Search results for: arrival time prediction
18937 Prediction-Based Midterm Operation Planning for Energy Management of Exhibition Hall
Authors: Doseong Eom, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
Large exhibition halls require a lot of energy to maintain comfortable atmosphere for the visitors viewing inside. One way of reducing the energy cost is to have thermal energy storage systems installed so that the thermal energy can be stored in the middle of night when the energy price is low and then used later when the price is high. To minimize the overall energy cost, however, we should be able to decide how much energy to save during which time period exactly. If we can foresee future energy load and the corresponding cost, we will be able to make such decisions reasonably. In this paper, we use machine learning technique to obtain models for predicting weather conditions and the number of visitors on hourly basis for the next day. Based on the energy load thus predicted, we build a cost-optimal daily operation plan for the thermal energy storage systems and cooling and heating facilities through simulation-based optimization.Keywords: building energy management, machine learning, operation planning, simulation-based optimization
Procedia PDF Downloads 32218936 Utilizing Federated Learning for Accurate Prediction of COVID-19 from CT Scan Images
Authors: Jinil Patel, Sarthak Patel, Sarthak Thakkar, Deepti Saraswat
Abstract:
Recently, the COVID-19 outbreak has spread across the world, leading the World Health Organization to classify it as a global pandemic. To save the patient’s life, the COVID-19 symptoms have to be identified. But using an AI (Artificial Intelligence) model to identify COVID-19 symptoms within the allotted time was challenging. The RT-PCR test was found to be inadequate in determining the COVID status of a patient. To determine if the patient has COVID-19 or not, a Computed Tomography Scan (CT scan) of patient is a better alternative. It will be challenging to compile and store all the data from various hospitals on the server, though. Federated learning, therefore, aids in resolving this problem. Certain deep learning models help to classify Covid-19. This paper will have detailed work of certain deep learning models like VGG19, ResNet50, MobileNEtv2, and Deep Learning Aggregation (DLA) along with maintaining privacy with encryption.Keywords: federated learning, COVID-19, CT-scan, homomorphic encryption, ResNet50, VGG-19, MobileNetv2, DLA
Procedia PDF Downloads 7318935 Morphometric Relationships of Length-Weight and Length-Length of Oreochromis aureus in Relation to Body Size and Condition Factor from Pakistan
Authors: Muhammad Naeem, Abdus Salam, Sumera Yasmin, Abir Ishtiaq
Abstract:
In the present study, eighty-three wild Oreochromis aureus of different body size ranging 5.3-14.6 cm in total length were collected from the River Chenab, District Muzzafer Garh, Pakistan to investigate the parameters of length –weight, length-length relationships and condition factor in relation to size. Each fish was measured and weighed on arrival at laboratory. Log transformed regressions were used to test the allometric growth. Length-weight relationship was found highly significant (r = 0.964; P < 0.01). The values of exponent “ b” in Length–weight regression (W=aL^b), deviated from 3, showing isometric growth (b = 2.75). Results for LLRs indicated that these are highly correlated (P < 0.001). Condition factor (K) found constant with increasing body weight, however, showed negative influence with increasing total length.Keywords: lenght-weight, Oreochromis aureus, morphometric study
Procedia PDF Downloads 43918934 Predicting Relative Performance of Sector Exchange Traded Funds Using Machine Learning
Abstract:
Machine learning has been used in many areas today. It thrives at reviewing large volumes of data and identifying patterns and trends that might not be apparent to a human. Given the huge potential benefit and the amount of data available in the financial market, it is not surprising to see machine learning applied to various financial products. While future prices of financial securities are extremely difficult to forecast, we study them from a different angle. Instead of trying to forecast future prices, we apply machine learning algorithms to predict the direction of future price movement, in particular, whether a sector Exchange Traded Fund (ETF) would outperform or underperform the market in the next week or in the next month. We apply several machine learning algorithms for this prediction. The algorithms are Linear Discriminant Analysis (LDA), k-Nearest Neighbors (KNN), Decision Tree (DT), Gaussian Naive Bayes (GNB), and Neural Networks (NN). We show that these machine learning algorithms, most notably GNB and NN, have some predictive power in forecasting out-performance and under-performance out of sample. We also try to explore whether it is possible to utilize the predictions from these algorithms to outperform the buy-and-hold strategy of the S&P 500 index. The trading strategy to explore out-performance predictions does not perform very well, but the trading strategy to explore under-performance predictions can earn higher returns than simply holding the S&P 500 index out of sample.Keywords: machine learning, ETF prediction, dynamic trading, asset allocation
