Search results for: dynamic database
4598 A Case Study on English Camp in UNISSA: An Approach towards Interactive Learning Outside the Classroom
Authors: Liza Mariah Hj. Azahari
Abstract:
This paper will look at a case study on English Camp which was an activity coordinated at the Sultan Sharif Ali Islamic University in 2011. English Camp is a fun and motivation filled activity which brings students and teachers together outside of the classroom setting into a more diverse environment. It also enables teacher and students to gain proximate time together for a mutual purpose which is to explore the language in a more dynamic and relaxed way. First of all, the study will look into the background of English Camp, and how it was introduced and implemented from different contexts. Thereafter, it will explain the objectives of the English Camp coordinated at our university, UNISSA, and what types of activities were conducted. It will then evaluate the effectiveness of the camp as to what extent it managed to meet its motto, which was to foster dynamic interactive learning of English Language. To conclude, the paper presents a potential for further research on the topic as well as a guideline for educators who wish to coordinate the activity. Proposal for collaboration in this activity is further highlighted and encouraged within the paper for future implementation and endeavor.Keywords: English camp, UNISSA, interactive learning, outside
Procedia PDF Downloads 5694597 Energy Dissipation Characteristics of an Elastomer under Dynamic Condition: A Comprehensive Assessment Using High and Low Frequency Analyser
Authors: K. Anas, M. Selvakumar, Samson David, R. R. Babu, S. Chattopadhyay
Abstract:
The dynamic deformation of a visco elastic material can cause heat generation. This heat generation is aspect energy dissipation. The present work investigates the contribution of various factors like; elastomer structure, cross link type and density, filler networking, reinforcement potential and temperature at energy dissipation mechanism. The influences of these elements are investigated using very high frequency analyzer (VHF ) and dynamical mechanical analysis(DMA).VHF follows transmissibility and vibration isolation principle whereas DMA works on dynamical mechanical deformation principle. VHF analysis of different types of elastomers reveals that elastomer can act as a transmitter or damper of energy depending on the applied frequency ratio (ω/ωn). Dynamic modulus (G') of low damping rubbers like natural rubber does not varies rapidly with frequency but vice-versa for high damping rubber like butyl rubber (IIR). VHF analysis also depicts that polysulfidic linkages has high damping ratio (ζ) than mono sulfidic linkages due to its dissipative nature. At comparable cross link density, mono sulfidic linkages shows higher glass transition temperature (Tg) than poly sulfidic linkages. The intensity and location of loss modulus (G'') peak of different types of carbon black filled natural rubber compounds suggests that segmental relaxation at glass transition temperature (Tg) is seldom affected by filler particles, but the filler networks can influence the cross link density by absorbing the curatives. The filler network breaking and reformation during a dynamic strain is a thermally activated process. Thus, stronger aggregates are highly dissipative in nature. Measurements indicate that at lower temperature regimes polymeric chain friction is highly dissipative in nature.Keywords: damping ratio, natural frequency, crosslinking density, segmental motion, surface activity, dissipative, polymeric chain friction
Procedia PDF Downloads 2954596 Dynamic Response Analyses for Human-Induced Lateral Vibration on Congested Pedestrian Bridges
Authors: M. Yoneda
Abstract:
In this paper, a lateral walking design force per person is proposed and compared with Imperial College test results. Numerical simulations considering the proposed walking design force which is incorporated into the neural-oscillator model are carried out placing much emphasis on the synchronization (the lock-in phenomenon) for a pedestrian bridge model with the span length of 50 m. Numerical analyses are also conducted for an existing pedestrian suspension bridge. As compared with full scale measurements for this suspension bridge, it is confirmed that the analytical method based on the neural-oscillator model might be one of the useful ways to explain the synchronization (the lock-in phenomenon) of pedestrians being on the bridge.Keywords: pedestrian bridge, human-induced lateral vibration, neural-oscillator, full scale measurement, dynamic response analysis
Procedia PDF Downloads 2014595 Iris Cancer Detection System Using Image Processing and Neural Classifier
Authors: Abdulkader Helwan
Abstract:
Iris cancer, so called intraocular melanoma is a cancer that starts in the iris; the colored part of the eye that surrounds the pupil. There is a need for an accurate and cost-effective iris cancer detection system since the available techniques used currently are still not efficient. The combination of the image processing and artificial neural networks has a great efficiency for the diagnosis and detection of the iris cancer. Image processing techniques improve the diagnosis of the cancer by enhancing the quality of the images, so the physicians diagnose properly. However, neural networks can help in making decision; whether the eye is cancerous or not. This paper aims to develop an intelligent system that stimulates a human visual detection of the intraocular melanoma, so called iris cancer. The suggested system combines both image processing techniques and neural networks. The images are first converted to grayscale, filtered, and then segmented using prewitt edge detection algorithm to detect the iris, sclera circles and the cancer. The principal component analysis is used to reduce the image size and for extracting features. Those features are considered then as inputs for a neural network which is capable of deciding if the eye is cancerous or not, throughout its experience adopted by many training iterations of different normal and abnormal eye images during the training phase. Normal images are obtained from a public database available on the internet, “Mile Research”, while the abnormal ones are obtained from another database which is the “eyecancer”. The experimental results for the proposed system show high accuracy 100% for detecting cancer and making the right decision.Keywords: iris cancer, intraocular melanoma, cancerous, prewitt edge detection algorithm, sclera
Procedia PDF Downloads 5034594 Effect of Impact Load on the Bond between Steel and CFRP Laminate
Authors: Alaa Al-Mosawe, Riadh Al-Mahaidi
Abstract:
Carbon fiber reinforced polymers have been wildly used to strengthen steel structural elements. Those structural elements are normally subjected to static, dynamic, fatigue loadings during their life time. CFRP laminate is one of the common methods to strengthen these structures under the subjected loads. A number of researches have been focused on the bond characteristics of CFRP sheets to steel members under static, dynamic and fatigue loadings. There is a lack in understanding the behavior of the CFRP laminates under impact loading. This paper is showing the effect of high load rate on this bond. CFRP laminate CFK 150/2000 was used to strengthen steel joint by using Araldite 420 epoxy. The results showed that applying high load rate has a significant effect on the bond strength while a little influence on the effective bond length.Keywords: adhesively bonded joints, bond strength, CFRP laminate, impact tensile loading
Procedia PDF Downloads 3614593 Reducing Flood Risk in a Megacity: Using Mobile Application and Value Capture for Flood Risk Prevention and Risk Reduction Financing
Authors: Dedjo Yao Simon, Takahiro Saito, Norikazu Inuzuka, Ikuo Sugiyama
Abstract:
The megacity of Abidjan is a coastal urban area where the number of floods reported and the associated impacts are on a rapid increase due to climate change, an uncontrolled urbanization, a rapid population increase, a lack of flood disaster mitigation and citizens’ awareness. The objective of this research is to reduce in the short and long term period, the human and socio-economic impact of the flood. Hydrological simulation is applied on free of charge global spatial data (digital elevation model, satellite-based rainfall estimate, landuse) to identify the flood-prone area and to map the risk of flood. A direct interview to a sample residents is used to validate the simulation results. Then a mobile application (Flood Locator) is prototyped to disseminate the risk information to the citizen. In addition, a value capture strategy is proposed to mobilize financial resource for disaster risk reduction (DRRf) to reduce the impact of the flood. The town of Cocody in Abidjan is selected as a case study area to implement this research. The mapping of the flood risk reveals that population living in the study area is highly vulnerable. For a 5-year flood, more than 60% of the floodplain is affected by a water depth of at least 0.5 meters; and more than 1000 ha with at least 5000 buildings are directly exposed. The risk becomes higher for a 50 and 100-year floods. Also, the interview reveals that the majority of the citizen are not aware of the risk and severity of flooding in their community. This shortage of information is overcome by the Flood Locator and by an urban flood database we prototype for accumulate flood data. Flood Locator App allows the users to view floodplain and depth on a digital map; the user can activate the GPS sensor of the mobile to visualize his location on the map. Some more important additional features allow the citizen user to capture flood events and damage information that they can send remotely to the database. Also, the disclosure of the risk information could result to a decrement (-14%) of the value of properties locate inside floodplain and an increment (+19%) of the value of property in the suburb area. The tax increment due to the higher tax increment in the safer area should be captured to constitute the DRRf. The fund should be allocated to the reduction of flood risk for the benefit of people living in flood-prone areas. The flood prevention system discusses in this research will minimize in the short and long term the direct damages in the risky area due to effective awareness of citizen and the availability of DRRf. It will also contribute to the growth of the urban area in the safer zone and reduce human settlement in the risky area in the long term. Data accumulated in the urban flood database through the warning app will contribute to regenerate Abidjan towards the more resilient city by means of risk avoidable landuse in the master plan.Keywords: abidjan, database, flood, geospatial techniques, risk communication, smartphone, value capture
Procedia PDF Downloads 2904592 The Impact of Prior Cancer History on the Prognosis of Salivary Gland Cancer Patients: A Population-based Study from the Surveillance, Epidemiology, and End Results (SEER) Database
Authors: Junhong Li, Danni Cheng, Yaxin Luo, Xiaowei Yi, Ke Qiu, Wendu Pang, Minzi Mao, Yufang Rao, Yao Song, Jianjun Ren, Yu Zhao
Abstract:
Background: The number of multiple cancer patients was increasing, and the impact of prior cancer history on salivary gland cancer patients remains unclear. Methods: Clinical, demographic and pathological information on salivary gland cancer patients were retrospectively collected from the Surveillance, Epidemiology, and End Results (SEER) database from 2004 to 2017, and the characteristics and prognosis between patients with a prior cancer and those without prior caner were compared. Univariate and multivariate cox proportional regression models were used for the analysis of prognosis. A risk score model was established to exam the impact of treatment on patients with a prior cancer in different risk groups. Results: A total of 9098 salivary gland cancer patients were identified, and 1635 of them had a prior cancer history. Salivary gland cancer patients with prior cancer had worse survival compared with those without a prior cancer (p<0.001). Patients with a different type of first cancer had a distinct prognosis (p<0.001), and longer latent time was associated with better survival (p=0.006) in the univariate model, although both became nonsignificant in the multivariate model. Salivary gland cancer patients with a prior cancer were divided into low-risk (n= 321), intermediate-risk (n=223), and high-risk (n=62) groups and the results showed that patients at high risk could benefit from surgery, radiation therapy, and chemotherapy, and those at intermediate risk could benefit from surgery. Conclusion: Prior cancer history had an adverse impact on the survival of salivary gland cancer patients, and individualized treatment should be seriously considered for them.Keywords: prior cancer history, prognosis, salivary gland cancer, SEER
Procedia PDF Downloads 1464591 Biofilm Text Classifiers Developed Using Natural Language Processing and Unsupervised Learning Approach
Authors: Kanika Gupta, Ashok Kumar
Abstract:
Biofilms are dense, highly hydrated cell clusters that are irreversibly attached to a substratum, to an interface or to each other, and are embedded in a self-produced gelatinous matrix composed of extracellular polymeric substances. Research in biofilm field has become very significant, as biofilm has shown high mechanical resilience and resistance to antibiotic treatment and constituted as a significant problem in both healthcare and other industry related to microorganisms. The massive information both stated and hidden in the biofilm literature are growing exponentially therefore it is not possible for researchers and practitioners to automatically extract and relate information from different written resources. So, the current work proposes and discusses the use of text mining techniques for the extraction of information from biofilm literature corpora containing 34306 documents. It is very difficult and expensive to obtain annotated material for biomedical literature as the literature is unstructured i.e. free-text. Therefore, we considered unsupervised approach, where no annotated training is necessary and using this approach we developed a system that will classify the text on the basis of growth and development, drug effects, radiation effects, classification and physiology of biofilms. For this, a two-step structure was used where the first step is to extract keywords from the biofilm literature using a metathesaurus and standard natural language processing tools like Rapid Miner_v5.3 and the second step is to discover relations between the genes extracted from the whole set of biofilm literature using pubmed.mineR_v1.0.11. We used unsupervised approach, which is the machine learning task of inferring a function to describe hidden structure from 'unlabeled' data, in the above-extracted datasets to develop classifiers using WinPython-64 bit_v3.5.4.0Qt5 and R studio_v0.99.467 packages which will automatically classify the text by using the mentioned sets. The developed classifiers were tested on a large data set of biofilm literature which showed that the unsupervised approach proposed is promising as well as suited for a semi-automatic labeling of the extracted relations. The entire information was stored in the relational database which was hosted locally on the server. The generated biofilm vocabulary and genes relations will be significant for researchers dealing with biofilm research, making their search easy and efficient as the keywords and genes could be directly mapped with the documents used for database development.Keywords: biofilms literature, classifiers development, text mining, unsupervised learning approach, unstructured data, relational database
Procedia PDF Downloads 1704590 Identification of Damage Mechanisms in Interlock Reinforced Composites Using a Pattern Recognition Approach of Acoustic Emission Data
Authors: M. Kharrat, G. Moreau, Z. Aboura
Abstract:
The latest advances in the weaving industry, combined with increasingly sophisticated means of materials processing, have made it possible to produce complex 3D composite structures. Mainly used in aeronautics, composite materials with 3D architecture offer better mechanical properties than 2D reinforced composites. Nevertheless, these materials require a good understanding of their behavior. Because of the complexity of such materials, the damage mechanisms are multiple, and the scenario of their appearance and evolution depends on the nature of the exerted solicitations. The AE technique is a well-established tool for discriminating between the damage mechanisms. Suitable sensors are used during the mechanical test to monitor the structural health of the material. Relevant AE-features are then extracted from the recorded signals, followed by a data analysis using pattern recognition techniques. In order to better understand the damage scenarios of interlock composite materials, a multi-instrumentation was set-up in this work for tracking damage initiation and development, especially in the vicinity of the first significant damage, called macro-damage. The deployed instrumentation includes video-microscopy, Digital Image Correlation, Acoustic Emission (AE) and micro-tomography. In this study, a multi-variable AE data analysis approach was developed for the discrimination between the different signal classes representing the different emission sources during testing. An unsupervised classification technique was adopted to perform AE data clustering without a priori knowledge. The multi-instrumentation and the clustered data served to label the different signal families and to build a learning database. This latter is useful to construct a supervised classifier that can be used for automatic recognition of the AE signals. Several materials with different ingredients were tested under various solicitations in order to feed and enrich the learning database. The methodology presented in this work was useful to refine the damage threshold for the new generation materials. The damage mechanisms around this threshold were highlighted. The obtained signal classes were assigned to the different mechanisms. The isolation of a 'noise' class makes it possible to discriminate between the signals emitted by damages without resorting to spatial filtering or increasing the AE detection threshold. The approach was validated on different material configurations. For the same material and the same type of solicitation, the identified classes are reproducible and little disturbed. The supervised classifier constructed based on the learning database was able to predict the labels of the classified signals.Keywords: acoustic emission, classifier, damage mechanisms, first damage threshold, interlock composite materials, pattern recognition
Procedia PDF Downloads 1554589 Research on Dynamic Practical Byzantine Fault Tolerance Consensus Algorithm
Authors: Cao Xiaopeng, Shi Linkai
Abstract:
The practical Byzantine fault-tolerant algorithm does not add nodes dynamically. It is limited in practical application. In order to add nodes dynamically, Dynamic Practical Byzantine Fault Tolerance Algorithm (DPBFT) was proposed. Firstly, a new node sends request information to other nodes in the network. The nodes in the network decide their identities and requests. Then the nodes in the network reverse connect to the new node and send block information of the current network. The new node updates information. Finally, the new node participates in the next round of consensus, changes the view and selects the master node. This paper abstracts the decision of nodes into the undirected connected graph. The final consistency of the graph is used to prove that the proposed algorithm can adapt to the network dynamically. Compared with the PBFT algorithm, DPBFT has better fault tolerance and lower network bandwidth.Keywords: practical byzantine, fault tolerance, blockchain, consensus algorithm, consistency analysis
Procedia PDF Downloads 1304588 Simulating the Dynamics of E-waste Production from Mobile Phone: Model Development and Case Study of Rwanda
Authors: Rutebuka Evariste, Zhang Lixiao
Abstract:
Mobile phone sales and stocks showed an exponential growth in the past years globally and the number of mobile phones produced each year was surpassing one billion in 2007, this soaring growth of related e-waste deserves sufficient attentions paid to it regionally and globally as long as 40% of its total weight is made from metallic which 12 elements are identified to be highly hazardous and 12 are less harmful. Different research and methods have been used to estimate the obsolete mobile phones but none has developed a dynamic model and handle the discrepancy resulting from improper approach and error in the input data. The study aim was to develop a comprehensive dynamic system model for simulating the dynamism of e-waste production from mobile phone regardless the country or region and prevail over the previous errors. The logistic model method combined with STELLA program has been used to carry out this study. Then the simulation for Rwanda has been conducted and compared with others countries’ results as model testing and validation. Rwanda is about 1.5 million obsoletes mobile phone with 125 tons of waste in 2014 with e-waste production peak in 2017. It is expected to be 4.17 million obsoletes with 351.97 tons by 2020 along with environmental impact intensity of 21times to 2005. Thus, it is concluded through the model testing and validation that the present dynamic model is competent and able deal with mobile phone e-waste production the fact that it has responded to the previous studies questions from Czech Republic, Iran, and China.Keywords: carrying capacity, dematerialization, logistic model, mobile phone, obsolescence, similarity, Stella, system dynamics
Procedia PDF Downloads 3444587 Parameters Identification of Granular Soils around PMT Test by Inverse Analysis
Authors: Younes Abed
Abstract:
The successful application of in-situ testing of soils heavily depends on development of interpretation methods of tests. The pressuremeter test simulates the expansion of a cylindrical cavity and because it has well defined boundary conditions, it is more unable to rigorous theoretical analysis (i. e. cavity expansion theory) then most other in-situ tests. In this article, and in order to make the identification process more convenient, we propose a relatively simple procedure which involves the numerical identification of some mechanical parameters of a granular soil, especially, the elastic modulus and the friction angle from a pressuremeter curve. The procedure, applied here to identify the parameters of generalised prager model associated to the Drucker & Prager criterion from a pressuremeter curve, is based on an inverse analysis approach, which consists of minimizing the function representing the difference between the experimental curve and the curve obtained by integrating the model along the loading path in in-situ testing. The numerical process implemented here is based on the established finite element program. We present a validation of the proposed approach by a database of tests on expansion of cylindrical cavity. This database consists of four types of tests; thick cylinder tests carried out on the Hostun RF sand, pressuremeter tests carried out on the Hostun sand, in-situ pressuremeter tests carried out at the site of Fos with marine self-boring pressuremeter and in-situ pressuremeter tests realized on the site of Labenne with Menard pressuremeter.Keywords: granular soils, cavity expansion, pressuremeter test, finite element method, identification procedure
Procedia PDF Downloads 2924586 Understanding Retail Benefits Trade-offs of Dynamic Expiration Dates (DED) Associated with Food Waste
Authors: Junzhang Wu, Yifeng Zou, Alessandro Manzardo, Antonio Scipioni
Abstract:
Dynamic expiration dates (DEDs) play an essential role in reducing food waste in the context of the sustainable cold chain and food system. However, it is unknown for the trades-off in retail benefits when setting an expiration date on fresh food products. This study aims to develop a multi-dimensional decision-making model that integrates DEDs with food waste based on wireless sensor network technology. The model considers the initial quality of fresh food and the change rate of food quality with the storage temperature as cross-independent variables to identify the potential impacts of food waste in retail by applying s DEDs system. The results show that retail benefits from the DEDs system depend on each scenario despite its advanced technology. In the DEDs, the storage temperature of the retail shelf leads to the food waste rate, followed by the change rate of food quality and the initial quality of food products. We found that the DEDs system could reduce food waste when food products are stored at lower temperature areas. Besides, the potential of food savings in an extended replenishment cycle is significantly more advantageous than the fixed expiration dates (FEDs). On the other hand, the information-sharing approach of the DEDs system is relatively limited in improving sustainable assessment performance of food waste in retail and even misleads consumers’ choices. The research provides a comprehensive understanding to support the techno-economic choice of the DEDs associated with food waste in retail.Keywords: dynamic expiry dates (DEDs), food waste, retail benefits, fixed expiration dates (FEDs)
Procedia PDF Downloads 1144585 Omni-Modeler: Dynamic Learning for Pedestrian Redetection
Authors: Michael Karnes, Alper Yilmaz
Abstract:
This paper presents the application of the omni-modeler towards pedestrian redetection. The pedestrian redetection task creates several challenges when applying deep neural networks (DNN) due to the variety of pedestrian appearance with camera position, the variety of environmental conditions, and the specificity required to recognize one pedestrian from another. DNNs require significant training sets and are not easily adapted for changes in class appearances or changes in the set of classes held in its knowledge domain. Pedestrian redetection requires an algorithm that can actively manage its knowledge domain as individuals move in and out of the scene, as well as learn individual appearances from a few frames of a video. The Omni-Modeler is a dynamically learning few-shot visual recognition algorithm developed for tasks with limited training data availability. The Omni-Modeler adapts the knowledge domain of pre-trained deep neural networks to novel concepts with a calculated localized language encoder. The Omni-Modeler knowledge domain is generated by creating a dynamic dictionary of concept definitions, which are directly updatable as new information becomes available. Query images are identified through nearest neighbor comparison to the learned object definitions. The study presented in this paper evaluates its performance in re-identifying individuals as they move through a scene in both single-camera and multi-camera tracking applications. The results demonstrate that the Omni-Modeler shows potential for across-camera view pedestrian redetection and is highly effective for single-camera redetection with a 93% accuracy across 30 individuals using 64 example images for each individual.Keywords: dynamic learning, few-shot learning, pedestrian redetection, visual recognition
