Search results for: enzyme catalysis
181 Investigating Prostaglandin E2 and Intracellular Oxidative Stress Levels in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages upon Treatment with Strobilanthes crispus
Authors: Anna Pick Kiong Ling, Jia May Chin, Rhun Yian Koh, Ying Pei Wong
Abstract:
Background: Uncontrolled inflammation may cause serious inflammatory diseases if left untreated. Non-steroidal anti-inflammatory drug (NSAIDs) is commonly used to inhibit pro-inflammatory enzymes, thus, reduce inflammation. However, long term administration of NSAIDs leads to various complications. Medicinal plants are getting more attention as it is believed to be more compatible with human body. One of them is a flavonoid-containing medicinal plants, Strobilanthes crispus which has been traditionally claimed to possess anti-inflammatory and antioxidant activities. Nevertheless, its anti-inflammatory activities are yet to be scientifically documented. Objectives: This study aimed to examine the anti-inflammatory activity of S. crispus by investigating its effects on intracellular oxidative stress and prostaglandin E2 (PGE2) levels. Materials and Methods: In this study, the Maximum Non-toxic Dose (MNTD) of methanol extract of both leaves and stems of S. crispus was first determined using 3-(4,5-dimethylthiazolyl-2)-2,5-diphenytetrazolium Bromide (MTT) assay. The effects of S. crispus extracts at MNTD and half MNTD (½MNTD) on intracellular ROS as well as PGE2 levels in 1.0 µg/mL LPS-stimulated RAW 264.7 macrophages were then be measured using DCFH-DA and a competitive enzyme immunoassay kit, respectively. Results: The MNTD of leaf extract was determined as 700µg/mL while for stem was as low as 1.4µg/mL. When LPS-stimulated RAW 264.7 macrophages were subjected to the MNTD of S. crispus leaf extract, both intracellular ROS and PGE2 levels were significantly reduced. In contrast, stem extract at both MNTD and ½MNTD did not significantly reduce the PGE2 level, but significantly increased the intracellular ROS level. Conclusion: The methanol leaf extract of S. crispus may possess anti-inflammatory properties as it is able to significantly reduce the intracellular ROS and PGE2 levels of LPS-stimulated cells. Nevertheless, further studies such as investigating the interleukin, nitric oxide and cytokine tumor necrosis factor-α (TNFα) levels has to be conducted to further confirm the anti-inflammatory properties of S. crispus.Keywords: anti-inflammatory, natural products, prostaglandin E2, reactive oxygen species
Procedia PDF Downloads 284180 Electrochemical Bioassay for Haptoglobin Quantification: Application in Bovine Mastitis Diagnosis
Authors: Soledad Carinelli, Iñigo Fernández, José Luis González-Mora, Pedro A. Salazar-Carballo
Abstract:
Mastitis is the most relevant inflammatory disease in cattle, affecting the animal health and causing important economic losses on dairy farms. This disease takes place in the mammary gland or udder when some opportunistic microorganisms, such as Staphylococcus aureus, Streptococcus agalactiae, Corynebacterium bovis, etc., invade the teat canal. According to the severity of the inflammation, mastitis can be classified as sub-clinical, clinical and chronic. Standard methods for mastitis detection include counts of somatic cells, cell culture, electrical conductivity of the milk, and California test (evaluation of “gel-like” matrix consistency after cell lysed with detergents). However, these assays present some limitations for accurate detection of subclinical mastitis. Currently, haptoglobin, an acute phase protein, has been proposed as novel and effective biomarker for mastitis detection. In this work, an electrochemical biosensor based on polydopamine-modified magnetic nanoparticles (MNPs@pDA) for haptoglobin detection is reported. Thus, MNPs@pDA has been synthesized by our group and functionalized with hemoglobin due to its high affinity to haptoglobin protein. The protein was labeled with specific antibodies modified with alkaline phosphatase enzyme for its electrochemical detection using an electroactive substrate (1-naphthyl phosphate) by differential pulse voltammetry. After the optimization of assay parameters, the haptoglobin determination was evaluated in milk. The strategy presented in this work shows a wide range of detection, achieving a limit of detection of 43 ng/mL. The accuracy of the strategy was determined by recovery assays, being of 84 and 94.5% for two Hp levels around the cut off value. Milk real samples were tested and the prediction capacity of the electrochemical biosensor was compared with a Haptoglobin commercial ELISA kit. The performance of the assay has demonstrated this strategy is an excellent and real alternative as screen method for sub-clinical bovine mastitis detection.Keywords: bovine mastitis, haptoglobin, electrochemistry, magnetic nanoparticles, polydopamine
Procedia PDF Downloads 173179 Pt Decorated Functionalized Acetylene Black as Efficient Cathode Material for Li Air Battery and Fuel Cell Applications
Authors: Rajashekar Badam, Vedarajan Raman, Noriyoshi Matsumi
Abstract:
Efficiency of energy converting and storage systems like fuel cells and Li-Air battery principally depended on oxygen reduction reaction (ORR) which occurs at cathode. As the kinetics of the ORR is very slow, it becomes the rate determining step. Exploring carbon substrates for enhancing the dispersion and activity of the metal catalyst and commercially viable simple preparation method is a very crucial area of research in the field of energy materials. Hence, many researchers made large number of carbon-based ORR materials today. But, there are hardly few studies on the effect of interaction between Pt-carbon and carbon-electrolyte on activity. In this work, we have prepared functionalized carbon-based Pt catalyst (Pt-FAB) with enhanced interfacial properties that lead to efficient ORR catalysis. The present work deals with a single-pot method to exfoliate and functionalized acetylene black with enhanced interaction with Pt as well as electrolyte. Acetylene black was functionalized and exfoliated using a facile single pot acid treatment method. The resulted FAB was further decorated with Pt-nano particles (Pt-np). The TEM images of Pt-FAB with uniformly decorated Pt-np of ~3 nm. Further, XPS studies of Pt 4f peak revealed that Pt0 peak was shifted by 0.4 eV in Pt-FAB compared to binding energy of typical Pt⁰ found in Pt/C. The shift can be ascribed to the modulation of electronic state and strong electronic interaction of Pt with carbon. Modulated electronic structure of Pt and strong electronic interaction of Pt with FAB enhances the catalytic activity and durability respectively. To understand the electrode electrolyte interface, electrochemical impedance spectroscopy was carried out. These measurements revealed that the charge transfer resistance of electrode to electrolyte for Pt-FAB is 10 times smaller than that of conventional Pt/C. The interaction with electrolyte helps reduce the interface boundaries, which in turn affects the overall catalytic performance of the electrode. Cyclic voltammetric measurements in 0.1M HClO₄ aq. at a potential scan rate of 50 mVs-1 was employed to evaluate electrochemical surface area (ECSA) of Pt. ECSA of Pt-FAB was found to be as high as 67.2 m²g⁻¹. The three-electrode system showed very high ORR catalytic activity. Mass activity at 0.9 V vs. RHE showed 460 A/g which is much higher than the DOE target values for the year 2020. Further, it showed enhanced performance by showing 723 mW/cm² of highest power density and 1006 mA/cm² of current density at 0.6 V in fuel cell single cell type configuration and 1030 mAhg⁻¹ of rechargeable capacity in Li air battery application. The higher catalytic activity can be ascribed to the improved interaction of FAB with Pt and electrolyte. The aforementioned results evince that Pt-FAB will be a promising cathode material for efficient ORR with significant cyclability for its application in fuel cells and Li-Air batteries. In conclusion, a disordered material was prepared from AB and was systematically characterized. The extremely high ORR activity and ease of preparation make it competent for replacing commercially available ORR materials.Keywords: functionalized acetylene black, oxygen reduction reaction, fuel cells, Functionalized battery
Procedia PDF Downloads 108178 Serosurveillance of Measles Virus amongst Vaccinated Children of a Rural Population of Sindh
Authors: Zeb Hussain, Muhammad Asif Qureshi, Shaheen Sharafat
Abstract:
Background: Measles is a contagious viral infection common in childhood. Vaccination against measles is included in the expanded program of immunization (EPI). However, and alarmingly, a high mortality rate is observed due to measles infection in Pakistan. Moreover a recent outbreak of measles in various areas of Pakistan further highlights the problem. It is therefore important to investigate measles specific IgG (antibody) levels in our population. Objective: To quantify measles specific IgG antibodies amongst vaccinated children in district Qamber Shahdadkot, Sindh. Methodology: This cross-sectional study was conducted at the Microbiology section of the Dow-Diagnostic-Research-and-Reference-Laboratory (DDRRL), DUHS after Institutional Review Board approval (IRB-516/DUHS/-14) during August-December-2014. A total of 173 participants (residents of district Qamber Shahdadkot, Sindh) aged between 1-5 years were recruited in the study. Blood samples were collected as per standard phlebotomy guidelines. Blood was stored at 4 °C overnight. Samples were subsequently spun at a speed of 10000rpm to separate sera, which were divided into small aliquots to be frozen at -20 °C. Frozen sera were transported to the DDRRL on dry ice. Measles specific IgG (antibody) titers were quantified using enzyme linked immunosorbant assay (ELISA). Results: Blood was collected from a total of 173 individuals ranging between 1-5 years of age. Of these, a total of 88 participants were males and 85 were females. Of the 173 investigated samples, only 53 (30.6%) showed protective IgG titers against measles while 120 (69%) were sero-negative. Measles specific IgG antibodies titers were higher in female participants compared to the males. Conclusion: Our data demonstrate that a substantial percentage of vaccinated children in district Qamber-Shahdadkot did not have protective antibody titres against measles. It is therefore extremely important to investigate measles specific IgG levels in various parts of Pakistan in order to implement appropriate protective measures.Keywords: sero-surveillance, measles, vaccinated children, Pakistan
Procedia PDF Downloads 330177 X-Ray Crystallographic Studies on BPSL2418 from Burkholderia pseudomallei
Authors: Mona Alharbi
Abstract:
Melioidosis has emerged as a lethal disease. Unfortunately, the molecular mechanisms of virulence and pathogenicity of Burkholderia pseudomallei remain unknown. However, proteomics research has selected putative targets in B. pseudomallei that might play roles in the B. pseudomallei virulence. BPSL 2418 putative protein has been predicted as a free methionine sulfoxide reductase and interestingly there is a link between the level of the methionine sulfoxide in pathogen tissues and its virulence. Therefore in this work, we describe the cloning expression, purification, and crystallization of BPSL 2418 and the solution of its 3D structure using X-ray crystallography. Also, we aimed to identify the substrate binding and reduced forms of the enzyme to understand the role of BPSL 2418. The gene encoding BPSL2418 from B. pseudomallei was amplified by PCR and reclone in pETBlue-1 vector and transformed into E. coli Tuner DE3 pLacI. BPSL2418 was overexpressed using E. coli Tuner DE3 pLacI and induced by 300μM IPTG for 4h at 37°C. Then BPS2418 purified to better than 95% purity. The pure BPSL2418 was crystallized with PEG 4000 and PEG 6000 as precipitants in several conditions. Diffraction data were collected to 1.2Å resolution. The crystals belonged to space group P2 21 21 with unit-cell parameters a = 42.24Å, b = 53.48Å, c = 60.54Å, α=γ=β= 90Å. The BPSL2418 binding MES was solved by molecular replacement with the known structure 3ksf using PHASER program. The structure is composed of six antiparallel β-strands and four α-helices and two loops. BPSL2418 shows high homology with the GAF domain fRMsrs enzymes which suggest that BPSL2418 might act as methionine sulfoxide reductase. The amino acids alignment between the fRmsrs including BPSL 2418 shows that the three cysteines that thought to catalyze the reduction are fully conserved. BPSL 2418 contains the three conserved cysteines (Cys⁷⁵, Cys⁸⁵ and Cys¹⁰⁹). The active site contains the six antiparallel β-strands and two loops where the disulfide bond formed between Cys⁷⁵ and Cys¹⁰⁹. X-ray structure of free methionine sulfoxide binding and native forms of BPSL2418 were solved to increase the understanding of the BPSL2418 catalytic mechanism.Keywords: X-Ray Crystallography, BPSL2418, Burkholderia pseudomallei, Melioidosis
Procedia PDF Downloads 248176 In vitro α-Amylase and α-Glucosidase Inhibitory Activities of Bitter Melon (Momordica charantia) with Different Stage of Maturity
Authors: P. S. Percin, O. Inanli, S. Karakaya
Abstract:
Bitter melon (Momordica charantia) is a medicinal vegetable, which is used traditionally to remedy diabetes. Bitter melon contains several classes of primary and secondary metabolites. In traditional Turkish medicine bitter melon is used for wound healing and treatment of peptic ulcers. Nowadays, bitter melon is used for the treatment of diabetes and ulcerative colitis in many countries. The main constituents of bitter melon, which are responsible for the anti-diabetic effects, are triterpene, protein, steroid, alkaloid and phenolic compounds. In this study total phenolics, total carotenoids and β-carotene contents of mature and immature bitter melons were determined. In addition, in vitro α-amylase and α-glucosidase activities of mature and immature bitter melons were studied. Total phenolic contents of immature and mature bitter melon were 74 and 123 mg CE/g bitter melon respectively. Although total phenolics of mature bitter melon was higher than that of immature bitter melon, this difference was not found statistically significant (p > 0.05). Carotenoids, a diverse group of more than 600 naturally occurring red, orange and yellow pigments, play important roles in many physiological processes both in plants and humans. The total carotenoid content of mature bitter melon was 4.36 fold higher than the total carotenoid content of immature bitter melon. The compounds that have hypoglycaemic effect of bitter melon are steroidal saponins known as charantin, insulin-like peptides and alkaloids. α-Amylase is one of the main enzymes in human that is responsible for the breakdown of starch to more simple sugars. Therefore, the inhibitors of this enzyme can delay the carbohydrate digestion and reduce the rate of glucose absorption. The immature bitter melon extract showed α-amylase and α-glucosidase inhibitory activities in vitro. α-Amylase inhibitory activity was higher than that of α-glucosidase inhibitory activity when IC50 values were compared. In conclusion, the present results provide evidence that aqueous extract of bitter melon may have an inhibitory effect on carbohydrate breakdown enzymes.Keywords: bitter melon, in vitro antidiabetic activity, total carotenoids, total phenols
Procedia PDF Downloads 241175 Contribution of Hydrogen Peroxide in the Selective Aspect of Prostate Cancer Treatment by Cold Atmospheric Plasma
Authors: Maxime Moreau, Silvère Baron, Jean-Marc Lobaccaro, Karine Charlet, Sébastien Menecier, Frédéric Perisse
Abstract:
Cold Atmospheric Plasma (CAP) is an ionized gas generated at atmospheric pressure with the temperature of heavy particles (molecules, ions, atoms) close to the room temperature. Recent studies have shown that both in-vitro and in-vivo plasma exposition to many cancer cell lines are efficient to induce the apoptotic way of cell death. In some other works, normal cell lines seem to be less impacted by plasma than cancer cell lines. This is called selectivity of plasma. It is highly likely that the generated RNOS (Reactive Nitrogen Oxygen Species) in the plasma jet, but also in the medium, play a key-role in this selectivity. In this study, two CAP devices will be compared to electrical power, chemical species composition and their efficiency to kill cancer cells. A particular focus on the action of hydrogen peroxide will be made. The experiments will take place as described next for both devices: electrical and spectroscopic characterization for different voltages, plasma treatment of normal and cancer cells to compare the CAP efficiency between cell lines and to show that death is induced by an oxidative stress. To enlighten the importance of hydrogen peroxide, an inhibitor of H2O2 will be added in cell culture medium before treatment and a comparison will be made between the results of cell viability in this case and those from a simple plasma exposition. Besides, H2O2 production will be measured by only treating medium with plasma. Cell lines will also be exposed to different concentrations of hydrogen peroxide in order to characterize the cytotoxic threshold for cells and to make a comparison with the quantity of H2O2 produced by CAP devices. Finally, the activity of catalase for different cell lines will be quantified. This enzyme is an important antioxidant agent against hydrogen peroxide. A correlation between cells response to plasma exposition and this activity could be a strong argument in favor of the predominant role of H2O2 to explain the selectivity of plasma cancer treatment by cold atmospheric plasma.Keywords: cold atmospheric plasma, hydrogen peroxide, prostate cancer, selectivity
Procedia PDF Downloads 148174 The Evaluation of the Effect of a Weed-Killer Sulfonylurea on Durum Wheat (Triticum durum Desf)
Authors: Meksem Amara Leila, Ferfar Meriem, Meksem Nabila, Djebar Mohammed Reda
Abstract:
The wheat is the cereal the most consumed in the world. In Algeria, the production of this cereal covers only 20 in 25 % of the needs for the country, the rest being imported. To improve the efficiency and the productivity of the durum wheat, the farmers turn to the use of pesticides: weed-killers, fungicides and insecticides. However this use often entrains losses of products more at least important contaminating the environment and all the food chain. Weed-killers are substances developed to control or destroy plants considered unwanted. That they are natural or produced by the human being (molecule of synthesis), the absorption and the metabolization of weed-killers by plants cause the death of these plants.In this work, we set as goal the evaluation of the effect of a weed-killer sulfonylurea, the CossackOD with various concentrations (0, 2, 4 and 9 µg) on variety of Triticum durum: Cirta. We evaluated the plant growth by measuring the leaves and root length, compared with the witness as well as the content of proline and analyze the level of one of the antioxydative enzymes: catalse, after 14 days of treatment. Sulfonylurea is foliar and root weed-killers inhibiting the acetolactate synthase: a vegetable enzyme essential to the development of the plant. This inhibition causes the ruling of the growth then the death. The obtained results show a diminution of the average length of leaves and roots this can be explained by the fact that the ALS inhibitors are more active in the young and increasing regions of the plant, what inhibits the cellular division and talks a limitation of the foliar and root’s growth. We also recorded a highly significant increase in the proline levels and a stimulation of the catalase activity. As a response to increasing the herbicide concentrations a particular increases in antioxidative mechanisms in wheat cultivar Cirta suggest that the high sensitivity of Cirta to this sulfonylurea herbicide is related to the enhanced production and oxidative damage of reactive oxygen species.Keywords: sulfonylurea, Triticum durum, oxydative stress, Toxicity
Procedia PDF Downloads 424173 Nutritional Evaluation of Sea Buckthorn “Hippophae rhamnoides” Berries and the Pharmaceutical Potential of the Fermented Juice
Authors: Sobhy A. El-Sohaimy, Mohamed G. Shehata, Ashwani Mathur, Amira G. Darwish, Nourhan M. Abd El-Aziz, Pammi Gauba, Pooja Upadhyay
Abstract:
Sea buckthorn is a temperate bush plant native to Asian and European countries, explored across the world in traditional medicine to treat various diseases due to the presence of an exceptionally high content of phenolics, flavonoids and antioxidants. In addition to the evaluation of nutrients and active compounds, the focus of the present work was to assess the optimal levels for L. plantarum RM1 growth by applying response surface methodology (RSM), and to determine the impact of juice fermentation on antioxidant, anti-hypertension and anticancer activity, as well as on organoleptic properties. Sea buckthorn berries were shown to contain good fiber content (6.55%, 25 DV%), high quality of protein (3.12%, 6.24 DV%) containing: histidine, valine, threonine, leucine and lysine (with AAS 24.32, 23.66, 23.09, 23.05 and 21.71%, respectively), and 4.45% sugar that pro- vides only 79 calories. Potassium was shown to be the abundant mineral content (793.43%, 22.66 DV), followed by copper and phosphorus (21.81 and 11.07 DV%, respectively). Sea buckthorn juice exhibited a rich phenolic, flavonoid and carotenoid content (283.58, 118.42 and 6.5 mg/g, respec- tively), in addition to a high content of vitamin C (322.33 mg/g). The HPLC profile indicated that benzoic acid is the dominant phenolic compound in sea buckthorn berries (3825.90 mg/kg). Antiox- idant potentials (DPPH and ABTS) of sea buckthorn showed higher inhibition than ascorbic acid. Antimicrobial potentials were most pronounced against Escherichia coli BA12296 (17.46 mm). The probiotic growth was 8.5 log cfu/mL, with juice concentration, inoculum size and temperature as the main contributors to probiotic growth with a 95% confidence level. Fermentation of sea buck- thorn juice with L. plantarum RM1 enhanced the functional phenolic and flavonoid content, as well as antioxidant and antimicrobial activities. The fermentation with L. plantarum RM1 enhanced the anti-hypertension and anticancer properties of the sea buckthorn juice and gained consumers’ sensorial overall acceptance.Keywords: sea buckthorn juice, L. plantarum RM1, fermentation, antioxidant, antimicrobial, angiotensin converting enzyme inhibition
Procedia PDF Downloads 98172 Hypertensive Response to Maximal Exercise Test in Young and Middle Age Hypertensive on Blood Pressure Lowering Medication: Monotherapy vs. Combination Therapy
Authors: James Patrick A. Diaz, Raul E. Ramboyong
Abstract:
Background: Hypertensive response during maximal exercise test provides important information on the level of blood pressure control and evaluation of treatment. Method: A single center retrospective descriptive study was conducted among 117 young (aged 20 to 40) and middle age (aged 40 to 65) hypertensive patients, who underwent treadmill stress test. Currently on maintenance frontline medication either monotherapy (Angiotensin-converting enzyme inhibitor/Angiotensin receptor blocker [ACEi/ARB], Calcium channel blocker [CCB], Diuretic - Hydrochlorthiazide [HCTZ]) or combination therapy (ARB+CCB, ARB+HCTZ), who attained a maximal exercise on treadmill stress test (TMST) with hypertensive response (systolic blood pressure: male >210 mm Hg, female >190 mm Hg, diastolic blood pressure >100 mmHg, or increase of >10 mm Hg at any time during the test), on Bruce and Modified Bruce protocol. Exaggerated blood pressure response during exercise (systolic [SBP] and diastolic [DBP]), peak exercise blood pressure (SBP and DBP), recovery period (SBP and DBP) and test for ischemia and their antihypertensive medication/s were investigated. Analysis of variance and chi-square test were used for statistical analysis. Results: Hypertensive responses on maximal exercise test were seen mostly among female population (P < 0.000) and middle age (P < 0.000) patients. Exaggerated diastolic blood pressure responses were significantly lower in patients who were taking CCB (P < 0.004). A longer recovery period that showed a delayed decline in SBP was observed in patients taking ARB+HCTZ (P < 0.036). There were no significant differences in the level of exaggerated systolic blood pressure response and during peak exercise (both systolic and diastolic) in patients using either monotherapy or combination antihypertensives. Conclusion: Calcium channel blockers provided lower exaggerated diastolic BP response during maximal exercise test in hypertensive middle age patients. Patients on combination therapy using ARB+HCTZ exhibited a longer recovery period of systolic blood pressure.Keywords: antihypertensive, exercise test, hypertension, hyperytensive response
Procedia PDF Downloads 284171 Phenotypic Characterization of Desi Naked Neck Chicken and Its Association with Insulin-Like Growth Factor-I (IGF-I) Gene Polymorphism in Pakistan
Authors: Akbar Nawaz Khan, Abdul Ghaffar, Muhammad Naeem Riaz
Abstract:
The study was conducted to investigate the phenotypic features, morphometry and production potentialities of indigenous naked neck chicken (NN) of Pakistan under intensive management condition. A total of 35 NN chicks were randomly selected, and the experiment was performed at Poultry and wildlife research section NARC Islamabad for a period of 22 weeks. The predominant plumage color was black and golden while skin color was observed white. The average shank length, leg length, thigh length, keel length, chest breadth, head width, wing space, wing length, body length, body girth, body height and pubic bone width in adult males and females were 69.19 ± 3.34mm, 117.93 ± 4.42mm, 117.93 ± 4.42mm, 90.87 ± 6.53mm, 95.03 ± 4.56mm, 49.77 ± 2.53mm, 30.63 ± 1.50cm, 27.24 ± 2.71cm, 18.88 ± 0.65cm, 17.77 ± 1.01cm, 25.96 ± 0.56cm, 47.81 ± 1.41cm and 35.69 ± 4.09mm respectively. The average age and live body weight of NN chicken at sexual maturity were recorded as 165.85 days and 1269.38 g. While hen-day egg production of NN was recorded as 45%. The present study was aimed to investigate the existence of polymorphism at IGF-I gene in indigenous naked neck chicken through PCR based Restriction Fragment Length Polymorphism. Based on restriction analysis using Hinf I restriction enzyme, three genotypes were detected designated as AA, AC, and CC. Restriction analysis of PCR amplified product showed the presence of DNA fragments of 622, 378, 244 and 191, (genotypes). The PCR-RFLP analysis is easy, cost effective method which permits the easy characterization of IGF-I gene. This showed the investigated IGF-I genes can serve as good molecular markers for marker assisted selection (MAS) concerning growth related traits in chicken.Keywords: Desi chicken, naked neck, morphology, morphometry, production potential, egg traits, egg geometry, IGF-I, growth, PCR- RFLP, chicken
Procedia PDF Downloads 389170 Abridging Pharmaceutical Analysis and Drug Discovery via LC-MS-TOF, NMR, in-silico Toxicity-Bioactivity Profiling for Therapeutic Purposing Zileuton Impurities: Need of Hour
Authors: Saurabh B. Ganorkar, Atul A. Shirkhedkar
Abstract:
The need for investigations protecting against toxic impurities though seems to be a primary requirement; the impurities which may prove non - toxic can be explored for their therapeutic potential if any to assist advanced drug discovery. The essential role of pharmaceutical analysis can thus be extended effectively to achieve it. The present study successfully achieved these objectives with characterization of major degradation products as impurities for Zileuton which has been used for to treat asthma since years. The forced degradation studies were performed to identify the potential degradation products using Ultra-fine Liquid-chromatography. Liquid-chromatography-Mass spectrometry (Time of Flight) and Proton Nuclear Magnetic Resonance Studies were utilized effectively to characterize the drug along with five major oxidative and hydrolytic degradation products (DP’s). The mass fragments were identified for Zileuton and path for the degradation was investigated. The characterized DP’s were subjected to In-Silico studies as XP Molecular Docking to compare the gain or loss in binding affinity with 5-Lipooxygenase enzyme. One of the impurity of was found to have the binding affinity more than the drug itself indicating for its potential to be more bioactive as better Antiasthmatic. The close structural resemblance has the ability to potentiate or reduce bioactivity and or toxicity. The chances of being active biologically at other sites cannot be denied and the same is achieved to some extent by predictions for probability of being active with Prediction of Activity Spectrum for Substances (PASS) The impurities found to be bio-active as Antineoplastic, Antiallergic, and inhibitors of Complement Factor D. The toxicological abilities as Ames-Mutagenicity, Carcinogenicity, Developmental Toxicity and Skin Irritancy were evaluated using Toxicity Prediction by Komputer Assisted Technology (TOPKAT). Two of the impurities were found to be non-toxic as compared to original drug Zileuton. As the drugs are purposed and repurposed effectively the impurities can also be; as they can have more binding affinity; less toxicity and better ability to be bio-active at other biological targets.Keywords: UFLC, LC-MS-TOF, NMR, Zileuton, impurities, toxicity, bio-activity
Procedia PDF Downloads 195169 Catalytic Dehydrogenation of Formic Acid into H2/CO2 Gas: A Novel Approach
Authors: Ayman Hijazi, Witold Kwapinski, J. J. Leahy
Abstract:
Finding a sustainable alternative energy to fossil fuel is an urgent need as various environmental challenges in the world arise. Therefore, formic acid (FA) decomposition has been an attractive field that lies at the center of biomass platform, comprising a potential pool of hydrogen energy that stands as a new energy vector. Liquid FA features considerable volumetric energy density of 6.4 MJ/L and a specific energy density of 5.3 MJ/Kg that qualifies it in the prime seat as an energy source for transportation infrastructure. Additionally, the increasing research interest in FA decomposition is driven by the need of in-situ H2 production, which plays a key role in the hydrogenation reactions of biomass into higher value components. It is reported elsewhere in literature that catalytic decomposition of FA is usually performed in poorly designed setup using simple glassware under magnetic stirring, thus demanding further energy investment to retain the used catalyst. it work suggests an approach that integrates designing a novel catalyst featuring magnetic property with a robust setup that minimizes experimental & measurement discrepancies. One of the most prominent active species for dehydrogenation/hydrogenation of biomass compounds is palladium. Accordingly, we investigate the potential of engrafting palladium metal onto functionalized magnetic nanoparticles as a heterogeneous catalyst to favor the production of CO-free H2 gas from FA. Using ordinary magnet to collect the spent catalyst renders core-shell magnetic nanoparticles as the backbone of the process. Catalytic experiments were performed in a jacketed batch reactor equipped with an overhead stirrer under inert medium. Through a novel approach, FA is charged into the reactor via high-pressure positive displacement pump at steady state conditions. The produced gas (H2+CO2) was measured by connecting the gas outlet to a measuring system based on the amount of the displaced water. The novelty of this work lies in designing a very responsive catalyst, pumping consistent amount of FA into a sealed reactor running at steady state mild temperatures, and continuous gas measurement, along with collecting the used catalyst without the need for centrifugation. Catalyst characterization using TEM, XRD, SEM, and CHN elemental analyzer provided us with details of catalyst preparation and facilitated new venues to alter the nanostructure of the catalyst framework. Consequently, the introduction of amine groups has led to appreciable improvements in terms of dispersion of the doped metals and eventually attaining nearly complete conversion (100%) of FA after 7 hours. The relative importance of the process parameters such as temperature (35-85°C), stirring speed (150-450rpm), catalyst loading (50-200mgr.), and Pd doping ratio (0.75-1.80wt.%) on gas yield was assessed by a Taguchi design-of-experiment based model. Experimental results showed that operating at lower temperature range (35-50°C) yielded more gas while the catalyst loading and Pd doping wt.% were found to be the most significant factors with a P-values 0.026 & 0.031, respectively.Keywords: formic acid decomposition, green catalysis, hydrogen, mesoporous silica, process optimization, nanoparticles
Procedia PDF Downloads 52168 Effects of Pterostilbene in Brown Adipose Tissue from Obese Rats
Authors: Leixuri Aguirre, Iñaki Milton-Laskibar, Elizabeth Hijona, Luis Bujanda, Agnes M. Rimando, Maria P. Portillo
Abstract:
Introduction: In recent years great attention has been paid by scientific community to phenolic compounds as active biomolecules naturally present in foodstuffs due to their beneficial effects on health. Pterostilbene is a resveratrol dimethylether derivative which shows higher biodisponibility. Objective. To analyze the effects of two doses of pterostilbene on several markers of thermogenic capacity in a model of genetic obesity, which shows reduced thermogenesis. Methods: The experiment was conducted with thirty Zucker (fa/fa) rats that were distributed in 3 experimental groups, the control group and two groups orally administered with pterostilbene at 15 and 30 mg/kg body weight/day for 6 weeks. Gene expression of Ucp1, Pgc-1α, Cpt1b, Pparα, Nfr1, Tfam and Cox-2 were assessed by RT-PCR, protein expression of UCP1 and GLUT4 by western blot and enzyme activity of carnitine palmitoyl transferase 1b and citrate synthase by spectrophotometry in interscapular brown adipose tissue (iBAT). Statistical analysis was performed by using one way ANOVA and Newman-Keuls as post-hoc test. Results: Pterostilbene did not change gene expression of Pgc-1α. However, significant increases were found in the expression of Ucp1, Pparα, Nfr-1 and Cox-2. Protein expression of UCP1 and GLUT4 was increased in animals treated with pterostilbene, as well as the activities of CPT-1b and CS. These effects were observed with both doses of pterostilbene, without differences between them. Conclusions: These results show that pterostilbene increases thermogenic and oxidative capacity of brown adipose tissue in obese rats. Whether these effects effectively contribute to the anti-obesity properties of these compound needs further research. Acknowledgments: MINECO-FEDER (AGL2015-65719-R), Basque Government (IT-572-13), University of the Basque Country (ELDUNANOTEK UFI11/32), Institut of Health Carlos III (CIBERobn). Iñaki Milton is a fellowship from the Basque Government.Keywords: brown adipose tissue, pterostilbene, thermogenesis, uncoupling protein 1
Procedia PDF Downloads 296167 Preventive Effect of Stem Back Extracts of Coula edulis Baill. against High-Fat / High Sucrose Diet-Induced Insulin Resistance and Oxidative Stress in Rats
Authors: Eric Beyegue, Boris Azantza, Judith Laure Ngondi, Julius E. Oben
Abstract:
Background: Insulin resistance (IR) and oxidative stress are associated with obesity, diabetes mellitus, and other cardio metabolic disorders. The aim of this study was to investigate the effect of Coula edulis extracts (CEE) on insulin resistance and oxidative stress markers in high-fat/high sucrose diet-induced insulin resistance in rats. Materials and Methods: Thirty male rats were divided into 6 groups of 5 rats each fed, received daily oral administration of CE extracts for 8 weeks as follows: Group 1 or negative control group, fed with standard diet (SD); Group 2 fed with high-fat/high sucrose diet (HFHS) only; Group3 fed with HFHS + CEAq 200; Group 4 fed with HFHS + CEAq 400; Group 5 fed with HFHS + CEEt 200; Group 6 fed with HFHS + CEEt 400. At the end of the experiment (8 weeks), animals were sacrificed plasma lipid profile, glucose, insulin, oxidative marker and digestive enzyme activities were measured. The homeostasis model assessment for insulin resistance (HOMA-IR) was determined. Results: Feedings with HFHS significantly (p < 0.01) induced plasma hyperglycaemia, hyperinsulinaemia, increased triglyceride, total cholesterol, and low-density lipoprotein levels, decreased high-density lipoprotein levels, alterations of α amylase, and glucose-6-phosphatase activities, and oxidative stress. Daily oral administration with CEE for eight weeks after insulin resistance induction had a hypolipidaemic action, antioxidative activities and modulated metabolic markers. Ethanolic extract at the higher dose had the best effect on body weight gain and insulin resistance, whereas aqueous extract showed the better activity on hyperlipidemia. Conclusion: These results suggest that CEAq and CEEt at 400mg/kg are promising complementary supplements that can be used to protect better from metabolic disorders associated with HFHS.Keywords: Coula edulis Baill, high-fat / high sucrose diet, insulin resistance, oxidative stress
Procedia PDF Downloads 305166 Esophageal Premalignant and Malignant Epithelial Lesions: Pathological Characteristics and Value of Cyclooxygenase-2 Expression.