Procedia PDF Downloads 9818933 Evaluation of Coastal Erosion in the Jurisdiction of the Municipalities of Puerto Colombia and Tubará, Atlántico – Colombia in Google Earth Engine with Landsat and Sentinel 2 Images
Authors: Francisco Reyes, Hector Ramirez
Abstract:
In the coastal zones are home to mangrove swamps, coral reefs, and seagrass ecosystems, which are the most biodiverse and fragile on the planet. These areas support a great diversity of marine life; they are also extraordinarily important for humans in the provision of food, water, wood, and other associated goods and services; they also contribute to climate regulation. The lack of an automated model that generates information on the dynamics of changes in coastlines and coastal erosion is identified as a central problem. Coastlines were determined from 1984 to 2020 on the Google Earth platform Engine from Landsat and Sentinel images, using the Normalized Differential Water Index (MNDWI) and Digital Shoreline Analysis System (DSAS) v5.0. Starting from the 2020 coastline, the 10-year prediction (Year 2031) was determined with the erosion of 238.32 hectares and an accretion of 181.96 hectares, while the 20-year prediction (Year 2041) will be presented an erosion of 544.04 hectares and an accretion of 133.94 hectares. The erosion and accretion of Playa Muelle in the municipality of Puerto Colombia were established, which will register the highest value of erosion. The coverage that presented the greatest change was that of artificialized Territories.Keywords: coastline, coastal erosion, MNDWI, Google Earth Engine, Colombia
Procedia PDF Downloads 12018932 Frequency Selective Filters for Estimating the Equivalent Circuit Parameters of Li-Ion Battery
Authors: Arpita Mondal, Aurobinda Routray, Sreeraj Puravankara, Rajashree Biswas
Abstract:
The most difficult part of designing a battery management system (BMS) is battery modeling. A good battery model can capture the dynamics which helps in energy management, by accurate model-based state estimation algorithms. So far the most suitable and fruitful model is the equivalent circuit model (ECM). However, in real-time applications, the model parameters are time-varying, changes with current, temperature, state of charge (SOC), and aging of the battery and this make a great impact on the performance of the model. Therefore, to increase the equivalent circuit model performance, the parameter estimation has been carried out in the frequency domain. The battery is a very complex system, which is associated with various chemical reactions and heat generation. Therefore, it’s very difficult to select the optimal model structure. As we know, if the model order is increased, the model accuracy will be improved automatically. However, the higher order model will face the tendency of over-parameterization and unfavorable prediction capability, while the model complexity will increase enormously. In the time domain, it becomes difficult to solve higher order differential equations as the model order increases. This problem can be resolved by frequency domain analysis, where the overall computational problems due to ill-conditioning reduce. In the frequency domain, several dominating frequencies can be found in the input as well as output data. The selective frequency domain estimation has been carried out, first by estimating the frequencies of the input and output by subspace decomposition, then by choosing the specific bands from the most dominating to the least, while carrying out the least-square, recursive least square and Kalman Filter based parameter estimation. In this paper, a second order battery model consisting of three resistors, two capacitors, and one SOC controlled voltage source has been chosen. For model identification and validation hybrid pulse power characterization (HPPC) tests have been carried out on a 2.6 Ah LiFePO₄ battery.Keywords: equivalent circuit model, frequency estimation, parameter estimation, subspace decomposition
Procedia PDF Downloads 15018931 Analysis of Lead Time Delays in Supply Chain: A Case Study
Authors: Abdel-Aziz M. Mohamed, Nermeen Coutry
Abstract:
Lead time is an important measure of supply chain performance. It impacts both customer satisfactions as well as the total cost of inventory. This paper presents the result of a study on the analysis of the customer order lead-time for a multinational company. In the study, the lead time was divided into three stages: order entry, order fulfillment, and order delivery. A sample of size 2,425 order lines from the company records were considered for this study. The sample data includes information regarding customer orders from the time of order entry until order delivery. Data regarding the lead time of each sage for different orders were also provided. Summary statistics on lead time data reveals that about 30% of the orders were delivered after the scheduled due date. The result of the multiple linear regression analysis technique revealed that component type, logistics parameter, order size and the customer type have significant impact on lead time. Data analysis on the stages of lead time indicates that stage 2 consumes over 50% of the lead time. Pareto analysis was made to study the reasons for the customer order delay in each of the 3 stages. Recommendation was given to resolve the problem.Keywords: lead time reduction, customer satisfaction, service quality, statistical analysis
Procedia PDF Downloads 72918930 The Origin, Diffusion and a Comparison of Ordinary Differential Equations Numerical Solutions Used by SIR Model in Order to Predict SARS-CoV-2 in Nordic Countries
Authors: Gleda Kutrolli, Maksi Kutrolli, Etjon Meco
Abstract:
SARS-CoV-2 virus is currently one of the most infectious pathogens for humans. It started in China at the end of 2019 and now it is spread in all over the world. The origin and diffusion of the SARS-CoV-2 epidemic, is analysed based on the discussion of viral phylogeny theory. With the aim of understanding the spread of infection in the affected countries, it is crucial to modelize the spread of the virus and simulate its activity. In this paper, the prediction of coronavirus outbreak is done by using SIR model without vital dynamics, applying different numerical technique solving ordinary differential equations (ODEs). We find out that ABM and MRT methods perform better than other techniques and that the activity of the virus will decrease in April but it never cease (for some time the activity will remain low) and the next cycle will start in the middle July 2020 for Norway and Denmark, and October 2020 for Sweden, and September for Finland.Keywords: forecasting, ordinary differential equations, SARS-COV-2 epidemic, SIR model
Procedia PDF Downloads 15218929 Tools for Analysis and Optimization of Standalone Green Microgrids
Authors: William Anderson, Kyle Kobold, Oleg Yakimenko
Abstract:
Green microgrids using mostly renewable energy (RE) for generation, are complex systems with inherent nonlinear dynamics. Among a variety of different optimization tools there are only a few ones that adequately consider this complexity. This paper evaluates applicability of two somewhat similar optimization tools tailored for standalone RE microgrids and also assesses a machine learning tool for performance prediction that can enhance the reliability of any chosen optimization tool. It shows that one of these microgrid optimization tools has certain advantages over another and presents a detailed routine of preparing input data to simulate RE microgrid behavior. The paper also shows how neural-network-based predictive modeling can be used to validate and forecast solar power generation based on weather time series data, which improves the overall quality of standalone RE microgrid analysis.Keywords: microgrid, renewable energy, complex systems, optimization, predictive modeling, neural networks
Procedia PDF Downloads 28218928 Investigating Salience Theory’s Implications for Real-Life Decision Making: An Experimental Test for Whether the Allais Paradox Exists under Subjective Uncertainty
Authors: Christoph Ostermair
Abstract:
We deal with the effect of correlation between prospects on human decision making under uncertainty as proposed by the comparatively new and promising model of “salience theory of choice under risk”. In this regard, we show that the theory entails the prediction that the inconsistency of choices, known as the Allais paradox, should not be an issue in the context of “real-life decision making”, which typically corresponds to situations of subjective uncertainty. The Allais paradox, probably the best-known anomaly regarding expected utility theory, would then essentially have no practical relevance. If, however, empiricism contradicts this prediction, salience theory might suffer a serious setback. Explanations of the model for variable human choice behavior are mostly the