Procedia PDF Downloads 764584 Design of an Automated Deep Learning Recurrent Neural Networks System Integrated with IoT for Anomaly Detection in Residential Electric Vehicle Charging in Smart Cities
Authors: Wanchalerm Patanacharoenwong, Panaya Sudta, Prachya Bumrungkun
Abstract:
The paper focuses on the development of a system that combines Internet of Things (IoT) technologies and deep learning algorithms for anomaly detection in residential Electric Vehicle (EV) charging in smart cities. With the increasing number of EVs, ensuring efficient and reliable charging systems has become crucial. The aim of this research is to develop an integrated IoT and deep learning system for detecting anomalies in residential EV charging and enhancing EV load profiling and event detection in smart cities. This approach utilizes IoT devices equipped with infrared cameras to collect thermal images and household EV charging profiles from the database of Thailand utility, subsequently transmitting this data to a cloud database for comprehensive analysis. The methodology includes the use of advanced deep learning techniques such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) algorithms. IoT devices equipped with infrared cameras are used to collect thermal images and EV charging profiles. The data is transmitted to a cloud database for comprehensive analysis. The researchers also utilize feature-based Gaussian mixture models for EV load profiling and event detection. Moreover, the research findings demonstrate the effectiveness of the developed system in detecting anomalies and critical profiles in EV charging behavior. The system provides timely alarms to users regarding potential issues and categorizes the severity of detected problems based on a health index for each charging device. The system also outperforms existing models in event detection accuracy. This research contributes to the field by showcasing the potential of integrating IoT and deep learning techniques in managing residential EV charging in smart cities. The system ensures operational safety and efficiency while also promoting sustainable energy management. The data is collected using IoT devices equipped with infrared cameras and is stored in a cloud database for analysis. The collected data is then analyzed using RNN, LSTM, and feature-based Gaussian mixture models. The approach includes both EV load profiling and event detection, utilizing a feature-based Gaussian mixture model. This comprehensive method aids in identifying unique power consumption patterns among EV owners and outperforms existing models in event detection accuracy. In summary, the research concludes that integrating IoT and deep learning techniques can effectively detect anomalies in residential EV charging and enhance EV load profiling and event detection accuracy. The developed system ensures operational safety and efficiency, contributing to sustainable energy management in smart cities.Keywords: cloud computing framework, recurrent neural networks, long short-term memory, Iot, EV charging, smart grids
Procedia PDF Downloads 644583 An Analytic Network Process Approach towards Academic Staff Selection
Authors: Nasrullah khan
Abstract:
Today business environment is very dynamic and most of organizations are in tough competition for their added values and sustainable hold in market. To achieve such objectives, organizations must have dynamic and creative people as optimized process. To get these people, there should strong human resource management system in organizations. There are multiple approaches have been devised in literature to hire more job relevant and more suitable people. This study proposed an ANP (Analytic Network Process) approach to hire faculty members for a university system. This study consists of two parts. In fist part, a through literature survey and universities interview are conducted in order to find the common criteria for the selection of academic staff. In second part the available candidates are prioritized on the basis of the relative values of these criteria. According to results the GRE & foreign language, GPA and research paper writing were most important factors for the selection of academic staff.Keywords: creative people, ANP, academic staff, business environment
Procedia PDF Downloads 4154582 Dynamic Programming Based Algorithm for the Unit Commitment of the Transmission-Constrained Multi-Site Combined Heat and Power System
Authors: A. Rong, P. B. Luh, R. Lahdelma
Abstract:
High penetration of intermittent renewable energy sources (RES) such as solar power and wind power into the energy system has caused temporal and spatial imbalance between electric power supply and demand for some countries and regions. This brings about the critical need for coordinating power production and power exchange for different regions. As compared with the power-only systems, the combined heat and power (CHP) systems can provide additional flexibility of utilizing RES by exploiting the interdependence of power and heat production in the CHP plant. In the CHP system, power production can be influenced by adjusting heat production level and electric power can be used to satisfy heat demand by electric boiler or heat pump in conjunction with heat storage, which is much cheaper than electric storage. This paper addresses multi-site CHP systems without considering RES, which lay foundation for handling penetration of RES. The problem under study is the unit commitment (UC) of the transmission-constrained multi-site CHP systems. We solve the problem by combining linear relaxation of ON/OFF states and sequential dynamic programming (DP) techniques, where relaxed states are used to reduce the dimension of the UC problem and DP for improving the solution quality. Numerical results for daily scheduling with realistic models and data show that DP-based algorithm is from a few to a few hundred times faster than CPLEX (standard commercial optimization software) with good solution accuracy (less than 1% relative gap from the optimal solution on the average).Keywords: dynamic programming, multi-site combined heat and power system, relaxed states, transmission-constrained generation unit commitment
Procedia PDF Downloads 3654581 Efficient Chess Board Representation: A Space-Efficient Protocol
Authors: Raghava Dhanya, Shashank S.
