Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 889

Search results for: discrete tomography

889 Using Discrete Event Simulation Approach to Reduce Waiting Times in Computed Tomography Radiology Department

Authors: Mwafak Shakoor

Abstract:

The purpose of this study was to reduce patient waiting times, improve system throughput and improve resources utilization in radiology department. A discrete event simulation model was developed using Arena simulation software to investigate different alternatives to improve the overall system delivery based on adding resource scenarios due to the linkage between patient waiting times and resource availability. The study revealed that there is no addition investment need to procure additional scanner but hospital management deploy managerial tactics to enhance machine utilization and reduce the long waiting time in the department.

Keywords: discrete event simulation, radiology department, arena, waiting time, healthcare modeling, computed tomography

Procedia PDF Downloads 399
888 The Potential for Cyclotron and Generator-produced Positron Emission Tomography Radiopharmaceuticals: An Overview

Authors: Ng Yen, Shafii Khamis, Rehir Bin Dahalan

Abstract:

Cyclotrons in the energy range 10-30 MeV are widely used for the production of clincally relevant radiosiotopes used in positron emission tomography (PET) nuclear imaging. Positron emmision tomography is a powerful nuclear imaging tool that produces high quality 3-dimentional images of functional processes of body. The advantage of PET among all other imaging devices is that it allows the study of an impressive array of discrete biochemical and physiologic processes, within a single imaging session. The number of PET scanner increases every year globally due to high clinical demand. However, not all PET centers can afford a cyclotron, due to the expense associated with operation of an in-house cyclotron. Therefore, current research has also focused on the development of parent/daughter generators that can reliably provide PET nuclides. These generators (68Ge/68Ga generator, 62Zn/62Cu, 82Sr/82Rb, etc) can provide even short-lived radionuclides at any time on demand, without the need of an ‘in-house cyclotron’. The parent isotope is produced at a cyclotron/reactor facility, and can be shipped to remote clinical sites (regionally/overseas), where the daughter isotope is eluted, a model similar to the 99Mo/99mTc generator system. The specific aim for this presentation is to talk about the potential for both of the cyclotron and generator-produced PET radiopharmaceuticals used in clinical imaging.

Keywords: positron emission tomography, radiopharmaceutical, cyclotron, generator

Procedia PDF Downloads 414
887 Optimization of Fourth Order Discrete-Approximation Inclusions

Authors: Elimhan N. Mahmudov

Abstract:

The paper concerns the necessary and sufficient conditions of optimality for Cauchy problem of fourth order discrete (PD) and discrete-approximate (PDA) inclusions. The main problem is formulation of the fourth order adjoint discrete and discrete-approximate inclusions and transversality conditions, which are peculiar to problems including fourth order derivatives and approximate derivatives. Thus the necessary and sufficient conditions of optimality are obtained incorporating the Euler-Lagrange and Hamiltonian forms of inclusions. Derivation of optimality conditions are based on the apparatus of locally adjoint mapping (LAM). Moreover in the application of these results we consider the fourth order linear discrete and discrete-approximate inclusions.

Keywords: difference, optimization, fourth, approximation, transversality

Procedia PDF Downloads 279
886 Measuring the Cavitation Cloud by Electrical Impedance Tomography

Authors: Michal Malik, Jiri Primas, Darina Jasikova, Michal Kotek, Vaclav Kopecky

Abstract:

This paper is a case study dealing with the viability of using Electrical Impedance Tomography for measuring cavitation clouds in a pipe setup. The authors used a simple passive cavitation generator to cause a cavitation cloud, which was then recorded for multiple flow rates using electrodes in two measuring planes. The paper presents the results of the experiment, showing the used industrial grade tomography system ITS p2+ is able to measure the cavitation cloud and may be particularly useful for identifying the inception of cavitation in setups where other measuring tools may not be viable.