Authors: Hanan Mohamed Abd Elmoneim, Rawan Saleh AlJawi, Razan Saleh AlJawi, Aseel Abdullah AlMasoudi , Zyad Adnan Turkistani, Anas Abdulkarim Alkhoutani , Ohood Musaed AlJuhani , Hanan Attiyah AlZahrani
Abstract:
Background Esophageal cancer is the eighth most common cancer worldwide. More than 90% of esophageal cancers are either squamous cell carcinoma or adenocarcinoma. Squamous dysplasia is a precancerous lesion for squamous cell carcinoma and Barrett's esophagus is the precancerous lesion for adenocarcinoma. Gastro-esophageal reflux disease (GERD) is the initiation factor for Barrett's esophagus. Cyclooxygenase-2 (COX-2) is a key enzyme in arachidonic metabolism. It appears to play an important role in gastrointestinal carcinogenesis. COX-2 activity may be a potential target for the prevention of cancer progression by selective COX-2 inhibitors, which decrease proliferation and increase apoptosis. Objectives To assess COX-2 expression in premalignant and malignant esophageal epitheliums changes and detect its roles in progression of these lesions. Materials and Methods We analyzed the expression of COX-2 immunohistochemically in 40 esophageal biopsies utilizing the streptavidin-biotin-peroxidase complex method on archival formalin fixed-paraffin embedded blocks. Histopathologically, 17 (42.5%) of cases were non-malignant cases which included GERD, Barrett's esophagus and squamous dysplasia. The malignant cases were 23 (57.5%) squamous cell carcinoma, adenocarcinoma and undifferentiated carcinoma. Results In non-malignant cases 7 (41.2%) out of 17 cases had high COX-2 expression. In squamous cell carcinoma 10 (83.3%) out of 12 cases had high COX-2 expression. The expression of COX-2 was high in all 9 (100%) cases of adenocarcinoma. COX-2 expression is significantly increased (P=0.005 and P=0.0001) in squamous cell carcinoma and adenocarcinoma respectively. There was a significant difference in COX-2 immunoreactivity between malignant and non-malignant lesions (P=0.0003). Conclusion COX-2 is responsible for the progression of esophageal diseases from benign to malignant. We recommend that COX-2 immunohistochemistry should be done routinely for premalignant and malignant esophageal lesions as selective COX-2 inhibitors will be helpful in the treatment. Further studies on molecular and genetic basis of COX-2 expression are needed to unmask its role and relation to progression of esophageal lesions.Keywords: Cox-2, Esophageal adinocarcinoma, Esophageal squamous cell carcinoma, Immunohistochemistry.
Procedia PDF Downloads 350165 Comparison of Zinc Amino Acid Complex and Zinc Sulfate in Diet for Asian Seabass (Lates calcarifer)
Authors: Kanokwan Sansuwan, Orapint Jintasataporn, Srinoy Chumkam
Abstract:
Asian seabass is one of the economically important fish of Thailand and other countries in the Southeast Asia. Zinc is an essential trace metal to fish and vital to various biological processes and function. It is required for normal growth and indispensable in the diet. Therefore, the artificial diets offered to intensively cultivated fish must possess the zinc content required by the animal metabolism for health maintenance and high weight gain rates. However, essential elements must also be in an available form to be utilized by the organism. Thus, this study was designed to evaluate the application of different zinc forms, including organic Zinc (zinc amino acid complex) and inorganic Zinc (zinc sulfate), as feed additives in diets for Asian seabass. Three groups with five replicates of fish (mean weight 22.54 ± 0.80 g) were given a basal diet either unsupplemented (control) or supplemented with 50 mg Zn kg−¹ sulfate (ZnSO₄) or Zinc Amino Acid Complex (ZnAA) respectively. Feeding regimen was initially set at 3% of body weight per day, and then the feed amount was adjusted weekly according to the actual feeding performance. The experiment was conducted for 10 weeks. Fish supplemented with ZnAA had the highest values in all studied growth indicators (weight gain, average daily growth and specific growth rate), followed by fish fed the diets with the ZnSO₄, and lowest in fish fed the diets with the control. Lysozyme and superoxide dismutase (SOD) activity of fish supplemented with ZnAA were significantly higher compared with all other groups (P < 0.05). Fish supplemented with ZnSO₄ exhibited significant increase in digestive enzyme activities (protease, pepsin and trypsin) compared with ZnAA and the control (P < 0.05). However, no significant differences were observed for RNA and protein in muscle (P > 0.05). The results of the present work suggest that ZnAA are a better source of trace elements for Asian seabass, based on growth performance and immunity indices examined in this study.Keywords: Asian seabass, growth performance, zinc amino acid complex (ZnAA), zinc sulfate (ZnSO₄)
Procedia PDF Downloads 182164 Catalytic Decomposition of Formic Acid into H₂/CO₂ Gas: A Distinct Approach
Authors: Ayman Hijazi, Witold Kwapinski, J. J. Leahy
Abstract:
Finding a sustainable alternative energy to fossil fuel is an urgent need as various environmental challenges in the world arise. Therefore, formic acid (FA) decomposition has been an attractive field that lies at the center of the biomass platform, comprising a potential pool of hydrogen energy that stands as a distinct energy vector. Liquid FA features considerable volumetric energy density of 6.4 MJ/L and a specific energy density of 5.3 MJ/Kg that qualifies it in the prime seat as an energy source for transportation infrastructure. Additionally, the increasing research interest in FA decomposition is driven by the need for in-situ H₂ production, which plays a key role in the hydrogenation reactions of biomass into higher-value components. It is reported elsewhere in the literature that catalytic decomposition of FA is usually performed in poorly designed setups using simple glassware under magnetic stirring, thus demanding further energy investment to retain the used catalyst. Our work suggests an approach that integrates designing a distinct catalyst featuring magnetic properties with a robust setup that minimizes experimental & measurement discrepancies. One of the most prominent active species for the dehydrogenation/hydrogenation of biomass compounds is palladium. Accordingly, we investigate the potential of engrafting palladium metal onto functionalized magnetic nanoparticles as a heterogeneous catalyst to favor the production of CO-free H₂ gas from FA. Using an ordinary magnet to collect the spent catalyst renders core-shell magnetic nanoparticles as the backbone of the process. Catalytic experiments were performed in a jacketed batch reactor equipped with an overhead stirrer under an inert medium. Through a distinct approach, FA is charged into the reactor via a high-pressure positive displacement pump at steady-state conditions. The produced gas (H₂+CO₂) was measured by connecting the gas outlet to a measuring system based on the amount of the displaced water. The uniqueness of this work lies in designing a very responsive catalyst, pumping a consistent amount of FA into a sealed reactor running at steady-state mild temperatures, and continuous gas measurement, along with collecting the used catalyst without the need for centrifugation. Catalyst characterization using TEM, XRD, SEM, and CHN elemental analyzer provided us with details of catalyst preparation and facilitated new venues to alter the nanostructure of the catalyst framework. Consequently, the introduction of amine groups has led to appreciable improvements in terms of dispersion of the doped metals and eventually attaining nearly complete conversion (100%) of FA after 7 hours. The relative importance of the process parameters such as temperature (35-85°C), stirring speed (150-450rpm), catalyst loading (50-200mgr.), and Pd doping ratio (0.75-1.80wt.%) on gas yield was assessed by a Taguchi design-of-experiment based model. Experimental results showed that operating at a lower temperature range (35-50°C) yielded more gas, while the catalyst loading and Pd doping wt.% were found to be the most significant factors with P-values 0.026 & 0.031, respectively.Keywords: formic acid decomposition, green catalysis, hydrogen, mesoporous silica, process optimization, nanoparticles
Procedia PDF Downloads 56163 Synthesis and Characterization of Polycaprolactone for the Delivery of Rifampicin
Authors: Evelyn Osehontue Uroro, Richard Bright, Jing Yang Quek, Krasimir Vasilev
Abstract:
Bacterial infections have been a challenge both in the public and private sectors. The colonization of bacteria often occurs in medical devices such as catheters, heart valves, respirators, and orthopaedic implants. When biomedical devices are inserted into patients, the deposition of macromolecules such as fibrinogen and immunoglobin on their surfaces makes it easier for them to be prone to bacteria colonization leading to the formation of biofilms. The formation of biofilms on medical devices has led to a series of device-related infections which are usually difficult to eradicate and sometimes cause the death of patients. These infections require surgical replacements along with prolonged antibiotic therapy, which would incur additional health costs. It is, therefore, necessary to prevent device-related infections by inhibiting the formation of biofilms using intelligent technology. Antibiotic resistance of bacteria is also a major threat due to overuse. Different antimicrobial agents have been applied to microbial infections. They include conventional antibiotics like rifampicin. The use of conventional antibiotics like rifampicin has raised concerns as some have been found to have hepatic and nephrotoxic effects due to overuse. Hence, there is also a need for proper delivery of these antibiotics. Different techniques have been developed to encapsulate and slowly release antimicrobial agents, thus reducing host cytotoxicity. Examples of delivery systems are solid lipid nanoparticles, hydrogels, micelles, and polymeric nanoparticles. The different ways by which drugs are released from polymeric nanoparticles include diffusion-based release, elution-based release, and chemical/stimuli-responsive release. Polymeric nanoparticles have gained a lot of research interest as they are basically made from biodegradable polymers. An example of such a biodegradable polymer is polycaprolactone (PCL). PCL degrades slowly by hydrolysis but is often sensitive and responsive to stimuli like enzymes to release encapsulants for antimicrobial therapy. This study presents the synthesis of PCL nanoparticles loaded with rifampicin and the on-demand release of rifampicin for treating staphylococcus aureus infections.Keywords: enzyme, Staphylococcus aureus, PCL, rifampicin