Abstract:
This paper delves into the intersection of chess and computer science, specifically focusing on the efficient representation of chess game states. We propose two methods: the Static Method and the Dynamic Method, each offering unique advantages in terms of space efficiency and computational complexity. The Static Method aims to represent the game state using a fixedlength encoding, allocating 192 bits to capture the positions of all pieces on the board. This method introduces a protocol for ordering and encoding piece positions, ensuring efficient storage and retrieval. However, it faces challenges in representing pieces no longer in play. In contrast, the Dynamic Method adapts to the evolving game state by dynamically adjusting the encoding length based on the number of pieces in play. By incorporating Alive Bits for each piece kind, this method achieves greater flexibility and space efficiency. Additionally, it includes provisions for encoding additional game state information such as castling rights and en passant squares. Our findings demonstrate that the Dynamic Method offers superior space efficiency compared to traditional Forsyth-Edwards Notation (FEN), particularly as the game progresses and pieces are captured. However, it comes with increased complexity in encoding and decoding processes. In conclusion, this study provides insights into optimizing the representation of chess game states, offering potential applications in chess engines, game databases, and artificial intelligence research. The proposed methods offer a balance between space efficiency and computational overhead, paving the way for further advancements in the field.Keywords: chess, optimisation, encoding, bit manipulation
Procedia PDF Downloads 504580 Optimizing 3D Shape Parameters of Sports Bra Pads in Motion by Finite Element Dynamic Modelling with Inverse Problem Solution
Authors: Jiazhen Chen, Yue Sun, Joanne Yip, Kit-Lun Yick
Abstract:
The design of sports bras poses a considerable challenge due to the difficulty in accurately predicting the wearing result after computer-aided design (CAD). It needs repeated physical try-on or virtual try-on to obtain a comfortable pressure range during motion. Specifically, in the context of running, the exact support area and force exerted on the breasts remain unclear. Consequently, obtaining an effective method to design the sports bra pads shape becomes particularly challenging. This predicament hinders the successful creation and production of sports bras that cater to women's health needs. The purpose of this study is to propose an effective method to obtain the 3D shape of sports bra pads and to understand the relationship between the supporting force and the 3D shape parameters of the pads. Firstly, the static 3D shape of the sports bra pad and human motion data (Running) are obtained by using the 3D scanner and advanced 4D scanning technology. The 3D shape of the sports bra pad is parameterised and simplified by Free-form Deformation (FFD). Then the sub-models of sports bra and human body are constructed by segmenting and meshing them with MSC Apex software. The material coefficient of sports bras is obtained by material testing. The Marc software is then utilised to establish a dynamic contact model between the human breast and the sports bra pad. To realise the reverse design of the sports bra pad, this contact model serves as a forward model for calculating the inverse problem. Based on the forward contact model, the inverse problem of the 3D shape parameters of the sports bra pad with the target bra-wearing pressure range as the boundary condition is solved. Finally, the credibility and accuracy of the simulation are validated by comparing the experimental results with the simulations by the FE model on the pressure distribution. On the one hand, this research allows for a more accurate understanding of the support area and force distribution on the breasts during running. On the other hand, this study can contribute to the customization of sports bra pads for different individuals. It can help to obtain sports bra pads with comfortable dynamic pressure.Keywords: sports bra design, breast motion, running, inverse problem, finite element dynamic model
Procedia PDF Downloads 594579 An Image Based Visual Servoing (IBVS) Approach Using a Linear-Quadratic Regulator (LQR) for Quadcopters
Authors: C. Gebauer, C. Henke, R. Vossen
Abstract:
Within the Mohamed Bin Zayed International Robotics Challenge (MBZIRC) 2020, a team of unmanned aerial vehicles (UAV) is used to capture intruder drones by physical interaction. The challenge is motivated by UAV safety. The purpose of this work is to investigate the agility of a quadcopter being controlled visually. The aim is to track and follow a highly dynamic target, e.g., an intruder quadcopter. The following is realized in close range and the opponent has a velocity of up to 10 m/s. Additional limitations are given by the hardware itself, where only monocular vision is present, and no additional knowledge about the targets state is available. An image based visual servoing (IBVS) approach is applied in combination with a Linear Quadratic Regulator (LQR). The IBVS is integrated into the LQR and an optimal trajectory is computed within the projected three-dimensional image-space. The approach has been evaluated on real quadcopter systems in different flight scenarios to demonstrate the system's stability.Keywords: image based visual servoing, quadcopter, dynamic object tracking, linear-quadratic regulator
Procedia PDF Downloads 1504578 Simulations of High-Intensity, Thermionic Electron Guns for Electron Beam Thermal Processing Including Effects of Space Charge Compensation
Authors: O. Hinrichs, H. Franz, G. Reiter
Abstract:
Electron guns have a key function in a series of thermal processes, like EB (electron beam) melting, evaporation or welding. These techniques need a high-intensity continuous electron beam that defocuses itself due to high space charge forces. A proper beam transport throughout the magnetic focusing system can be ensured by a space charge compensation via residual gas ions. The different pressure stages in the EB gun cause various degrees of compensation. A numerical model was installed to simulate realistic charge distributions within the beam by using CST-Particle Studio code. We will present current status of beam dynamic simulations. This contribution will focus on the creation of space charge ions and their influence on beam and gun components. Furthermore, the beam transport in the gun will be shown for different beam parameters. The electron source allows to produce beams with currents of 3 A to 15 A and energies of 40 keV to 45 keV.Keywords: beam dynamic simulation, space charge compensation, thermionic electron source, EB melting, EB thermal processing
Procedia PDF Downloads 3384577 Integrating RAG with Prompt Engineering for Dynamic Log Parsing and Anomaly Detections
Authors: Liu Lin Xin
Abstract:
With the increasing complexity of systems, log parsing and anomaly detection have become crucial for maintaining system stability. However, traditional methods often struggle with adaptability and accuracy, especially when dealing with rapidly evolving log content and unfamiliar domains. To address these challenges, this paper proposes approach that integrates Retrieval Augmented Generation (RAG) technology with Prompt Engineering for Large Language Models, applied specifically in LogPrompt. This approach enables dynamic log parsing and intelligent anomaly detection by combining real-time information retrieval with prompt optimization. The proposed method significantly enhances the adaptability of log analysis and improves the interpretability of results. Experimental results on several public datasets demonstrate the method's superior performance, particularly in scenarios lacking training data, where it significantly outperforms traditional methods. This paper introduces a novel technical pathway for log parsing and anomaly detection, showcasing the substantial theoretical value and practical potential.Keywords: log parsing, anomaly detection, RAG, prompt engineering, LLMs