Keywords: cavitation cloud, conductivity measurement, electrical impedance tomography, mechanically induced cavitation

Procedia PDF Downloads 166
885 Lung Cancer Detection and Multi Level Classification Using Discrete Wavelet Transform Approach

Authors: V. Veeraprathap, G. S. Harish, G. Narendra Kumar

Abstract:

Uncontrolled growth of abnormal cells in the lung in the form of tumor can be either benign (non-cancerous) or malignant (cancerous). Patients with Lung Cancer (LC) have an average of five years life span expectancy provided diagnosis, detection and prediction, which reduces many treatment options to risk of invasive surgery increasing survival rate. Computed Tomography (CT), Positron Emission Tomography (PET), and Magnetic Resonance Imaging (MRI) for earlier detection of cancer are common. Gaussian filter along with median filter used for smoothing and noise removal, Histogram Equalization (HE) for image enhancement gives the best results without inviting further opinions. Lung cavities are extracted and the background portion other than two lung cavities is completely removed with right and left lungs segmented separately. Region properties measurements area, perimeter, diameter, centroid and eccentricity measured for the tumor segmented image, while texture is characterized by Gray-Level Co-occurrence Matrix (GLCM) functions, feature extraction provides Region of Interest (ROI) given as input to classifier. Two levels of classifications, K-Nearest Neighbor (KNN) is used for determining patient condition as normal or abnormal, while Artificial Neural Networks (ANN) is used for identifying the cancer stage is employed. Discrete Wavelet Transform (DWT) algorithm is used for the main feature extraction leading to best efficiency. The developed technology finds encouraging results for real time information and on line detection for future research.

Keywords: artificial neural networks, ANN, discrete wavelet transform, DWT, gray-level co-occurrence matrix, GLCM, k-nearest neighbor, KNN, region of interest, ROI

Procedia PDF Downloads 58
884 Microwave Tomography: The Analytical Treatment for Detecting Malignant Tumor Inside Human Body

Authors: Muhammad Hassan Khalil, Xu Jiadong

Abstract:

Early detection through screening is the best tool short of a perfect treatment against the malignant tumor inside the breast of a woman. By detecting cancer in its early stages, it can be recognized and treated before it has the opportunity to spread and change into potentially dangerous. Microwave tomography is a new imaging method based on contrast in dielectric properties of materials. The mathematical theory of microwave tomography involves solving an inverse problem for Maxwell’s equations. In this paper, we present designed antenna for breast cancer detection, which will use in microwave tomography configuration.

Keywords: microwave imaging, inverse scattering, breast cancer, malignant tumor detection

Procedia PDF Downloads 281
883 3D Printed Multi-Modal Phantom Using Computed Tomography and 3D X-Ray Images

Authors: Sung-Suk Oh, Bong-Keun Kang, Sang-Wook Park, Hui-Jin Joo, Jong-Ryul Choi, Seong-Jun Lee, Jeong-Woo Sohn

Abstract:

The imaging phantom is utilized for the verification, evaluation and tuning of the medical imaging device and system. Although it could be costly, 3D printing is an ideal technique for a rapid, customized, multi-modal phantom making. In this article, we propose the multi-modal phantom using 3D printing. First of all, the Dicom images for were measured by CT (Computed Tomography) and 3D X-ray systems (PET/CT and Angio X-ray system of Siemens) and then were analyzed. Finally, the 3D modeling was processed using Dicom images. The 3D printed phantom was scanned by PET/CT and MRI systems and then evaluated.

Keywords: imaging phantom, MRI (Magnetic Resonance Imaging), PET / CT (Positron Emission Tomography / Computed Tomography), 3D printing

Procedia PDF Downloads 416
882 O-(2-18F-Fluoroethyl)-L-Tyrosine Positron Emission Tomography/Computed Tomography in Patients with Suspicious Recurrent Low and High-Grade Glioma

Authors: Mahkameh Asadi, Habibollah Dadgar

Abstract:

The precise definition margin of high and low-grade glioma is crucial for choosing best treatment approach after surgery and radio-chemotherapy. The aim of the current study was to assess the O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) positron emission tomography (PET)/computed tomography (CT) in patients with low (LGG) and high grade glioma (HGG). We retrospectively analyzed 18F-FET PET/CT of 10 patients (age: 33 ± 12 years) with suspicious for recurrent LGG and HGG. The final decision of recurrence was made by magnetic resonance imaging (MRI) and registered clinical data. While response to radio-chemotherapy by MRI is often complex and sophisticated due to the edema, necrosis, and inflammation, emerging amino acid PET leading to better interpretations with more specifically differentiate true tumor boundaries from equivocal lesions. Therefore, integrating amino acid PET in the management of glioma to complement MRI will significantly improve early therapy response assessment, treatment planning, and clinical trial design.