Procedia PDF Downloads 126162 Tailoring Structural, Thermal and Luminescent Properties of Solid-State MIL-53(Al) MOF via Fe³⁺ Cation Exchange
Authors: T. Ul Rehman, S. Agnello, F. M. Gelardi, M. M. Calvino, G. Lazzara, G. Buscarino, M. Cannas
Abstract:
Metal-Organic Frameworks (MOFs) have emerged as promising candidates for detecting metal ions owing to their large surface area, customizable porosity, and diverse functionalities. In recent years, there has been a surge in research focused on MOFs with luminescent properties. These frameworks are constructed through coordinated bonding between metal ions and multi-dentate ligands, resulting in inherent fluorescent structures. Their luminescent behavior is influenced by factors like structural composition, surface morphology, pore volume, and interactions with target analytes, particularly metal ions. MOFs exhibit various sensing mechanisms, including photo-induced electron transfer (PET) and charge transfer processes such as ligand-to-metal (LMCT) and metal-to-ligand (MLCT) transitions. Among these, MIL-53(Al) stands out due to its flexibility, stability, and specific affinity towards certain metal ions, making it a promising platform for selective metal ion sensing. This study investigates the structural, thermal, and luminescent properties of MIL-53(Al) metal-organic framework (MOF) upon Fe3+ cation exchange. Two separate sets of samples were prepared to activate the MOF powder at different temperatures. The first set of samples, referred to as MIL-53(Al), activated (120°C), was prepared by activating the raw powder in a glass tube at 120°C for 12 hours and then sealing it. The second set of samples, referred to as MIL-53(Al), activated (300°C), was prepared by activating the MIL-53(Al) powder in a glass tube at 300°C for 70 hours. Additionally, 25 mg of MIL-53(Al) powder was dispersed in 5 mL of Fe3+ solution at various concentrations (0.1-100 mM) for the cation exchange experiment. The suspension was centrifuged for five minutes at 10,000 rpm to extract MIL-53(Al) powder. After three rounds of washing with ultrapure water, MIL-53(Al) powder was heated at 120°C for 12 hours. For PXRD and TGA analyses, a sample of the obtained MIL-53(Al) was used. We also activated the cation-exchanged samples for time-resolved photoluminescence (TRPL) measurements at two distinct temperatures (120 and 300°C) for comparative analysis. Powder X-ray diffraction patterns reveal amorphization in samples with higher Fe3+ concentrations, attributed to alterations in coordination environments and ion exchange dynamics. Thermal decomposition analysis shows reduced weight loss in Fe3+-exchanged MOFs, indicating enhanced stability due to stronger metal-ligand bonds and altered decomposition pathways. Raman spectroscopy demonstrates intensity decrease, shape disruption, and frequency shifts, indicative of structural perturbations induced by cation exchange. Photoluminescence spectra exhibit ligand-based emission (π-π* or n-π*) and ligand-to-metal charge transfer (LMCT), influenced by activation temperature and Fe3+ incorporation. Quenching of luminescence intensity and shorter lifetimes upon Fe3+ exchange result from structural distortions and Fe3+ binding to organic linkers. In a nutshell, this research underscores the complex interplay between composition, structure, and properties in MOFs, offering insights into their potential for diverse applications in catalysis, gas storage, and luminescent devices.Keywords: Fe³⁺ cation exchange, luminescent metal-organic frameworks (LMOFs), MIL-53(Al), solid-state analysis
Procedia PDF Downloads 66161 Calculation of Pressure-Varying Langmuir and Brunauer-Emmett-Teller Isotherm Adsorption Parameters
Authors: Trevor C. Brown, David J. Miron
Abstract:
Gas-solid physical adsorption methods are central to the characterization and optimization of the effective surface area, pore size and porosity for applications such as heterogeneous catalysis, and gas separation and storage. Properties such as adsorption uptake, capacity, equilibrium constants and Gibbs free energy are dependent on the composition and structure of both the gas and the adsorbent. However, challenges remain, in accurately calculating these properties from experimental data. Gas adsorption experiments involve measuring the amounts of gas adsorbed over a range of pressures under isothermal conditions. Various constant-parameter models, such as Langmuir and Brunauer-Emmett-Teller (BET) theories are used to provide information on adsorbate and adsorbent properties from the isotherm data. These models typically do not provide accurate interpretations across the full range of pressures and temperatures. The Langmuir adsorption isotherm is a simple approximation for modelling equilibrium adsorption data and has been effective in estimating surface areas and catalytic rate laws, particularly for high surface area solids. The Langmuir isotherm assumes the systematic filling of identical adsorption sites to a monolayer coverage. The BET model is based on the Langmuir isotherm and allows for the formation of multiple layers. These additional layers do not interact with the first layer and the energetics are equal to the adsorbate as a bulk liquid. This BET method is widely used to measure the specific surface area of materials. Both Langmuir and BET models assume that the affinity of the gas for all adsorption sites are identical and so the calculated adsorbent uptake at the monolayer and equilibrium constant are independent of coverage and pressure. Accurate representations of adsorption data have been achieved by extending the Langmuir and BET models to include pressure-varying uptake capacities and equilibrium constants. These parameters are determined using a novel regression technique called flexible least squares for time-varying linear regression. For isothermal adsorption the adsorption parameters are assumed to vary slowly and smoothly with increasing pressure. The flexible least squares for pressure-varying linear regression (FLS-PVLR) approach assumes two distinct types of discrepancy terms, dynamic and measurement for all parameters in the linear equation used to simulate the data. Dynamic terms account for pressure variation in successive parameter vectors, and measurement terms account for differences between observed and theoretically predicted outcomes via linear regression. The resultant pressure-varying parameters are optimized by minimizing both dynamic and measurement residual squared errors. Validation of this methodology has been achieved by simulating adsorption data for n-butane and isobutane on activated carbon at 298 K, 323 K and 348 K and for nitrogen on mesoporous alumina at 77 K with pressure-varying Langmuir and BET adsorption parameters (equilibrium constants and uptake capacities). This modeling provides information on the adsorbent (accessible surface area and micropore volume), adsorbate (molecular areas and volumes) and thermodynamic (Gibbs free energies) variations of the adsorption sites.Keywords: Langmuir adsorption isotherm, BET adsorption isotherm, pressure-varying adsorption parameters, adsorbate and adsorbent properties and energetics
Procedia PDF Downloads 233160 SIPTOX: Spider Toxin Database Information Repository System of Protein Toxins from Spiders by Using MySQL Method
Authors: Iftikhar Tayubi, Tabrej Khan, Rayan Alsulmi, Abdulrahman Labban
Abstract:
Spider produces a special kind of substance. This special kind of substance is called a toxin. The toxin is composed of many types of protein, which differs from species to species. Spider toxin consists of several proteins and non-proteins that include various categories of toxins like myotoxin, neurotoxin, cardiotoxin, dendrotoxin, haemorrhagins, and fibrinolytic enzyme. Protein Sequence information with references of toxins was derived from literature and public databases. From the previous findings, the Spider toxin would be the best choice to treat different types of tumors and cancer. There are many therapeutic regimes, which causes more side effects than treatment hence a different approach must be adopted for the treatment of cancer. The combinations of drugs are being encouraged, and dramatic outcomes are reported. Spider toxin is one of the natural cytotoxic compounds. Hence, it is being used to treat different types of tumors; especially its positive effect on breast cancer is being reported during the last few decades. The efficacy of this database is that it can provide a user-friendly interface for users to retrieve the information about Spiders, toxin and toxin protein of different Spiders species. SPIDTOXD provides a single source information about spider toxins, which will be useful for pharmacologists, neuroscientists, toxicologists, medicinal chemists. The well-ordered and accessible web interface allows users to explore the detail information of Spider and toxin proteins. It includes common name, scientific name, entry id, entry name, protein name and length of the protein sequence. The utility of this database is that it can provide a user-friendly interface for users to retrieve the information about Spider, toxin and toxin protein of different Spider species. The database interfaces will satisfy the demands of the scientific community by providing in-depth knowledge about Spider and its toxin. We have adopted the methodology by using A MySQL and PHP and for designing, we used the Smart Draw. The users can thus navigate from one section to another, depending on the field of interest of the user. This database contains a wealth of information on species, toxins, and clinical data, etc. This database will be useful for the scientific community, basic researchers and those interested in potential pharmaceutical Industry.Keywords: siptoxd, php, mysql, toxin
