PDF Downloads 2532637 Application of Response Surface Methodology in Optimizing Chitosan-Argan Nutshell Beads for Radioactive Wastewater Treatment
Authors: F. F. Zahra, E. G. Touria, Y. Samia, M. Ahmed, H. Hasna, B. M. Latifa
Abstract:
The presence of radioactive contaminants in wastewater poses a significant environmental and health risk, necessitating effective treatment solutions. This study investigates the optimization of chitosan-Argan nutshell beads for the removal of radioactive elements from wastewater, utilizing Response Surface Methodology (RSM) to enhance the treatment efficiency. Chitosan, known for its biocompatibility and adsorption properties, was combined with Argan nutshell powder to form composite beads. These beads were then evaluated for their capacity to remove radioactive contaminants from synthetic wastewater. The Box-Behnken design (BBD) under RSM was employed to analyze the influence of key operational parameters, including initial contaminant concentration, pH, bead dosage, and contact time, on the removal efficiency. Experimental results indicated that all tested parameters significantly affected the removal efficiency, with initial contaminant concentration and pH showing the most substantial impact. The optimized conditions, as determined by RSM, were found to be an initial contaminant concentration of 50 mg/L, a pH of 6, a bead dosage of 0.5 g/L, and a contact time of 120 minutes. Under these conditions, the removal efficiency reached up to 95%, demonstrating the potential of chitosan-Argan nutshell beads as a viable solution for radioactive wastewater treatment. Furthermore, the adsorption process was characterized by fitting the experimental data to various isotherm and kinetic models. The adsorption isotherms conformed well to the Langmuir model, indicating monolayer adsorption, while the kinetic data were best described by the pseudo-second-order model, suggesting chemisorption as the primary mechanism. This study highlights the efficacy of chitosan-Argan nutshell beads in removing radioactive contaminants from wastewater and underscores the importance of optimizing treatment parameters using RSM. The findings provide a foundation for developing cost-effective and environmentally friendly treatment technologies for radioactive wastewater.Keywords: adsorption, argan nutshell, beads, chitosan, mechanism, optimization, radioactive wastewater, response surface methodology
Procedia PDF Downloads 342636 Energy Efficiency Approach to Reduce Costs of Ownership of Air Jet Weaving
Authors: Corrado Grassi, Achim Schröter, Yves Gloy, Thomas Gries
Abstract:
Air jet weaving is the most productive, but also the most energy consuming weaving method. Increasing energy costs and environmental impact are constantly a challenge for the manufacturers of weaving machines. Current technological developments concern with low energy costs, low environmental impact, high productivity, and constant product quality. The high degree of energy consumption of the method can be ascribed to the high need of compressed air. An energy efficiency method is applied to the air jet weaving technology. Such method identifies and classifies the main relevant energy consumers and processes from the exergy point of view and it leads to the identification of energy efficiency potentials during the weft insertion process. Starting from the design phase, energy efficiency is considered as the central requirement to be satisfied. The initial phase of the method consists of an analysis of the state of the art of the main weft insertion components in order to point out a prioritization of the high demanding energy components and processes. The identified major components are investigated to reduce the high demand of energy of the weft insertion process. During the interaction of the flow field coming from the relay nozzles within the profiled reed, only a minor part of the stream is really accelerating the weft yarn, hence resulting in large energy inefficiency. Different tools such as FEM analysis, CFD simulation models and experimental analysis are used in order to design a more energy efficient design of the involved components in the filling insertion. A different concept for the metal strip of the profiled reed is developed. The developed metal strip allows a reduction of the machine energy consumption. Based on a parametric and aerodynamic study, the designed reed transmits higher values of the flow power to the filling yarn. The innovative reed fulfills both the requirement of raising energy efficiency and the compliance with the weaving constraints.Keywords: air jet weaving, aerodynamic simulation, energy efficiency, experimental validation, weft insertion
Procedia PDF Downloads 1972635 Wear Resistance of 20MnCr5 Steel Nitrided by Plasma
Authors: Okba Belahssen, Said Benramache
Abstract:
This paper presents wear behavior of the plasma-nitrided 20MnCr5 steel. Untreated and plasma nitrided samples were tested. The morphology was observed by scanning electron microscopy (SEM). The plasma nitriding behaviors of 20MnCr5 steel have been assessed by evaluating tribological properties and surface hardness by using a pin-on-disk wear machine and microhardness tester. Experimental results showed that the nitrides ε-Fe2−3N and γ′-Fe4N present in the white layer improve the wear resistance.Keywords: plasma-nitriding, alloy 20mncr5, steel, friction, wear
Procedia PDF Downloads 5592634 Dust Particle Removal from Air in a Self-Priming Submerged Venturi Scrubber
Authors: Manisha Bal, Remya Chinnamma Jose, B.C. Meikap
Abstract:
Dust particles suspended in air are a major source of air pollution. A self-priming submerged venturi scrubber proven very effective in cases of handling nuclear power plant accidents is an efficient device to remove dust particles from the air and thus aids in pollution control. Venturi scrubbers are compact, have a simple mode of operation, no moving parts, easy to install and maintain when compared to other pollution control devices and can handle high temperatures and corrosive and flammable gases and dust particles. In the present paper, fly ash particles recognized as a high air pollutant substance emitted mostly from thermal power plants is considered as the dust particle. Its exposure through skin contact, inhalation and indigestion can lead to health risks and in severe cases can even root to lung cancer. The main focus of this study is on the removal of fly ash particles from polluted air using a self-priming venturi scrubber in submerged conditions using water as the scrubbing liquid. The venturi scrubber comprising of three sections: converging section, throat and diverging section is submerged inside a water tank. The liquid enters the throat due to the pressure difference composed of the hydrostatic pressure of the liquid and static pressure of the gas. The high velocity dust particles atomize the liquid droplets at the throat and this interaction leads to its absorption into water and thus removal of fly ash from the air. Detailed investigation on the scrubbing of fly ash has been done in this literature. Experiments were conducted at different throat gas velocities, water levels and fly ash inlet concentrations to study the fly ash removal efficiency. From the experimental results, the highest fly ash removal efficiency of 99.78% is achieved at the throat gas velocity of 58 m/s, water level of height 0.77m with fly ash inlet concentration of 0.3 x10⁻³ kg/Nm³ in the submerged condition. The effect of throat gas velocity, water level and fly ash inlet concentration on the removal efficiency has also been evaluated. Furthermore, experimental results of removal efficiency are validated with the developed empirical model.Keywords: dust particles, fly ash, pollution control, self-priming venturi scrubber
Procedia PDF Downloads 1652633 Wall Shear Stress Under an Impinging Planar Jet Using the Razor Blade Technique
Authors: A. Ritcey, J. R. Mcdermid, S. Ziada
Abstract:
Wall shear stress was experimentally measured under a planar impinging air jet as a function of jet Reynolds number (Rejet = 5000, 8000, 11000) and different normalized impingement distances (H/D = 4, 6, 8, 10, 12) using the razor blade technique to complete a parametric study. The wall pressure, wall pressure gradient, and wall shear stress information were obtained.Keywords: experimental fluid mechanics, impinging planar jets, skin friction factor, wall shear stress
Procedia PDF Downloads 3222632 Structural Health Monitoring using Fibre Bragg Grating Sensors in Slab and Beams
Authors: Pierre van Tonder, Dinesh Muthoo, Kim twiname
Abstract:
Many existing and newly built structures are constructed on the design basis of the engineer and the workmanship of the construction company. However, when considering larger structures where more people are exposed to the building, its structural integrity is of great importance considering the safety of its occupants (Raghu, 2013). But how can the structural integrity of a building be monitored efficiently and effectively. This is where the fourth industrial revolution step in, and with minimal human interaction, data can be collected, analysed, and stored, which could also give an indication of any inconsistencies found in the data collected, this is where the Fibre Bragg Grating (FBG) monitoring system is introduced. This paper illustrates how data can be collected and converted to develop stress – strain behaviour and to produce bending moment diagrams for the utilisation and prediction of the structure’s integrity. Embedded fibre optic sensors were used in this study– fibre Bragg grating sensors in particular. The procedure entailed making use of the shift in wavelength demodulation technique and an inscription process of the phase mask technique. The fibre optic sensors considered in this report were photosensitive and embedded in the slab and beams for data collection and