Keywords: positron emission tomography, amino acid positron emission tomography, magnetic resonance imaging, low and high grade glioma

Procedia PDF Downloads 50
881 Role of Discrete Event Simulation in the Assessment and Selection of the Potential Reconfigurable Manufacturing Solutions

Authors: Mohsin Raza, Arne Bilberg, Thomas Ditlev Brunø, Ann-Louise Andersen, Filip SKärin

Abstract:

Shifting from a dedicated or flexible manufacturing system to a reconfigurable manufacturing system (RMS) requires a significant amount of time, money, and effort. Therefore, it is vital to verify beforehand that the potential reconfigurable solution will be able to achieve the organizational objectives. Discrete event simulation offers the opportunity of assessing several reconfigurable alternatives against the set objectives. This study signifies the importance of using discrete-event simulation as a tool to verify several reconfiguration options. Two different industrial cases have been presented in the study to elaborate on the role of discrete event simulation in the implementation methodology of RMSs. The study concluded that discrete event simulation is one of the important tools to consider in the RMS implementation methodology.

Keywords: reconfigurable manufacturing system, discrete event simulation, Tecnomatix plant simulation, RMS

Procedia PDF Downloads 20
880 Using Electrical Impedance Tomography to Control a Robot

Authors: Shayan Rezvanigilkolaei, Shayesteh Vefaghnematollahi

Abstract:

Electrical impedance tomography is a non-invasive medical imaging technique suitable for medical applications. This paper describes an electrical impedance tomography device with the ability to navigate a robotic arm to manipulate a target object. The design of the device includes various hardware and software sections to perform medical imaging and control the robotic arm. In its hardware section an image is formed by 16 electrodes which are located around a container. This image is used to navigate a 3DOF robotic arm to reach the exact location of the target object. The data set to form the impedance imaging is obtained by having repeated current injections and voltage measurements between all electrode pairs. After performing the necessary calculations to obtain the impedance, information is transmitted to the computer. This data is fed and then executed in MATLAB which is interfaced with EIDORS (Electrical Impedance Tomography Reconstruction Software) to reconstruct the image based on the acquired data. In the next step, the coordinates of the center of the target object are calculated by image processing toolbox of MATLAB (IPT). Finally, these coordinates are used to calculate the angles of each joint of the robotic arm. The robotic arm moves to the desired tissue with the user command.

Keywords: electrical impedance tomography, EIT, surgeon robot, image processing of electrical impedance tomography

Procedia PDF Downloads 191
879 Multidimensional Integral and Discrete Opial–Type Inequalities

Authors: Maja Andrić, Josip Pečarić

Abstract:

Over the last five decades, an enormous amount of work has been done on Opial’s integral inequality, dealing with new proofs, various generalizations, extensions and discrete analogs. The Opial inequality is recognized as a fundamental result in the analysis of qualitative properties of solution of differential equations. We use submultiplicative convex functions, appropriate representations of functions and inequalities involving means to obtain generalizations and extensions of certain known multidimensional integral and discrete Opial-type inequalities.

Keywords: Opial's inequality, Jensen's inequality, integral inequality, discrete inequality

Procedia PDF Downloads 292
878 Numerical Modelling of Dry Stone Masonry Structures Based on Finite-Discrete Element Method

Authors: Ž. Nikolić, H. Smoljanović, N. Živaljić

Abstract:

This paper presents numerical model based on finite-discrete element method for analysis of the structural response of dry stone masonry structures under static and dynamic loads. More precisely, each discrete stone block is discretized by finite elements. Material non-linearity including fracture and fragmentation of discrete elements as well as cyclic behavior during dynamic load are considered through contact elements which are implemented within a finite element mesh. The application of the model was conducted on several examples of these structures. The performed analysis shows high accuracy of the numerical results in comparison with the experimental ones and demonstrates the potential of the finite-discrete element method for modelling of the response of dry stone masonry structures.

