Search results for: classification system
18412 Application of Optimization Techniques in Overcurrent Relay Coordination: A Review
Authors: Syed Auon Raza, Tahir Mahmood, Syed Basit Ali Bukhari
Abstract:
In power system properly coordinated protection scheme is designed to make sure that only the faulty part of the system will be isolated when abnormal operating condition of the system will reach. The complexity of the system as well as the increased user demand and the deregulated environment enforce the utilities to improve system reliability by using a properly coordinated protection scheme. This paper presents overview of over current relay coordination techniques. Different techniques such as Deterministic Techniques, Meta Heuristic Optimization techniques, Hybrid Optimization Techniques, and Trial and Error Optimization Techniques have been reviewed in terms of method of their implementation, operation modes, nature of distribution system, and finally their advantages as well as the disadvantages.Keywords: distribution system, relay coordination, optimization, Plug Setting Multiplier (PSM)
Procedia PDF Downloads 40418411 Intelligent Prediction System for Diagnosis of Heart Attack
Authors: Oluwaponmile David Alao
Abstract:
Due to an increase in the death rate as a result of heart attack. There is need to develop a system that can be useful in the diagnosis of the disease at the medical centre. This system will help in preventing misdiagnosis that may occur from the medical practitioner or the physicians. In this research work, heart disease dataset obtained from UCI repository has been used to develop an intelligent prediction diagnosis system. The system is modeled on a feedforwad neural network and trained with back propagation neural network. A recognition rate of 86% is obtained from the testing of the network.Keywords: heart disease, artificial neural network, diagnosis, prediction system
Procedia PDF Downloads 45418410 A Multi-Agent Intelligent System for Monitoring Health Conditions of Elderly People
Authors: Ayman M. Mansour
Abstract:
In this paper, we propose a multi-agent intelligent system that is used for monitoring the health conditions of elderly people. Monitoring the health condition of elderly people is a complex problem that involves different medical units and requires continuous monitoring. Such expert system is highly needed in rural areas because of inadequate number of available specialized physicians or nurses. Such monitoring must have autonomous interactions between these medical units in order to be effective. A multi-agent system is formed by a community of agents that exchange information and proactively help one another to achieve the goal of elderly monitoring. The agents in the developed system are equipped with intelligent decision maker that arms them with the rule-based reasoning capability that can assist the physicians in making decisions regarding the medical condition of elderly people.Keywords: fuzzy logic, inference system, monitoring system, multi-agent system
Procedia PDF Downloads 61318409 HIV and AIDS in Kosovo, Stigma Persist!
Authors: Luljeta Gashi, Naser Ramadani, Zana Deva, Dafina Gexha-Bunjaku
Abstract:
The official HIV/AIDS data in Kosovo are based on HIV case reporting from health-care services, the blood transfusion system and Voluntary Counselling and Testing centres. Between 1986 and 2014, are reported 95 HIV and AIDS cases, of which 49 were AIDS, 46 HIV and 40 deaths. The majority (69%) of cases were men, age group 25 to 34 (37%) and route of transmission is: heterosexual (90%), MSM (7%), vertical transmission (2%) and IDU (1%). Based on existing data and the UNAIDS classification system, Kosovo is currently still categorised as having a low-level HIV epidemic. Even though with a low HIV prevalence, Kosovo faces a number of threatening factors, including increased number of drug users, a stigmatized and discriminated MSM community, high percentage of youth among general population (57% of the population under the age of 25), with changing social norms and especially the sexual ones. Methods: Data collection was done using self administered structured questionnaires amongst 249 high school students. Data were analysed using the Statistical Package for Social Sciences (SPSS). Results: The findings revealed that 68% of students know that HIV transmission can be reduced by having sex with only one uninfected partner who has no other partners, 94% know that the risk of getting HIV can be reduced by using a condom every time they have sex, 68% know that a person cannot get HIV from mosquito bites, 81% know that they cannot get HIV by sharing food with someone who is infected and 46% know that a healthy looking person can have HIV. Conclusions: Seventy one percent of high school students correctly identify ways of preventing the sexual transmission of HIV and who reject the major misconceptions about HIV transmission. The findings of the study indicate a need for more health education and promotion.Keywords: Kosovo, KPAR, HIV, high school