analysis. Two sets of fibre cables have been inserted, one purposely to collect temperature recordings and the other to collect strain and temperature. The data was collected over a time period and analysed used to produce bending moment diagrams to make predictions of the structure’s integrity. The data indicated the fibre Bragg grating sensing system proved to be useful and can be used for structural health monitoring in any environment. From the experimental data for the slab and beams, the moments were found to be64.33 kN.m, 64.35 kN.m and 45.20 kN.m (from the experimental bending moment diagram), and as per the idealistic (Ultimate Limit State), the data of 133 kN.m and 226.2 kN.m were obtained. The difference in values gave room for an early warning system, in other words, a reserve capacity of approximately 50% to failure.Keywords: fibre bragg grating, structural health monitoring, fibre optic sensors, beams
Procedia PDF Downloads 1402631 An Experimental Investigation on Explosive Phase Change of Liquefied Propane During a Bleve Event
Authors: Frederic Heymes, Michael Albrecht Birk, Roland Eyssette
Abstract:
Boiling Liquid Expanding Vapor Explosion (BLEVE) has been a well know industrial accident for over 6 decades now, and yet it is still poorly predicted and avoided. BLEVE is created when a vessel containing a pressure liquefied gas (PLG) is engulfed in a fire until the tank rupture. At this time, the pressure drops suddenly, leading the liquid to be in a superheated state. The vapor expansion and the violent boiling of the liquid produce several shock waves. This works aimed at understanding the contribution of vapor ad liquid phases in the overpressure generation in the near field. An experimental work was undertaken at a small scale to reproduce realistic BLEVE explosions. Key parameters were controlled through the experiments, such as failure pressure, fluid mass in the vessel, and weakened length of the vessel. Thirty-four propane BLEVEs were then performed to collect data on scenarios similar to common industrial cases. The aerial overpressure was recorded all around the vessel, and also the internal pressure changed during the explosion and ground loading under the vessel. Several high-speed cameras were used to see the vessel explosion and the blast creation by shadowgraph. Results highlight how the pressure field is anisotropic around the cylindrical vessel and highlights a strong dependency between vapor content and maximum overpressure from the lead shock. The time chronology of events reveals that the vapor phase is the main contributor to the aerial overpressure peak. A prediction model is built upon this assumption. Secondary flow patterns are observed after the lead. A theory on how the second shock observed in experiments forms is exposed thanks to an analogy with numerical simulation. The phase change dynamics are also discussed thanks to a window in the vessel. Ground loading measurements are finally presented and discussed to give insight into the order of magnitude of the force.Keywords: phase change, superheated state, explosion, vapor expansion, blast, shock wave, pressure liquefied gas
Procedia PDF Downloads 802630 Adaptive Routing in NoC-Based Heterogeneous MPSoCs
Authors: M. K. Benhaoua, A. E. H. Benyamina, T. Djeradi, P. Boulet
Abstract:
In this paper, we propose adaptive routing that considers the routing of communications in order to optimize the overall performance. The routing technique uses a newly proposed Algorithm to route communications between the tasks. The routing we propose of the communications leads to a better optimization of several performance metrics (time and energy consumption). Experimental results show that the proposed routing approach provides significant performance improvements when compared to those using static routing.Keywords: multi-processor systems-on-chip (mpsocs), network-on-chip (noc), heterogeneous architectures, adaptive routin
Procedia PDF Downloads 3772629 Experimental Study of the Efficacy and Emission Properties of a Compression Ignition Engine Running on Fuel Additives with Varying Engine Loads
Authors: Faisal Mahroogi, Mahmoud Bady, Yaser H. Alahmadi, Ahmed Alsisi, Sunny Narayan, Muhammad Usman Kaisan
Abstract:
The Kingdom of Saudi Arabia established Saudi Vision 2030, an initiative of the government with the goal of promoting more socioeconomic as well as cultural diversity. The kingdom, which is dedicated to sustainable development and clean energy, uses cutting-edge approaches to address energy-related issues, including the circular carbon economy (CCE) and a more varied energy mix. In order for Saudi Arabia to achieve its Vision 2030 goal of having a net zero future by 2060, sustainability is essential. By addressing the energy and climate issues of the modern world with responsibility and innovation, Vision 2030 is turning into a global role model for the transition to a sustainable future. As per the Ambitions of the National Environment Strategy of the Saudi Ministry of Environment, Agriculture, and Water (MEWA), raising environmental compliance across all sectors and reducing pollution and adverse environmental impacts are critical focus areas. As a result, the current study presents an experimental analysis of the performance and exhaust emissions of a diesel engine running mostly on waste cooking oil (WCO). A one-cylinder direct-injection diesel engine with constant speed and natural aspiration is the engine type utilized. Research was done on how the engine performed and emission parameters when fueled with a mixture of 10% butanol, 10% diesel, 10% WCO, and 10% diethyl ether (D70B10W10DD10). The study's findings demonstrated that engine emissions of nitrogen oxides (NOX) and carbon monoxide (CO) varied significantly depending on the load being applied. The brake thermal efficiency, cylinder pressure, and the brake power of the engine were all impacted by load change.Keywords: ICE, waste cooking oil, fuel additives, butanol, combustion, emission characteristics
Procedia PDF Downloads 652628 Improving Creative Problem Solving for Teams through a Web-Based Peer Review System
Authors: JungYeon Park, Jooyong Park
Abstract:
Brainstorming and discussion are widely used around the world as formal techniques of collaborative creative problem solving. This study investigated whether a web-based peer review system would improve collaborative creative problem solving. In order to assess the efficiency of using web-based peer review system before brainstorming and discussion, we conducted a between-group design study for two conditions (a web-based peer review system vs. face-to-face brainstorming only) using two different scenarios. One hundred and twenty participants were divided into teams of four and randomly assigned to one of the four conditions. The participants were given problems for them to solve. The participants in the experimental group first generated ideas independently for 20 minutes and wrote down their ideas. Afterwards, they reviewed the list of ideas of their peers and gave and received feedback for 10 minutes. These activities were performed on-line. The last activity was face-to-face brain-storming and discussion for 30 minutes. In contrast, the control group participated in brainstorming and discussion for 60 minutes. The quantity and the quality of ideas were measured as dependent variables of creative problem solving. Two evaluators rated the quantity and quality of the proposed ideas. Inter-rater agreement rate was good or strong. The results showed that both the average number of unique ideas and the average quality of ideas generated for the experimental condition were significantly higher than those for the control condition in both scenarios. The results of this study support the hypothesis that collaborative creative problem solving is enhanced when individuals write their thoughts individually and review ideas written by peers before face-to-face brainstorming and discussion. The present study provides preliminary evidence that a web-based peer review system can be instrumental in improving creative problem solving for teams. This system also offers an effective means to quantify the contribution of each member in collaborative team activity. We are planning to replicate these results in real-life situations.Keywords: brainstorming, creative problem solving, peer-review, team efficiency
Procedia PDF Downloads 1592627 A Study on Thermal and Flow Characteristics by Solar Radiation for Single-Span Greenhouse by Computational Fluid Dynamics Simulation
Authors: Jonghyuk Yoon, Hyoungwoon Song
Abstract:
Recently, there are lots of increasing interest in a smart farming that represents application of modern Information and Communication Technologies (ICT) into agriculture since it provides a methodology to optimize production efficiencies by managing growing conditions of crops automatically. In order to obtain high performance and stability for smart greenhouse, it is important to identify the effect of various working parameters such as capacity of ventilation fan, vent opening area and etc. In the present study, a 3-dimensional CFD (Computational Fluid Dynamics) simulation for single-span greenhouse was conducted using the commercial program, Ansys CFX 18.0. The numerical simulation for single-span greenhouse was implemented to figure out the internal thermal and flow characteristics. In order to numerically model solar radiation that spread over a wide range of wavelengths, the multiband model that discretizes the spectrum into finite bands of wavelength based on Wien’s law is applied to the simulation. In addition, absorption coefficient of vinyl varied with the wavelength bands is also applied based on Beer-Lambert Law. To validate the numerical method applied herein, the numerical results of the temperature at specific monitoring points were compared with the experimental data. The average error rates (12.2~14.2%) between them was shown and numerical results of temperature distribution are in good agreement with the experimental data. The results of the present study can be useful information for the design of various greenhouses. This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through Advanced Production Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA)(315093-03).Keywords: single-span greenhouse, CFD (computational fluid dynamics), solar radiation, multiband model, absorption coefficient