Keywords: dry stone masonry structures, dynamic load, finite-discrete element method, static load

Procedia PDF Downloads 318
877 Fundamental Solutions for Discrete Dynamical Systems Involving the Fractional Laplacian

Authors: Jorge Gonzalez Camus, Valentin Keyantuo, Mahamadi Warma

Abstract:

In this work, we obtain representation results for solutions of a time-fractional differential equation involving the discrete fractional Laplace operator in terms of generalized Wright functions. Such equations arise in the modeling of many physical systems, for example, chain processes in chemistry and radioactivity. The focus is on the linear problem of the simplified Moore - Gibson - Thompson equation, where the discrete fractional Laplacian and the Caputo fractional derivate of order on (0,2] are involved. As a particular case, we obtain the explicit solution for the discrete heat equation and discrete wave equation. Furthermore, we show the explicit solution for the equation involving the perturbed Laplacian by the identity operator. The main tool for obtaining the explicit solution are the Laplace and discrete Fourier transforms, and Stirling's formula. The methodology mainly is to apply both transforms in the equation, to find the inverse of each transform, and to prove that this solution is well defined, using Stirling´s formula.

Keywords: discrete fractional Laplacian, explicit representation of solutions, fractional heat and wave equations, fundamental

Procedia PDF Downloads 103
876 Resistivity Tomography Optimization Based on Parallel Electrode Linear Back Projection Algorithm

Authors: Yiwei Huang, Chunyu Zhao, Jingjing Ding

Abstract:

Electrical Resistivity Tomography has been widely used in the medicine and the geology, such as the imaging of the lung impedance and the analysis of the soil impedance, etc. Linear Back Projection is the core algorithm of Electrical Resistivity Tomography, but the traditional Linear Back Projection can not make full use of the information of the electric field. In this paper, an imaging method of Parallel Electrode Linear Back Projection for Electrical Resistivity Tomography is proposed, which generates the electric field distribution that is not linearly related to the traditional Linear Back Projection, captures the new information and improves the imaging accuracy without increasing the number of electrodes by changing the connection mode of the electrodes. The simulation results show that the accuracy of the image obtained by the inverse operation obtained by the Parallel Electrode Linear Back Projection can be improved by about 20%.

Keywords: electrical resistivity tomography, finite element simulation, image optimization, parallel electrode linear back projection

Procedia PDF Downloads 58
875 A Hybrid Watermarking Scheme Using Discrete and Discrete Stationary Wavelet Transformation For Color Images

Authors: Bülent Kantar, Numan Ünaldı

Abstract:

This paper presents a new method which includes robust and invisible digital watermarking on images that is colored. Colored images are used as watermark. Frequency region is used for digital watermarking. Discrete wavelet transform and discrete stationary wavelet transform are used for frequency region transformation. Low, medium and high frequency coefficients are obtained by applying the two-level discrete wavelet transform to the original image. Low frequency coefficients are obtained by applying one level discrete stationary wavelet transform separately to all frequency coefficient of the two-level discrete wavelet transformation of the original image. For every low frequency coefficient obtained from one level discrete stationary wavelet transformation, watermarks are added. Watermarks are added to all frequency coefficients of two-level discrete wavelet transform. Totally, four watermarks are added to original image. In order to get back the watermark, the original and watermarked images are applied with two-level discrete wavelet transform and one level discrete stationary wavelet transform. The watermark is obtained from difference of the discrete stationary wavelet transform of the low frequency coefficients. A total of four watermarks are obtained from all frequency of two-level discrete wavelet transform. Obtained watermark results are compared with real watermark results, and a similarity result is obtained. A watermark is obtained from the highest similarity values. Proposed methods of watermarking are tested against attacks of the geometric and image processing. The results show that proposed watermarking method is robust and invisible. All features of frequencies of two level discrete wavelet transform watermarking are combined to get back the watermark from the watermarked image. Watermarks have been added to the image by converting the binary image. These operations provide us with better results in getting back the watermark from watermarked image by attacking of the geometric and image processing.

Keywords: watermarking, DWT, DSWT, copy right protection, RGB

Procedia PDF Downloads 417
874 Superconvergence of the Iterated Discrete Legendre Galerkin Method for Fredholm-Hammerstein Equations

Authors: Payel Das, Gnaneshwar Nelakanti

Abstract:

In this paper we analyse the iterated discrete Legendre Galerkin method for Fredholm-Hammerstein integral equations with smooth kernel. Using sufficiently accurate numerical quadrature rule, we obtain superconvergence rates for the iterated discrete Legendre Galerkin solutions in both infinity and $L^2$-norm. Numerical examples are given to illustrate the theoretical results.