Procedia PDF Downloads 182159 Zinc Oxide Nanoparticle-Doped Poly (8-Anilino-1-Napthalene Sulphonic Acid/Nat Nanobiosensors for TB Drugs
Authors: Rachel Fanelwa Ajayi, Anovuyo Jonnas, Emmanuel I. Iwuoha
Abstract:
Tuberculosis (TB) is an infectious disease caused by the bacterium (Mycobacterium tuberculosis) which has a predilection for lung tissue due to its rich oxygen supply. The mycobacterial cell has a unique innate characteristic which allows it to resist human immune systems and drug treatments; hence, it is one of the most difficult of all bacterial infections to treat, let alone to cure. At the same time, multi-drug resistance TB (MDR-TB) caused by poorly managed TB treatment, is a growing problem and requires the administration of expensive and less effective second line drugs which take much longer treatment duration than fist line drugs. Therefore, to acknowledge the issues of patients falling ill as a result of inappropriate dosing of treatment and inadequate treatment administration, a device with a fast response time coupled with enhanced performance and increased sensitivity is essential. This study involved the synthesis of electroactive platforms for application in the development of nano-biosensors suitable for the appropriate dosing of clinically diagnosed patients by promptly quantifying the levels of the TB drug; Isonaizid. These nano-biosensors systems were developed on gold surfaces using the enzyme N-acetyletransferase 2 coupled to the cysteamine modified poly(8-anilino-1-napthalene sulphonic acid)/zinc oxide nanocomposites. The morphology of ZnO nanoparticles, PANSA/ZnO nano-composite and nano-biosensors platforms were characterized using High-Resolution Transmission Electron Microscopy (HRTEM) and High-Resolution Scanning Electron Microscopy (HRSEM). On the other hand, the elemental composition of the developed nanocomposites and nano-biosensors were studied using Fourier Transform Infra-Red Spectroscopy (FTIR) and Energy Dispersive X-Ray (EDX). The electrochemical studies showed an increase in electron conductivity for the PANSA/ZnO nanocomposite which was an indication that it was suitable as a platform towards biosensor development.Keywords: N-acetyletransferase 2, isonaizid, tuberculosis, zinc oxide
Procedia PDF Downloads 373158 One-Step Synthesis and Characterization of Biodegradable ‘Click-Able’ Polyester Polymer for Biomedical Applications
Authors: Wadha Alqahtani
Abstract:
In recent times, polymers have seen a great surge in interest in the field of medicine, particularly chemotherapeutics. One recent innovation is the conversion of polymeric materials into “polymeric nanoparticles”. These nanoparticles can be designed and modified to encapsulate and transport drugs selectively to cancer cells, minimizing collateral damage to surrounding healthy tissues, and improve patient quality of life. In this study, we have synthesized pseudo-branched polyester polymers from bio-based small molecules, including sorbitol, glutaric acid and a propargylic acid derivative to further modify the polymer to make it “click-able" with an azide-modified target ligand. Melt polymerization technique was used for this polymerization reaction, using lipase enzyme catalyst NOVO 435. This reaction was conducted between 90- 95 °C for 72 hours. The polymer samples were collected in 24-hour increments for characterization and to monitor reaction progress. The resulting polymer was purified with the help of methanol dissolving and filtering with filter paper then characterized via NMR, GPC, FTIR, DSC, TGA and MALDI-TOF. Following characterization, these polymers were converted to a polymeric nanoparticle drug delivery system using solvent diffusion method, wherein DiI optical dye and chemotherapeutic drug Taxol can be encapsulated simultaneously. The efficacy of the nanoparticle’s apoptotic effects were analyzed in-vitro by incubation with prostate cancer (LNCaP) and healthy (CHO) cells. MTT assays and fluorescence microscopy were used to assess the cellular uptake and viability of the cells after 24 hours at 37 °C and 5% CO2 atmosphere. Results of the assays and fluorescence imaging confirmed that the nanoparticles were successful in both selectively targeting and inducing apoptosis in 80% of the LNCaP cells within 24 hours without affecting the viability of the CHO cells. These results show the potential of using biodegradable polymers as a vehicle for receptor-specific drug delivery and a potential alternative for traditional systemic chemotherapy. Detailed experimental results will be discussed in the e-poster.Keywords: chemotherapeutic drug, click chemistry, nanoparticle, prostat cancer
Procedia PDF Downloads 115157 Correlation between the Ratios of House Dust Mite-Specific IgE/Total IgE and Asthma Control Test Score as a Biomarker of Immunotherapy Response Effectiveness in Pediatric Allergic Asthma Patients
Authors: Bela Siska Afrida, Wisnu Barlianto, Desy Wulandari, Ery Olivianto
Abstract:
Background: Allergic asthma, caused by IgE-mediated allergic reactions, remains a global health issue with high morbidity and mortality rates. Immunotherapy is the only etiology-based approach to treating asthma, but no standard biomarkers have been established to evaluate the therapy’s effectiveness. This study aims to determine the correlation between the ratios of serum levels of HDM-specific IgE/total IgE and Asthma Control Test (ACT) score as a biomarker of the response to immunotherapy in pediatric allergic asthma patients. Patient and Methods: This retrospective cohort study involved 26 pediatric allergic asthma patients who underwent HDM-specific subcutaneous immunotherapy for 14 weeks at the Pediatric Allergy Immunology Outpatient Clinic at Saiful Anwar General Hospital, Malang. Serum levels of HDM-Specific IgE and Total IgE were measured before and after immunotherapy using Chemiluminescence Immunoassay and Enzyme-linked Immunosorbent Assay (ELISA) method. Changes in asthma control were assessed using the ACT score. The Wilcoxon Signed Ranked Test and Spearman correlation test were used for data analysis. Results: There were 14 boys and 12 girls with a mean age of 6.48 ± 2.54 years. The study showed a significant decrease in serum HMD-specific levels before immunotherapy [9.88 ± 5.74 kuA/L] compared to those of 14 weeks after immunotherapy [4.51 ± 3.98 kuA/L], p = 0.000. Serum Total IgE levels significant decrease before immunotherapy [207.6 ± 120.8IU/ml] compared to those of 14 weeks after immunotherapy [109.83 ± 189.39 IU/mL], p = 0.000. The ratios of serum HDM-specific IgE/total IgE levels significant decrease before immunotherapy [0.063 ± 0.05] compared to those of 14 weeks after immunotherapy [0.041 ± 0.039], p = 0.012. There was also a significant increase in ACT scores before and after immunotherapy (each 15.5 ± 1.79 and 20.96 ± 2.049, p = 0.000). The correlation test showed a weak negative correlation between the ratios of HDM-specific IgE/total IgE levels and ACT score (p = 0.034 and r = -0.29). Conclusion: In conclusion, this study showed that a decrease in HDM-specific IgE levels, total IgE levels, and HDM-specific IgE/total IgE ratios, and an increase in ACT score, was observed after 14 weeks of HDM-specific subcutaneous immunotherapy. The weak negative correlation between the HDM-specific IgE/total IgE ratio and the ACT score suggests that this ratio can serve as a potential biomarker of the effectiveness of immunotherapy in treating pediatric allergic asthma patients.Keywords: HDM-specific IgE/total IgE ratio, ACT score, immunotherapy, allergic asthma
Procedia PDF Downloads 69156 Correlation Analysis of Reactivity in the Oxidation of Para and Meta-Substituted Benzyl Alcohols by Benzimidazolium Dichromate in Non-Aqueous Media: A Kinetic and Mechanistic Aspects
Authors: Seema Kothari, Dinesh Panday
Abstract:
An observed correlation of the reaction rates with the changes in the nature of substituent present on one of the reactants often reveals the nature of transition state. Selective oxidation of organic compounds under non-aqueous media is an important transformation in synthetic organic chemistry. Inorganic chromates and dichromates being drastic oxidant and are generally insoluble in most organic solvents, a number of different chromium (VI) derivatives have been synthesized. Benzimidazolium dichromate (BIDC) is one of the recently reported Cr(VI) reagents which is neither hygroscopic nor light sensitive being, therefore, much stable. Not many reports on the kinetics of the oxidations by BIDC are seemed to be available in the literature. In the present investigation, the kinetics and mechanism of benzyl alcohol (BA) and a number of para- and meta-substituted benzyl alcohols by benzimidazolium dichromate (BIDC), in dimethyl sulphoxide, is reported. The reactions were followed spectrophotometrically at 364 nm by monitoring the decrease in [BIDC] for up to 85-90% reaction, the temperature being constant. The observed oxidation product is the corresponding benzaldehyde. The reactions were of first order with respect to each the alcohol and BIDC. The reactions are catalyzed by proton, and the dependence is of the form: kobs = a + b[H+]. The reactions thus follow both, an acid-dependent and acid-independent paths. The oxidation of [1,1 2H2]benzyl alcohol exhibited the presence of a substantial kinetic isotope effect ( kH/kD = 6.20 at 298 K ). This indicated the cleavage of a α-C-H bond in the rate-determining step. An analysis of the temperature dependence of the deuterium isotope effect showed that the loss of hydrogen proceeds through a concerted cyclic process. The rate of oxidation of BA was determined in 19 organic solvents. An analysis of the solvent effect by Swain’s equation indicated that though both the anion and cation-solvating powers of the solvent contribute to the observed solvent effect, the role of cation-solvation is major. The rates of the para and meta compounds, at 298 K, failed to exhibit a significant correlation in terms of Hammett or Brown's substituent constants. The rates were then subjected to analyses in terms of dual substituent parameter (DSP) equations. The rates of oxidation of the para-substituted benzyl alcohols show an excellent correlation with Taft's σI and σRBA values. However, the rates for the meta-substituted benzyl alcohols show an excellent correlation with σI and σR0. The polar reaction constants are negative indicating an electron-deficient transition state. Hence the overall mechanism is proposed to involve the formation of a chromate ester in a fast pre-equilibrium and then a decomposition of the ester in a subsequent slow step via a cyclic concerted symmetrical transition state, involving hydride-ion transfer, leading to the product. The first order dependence on alcohol may be accounted in terms of the small value of the formation constant of the ester intermediate. An another reaction mechanism accounting the acid-catalysis involve the formation of a protonated BIDC prior to formation of an ester intermediate which subsequently decomposes in a slow step leading to the product.Keywords: benzimidazolium dichromate, benzyl alcohols, correlation analysis, kinetics, oxidation