Procedia PDF Downloads 1372626 Heterogeneous Catalytic Ozonation of Diethyl Phthalate
Authors: Chedly Tizaoui, Hussain Mohammed, Lobna Mansouri, Nidal Hilal, Latifa Bousselmi
Abstract:
The degradation of diethyl phthalate (DEP) was studied using heterogeneous catalytic ozonation. Activated carbon was used as a catalyst. The degradation of DEP with ozone alone was slow while catalytic ozonation increased degradation rates. Second-order reaction kinetics was used to describe the experimental data, and the corresponding rate constant values were 1.19 and 3.94 M-1.s-1 for ozone and ozone/activated carbon respectively.Keywords: ozone, heterogeneous catalytic ozonation, diethyl phthalate, endocrine disrupting chemicals
Procedia PDF Downloads 3482625 Plastic Behavior of Steel Frames Using Different Concentric Bracing Configurations
Authors: Madan Chandra Maurya, A. R. Dar
Abstract:
Among the entire natural calamities earthquake is the one which is most devastating. If the losses due to all other calamities are added still it will be very less than the losses due to earthquakes. So it means we must be ready to face such a situation, which is only possible if we make our structures earthquake resistant. A review of structural damages to the braced frame systems after several major earthquakes—including recent earthquakes—has identified some anticipated and unanticipated damage. This damage has prompted many engineers and researchers around the world to consider new approaches to improve the behavior of braced frame systems. Extensive experimental studies over the last fourty years of conventional buckling brace components and several braced frame specimens have been briefly reviewed, highlighting that the number of studies on the full-scale concentric braced frames is still limited. So for this reason the study surrounds the words plastic behavior, steel structure, brace frame system. In this study, there are two different analytical approaches which have been used to predict the behavior and strength of an un-braced frame. The first is referred as incremental elasto-plastic analysis a plastic approach. This method gives a complete load-deflection history of the structure until collapse. It is based on the plastic hinge concept for fully plastic cross sections in a structure under increasing proportional loading. In this, the incremental elasto-plastic analysis- hinge by hinge method is used in this study because of its simplicity to know the complete load- deformation history of two storey un-braced scaled model. After that the experiments were conducted on two storey scaled building model with and without bracing system to know the true or experimental load deformation curve of scaled model. Only way, is to understand and analyze these techniques and adopt these techniques in our structures. The study named as Plastic Behavior of Steel Frames using Different Concentric Bracing Configurations deals with all this. This study aimed at improving the already practiced traditional systems and to check the behavior and its usefulness with respect to X-braced system as reference model i.e. is how plastically it is different from X-braced. Laboratory tests involved determination of plastic behavior of these models (with and without brace) in terms of load-deformation curve. Thus, the aim of this study is to improve the lateral displacement resistance capacity by using new configuration of brace member in concentric manner which is different from conventional concentric brace. Once the experimental and manual results (using plastic approach) compared, simultaneously the results from both approach were also compared with nonlinear static analysis (pushover analysis) approach using ETABS i.e how both the previous results closely depicts the behavior in pushover curve and upto what limit. Tests results shows that all the three approaches behaves somewhat in similar manner upto yield point and also the applicability of elasto-plastic analysis (hinge by hinge method) to know the plastic behavior. Finally the outcome from three approaches shows that the newer one configuration which is chosen for study behaves in-between the plane frame (without brace or reference frame) and the conventional X-brace frame.Keywords: elasto-plastic analysis, concentric steel braced frame, pushover analysis, ETABS
Procedia PDF Downloads 2302624 Biosorption Kinetics, Isotherms, and Thermodynamic Studies of Copper (II) on Spirogyra sp.