Keywords: hammerstein integral equations, spectral method, discrete galerkin, numerical quadrature, superconvergence

Procedia PDF Downloads 365
873 Non-Destructive Testing of Metal Pipes with Ultrasonic Sensors Based on Determination of Maximum Ultrasonic Frequency

Authors: Herlina Abdul Rahim, Javad Abbaszadeh, Ruzairi Abdul Rahim

Abstract:

In this research, the non-invasive ultrasonic transmission tomography is investigated. In order to model the ultrasonic wave scattering for different thickness of metal pipes, two-dimensional (2D) finite element modeling (FEM) has been utilized. The wall thickness variation of the metal pipe and its influence on propagation of the ultrasonic pressure wave are explored in this paper, includes frequency analysing in order to find the maximum applicable frequency. The simulation results have been compared to experimental data and are shown to provide key insight for this well-defined experimental case by explaining the achieved reconstructed images from experimental setup. Finally, the experimental results which are useful for further investigation for the application of ultrasonic transmission tomography in industry are illustrated.

Keywords: ultrasonic transmission tomography, ultrasonic sensors, ultrasonic wave, non-invasive tomography, metal pipe

Procedia PDF Downloads 255
872 Curvature Based-Methods for Automatic Coarse and Fine Registration in Dimensional Metrology

Authors: Rindra Rantoson, Hichem Nouira, Nabil Anwer, Charyar Mehdi-Souzani

Abstract:

Multiple measurements by means of various data acquisition systems are generally required to measure the shape of freeform workpieces for accuracy, reliability and holisticity. The obtained data are aligned and fused into a common coordinate system within a registration technique involving coarse and fine registrations. Standardized iterative methods have been established for fine registration such as Iterative Closest Points (ICP) and its variants. For coarse registration, no conventional method has been adopted yet despite a significant number of techniques which have been developed in the literature to supply an automatic rough matching between data sets. Two main issues are addressed in this paper: the coarse registration and the fine registration. For coarse registration, two novel automated methods based on the exploitation of discrete curvatures are presented: an enhanced Hough Transformation (HT) and an improved Ransac Transformation. The use of curvature features in both methods aims to reduce computational cost. For fine registration, a new variant of ICP method is proposed in order to reduce registration error using curvature parameters. A specific distance considering the curvature similarity has been combined with Euclidean distance to define the distance criterion used for correspondences searching. Additionally, the objective function has been improved by combining the point-to-point (P-P) minimization and the point-to-plane (P-Pl) minimization with automatic weights. These ones are determined from the preliminary calculated curvature features at each point of the workpiece surface. The algorithms are applied on simulated and real data performed by a computer tomography (CT) system. The obtained results reveal the benefit of the proposed novel curvature-based registration methods.

Keywords: discrete curvature, RANSAC transformation, hough transformation, coarse registration, ICP variant, point-to-point and point-to-plane minimization combination, computer tomography

Procedia PDF Downloads 358
871 Discrete Tracking Control of Nonholonomic Mobile Robots: Backstepping Design Approach

Authors: Alexander S. Andreev, Olga A. Peregudova

Abstract:

In this paper, we propose a discrete tracking control of nonholonomic mobile robots with two degrees of freedom. The electro-mechanical model of a mobile robot moving on a horizontal surface without slipping, with two rear wheels controlled by two independent DC electric, and one front roal wheel is considered. We present back-stepping design based on the Euler approximate discrete-time model of a continuous-time plant. Theoretical considerations are verified by numerical simulation. The work was supported by RFFI (15-01-08482).