Procedia PDF Downloads 48318408 The Design of Information Technology System for Traceability of Thailand’s Tubtimjun Roseapple
Authors: Pimploi Tirastittam, Phutthiwat Waiyawuththanapoom, Sawanath Treesathon
Abstract:
As there are several countries which import agriculture product from Thailand, those countries demand Thailand to establish the traceability system. The traceability system is the tool to reduce the risk in the supply chain in a very effective way as it will help the stakeholder in the supply chain to identify the defect point which will reduce the cost of operation in the supply chain. This research is aimed to design the traceability system for Tubtimjun roseapple for exporting to China, and it is the qualitative research. The data was collected from the expert in the tuntimjun roseapple and fruit exporting industry, and the data was used to design the traceability system. The design of the tubtimjun roseapple traceability system was followed the theory of supply chain which starts from the upstream of the supply chain to the downstream of the supply chain to support the process and condition of the exporting which included the database designing, system architecture, user interface design and information technology of the traceability system.Keywords: design information, technology system, traceability, tubtimjun roseapple
Procedia PDF Downloads 17618407 Model Based Design of Fly-by-Wire Flight Controls System of a Fighter Aircraft
Authors: Nauman Idrees
Abstract:
Modeling and simulation during the conceptual design phase are the most effective means of system testing resulting in time and cost savings as compared to the testing of hardware prototypes, which are mostly not available during the conceptual design phase. This paper uses the model-based design (MBD) method in designing the fly-by-wire flight controls system of a fighter aircraft using Simulink. The process begins with system definition and layout where modeling requirements and system components were identified, followed by hierarchical system layout to identify the sequence of operation and interfaces of system with external environment as well as the internal interface between the components. In the second step, each component within the system architecture was modeled along with its physical and functional behavior. Finally, all modeled components were combined to form the fly-by-wire flight controls system of a fighter aircraft as per system architecture developed. The system model developed using this method can be simulated using any simulation software to ensure that desired requirements are met even without the development of a physical prototype resulting in time and cost savings.Keywords: fly-by-wire, flight controls system, model based design, Simulink
Procedia PDF Downloads 12018406 A Case Study of Deep Learning for Disease Detection in Crops
Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell
Abstract:
In the precision agriculture area, one of the main tasks is the automated detection of diseases in crops. Machine Learning algorithms have been studied in recent decades for such tasks in view of their potential for improving economic outcomes that automated disease detection may attain over crop fields. The latest generation of deep learning convolution neural networks has presented significant results in the area of image classification. In this way, this work has tested the implementation of an architecture of deep learning convolution neural network for the detection of diseases in different types of crops. A data augmentation strategy was used to meet the requirements of the algorithm implemented with a deep learning framework. Two test scenarios were deployed. The first scenario implemented a neural network under images extracted from a controlled environment while the second one took images both from the field and the controlled environment. The results evaluated the generalisation capacity of the neural networks in relation to the two types of images presented. Results yielded a general classification accuracy of 59% in scenario 1 and 96% in scenario 2.Keywords: convolutional neural networks, deep learning, disease detection, precision agriculture
Procedia PDF Downloads 26418405 Explainable Graph Attention Networks
Authors: David Pham, Yongfeng Zhang
Abstract:
Graphs are an important structure for data storage and computation. Recent years have seen the success of deep learning on graphs such as Graph Neural Networks (GNN) on various data mining and machine learning tasks. However, most of the deep learning models on graphs cannot easily explain their predictions and are thus often labelled as “black boxes.” For example, Graph Attention Network (GAT) is a frequently used GNN architecture, which adopts an attention mechanism to carefully select the neighborhood nodes for message passing and aggregation. However, it is difficult to explain why certain neighbors are selected while others are not and how the selected neighbors contribute to the final classification result. In this paper, we present a graph learning model called Explainable Graph Attention Network (XGAT), which integrates graph attention modeling and explainability. We use a single model to target both the accuracy and explainability of problem spaces and show that in the context of graph attention modeling, we can design a unified neighborhood selection strategy that selects appropriate neighbor nodes for both better accuracy and enhanced explainability. To justify this, we conduct extensive experiments to better understand the behavior of our model under different conditions and show an increase in both accuracy and explainability.Keywords: explainable AI, graph attention network, graph neural network, node classification
Procedia PDF Downloads 20718404 Bit Error Rate Analysis of Multiband OFCDM UWB System in UWB Fading Channel
Authors: Sanjay M. Gulhane, Athar Ravish Khan, Umesh W. Kaware
Abstract:
Orthogonal frequency and code division multiplexing (OFCDM) has received large attention as a modulation scheme to realize high data rate transmission. Multiband (MB) Orthogonal frequency division multiplexing (OFDM) Ultra Wide Band (UWB) system become promising technique for high data rate due to its large number of advantage over Singleband (UWB) system, but it suffer from coherent frequency diversity problem. In this paper we have proposed MB-OFCDM UWB system, in which two-dimensional (2D) spreading (time and frequency domain spreading), has been introduced, combining OFDM with 2D spreading, proposed system can provide frequency diversity. This paper presents the basic structure and main functions of the MB-OFCDM system, and evaluates the bit error rate BER performance of MB-OFDM and MB-OFCDM system under UWB indoor multi-path channel model. It is observe that BER curve of MB-OFCDM UWB improve its performance by 2dB as compare to MB-OFDM UWB system.Keywords: MB-OFDM UWB system, MB-OFCDM UWB system, UWB IEEE channel model, BER
Procedia PDF Downloads 55218403 The Interconnection between Curriculum Development and ICT
Authors: Hanane Sarnou, Sabri Koç
Abstract:
In this paper, the interconnection between curriculum development for basic education and the use of information and communication technologies (ICTs) in the classroom referring to the Licence, Master's and Doctorate (LMD) benefits under such link will be presented and analysed. This study seeks to achieve to what extent LMD, competency-based approach (CBA) and ICTs use are interrelated. Likewise, the data collected from the responses of our teachers and learners who are concerned with LMD impact on their learning and teaching through interviews will be discussed, analysed, and classified. This paper is divided into two sections. The first section is about the curriculum development for basic education and its relation with higher education under the LMD and its link with ICTs in the university while the second section is about the classification of learners’ and teachers’ positive/negative responses concerning their positive or negative attitudes towards the ICT integration. The focus will be on the positive aspects of students’ expectations, opinions and assumptions regarding the integration of ICTs into the classroom under LMD and CBA.Keywords: LMD system, CBA approach, curriculum development, ICT
Procedia PDF Downloads 42118402 Optimal Implementation of Photovoltaic Water Pumping System
Authors: Sarah Abdourraziq
Abstract:
To improve the efficiency of photovoltaic pumping system, more attention has been paid to their setting up. This paper presents an optimal technique to establish an efficient system under different conditions of irradiance and temperature. The state of place should be carefully studied before stage of installation of the over system: local climate, boreholes, soil, crops and water resources. The studied system consists of a PV panel, a DC-DC boost converter, a DC motor-pump, and storage tank. The concepts shown in this paper presents a support for an optimal installation of each solar pump.Keywords: photovoltaic pumping system, optimal implementation, boost converter, motor-pump
Procedia PDF Downloads 35518401 Comparing the Detection of Autism Spectrum Disorder within Males and Females Using Machine Learning Techniques
Authors: Joseph Wolff, Jeffrey Eilbott
Abstract:
Autism Spectrum Disorders (ASD) are a spectrum of social disorders characterized by deficits in social communication, verbal ability, and interaction that can vary in severity. In recent years, researchers have used magnetic resonance imaging (MRI) to help detect how neural patterns in individuals with ASD differ from those of neurotypical (NT) controls for classification purposes. This study analyzed the classification of ASD within males and females using functional MRI data. Functional connectivity (FC) correlations among brain regions were used as feature inputs for machine learning algorithms. Analysis was performed on 558 cases from the Autism Brain Imaging Data Exchange (ABIDE) I dataset. When trained specifically on females, the algorithm underperformed in classifying the ASD subset of our testing population. Although the subject size was relatively smaller in the female group, the manual matching of both male and female training groups helps explain the algorithm’s bias, indicating the altered sex abnormalities in functional brain networks compared to typically developing peers. These results highlight the importance of taking sex into account when considering how generalizations of findings on males with ASD apply to females.Keywords: autism spectrum disorder, machine learning, neuroimaging, sex differences
Procedia PDF Downloads 21418400 Optimizing Machine Vision System Setup Accuracy by Six-Sigma DMAIC Approach
Authors: Joseph C. Chen
Abstract:
Machine vision system provides automatic inspection to reduce manufacturing costs considerably. However, only a few principles have been found to optimize machine vision system and help it function more accurately in industrial practice. Mostly, there were complicated and impractical design techniques to improve the accuracy of machine vision system. This paper discusses implementing the Six Sigma Define, Measure, Analyze, Improve, and Control (DMAIC) approach to optimize the setup parameters of machine vision system when it is used as a direct measurement technique. This research follows a case study showing how Six Sigma DMAIC methodology has been put into use.Keywords: DMAIC, machine vision system, process capability, Taguchi Parameter Design
Procedia PDF Downloads 44318399 Fractional Residue Number System
Authors: Parisa Khoshvaght, Mehdi Hosseinzadeh
Abstract:
During the past few years, the Residue Number System (RNS) has been receiving considerable interest due to its parallel and fault-tolerant properties. This system is a useful tool for Digital Signal Processing (DSP) since it can support parallel, carry-free, high-speed and low power arithmetic. One of the drawbacks of Residue Number System is the fractional numbers, that is, the corresponding circuit is very hard to realize in conventional CMOS technology. In this paper, we propose a method in which the numbers of transistors are significantly reduced. The related delay is extremely diminished, in the first glance we use this method to solve concerning problem of one decimal functional number some how this proposition can be extended to generalize the idea. Another advantage of this method is the independency on the kind of moduli.Keywords: computer arithmetic, residue number system, number system, one-Hot, VLSI
Procedia PDF Downloads 50018398 Evaluation of Clinical Decision Support System in Electronic Medical Record System: A Case of Malawi National Art Electronic Medical Record System
Authors: Pachawo Bisani, Goodall Nyirenda
Abstract:
The Malawi National Antiretroviral Therapy (NART) Electronic Medical Record (EMR) system was designed and developed with guidance from the Ministry of Health through the Department of HIV and AIDS (DHA) with the aim of supporting the management of HIV patient data and reporting in high prevalence ART clinics. As of 2021, the system has been scaled up to over 206 facilities across the country. The system is integrated with the clinical decision support system (CDSS) to assist healthcare providers in making a decision about an individual patient at a particular point in time. Despite NART EMR undergoing several evaluations and assessments, little has been done to evaluate the clinical decision support system in the NART EMR system. Hence, the study aimed to evaluate the use of CDSS in the NART EMR system in Malawi. The study adopted a mixed-method approach, and data was collected through interviews, observations, and questionnaires. The study has revealed that the CDSS tools were integrated into the ART clinic workflow, making it easy for the user to use it. The study has also revealed challenges in system reliability and information accuracy. Despite the challenges, the study further revealed that the system is effective and efficient, and overall, users are satisfied with the system. The study recommends that the implementers focus more on the logic behind the clinical decision-support intervention in order to address some of the concerns and enhance the accuracy of the information supplied. The study further suggests consulting the system's actual users throughout implementation.Keywords: clinical decision support system, electronic medical record system, usability, antiretroviral therapy
Procedia PDF Downloads 11018397 Identification and Classification of Medicinal Plants of Indian Himalayan Region Using Hyperspectral Remote Sensing and Machine Learning Techniques
Authors: Kishor Chandra Kandpal, Amit Kumar
Abstract:
The Indian Himalaya region harbours approximately 1748 plants of medicinal importance, and as per International Union for Conservation of Nature (IUCN), the 112 plant species among these are threatened and endangered. To ease the pressure on these plants, the government of India is encouraging its in-situ cultivation. The Saussurea costus, Valeriana jatamansi, and Picrorhiza kurroa have also been prioritized for large scale cultivation owing to their market demand, conservation value and medicinal properties. These species are found from 1000 m to 4000 m elevation ranges in the Indian Himalaya. Identification of these plants in the field requires taxonomic skills, which is one of the major bottleneck in the conservation and management of these plants. In recent years, Hyperspectral remote sensing techniques have been precisely used for the discrimination of plant species with the help of their unique spectral signatures. In this background, a spectral library of the above 03 medicinal plants was prepared by collecting the spectral data using a handheld spectroradiometer (325 to 1075 nm) from farmer’s fields of Himachal Pradesh and Uttarakhand states of Indian Himalaya. The Random forest (RF) model was implied on the spectral data for the classification of the medicinal plants. The 80:20 standard split ratio was followed for training and validation of the RF model, which resulted in training accuracy of 84.39 % (kappa coefficient = 0.72) and testing accuracy of 85.29 % (kappa coefficient = 0.77). This RF classifier has identified green (555 to 598 nm), red (605 nm), and near-infrared (725 to 840 nm) wavelength regions suitable for the discrimination of these species. The findings of this study have provided a technique for rapid and onsite identification of the above medicinal plants in the field. This will also be a key input for the classification of hyperspectral remote sensing images for mapping of these species in farmer’s field on a regional scale. This is a pioneer study in the Indian Himalaya region for medicinal plants in which the applicability of hyperspectral remote sensing has been explored.Keywords: himalaya, hyperspectral remote sensing, machine learning; medicinal plants, random forests
Procedia PDF Downloads 20918396 Video Based Automatic License Plate Recognition System
Authors: Ali Ganoun, Wesam Algablawi, Wasim BenAnaif
Abstract:
Video based traffic surveillance based on License Plate Recognition (LPR) system is an essential part for any intelligent traffic management system. The LPR system utilizes computer vision and pattern recognition technologies to obtain traffic and road information by detecting and recognizing vehicles based on their license plates. Generally, the video based LPR system is a challenging area of research due to the variety of environmental conditions. The LPR systems used in a wide range of commercial applications such as collision warning systems, finding stolen cars, controlling access to car parks and automatic congestion charge systems. This paper presents an automatic LPR system of Libyan license plate. The performance of the proposed system is evaluated with three video sequences.Keywords: license plate recognition, localization, segmentation, recognition
Procedia PDF Downloads 46818395 Developing a Multiagent-Based Decision Support System for Realtime Multi-Risk Disaster Management
Authors: D. Moser, D. Pinto, A. Cipriano
Abstract:
A Disaster Management System (DMS) for countries with different disasters is very important. In the world different disasters like earthquakes, tsunamis, volcanic eruption, fire or other natural or man-made disasters occurs and have an effect on the population. It is also possible that two or more disasters arisen at the same time, this means to handle multi-risk situations. To handle such a situation a Decision Support System (DSS) based on multiagents is a suitable architecture. The most known DMSs deal with one (in the case of an earthquake-tsunami combination with two) disaster and often with one particular disaster. Nevertheless, a DSS helps for a better realtime response. Analyze the existing systems in the literature and expand them for multi-risk disasters to construct a well-organized system is the proposal of our work. The here shown work is an approach of a multi-risk system, which needs an architecture, and well-defined aims. In this moment our study is a kind of case study to analyze the way we have to follow to create our proposed system in the future.Keywords: decision support system, disaster management system, multi-risk, multiagent system
Procedia PDF Downloads 43718394 Photovoltaic Water Pumping System Application
Authors: Sarah Abdourraziq
Abstract:
Photovoltaic (PV) water pumping system is one of the most used and important applications in the field of solar energy. However, the cost and the efficiency are still a concern, especially with continued change of solar radiation and temperature. Then, the improvement of the efficiency of the system components is a good solution to reducing the cost. The use of maximum power point tracking (MPPT) algorithms to track the output maximum power point (MPP) of the PV panel is very important to improve the efficiency of the whole system. In this paper, we will present a definition of the functioning of MPPT technique, and a detailed model of each component of PV pumping system with Matlab-Simulink, the results shows the influence of the changing of solar radiation and temperature in the output characteristics of PV panel, which influence in the efficiency of the system. Our system consists of a PV generator, a boost converter, a motor-pump set, and storage tank.Keywords: PV panel, boost converter, MPPT, MPP, PV pumping system
Procedia PDF Downloads 40018393 Study of Land Use Land Cover Change of Bhimbetka with Temporal Satellite Data and Information Systems
Authors: Pranita Shivankar, Devashree Hardas, Prabodhachandra Deshmukh, Arun Suryavanshi
Abstract:
Bhimbetka Rock Shelters is the UNESCO World Heritage Site located about 45 kilometers south of Bhopal in the state of Madhya Pradesh, India. Rapid changes in land use land cover (LULC) adversely affect the environment. In recent past, significant changes are found in the cultural landscape over a period of time. The objective of the paper was to study the changes in land use land cover (LULC) of Bhimbetka and its peripheral region. For this purpose, the supervised classification was carried out by using satellite images of Landsat and IRS LISS III for the year 2000 and 2013. Use of remote sensing in combination with geographic information system is one of the effective information technology tools to generate land use land cover (LULC) change information.Keywords: IRS LISS III, Landsat, LULC, UNESCO, World Heritage Site
Procedia PDF Downloads 35218392 A Technique for Image Segmentation Using K-Means Clustering Classification
Authors: Sadia Basar, Naila Habib, Awais Adnan
Abstract:
The paper presents the Technique for Image Segmentation Using K-Means Clustering Classification. The presented algorithms were specific, however, missed the neighboring information and required high-speed computerized machines to run the segmentation algorithms. Clustering is the process of partitioning a group of data points into a small number of clusters. The proposed method is content-aware and feature extraction method which is able to run on low-end computerized machines, simple algorithm, required low-quality streaming, efficient and used for security purpose. It has the capability to highlight the boundary and the object. At first, the user enters the data in the representation of the input. Then in the next step, the digital image is converted into groups clusters. Clusters are divided into many regions. The same categories with same features of clusters are assembled within a group and different clusters are placed in other groups. Finally, the clusters are combined with respect to similar features and then represented in the form of segments. The clustered image depicts the clear representation of the digital image in order to highlight the regions and boundaries of the image. At last, the final image is presented in the form of segments. All colors of the image are separated in clusters.Keywords: clustering, image segmentation, K-means function, local and global minimum, region
Procedia PDF Downloads 38118391 Residual Life Estimation of K-out-of-N Cold Standby System
Authors: Qian Zhao, Shi-Qi Liu, Bo Guo, Zhi-Jun Cheng, Xiao-Yue Wu
Abstract:
Cold standby redundancy is considered to be an effective mechanism for improving system reliability and is widely used in industrial engineering. However, because of the complexity of the reliability structure, there is little literature studying on the residual life of cold standby system consisting of complex components. In this paper, a simulation method is presented to predict the residual life of k-out-of-n cold standby system. In practical cases, failure information of a system is either unknown, partly unknown or completely known. Our proposed method is designed to deal with the three scenarios, respectively. Differences between the procedures are analyzed. Finally, numerical examples are used to validate the proposed simulation method.Keywords: cold standby system, k-out-of-n, residual life, simulation sampling
Procedia PDF Downloads 40418390 Design and Realization of Social Responsibility Report Writing System
Authors: Hao Qin
Abstract:
This paper proposes a guiding tool for companies to write social responsibility report by developing an applicable writing system based on analysis of its functional requirements, writing indicators and roles. The system’s operation and results concerned will be demonstrated as well.Keywords: social responsibility, report writing, system, design and realization
Procedia PDF Downloads 38318389 The Development of XML Resume System in Thailand
Authors: Jarumon Nookhong, Thanakorn Uiphanit
Abstract:
This study is a research and development project which aims to develop XML Resume System to be the standard system in Thailand as well as to measure the efficiency of the XML Resume System in Thailand. This research separates into 2 stages: 1) to develop XML Document System to be the standard in Thailand, and 2) to experiment the system performance. The sample in this research is committed by 50 specialists in the field of human resources by selecting specifically. The tool that uses in this research is XML Resume System in Thailand and the performance evaluation format of system while the analysis of the data is calculated by using average and standard deviation. The result of the research found that the development of the XML Resume System that aims to be the standard system in Thailand had the result 2.67 of the average which is in a good level. The evaluation in testing the performance of the system had been done by the specialists of human resources who use the XML Resume system. When analyzing each part, it found out that the abilities according to the user’s requirement from specialists in the field of human resources, the convenience and easiness in usages, and the functional competency are respectively in a good level. The average of the ability according to the user’s need from specialists of human resources is 2.92. The average of the convenience and easiness in usages is 2.56. The average of functional competency is 2.53. These can be used as the standard effectively.Keywords: resume, XML, XML schema, computer science
Procedia PDF Downloads 41418388 Design of the Ubiquitous Cloud Learning Management System
Authors: Panita Wannapiroon, Noppadon Phumeechanya, Sitthichai Laisema
Abstract:
This study is the research and development which is intended to: 1) design the ubiquitous cloud learning management system and: 2) assess the suitability of the design of the ubiquitous cloud learning management system. Its methods are divided into 2 phases. Phase 1 is the design of the ubiquitous cloud learning management system, phase 2 is the assessment of the suitability of the design the samples used in this study are work done by 25 professionals in the field of Ubiquitous cloud learning management systems and information and communication technology in education selected using the purposive sampling method. Data analyzed by arithmetic mean and standard deviation. The results showed that the ubiquitous cloud learning management system consists of 2 main components which are: 1) the ubiquitous cloud learning management system server (u-Cloud LMS Server) including: cloud repository, cloud information resources, social cloud network, cloud context awareness, cloud communication, cloud collaborative tools, and: 2) the mobile client. The result of the system suitability assessment from the professionals is in the highest range.Keywords: learning management system, cloud computing, ubiquitous learning, ubiquitous learning management system
Procedia PDF Downloads 52818387 The Effect of Microgrid on Power System Oscillatory Stability
Authors: Burak Yildirim, Muhsin Tunay Gencoglu
Abstract:
This publication shows the effects of Microgrid (MG) integration on the power systems oscillating stability. Generated MG model power systems were applied to the IEEE 14 bus test system which is widely used in stability studies. Stability studies were carried out with the help of eigenvalue analysis over linearized system models. In addition, Hopf bifurcation point detection was performed to show the effect of MGs on the system loadability margin. In the study results, it is seen that MGs affect system stability positively by increasing system loadability margin and has a damper effect on the critical modes of the system and the electromechanical local modes, but they make the damping amount of the electromechanical interarea modes reduce.Keywords: Eigenvalue analysis, microgrid, Hopf bifurcation, oscillatory stability
Procedia PDF Downloads 29518386 An Open Source Advertisement System
Authors: Pushkar Umaranikar, Chris Pollett
Abstract:
An online advertisement system and its implementation for the Yioop open source search engine are presented. This system supports both selling advertisements and displaying them within search results. The selling of advertisements is done using a system to auction off daily impressions for keyword searches. This is an open, ascending price auction system in which all accepted bids will receive a fraction of the auctioned day’s impressions. New bids in our system are required to be at least one half of the sum of all previous bids ensuring the number of accepted bids is logarithmic in the total ad spend on a keyword for a day. The mechanics of creating an advertisement, attaching keywords to it, and adding it to an advertisement inventory are described. The algorithm used to go from accepted bids for a keyword to which ads are displayed at search time is also presented. We discuss properties of our system and compare it to existing auction systems and systems for selling online advertisements.Keywords: online markets, online ad system, online auctions, search engines
Procedia PDF Downloads 33018385 Optimization and Feasibility Analysis of a PV/Wind/ Battery Hybrid Energy Conversion