result of a particular mechanism that does not come to play under perfect correlation. Hence, if it turns out that correlation between prospects – as typically found in real-world applications – does not influence human decision making in the expected way, this might to a large extent cost the theory its explanatory power. The empirical literature regarding the Allais paradox under subjective uncertainty is so far rather moderate. Beyond that, the results are hard to maintain as an argument, as the presentation formats commonly employed, supposably have generated so-called event-splitting effects, thereby distorting subjects’ choice behavior. In our own incentivized experimental study, we control for such effects by means of two different choice settings. We find significant event-splitting effects in both settings, thereby supporting the suspicion that the so far existing empirical results related to Allais paradoxes under subjective uncertainty may not be able to answer the question at hand. Nevertheless, we find that the basic tendency behind the Allais paradox, which is a particular switch of the preference relation due to a modified common consequence, shared by two prospects, is still existent both under an event-splitting and a coalesced presentation format. Yet, the modal choice pattern is in line with the prediction of salience theory. As a consequence, the effect of correlation, as proposed by the model, might - if anything - only weaken the systematic choice pattern behind the Allais paradox.Keywords: Allais paradox, common consequence effect, models of decision making under risk and uncertainty, salience theory
Procedia PDF Downloads 19818927 Influential Parameters in Estimating Soil Properties from Cone Penetrating Test: An Artificial Neural Network Study
Authors: Ahmed G. Mahgoub, Dahlia H. Hafez, Mostafa A. Abu Kiefa
Abstract:
The Cone Penetration Test (CPT) is a common in-situ test which generally investigates a much greater volume of soil more quickly than possible from sampling and laboratory tests. Therefore, it has the potential to realize both cost savings and assessment of soil properties rapidly and continuously. The principle objective of this paper is to demonstrate the feasibility and efficiency of using artificial neural networks (ANNs) to predict the soil angle of internal friction (Φ) and the soil modulus of elasticity (E) from CPT results considering the uncertainties and non-linearities of the soil. In addition, ANNs are used to study the influence of different parameters and recommend which parameters should be included as input parameters to improve the prediction. Neural networks discover relationships in the input data sets through the iterative presentation of the data and intrinsic mapping characteristics of neural topologies. General Regression Neural Network (GRNN) is one of the powerful neural network architectures which is utilized in this study. A large amount of field and experimental data including CPT results, plate load tests, direct shear box, grain size distribution and calculated data of overburden pressure was obtained from a large project in the United Arab Emirates. This data was used for the training and the validation of the neural network. A comparison was made between the obtained results from the ANN's approach, and some common traditional correlations that predict Φ and E from CPT results with respect to the actual results of the collected data. The results show that the ANN is a very powerful tool. Very good agreement was obtained between estimated results from ANN and actual measured results with comparison to other correlations available in the literature. The study recommends some easily available parameters that should be included in the estimation of the soil properties to improve the prediction models. It is shown that the use of friction ration in the estimation of Φ and the use of fines content in the estimation of E considerable improve the prediction models.Keywords: angle of internal friction, cone penetrating test, general regression neural network, soil modulus of elasticity
Procedia PDF Downloads 41518926 Comparative Dielectric Properties of 1,2-Dichloroethane with n-Methylformamide and n,n-Dimethylformamide Using Time Domain Reflectometry Technique in Microwave Frequency
Authors: Shagufta Tabassum, V. P. Pawar, jr., G. N. Shinde
Abstract:
The study of dielectric relaxation properties of polar liquids in the binary mixture has been carried out at 10, 15, 20 and 25 ºC temperatures for 11 different concentrations using time domain reflectometry technique. The dielectric properties of a solute-solvent mixture of polar liquids in the frequency range of 10 MHz to 30 GHz gives the information regarding formation of monomers and multimers and also an interaction between the molecules of the liquid mixture under study. The dielectric parameters have been obtained by the least squares fit method using the Debye equation characterized by a single relaxation time without relaxation time distribution.Keywords: excess properties, relaxation time, static dielectric constant, and time domain reflectometry technique