Keywords: actuator dynamics, back stepping, discrete-time controller, Lyapunov function, wheeled mobile robot

Procedia PDF Downloads 318
870 Assessment of the Response of Seismic Refraction Tomography and Resistivity Imaging to the Same Geologic Environment: A Case Study of Zaria Basement Complex in North Central Nigeria

Authors: Collins C. Chiemeke, I. B. Osazuwa, S. O. Ibe, G. N. Egwuonwu, C. D. Ani, E. C. Chii

Abstract:

The study area is Zaria, located in the basement complex of northern Nigeria. The rock type forming the major part of the Zaria batholith is granite. This research work was carried out to compare the responses of seismic refraction tomography and resistivity tomography in the same geologic environment and under the same conditions. Hence, the choice of the site that has a visible granitic outcrop that extends across a narrow stream channel and is flanked by unconsolidated overburden, a neutral profile that was covered by plain overburden and a site with thick lateritic cover became necessary. The results of the seismic and resistivity tomography models reveals that seismic velocity and resistivity does not always simultaneously increase with depth, but their responses in any geologic environment are determined by changes in the mechanical and chemical content of the rock types rather than depth.

Keywords: environment, resistivity, response, seismic, velocity

Procedia PDF Downloads 269
869 Analytical Solution of Non–Autonomous Discrete Non-Linear Schrodinger Equation With Saturable Non-Linearity

Authors: Mishu Gupta, Rama Gupta

Abstract:

It has been elucidated here that non- autonomous discrete non-linear Schrödinger equation is associated with saturable non-linearity through photo-refractive media. We have investigated the localized solution of non-autonomous saturable discrete non-linear Schrödinger equations. The similarity transformation has been involved in converting non-autonomous saturable discrete non-linear Schrödinger equation to constant-coefficient saturable discrete non-linear Schrödinger equation (SDNLSE), whose exact solution is already known. By back substitution, the solution of the non-autonomous version has been obtained. We have analysed our solution for the hyperbolic and periodic form of gain/loss term, and interesting results have been obtained. The most important characteristic role is that it helps us to analyse the propagation of electromagnetic waves in glass fibres and other optical wave mediums. Also, the usage of SDNLSE has been seen in tight binding for Bose-Einstein condensates in optical mediums. Even the solutions are interrelated, and its properties are prominently used in various physical aspects like optical waveguides, Bose-Einstein (B-E) condensates in optical mediums, Non-linear optics in photonic crystals, and non-linear kerr–type non-linearity effect and photo refracting medium.

Keywords: B-E-Bose-Einstein, DNLSE-Discrete non linear schrodinger equation, NLSE-non linear schrodinger equation, SDNLSE - saturable discrete non linear Schrodinger equation

Procedia PDF Downloads 66
868 Reconstruction of Binary Matrices Satisfying Neighborhood Constraints by Simulated Annealing

Authors: Divyesh Patel, Tanuja Srivastava

Abstract:

This paper considers the NP-hard problem of reconstructing binary matrices satisfying exactly-1-4-adjacency constraint from its row and column projections. This problem is formulated into a maximization problem. The objective function gives a measure of adjacency constraint for the binary matrices. The maximization problem is solved by the simulated annealing algorithm and experimental results are presented.

Keywords: discrete tomography, exactly-1-4-adjacency, simulated annealing, binary matrices

Procedia PDF Downloads 299
867 Discrete Element Simulations of Composite Ceramic Powders

Authors: Julia Cristina Bonaldo, Christophe L. Martin, Severine Romero Baivier, Stephane Mazerat

Abstract:

Alumina refractories are commonly used in steel and foundry industries. These refractories are prepared through a powder metallurgy route. They are a mixture of hard alumina particles and graphite platelets embedded into a soft carbonic matrix (binder). The powder can be cold pressed isostatically or uniaxially, depending on the application. The compact is then fired to obtain the final product. The quality of the product is governed by the microstructure of the composite and by the process parameters. The compaction behavior and the mechanical properties of the fired product depend greatly on the amount of each phase, on their morphology and on the initial microstructure. In order to better understand the link between these parameters and the macroscopic behavior, we use the Discrete Element Method (DEM) to simulate the compaction process and the fracture behavior of the fired composite. These simulations are coupled with well-designed experiments. Four mixes with various amounts of Al₂O₃ and binder were tested both experimentally and numerically. In DEM, each particle is modelled and the interactions between particles are taken into account through appropriate contact or bonding laws. Here, we model a bimodal mixture of large Al₂O₃ and small Al₂O₃ covered with a soft binder. This composite is itself mixed with graphite platelets. X-ray tomography images are used to analyze the morphologies of the different components. Large Al₂O₃ particles and graphite platelets are modelled in DEM as sets of particles bonded together. The binder is modelled as a soft shell that covers both large and small Al₂O₃ particles. When two particles with binder indent each other, they first interact through this soft shell. Once a critical indentation is reached (towards the end of compaction), hard Al₂O₃ - Al₂O₃ contacts appear. In accordance with experimental data, DEM simulations show that the amount of Al₂O₃ and the amount of binder play a major role for the compaction behavior. The graphite platelets bend and break during the compaction, also contributing to the macroscopic stress. Firing step is modeled in DEM by ascribing bonds to particles which contact each other after compaction. The fracture behavior of the compacted mixture is also simulated and compared with experimental data. Both diametrical tests (Brazilian tests) and triaxial tests are carried out. Again, the link between the amount of Al₂O₃ particles and the fracture behavior is investigated. The methodology described here can be generalized to other particulate materials that are used in the ceramic industry.