Procedia PDF Downloads 344576 Review on Application of DVR in Compensation of Voltage Harmonics in Power Systems
Authors: S. Sudhharani
Abstract:
Energy distribution networks are the main link between the energy industry and consumers and are subject to the most scrutiny and testing of any category. As a result, it is important to monitor energy levels during the distribution phase. Power distribution networks, on the other hand, remain subject to common problems, including voltage breakdown, power outages, harmonics, and capacitor switching, all of which disrupt sinusoidal waveforms and reduce the quality and power of the network. Using power appliances in the form of custom power appliances is one way to deal with energy quality issues. Dynamic Voltage Restorer (DVR), integrated with network and distribution networks, is one of these devices. At the same time, by injecting voltage into the system, it can adjust the voltage amplitude and phase in the network. In the form of injections and three-phase syncing, it is used to compensate for the difficulty of energy quality. This article examines the recent use of DVR for power compensation and provides data on the control of each DVR in distribution networks.Keywords: dynamic voltage restorer (DVR), power quality, distribution networks, control systems(PWM)
Procedia PDF Downloads 1374575 Implication of Soil and Seismic Ground Motion Variability on Dynamic Pile Group Impedance for Bridges
Authors: Muhammad Tariq Chaudhary
Abstract:
Bridges constitute a vital link in a transportation system and their functionality after an earthquake is critical in reducing disruption to social and economic activities of the society. Bridges supported on pile foundations are commonly used in many earthquake-prone regions. In order to properly design or investigate the performance of such structures, it is imperative that the effect of soil-foundation-structure interaction be properly taken into account. This study focused on the influence of soil and seismic ground motion variability on the dynamic impedance of pile-group foundations typically used for medium-span (about 30 m) urban viaduct bridges. Soil profiles corresponding to various AASHTO soil classes were selected from actual data of such bridges and / or from the literature. The selected soil profiles were subjected to 1-D wave propagation analysis to determine effective values of soil shear modulus and damping ratio for a suite of properly selected actual seismic ground motions varying in PGA from 0.01g to 0.64g, and having variable velocity and frequency content. The effective values of the soil parameters were then employed to determine the dynamic impedance of pile groups in horizontal, vertical and rocking modes in various soil profiles. Pile diameter was kept constant for bridges in various soil profiles while pile length and number of piles were changed based on AASHTO design requirements for various soil profiles and earthquake ground motions. Conclusions were drawn regarding variability in effective soil shear modulus, soil damping, shear wave velocity and pile group impedance for various soil profiles and ground motions and its implications for design and evaluation of pile-supported bridges. It was found that even though the effective soil parameters underwent drastic variation with increasing PGA, the pile group impedance was not affected much in properly designed pile foundations due to the corresponding increase in pile length or increase in a number of piles or both when subjected to increasing PGA or founded in weaker soil profiles.Keywords: bridge, pile foundation, dynamic foundation impedance, soil profile, shear wave velocity, seismic ground motion, seismic wave propagation
Procedia PDF Downloads 3244574 Analysis of a Single Motor Finger Mechanism for a Prosthetic Hand
Authors: Shaukat Ali, Kanber Sedef, Mustafa Yilmaz
Abstract:
This work analyzes a finger mechanism for a prosthetic hand that will help in improving the living standards of people who have lost their hands for a variety of reasons. The finger mechanism is single degree of freedom and hence has advantages such as compact size, reduced mass and less energy consumption. The proposed finger mechanism is a six bar linkage actuated by a single motor. The kinematic, static and dynamic analyses have been done by using the conventional methods of mechanism analysis. The kinematic results present the motion of the proposed finger mechanism and location of the fingertip. The static and dynamic analyses provide the useful information about the gripping force at the fingertip for various configurations and the selection of motor that will move the finger over its range of configuration. This single motor finger mechanism is simple and resembles the human finger’s motion suitable for grasping operation. This study can be used in the optimization of geometrical parameters of the proposed mechanism to obtain the desired configurations with minimum torque and enhanced griping.Keywords: dynamics, finger mechanism, grasping, kinematics
Procedia PDF Downloads 3584573 Comparison of Various Policies under Different Maintenance Strategies on a Multi-Component System
Authors: Demet Ozgur-Unluakin, Busenur Turkali, Ayse Karacaorenli
Abstract:
Maintenance strategies can be classified into two types, which are reactive and proactive, with respect to the time of the failure and maintenance. If the maintenance activity is done after a breakdown, it is called reactive maintenance. On the other hand, proactive maintenance, which is further divided as preventive and predictive, focuses on maintaining components before a failure occurs to prevent expensive halts. Recently, the number of interacting components in a system has increased rapidly and therefore, the structure of the systems have become more complex. This situation has made it difficult to provide the right maintenance decisions. Herewith, determining effective decisions has played a significant role. In multi-component systems, many methodologies and strategies can be applied when a component or a system has already broken down or when it is desired to identify and avoid proactively defects that could lead to future failure. This study focuses on the comparison of various maintenance strategies on a multi-component dynamic system. Components in the system are hidden, although there exists partial observability to the decision maker and they deteriorate in time. Several predefined policies under corrective, preventive and predictive maintenance strategies are considered to minimize the total maintenance cost in a planning horizon. The policies are simulated via Dynamic Bayesian Networks on a multi-component system with different policy parameters and cost scenarios, and their performances are evaluated. Results show that when the difference between the corrective and proactive maintenance cost is low, none of the proactive maintenance policies is significantly better than the corrective maintenance. However, when the difference is increased, at least one policy parameter for each proactive maintenance strategy gives significantly lower cost than the corrective maintenance.Keywords: decision making, dynamic Bayesian networks, maintenance, multi-component systems, reliability