Authors: Diwan Singh
Abstract:
The ability of non-living Spirogyra sp. biomass for biosorption of copper(II) ions from aqueous solutions was explored. The effect of contact time, pH, initial copper ion concentration, biosorbent dosage and temperature were investigated in batch experiments. Both the Freundlich and Langmuir Isotherms were found applicable on the experimental data (R2>0.98). Qmax obtained from the Langmuir Isotherms was found to be 28.7 mg/g of biomass. The values of Gibbs free energy (ΔGº) and enthalpy change (ΔHº) suggest that the sorption is spontaneous and endothermic at 20ºC-40ºC.Keywords: biosorption, Spirogyra sp., contact time, pH, dose
Procedia PDF Downloads 4272623 Reconfigurable Multiband Meandered Line Antenna
Authors: D. Rama Krishna, Y. Pandu Rangaiah
Abstract:
This paper presents the design of multiband reconfigurable antenna using PIN diodes for four iterations and all the four iterations have been validated by measuring return loss and pattern measurements of developed prototype antenna. The simulated and experimental data have demonstrated the concepts of a multiband reconfigurable antenna by switching OFF and ON of PIN diodes for multiple band frequencies. The technique has taken the advantage of a different number of radiating lengths with the use of PIN diode switches, each configuration resonating at multiband frequencies.Keywords: frequency reconfigurable, meandered line multiband antenna, PIN diode, multiband frequencies
Procedia PDF Downloads 3882622 Computer Software for Calculating Electron Mobility of Semiconductors Compounds; Case Study for N-Gan
Authors: Emad A. Ahmed
Abstract:
Computer software to calculate electron mobility with respect to different scattering mechanism has been developed. This software is adopted completely Graphical User Interface (GUI) technique and its interface has been designed by Microsoft Visual Basic 6.0. As a case study the electron mobility of n-GaN was performed using this software. The behaviour of the mobility for n-GaN due to elastic scattering processes and its relation to temperature and doping concentration were discussed. The results agree with other available theoretical and experimental data.Keywords: electron mobility, relaxation time, GaN, scattering, computer software, computation physics
Procedia PDF Downloads 6732621 Development of an Analytical Model for a Synchronous Permanent Magnet Generator
Authors: T. Sahbani, M. Bouteraa, R. Wamkeue
Abstract:
Wind Turbine are considered to be one of the more efficient system of energy production nowadays, a reason that leads the main industrial companies in wind turbine construction and researchers in over the world to look for better performance and one of the ways for that is the use of the synchronous permanent magnet generator. In this context, this work is about developing an analytical model that could simulate different situation in which the synchronous generator may go through, and of course this model match perfectly with the numerical and experimental model.Keywords: MATLAB, synchronous permanent magnet generator, wind turbine, analytical model
Procedia PDF Downloads 5502620 Numerical and Experimental Comparison of Surface Pressures around a Scaled Ship Wind-Assisted Propulsion System
Authors: James Cairns, Marco Vezza, Richard Green, Donald MacVicar
Abstract:
Significant legislative changes are set to revolutionise the commercial shipping industry. Upcoming emissions restrictions will force operators to look at technologies that can improve the efficiency of their vessels -reducing fuel consumption and emissions. A device which may help in this challenge is the Ship Wind-Assisted Propulsion system (SWAP), an actively controlled aerofoil mounted vertically on the deck of a ship. The device functions in a similar manner to a sail on a yacht, whereby the aerodynamic forces generated by the sail reach an equilibrium with the hydrodynamic forces on the hull and a forward velocity results. Numerical and experimental testing of the SWAP device is presented in this study. Circulation control takes the form of a co-flow jet aerofoil, utilising both blowing from the leading edge and suction from the trailing edge. A jet at the leading edge uses the Coanda effect to energise the boundary layer in order to delay flow separation and create high lift with low drag. The SWAP concept has been originated by the research and development team at SMAR Azure Ltd. The device will be retrofitted to existing ships so that a component of the aerodynamic forces acts forward and partially reduces the reliance on existing propulsion systems. Wind tunnel tests have been carried out at the de Havilland wind tunnel at the University of Glasgow on a 1:20 scale model of this system. The tests aim to understand the airflow characteristics around the aerofoil and investigate the approximate lift and drag coefficients that an early iteration of the SWAP device may produce. The data exhibits clear trends of increasing lift as injection momentum increases, with critical flow attachment points being identified at specific combinations of jet momentum coefficient, Cµ, and angle of attack, AOA. Various combinations of flow conditions were tested, with the jet momentum coefficient ranging from 0 to 0.7 and the AOA ranging from 0° to 35°. The Reynolds number across the tested conditions ranged from 80,000 to 240,000. Comparisons between 2D computational fluid dynamics (CFD) simulations and the experimental data are presented for multiple Reynolds-Averaged Navier-Stokes (RANS) turbulence models in the form of normalised surface pressure comparisons. These show good agreement for most of the tested cases. However, certain simulation conditions exhibited a well-documented shortcoming of RANS-based turbulence models for circulation control flows and over-predicted surface pressures and lift coefficient for fully attached flow cases. Work must be continued in finding an all-encompassing modelling approach which predicts surface pressures well for all combinations of jet injection momentum and AOA.Keywords: CFD, circulation control, Coanda, turbo wing sail, wind tunnel
Procedia PDF Downloads 136