Keywords: cold compaction, composites, discrete element method, refractory materials, x-ray tomography

Procedia PDF Downloads 54
866 Measuring of the Volume Ratio of Two Immiscible Liquids Using Electrical Impedance Tomography

Authors: Jiri Primas, Michal Malik, Darina Jasikova, Michal Kotek, Vaclav Kopecky

Abstract:

Authors of this paper discuss the measuring of volume ratio of two immiscible liquids in the homogenous mixture using the industrial Electrical Impedance Tomography (EIT) system ITS p2+. In the first part of the paper, the principle of EIT and the basic theory of conductivity of mixture of two components are stated. In the next part, the experiment with water and olive oil mixed with Rushton turbine is described, and the measured results are used to verify the theory. In the conclusion, the results are discussed in detail, and the accuracy of the measuring method and its advantages are also mentioned.

Keywords: conductivity, electrical impedance tomography, homogenous mixture, mixing process

Procedia PDF Downloads 302
865 Image Enhancement Algorithm of Photoacoustic Tomography Using Active Contour Filtering

Authors: Prasannakumar Palaniappan, Dong Ho Shin, Chul Gyu Song

Abstract:

The photoacoustic images are obtained from a custom developed linear array photoacoustic tomography system. The biological specimens are imitated by conducting phantom tests in order to retrieve a fully functional photoacoustic image. The acquired image undergoes the active region based contour filtering to remove the noise and accurately segment the object area for further processing. The universal back projection method is used as the image reconstruction algorithm. The active contour filtering is analyzed by evaluating the signal to noise ratio and comparing it with the other filtering methods.

Keywords: contour filtering, linear array, photoacoustic tomography, universal back projection

Procedia PDF Downloads 309
864 Detecting Rat’s Kidney Inflammation Using Real Time Photoacoustic Tomography

Authors: M. Y. Lee, D. H. Shin, S. H. Park, W.C. Ham, S.K. Ko, C. G. Song

Abstract:

Photoacoustic Tomography (PAT) is a promising medical imaging modality that combines optical imaging contrast with the spatial resolution of ultrasound imaging. It can also distinguish the changes in biological features. But, real-time PAT system should be confirmed due to photoacoustic effect for tissue. Thus, we have developed a real-time PAT system using a custom-developed data acquisition board and ultrasound linear probe. To evaluate performance of our system, phantom test was performed. As a result of those experiments, the system showed satisfactory performance and its usefulness has been confirmed. We monitored the degradation of inflammation which induced on the rat’s kidney using real-time PAT.

Keywords: photoacoustic tomography, inflammation detection, rat, kidney, contrast agent, ultrasound

Procedia PDF Downloads 349
863 Numerical Investigation of the Effect of Blast Pressure on Discrete Model in Shock Tube

Authors: Aldin Justin Sundararaj, Austin Lord Tennyson, Divya Jose, A. N. Subash

Abstract:

Blast waves are generated due to the explosions of high energy materials. An explosion yielding a blast wave has the potential to cause severe damage to buildings and its personnel. In order to understand the physics of effects of blast pressure on buildings, studies in the shock tube on generic configurations are carried out at various pressures on discrete models. The strength of shock wave is systematically varied by using different driver gases and diaphragm thickness. The basic material of the diaphragm is Aluminum. To simulate the effect of shock waves on discrete models a shock tube was used. Generic models selected for this study are suitably scaled cylinder, cone and cubical blocks. The experiments were carried out with 2mm diaphragm with burst pressure ranging from 28 to 31 bar. Numerical analysis was carried out over these discrete models. A 3D model of shock-tube with different discrete models inside the tube was used for CFD computation. It was found that cone has dissipated most of the shock pressure compared to cylinder and cubical block. The robustness and the accuracy of the numerical model were validation with the analytical and experimental data.