Procedia PDF Downloads 344155 A Risk Assessment Tool for the Contamination of Aflatoxins on Dried Figs Based on Machine Learning Algorithms
Authors: Kottaridi Klimentia, Demopoulos Vasilis, Sidiropoulos Anastasios, Ihara Diego, Nikolaidis Vasileios, Antonopoulos Dimitrios
Abstract:
Aflatoxins are highly poisonous and carcinogenic compounds produced by species of the genus Aspergillus spp. that can infect a variety of agricultural foods, including dried figs. Biological and environmental factors, such as population, pathogenicity, and aflatoxinogenic capacity of the strains, topography, soil, and climate parameters of the fig orchards, are believed to have a strong effect on aflatoxin levels. Existing methods for aflatoxin detection and measurement, such as high performance liquid chromatography (HPLC), and enzyme-linked immunosorbent assay (ELISA), can provide accurate results, but the procedures are usually time-consuming, sample-destructive, and expensive. Predicting aflatoxin levels prior to crop harvest is useful for minimizing the health and financial impact of a contaminated crop. Consequently, there is interest in developing a tool that predicts aflatoxin levels based on topography and soil analysis data of fig orchards. This paper describes the development of a risk assessment tool for the contamination of aflatoxin on dried figs, based on the location and altitude of the fig orchards, the population of the fungus Aspergillus spp. in the soil, and soil parameters such as pH, saturation percentage (SP), electrical conductivity (EC), organic matter, particle size analysis (sand, silt, clay), the concentration of the exchangeable cations (Ca, Mg, K, Na), extractable P, and trace of elements (B, Fe, Mn, Zn and Cu), by employing machine learning methods. In particular, our proposed method integrates three machine learning techniques, i.e., dimensionality reduction on the original dataset (principal component analysis), metric learning (Mahalanobis metric for clustering), and k-nearest neighbors learning algorithm (KNN), into an enhanced model, with mean performance equal to 85% by terms of the Pearson correlation coefficient (PCC) between observed and predicted values.Keywords: aflatoxins, Aspergillus spp., dried figs, k-nearest neighbors, machine learning, prediction
Procedia PDF Downloads 184154 Antidiabetic and Antioxidant Potential of Aqueous Extract of Jasminum humile Leaves in Nicotinamide/Streptozotocin induced Type-2 Diabetes Mellitus (T2DM) Rat
Authors: Parminder Nain, Jaspreet kaur, Vipin Saini, Sunil Sharma
Abstract:
Jasminum humile commonly known as yellow Jasmine or Pili chameli, is a medicinal plant used in Ayurveda for treating various diseases, one of which is diabetes mellitus. The current study aimed to establish the antidiabetic and antioxidant properties of aqueous extract of Jasminum humile leaves (AEJHL) in nicotinamide/streptozotocin induced type 2 diabetic rats. Phytochemical screening, HPLC analysis, and acute toxicity study of AEJHL were carried out. Male albino wistar rats (n=42) were divided into seven equal groups. Rats with moderate diabetes having hyperglycemia (blood glucose 250-400 mg/dl) were taken for the experiment. Various concentrations of aqueous extract of Jasminum humile leaves (50, 100, 200 and 300 mg/kg, p.o.), and glibenclamide (1mg/kg, p.o.) were orally administered to diabetic rats for 45 days. The effect of AEJHL on blood glucose, plasma insulin and biochemical parameters such as hemoglobin, total protein, serum creatinine, serum urea, alkaline phosphate, Glutamic-oxalacetic transaminase (SGOT) and glutamic-pyruvic transaminase (SGPT), as well as total cholesterol, triglycerides, and high-density lipoprotein (HDL) were also studied. The antioxidant effect of AEJHL was determined by analyzing hepatic and renal antioxidant markers, like superoxide dismutase (SOD), catalase (CAT), reduced Glutathione (GSH), Glutathione peroxidase (GPx), and lipid peroxidation (LPO) in diabetic rats. After 45-days oral administration of aqueous extract of Jasminum humile leaves significantly (p<0.05) reduced blood sugar and increase plasma insulin level and also reverse all above biochemical parameters and antioxidant enzyme level at dose dependent manner. These findings provide in vivo evidence that the aqueous extract of Jasminum humile leaves possess significant antidiabetic and antioxidant potential in nicotinamide/streptozotocin-induced type-2 diabetes mellitus in rats.Keywords: antidiabetic, antioxidant, jasminum humile, nicotinamide/streptozotocin, type-2 diabetic
Procedia PDF Downloads 199153 Analysis of Socio-Economics of Tuna Fisheries Management (Thunnus Albacares Marcellus Decapterus) in Makassar Waters Strait and Its Effect on Human Health and Policy Implications in Central Sulawesi-Indonesia
Authors: Siti Rahmawati
Abstract:
Indonesia has had long period of monetary economic crisis and it is followed by an upward trend in the price of fuel oil. This situation impacts all aspects of tuna fishermen community. For instance, the basic needs of fishing communities increase and the lower purchasing power then lead to economic and social instability as well as the health of fishermen household. To understand this AHP method is applied to acknowledge the model of tuna fisheries management priorities and cold chain marketing channel and the utilization levels that impact on human health. The study is designed as a development research with the number of 180 respondents. The data were analyzed by Analytical Hierarchy Process (AHP) method. The development of tuna fishery business can improve productivity of production with economic empowerment activities for coastal communities, improving the competitiveness of products, developing fish processing centers and provide internal capital for the development of optimal fishery business. From economic aspects, fishery business is more attracting because the benefit cost ratio of 2.86. This means that for 10 years, the economic life of this project can work well as B/C> 1 and therefore the rate of investment is economically viable. From the health aspects, tuna can reduce the risk of dying from heart disease by 50%, because tuna contain selenium in the human body. The consumption of 100 g of tuna meet 52.9% of the selenium in the body and activating the antioxidant enzyme glutathione peroxidaxe which can protect the body from free radicals and stimulate various cancers. The results of the analytic hierarchy process that the quality of tuna products is the top priority for export quality as well as quality control in order to compete in the global market. The implementation of the policy can increase the income of fishermen and reduce the poverty of fishermen households and have impact on the human health whose has high risk of disease.Keywords: management of tuna, social, economic, health
Procedia PDF Downloads 316152 Profiling of Apoptotic Protein Expressions after Trabectedin Treatment in Human Prostate Cancer Cell Line PC-3 by Protein Array Technology
Authors: Harika Atmaca, Emir Bozkurt, Latife Merve Oktay, Selim Uzunoglu, Ruchan Uslu, Burçak Karaca
Abstract:
Microarrays have been developed for highly parallel enzyme-linked immunosorbent assay (ELISA) applications. The most common protein arrays are produced by using multiple monoclonal antibodies, since they are robust molecules which can be easily handled and immobilized by standard procedures without loss of activity. Protein expression profiling with protein array technology allows simultaneous analysis of the protein expression pattern of a large number of proteins. Trabectedin, a tetrahydroisoquinoline alkaloid derived from a Caribbean tunicate, Ecteinascidia turbinata, has been shown to have antitumor effects. Here, we used a novel proteomic approach to explore the mechanism of action of trabectedin in prostate cancer cell line PC-3 by apoptosis antibody microarray. XTT cell proliferation kit and Cell Death Detection Elisa Plus Kit (Roche) was used for measuring cytotoxicity and apoptosis. Human Apoptosis Protein Array (R&D Systems) which consists of 35 apoptosis related proteins was used to assess the omic protein expression pattern. Trabectedin induced cytotoxicity and apoptosis in prostate cancer cells in a time and concentration-dependent manner. The expression levels of the death receptor pathway molecules, TRAIL-R1/DR4, TRAIL R2/DR5, TNF R1/TNFRSF1A, FADD were significantly increased by 4.0-, 21.0-, 4.20- and 11.5-fold by trabectedin treatment in PC-3 cells. Moreover, mitochondrial pathway related pro-apoptotic proteins Bax, Bad, Cytochrome c, and Cleaved Caspase-3 expressions were induced by 2.68-, 2.07-, 2.8-, and 4.5-fold and the expression levels of anti-apoptotic proteins Bcl-2 and Bcl-XL were reduced by 3.5- and 5.2-fold in PC-3 cells. Proteomic (antibody microarray) analysis suggests that the mechanism of action of trabectedin may be exerted via the induction of both intrinsic and extrinsic apoptotic pathways. The antibody microarray platform can be utilised to explore the molecular mechanism of action of novel anticancer agents.Keywords: trabectedin, prostate cancer, omic protein expression profile, apoptosis
Procedia PDF Downloads 442