Authors: Doaa M. Atia, Faten H. Fahmy, Ninet M. A. El-Rahman, Hassan T. Dorra
Abstract:
In this paper, the optimum design for renewable energy system powered an aquaculture pond was determined. Hybrid Optimization Model for Electric Renewable (HOMER) software program, which is developed by U.S National Renewable Energy Laboratory (NREL), is used for analyzing the feasibility of the stand-alone and hybrid system in this study. HOMER program determines whether renewable energy resources satisfy hourly electric demand or not. The program calculates energy balance for every 8760 hours in a year to simulate operation of the system. This optimization compares the demand for the electrical energy for each hour of the year with the energy supplied by the system for that hour and calculates the relevant energy flow for each component in the model. The essential principle is to minimize the total system cost while HOMER ensures control of the system. Moreover the feasibility analysis of the energy system is also studied. Wind speed, solar irradiance, interest rate and capacity shortage are the parameters which are taken into consideration. The simulation results indicate that the hybrid system is the best choice in this study, yielding lower net present cost. Thus, it provides higher system performance than PV or wind stand-alone systems.Keywords: wind stand-alone system, photovoltaic stand-alone system, hybrid system, optimum system sizing, feasibility, cost analysis
Procedia PDF Downloads 34418384 Healthcare-SignNet: Advanced Video Classification for Medical Sign Language Recognition Using CNN and RNN Models
Authors: Chithra A. V., Somoshree Datta, Sandeep Nithyanandan
Abstract:
Sign Language Recognition (SLR) is the process of interpreting and translating sign language into spoken or written language using technological systems. It involves recognizing hand gestures, facial expressions, and body movements that makeup sign language communication. The primary goal of SLR is to facilitate communication between hearing- and speech-impaired communities and those who do not understand sign language. Due to the increased awareness and greater recognition of the rights and needs of the hearing- and speech-impaired community, sign language recognition has gained significant importance over the past 10 years. Technological advancements in the fields of Artificial Intelligence and Machine Learning have made it more practical and feasible to create accurate SLR systems. This paper presents a distinct approach to SLR by framing it as a video classification problem using Deep Learning (DL), whereby a combination of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) has been used. This research targets the integration of sign language recognition into healthcare settings, aiming to improve communication between medical professionals and patients with hearing impairments. The spatial features from each video frame are extracted using a CNN, which captures essential elements such as hand shapes, movements, and facial expressions. These features are then fed into an RNN network that learns the temporal dependencies and patterns inherent in sign language sequences. The INCLUDE dataset has been enhanced with more videos from the healthcare domain and the model is evaluated on the same. Our model achieves 91% accuracy, representing state-of-the-art performance in this domain. The results highlight the effectiveness of treating SLR as a video classification task with the CNN-RNN architecture. This approach not only improves recognition accuracy but also offers a scalable solution for real-time SLR applications, significantly advancing the field of accessible communication technologies.Keywords: sign language recognition, deep learning, convolution neural network, recurrent neural network
Procedia PDF Downloads 3518383 Designing an Automatic Mechanical System to Prevent Cancers Caused by Drinks
Authors: Ghasem Yazadani, Hamidreza Ahmadi, Masoud Ahmadi, Sajad Rezazadeh
Abstract:
In this paper with designing and proposing a compound of a heating and cooling system has been tried to show effect of this system on preventing esophagus cancer that can be caused by hot and cold drinks such as tea, coffee and ice water. This system has been simulated mechanically by fluent software and also has been validated by experimental way and a comprehensive result has been presented. Both of solution ways show that this system can reduce or increase temperature of drink to safe very dramatically and it can be a huge step toward consuming drinks safely and also it can be efficient about time issues. The system consists of a temperature sensor and an electronic controller that has a computer program to act automatically this task. Also this system has been presented after many different simulations and has been tried to find the best one in the point view of velocity of heating and cooling.Keywords: fluent, heat transfer, controller, esophagus cancer
Procedia PDF Downloads 389