Keywords: shock wave, blast wave, discrete models, shock tube

Procedia PDF Downloads 226
862 A Generalization of Option Pricing with Discrete Dividends to Markets with Daily Price Limits

Authors: Jiahau Guo, Yihe Zhang

Abstract:

This paper proposes solutions for pricing options on stocks paying discrete dividends in markets with daily price limits. We first extend the intraday density function of Guo and Chang (2020) to a multi-day one and use the framework of Haug et al. (2003) to value European options on stocks paying discrete dividends. Next, we adopt the fast Fourier transform (FFT) to derive accurate and efficient formulae for American options and further employ the three-point Richardson extrapolation to accelerate the computation. Finally, the accuracy of our proposed methods is verified by simulations.

Keywords: daily price limit, discrete dividend, early exercise, fast Fourier transform, multi-day density function, Richardson extrapolation

Procedia PDF Downloads 79
861 Public Preferences for Lung Cancer Screening in China: A Discrete Choice Experiment

Authors: Zixuan Zhao, Lingbin Du, Le Wang, Youqing Wang, Yi Yang, Jingjun Chen, Hengjin Dong

Abstract:

Objectives: Few results from public attitudes for lung cancer screening are available both in China and abroad. This study aimed to identify preferred lung cancer screening modalities in a Chinese population and predict uptake rates of different modalities. Materials and Methods: A discrete choice experiment questionnaire was administered to 392 Chinese individuals aged 50–74 years who were at high risk for lung cancer. Each choice set had two lung screening options and an option to opt-out, and respondents were asked to choose the most preferred one. Both mixed logit analysis and stepwise logistic analysis were conducted to explore whether preferences were related to respondent characteristics and identify which kinds of respondents were more likely to opt out of any screening. Results: On mixed logit analysis, attributes that were predictive of choice at 1% level of statistical significance included the screening interval, screening venue, and out-of-pocket costs. The preferred screening modality seemed to be screening by low-dose computed tomography (LDCT) + blood test once a year in a general hospital at a cost of RMB 50; this could increase the uptake rate by 0.40 compared to the baseline setting. On stepwise logistic regression, those with no endowment insurance were more likely to opt out; those who were older and housewives/househusbands, and those with a health check habit and with commercial endowment insurance were less likely to opt out from a screening programme. Conclusions: There was considerable variance between real risk and self-perceived risk of lung cancer among respondents, and further research is required in this area. Lung cancer screening uptake can be increased by offering various screening modalities, so as to help policymakers further design the screening modality.

Keywords: lung cancer, screening, China., discrete choice experiment

Procedia PDF Downloads 124
860 Entropy Analysis in a Bubble Column Based on Ultrafast X-Ray Tomography Data

Authors: Stoyan Nedeltchev, Markus Schubert

Abstract:

By means of the ultrafast X-ray tomography facility, data were obtained at different superficial gas velocities UG in a bubble column (0.1 m in ID) operated with an air-deionized water system at ambient conditions. Raw reconstructed images were treated by both the information entropy (IE) and the reconstruction entropy (RE) algorithms in order to identify the main transition velocities in a bubble column. The IE values exhibited two well-pronounced minima at UG=0.025 m/s and UG=0.085 m/s identifying the boundaries of the homogeneous, transition and heterogeneous regimes. The RE extracted from the central region of the column’s cross-section exhibited only one characteristic peak at UG=0.03 m/s, which was attributed to the transition from the homogeneous to the heterogeneous flow regime. This result implies that the transition regime is non-existent in the core of the column.

Keywords: bubble column, ultrafast X-ray tomography, information entropy, reconstruction entropy

Procedia PDF Downloads 289