Procedia PDF Downloads 1294572 Dynamic Facades: A Literature Review on Double-Skin Façade with Lightweight Materials
Authors: Victor Mantilla, Romeu Vicente, António Figueiredo, Victor Ferreira, Sandra Sorte
Abstract:
Integrating dynamic facades into contemporary building design is shaping a new era of energy efficiency and user comfort. These innovative facades, often constructed using lightweight construction systems and materials, offer an opportunity to have a responsive and adaptive nature to the dynamic behavior of the outdoor climate. Therefore, in regions characterized by high fluctuations in daily temperatures, the ability to adapt to environmental changes is of paramount importance and a challenge. This paper presents a thorough review of the state of the art on double-skin facades (DSF), focusing on lightweight solutions for the external envelope. Dynamic facades featuring elements like movable shading devices, phase change materials, and advanced control systems have revolutionized the built environment. They offer a promising path for reducing energy consumption while enhancing occupant well-being. Lightweight construction systems are increasingly becoming the choice for the constitution of these facade solutions, offering benefits such as reduced structural loads and reduced construction waste, improving overall sustainability. However, the performance of dynamic facades based on low thermal inertia solutions in climatic contexts with high thermal amplitude is still in need of research since their ability to adapt is traduced in variability/manipulation of the thermal transmittance coefficient (U-value). Emerging technologies can enable such a dynamic thermal behavior through innovative materials, changes in geometry and control to optimize the facade performance. These innovations will allow a facade system to respond to shifting outdoor temperature, relative humidity, wind, and solar radiation conditions, ensuring that energy efficiency and occupant comfort are both met/coupled. This review addresses the potential configuration of double-skin facades, particularly concerning their responsiveness to seasonal variations in temperature, with a specific focus on addressing the challenges posed by winter and summer conditions. Notably, the design of a dynamic facade is significantly shaped by several pivotal factors, including the choice of materials, geometric considerations, and the implementation of effective monitoring systems. Within the realm of double skin facades, various configurations are explored, encompassing exhaust air, supply air, and thermal buffering mechanisms. According to the review places a specific emphasis on the thermal dynamics at play, closely examining the impact of factors such as the color of the facade, the slat angle's dimensions, and the positioning and type of shading devices employed in these innovative architectural structures.This paper will synthesize the current research trends in this field, with the presentation of case studies and technological innovations with a comprehensive understanding of the cutting-edge solutions propelling the evolution of building envelopes in the face of climate change, namely focusing on double-skin lightweight solutions to create sustainable, adaptable, and responsive building envelopes. As indicated in the review, flexible and lightweight systems have broad applicability across all building sectors, and there is a growing recognition that retrofitting existing buildings may emerge as the predominant approach.Keywords: adaptive, control systems, dynamic facades, energy efficiency, responsive, thermal comfort, thermal transmittance
Procedia PDF Downloads 804571 The Consequences of Vibrations in Machining
Authors: Boughedaoui Rachid, Belaidi Idir, Ouali Mohamed
Abstract:
The formatting by removal of material remains an indispensable means for obtaining different forms of pieces. The objective of this work is to study the influence of parameters of the vibratory regime of the system PTM 'Piece-Tool-Machine, in the case of the machining of the thin pieces on the surface finish. As a first step, an analytical study of essential dynamic models 2D slice will be presented. The stability lobes will be thus obtained. In a second step, a characterization of PTM system will be realized. This system will be instrumented with accelerometric sensors but also a laser vibrometer so as to have the information closer to the cutting area. Dynamometers three components will be used for the analysis of cutting forces. Surface states will be measured and the condition of the cutting edge will be visualized thanks to a binocular microscope coupled to a data acquisition system. This information will allow quantifying the influence of chatter on the dimensional quality of the parts. From lobes stabilities previously determined experimental validation allow for the development a method for detecting of the phenomenon of chatter and so an approach will be proposed.Keywords: chatter, dynamic, milling, lobe stability
Procedia PDF Downloads 3574570 An Intensional Conceptualization Model for Ontology-Based Semantic Integration
Authors: Fateh Adhnouss, Husam El-Asfour, Kenneth McIsaac, AbdulMutalib Wahaishi, Idris El-Feghia
Abstract:
Conceptualization is an essential component of semantic ontology-based approaches. There have been several approaches that rely on extensional structure and extensional reduction structure in order to construct conceptualization. In this paper, several limitations are highlighted relating to their applicability to the construction of conceptualizations in dynamic and open environments. These limitations arise from a number of strong assumptions that do not apply to such environments. An intensional structure is strongly argued to be a natural and adequate modeling approach. This paper presents a conceptualization structure based on property relations and propositions theory (PRP) to the model ontology that is suitable for open environments. The model extends the First-Order Logic (FOL) notation and defines the formal representation that enables interoperability between software systems and supports semantic integration for software systems in open, dynamic environments.Keywords: conceptualization, ontology, extensional structure, intensional structure
Procedia PDF Downloads 1154569 A Dynamic Column Adsorption Study of Methyl Blue on Synthesis onto Synthesized Chitosan Immobilized Sawdust Cellulose Nanocrystals
Authors: Opeyemi A. Oyewo, Seshibe Makgato
Abstract:
This paper presents the synthesis, characterization, and application of pelletized chitosan immobilized sawdust cellulose nanocrystals (PCCN) in a fixed-bed column for the continuous adsorption of methyl blue (MB) from water. The product was characterized using FT-IR, XRD, and SEM analysis. Microstructural examination revealed that the pellets are porous and spherical. XRD examination revealed phases that can be attributed to the presence of chitosan in PCCN. The effects of starting concentration, bed depth, and flow rate on synthetic water were explored. To identify MB breakthrough behaviour, performance indices such as bed volume, adsorbent exhaustion rate, and service time were investigated. Furthermore, the breakthrough data were incorporated into both the Thomas and Bohart-Adams models. The Thomas model was suitable for describing MB breakthrough curves. However, more research with diverse water matrices may be required to assess the resilience of PCCN.Keywords: adsorption, dynamic, methyl blue, pelletization
Procedia PDF Downloads 32