Procedia PDF Downloads 15518925 The Role of Arousal in Time Perception: Implications for Emotional Driving
Authors: Ewa Siedlecka
Abstract:
Emotional stress is an important risk factor in the rate and severity of traffic accidents. Moreover, incorrect time perception is implicated in the increase of traffic violations, such as running red lights or collisions. While the role of emotional arousal on perceived time is well-established, the role of physiological arousal in time perception remains unexamined. Specific emotions can be, however, associated with distinct physiological responses. In the current research, two studies examined the role of physiological arousal in time perception. In the first experiment, 41 participants engaged in a cold pressor task and had their time perception measured throughout the experiment. In the second study, 138 participants engaged in either isometric or deep breathing exercises. These activities were designed to simulate the sympathetic and parasympathetic nervous systems, respectively. Participants completed a bisection task to measure time perception in both studies, as well as a physiological response via an Electrocardiography (ECG). Results found that activation of the parasympathetic nervous system is associated with greater time perception. These findings are discussed with reference to models of time perception, as well as implications for emotional driving and misperceptions of speed. It is important to consider the role of physiology in the misperception of time, as these factors can lead to increases in driving accidents.Keywords: emotions, nervous system, physiology, time perception
Procedia PDF Downloads 32418924 Prediction of the Thermodynamic Properties of Hydrocarbons Using Gaussian Process Regression
Authors: N. Alhazmi
Abstract:
Knowing the thermodynamics properties of hydrocarbons is vital when it comes to analyzing the related chemical reaction outcomes and understanding the reaction process, especially in terms of petrochemical industrial applications, combustions, and catalytic reactions. However, measuring the thermodynamics properties experimentally is time-consuming and costly. In this paper, Gaussian process regression (GPR) has been used to directly predict the main thermodynamic properties - standard enthalpy of formation, standard entropy, and heat capacity -for more than 360 cyclic and non-cyclic alkanes, alkenes, and alkynes. A simple workflow has been proposed that can be applied to directly predict the main properties of any hydrocarbon by knowing its descriptors and chemical structure and can be generalized to predict the main properties of any material. The model was evaluated by calculating the statistical error R², which was more than 0.9794 for all the predicted properties.Keywords: thermodynamic, Gaussian process regression, hydrocarbons, regression, supervised learning, entropy, enthalpy, heat capacity
Procedia PDF Downloads 22218923 Analysis and Prediction of Netflix Viewing History Using Netflixlatte as an Enriched Real Data Pool
Authors: Amir Mabhout, Toktam Ghafarian, Amirhossein Farzin, Zahra Makki, Sajjad Alizadeh, Amirhossein Ghavi
Abstract:
The high number of Netflix subscribers makes it attractive for data scientists to extract valuable knowledge from the viewers' behavioural analyses. This paper presents a set of statistical insights into viewers' viewing history. After that, a deep learning model is used to predict the future watching behaviour of the users based on previous watching history within the Netflixlatte data pool. Netflixlatte in an aggregated and anonymized data pool of 320 Netflix viewers with a length 250 000 data points recorded between 2008-2022. We observe insightful correlations between the distribution of viewing time and the COVID-19 pandemic outbreak. The presented deep learning model predicts future movie and TV series viewing habits with an average loss of 0.175.Keywords: data analysis, deep learning, LSTM neural network, netflix
Procedia PDF Downloads 25118922 Cyclostationary Gaussian Linearization for Analyzing Nonlinear System Response Under Sinusoidal Signal and White Noise Excitation
Authors: R. J. Chang
Abstract:
A cyclostationary Gaussian linearization method is formulated for investigating the time average response of nonlinear system under sinusoidal signal and white noise excitation. The quantitative measure of cyclostationary mean, variance, spectrum of mean amplitude, and mean power spectral density of noise is analyzed. The qualitative response behavior of stochastic jump and bifurcation are investigated. The validity of the present approach in predicting the quantitative and qualitative statistical responses is supported by utilizing Monte Carlo simulations. The present analysis without imposing restrictive analytical conditions can be directly derived by solving non-linear algebraic equations. The analytical solution gives reliable quantitative and qualitative prediction of mean and noise response for the Duffing system subjected to both sinusoidal signal and white noise excitation.Keywords: cyclostationary, duffing system, Gaussian linearization, sinusoidal, white noise
Procedia PDF Downloads 48918921 Length-Weight and Length-Length Relationships of Oreochromis aureus in Relation to Body Size from Pakistan
Authors: Muhammad Naeem, Amina Zubari, Abdus Salam, Summera Yasmeen, Syed Ali Ayub Bukhari, Abir Ishtiaq
Abstract:
In the present study, eighty three wild Oreochromis aureus of different body size ranging 5.3-14.6 cm in total length were collected from the River Chenab, District Muzzafer Garh, Pakistan to investigate the parameters of length –weight, length-length relationships and condition factor in relation to size. Each fish was measured and weighed on arrival at laboratory. Log transformed regressions were used to test the allometric growth. Length-weight relationship was found highly significant (r = 0.964; P < 0.01). The values of exponent “ b” in Length–weight regression (W=aLb), deviated from 3, showing isometric growth (b = 2.75). Results for LLRs indicated that these are highly correlated (P< 0.001). Condition factor (K) found constant with increasing body weight, however, showed negative influence with increasing total length.Keywords: Oreochromis aureus, weight-length relationship, condition factor, predictive equations
Procedia PDF Downloads 83118920 Artificial Steady-State-Based Nonlinear MPC for Wheeled Mobile Robot
Authors: M. H. Korayem, Sh. Ameri, N. Yousefi Lademakhi
Abstract:
To ensure the stability of closed-loop nonlinear model predictive control (NMPC) within a finite horizon, there is a need for appropriate design terminal ingredients, which can be a time-consuming and challenging effort. Otherwise, in order to ensure the stability of the control system, it is necessary to consider an infinite predictive horizon. Increasing the prediction horizon increases computational demand and slows down the implementation of the method. In this study, a new technique has been proposed to ensure system stability without terminal ingredients. This technique has been employed in the design of the NMPC algorithm, leading to a reduction in the computational complexity of designing terminal ingredients and computational burden. The studied system is a wheeled mobile robot (WMR) subjected to non-holonomic constraints. Simulation has been investigated for two problems: trajectory tracking and adjustment mode.Keywords: wheeled mobile robot, nonlinear model predictive control, stability, without terminal ingredients
Procedia PDF Downloads 9118919 Scoring System for the Prognosis of Sepsis Patients in Intensive Care Units
Authors: Javier E. García-Gallo, Nelson J. Fonseca-Ruiz, John F. Duitama-Munoz
Abstract:
Sepsis is a syndrome that occurs with physiological and biochemical abnormalities induced by severe infection and carries a high mortality and morbidity, therefore the severity of its condition must be interpreted quickly. After patient admission in an intensive care unit (ICU), it is necessary to synthesize the large volume of information that is collected from patients in a value that represents the severity of their condition. Traditional severity of illness scores seeks to be applicable to all patient populations, and usually assess in-hospital mortality. However, the use of machine learning techniques and the data of a population that shares a common characteristic could lead to the development of customized mortality prediction scores with better performance. This study presents the development of a score for the one-year mortality prediction of the patients that are admitted to an ICU with a sepsis diagnosis. 5650 ICU admissions extracted from the MIMICIII database were evaluated, divided into two groups: 70% to develop the score and 30% to validate it. Comorbidities, demographics and clinical information of the first 24 hours after the ICU admission were used to develop a mortality prediction score. LASSO (least absolute shrinkage and selection operator) and SGB (Stochastic Gradient Boosting) variable importance methodologies were used to select the set of variables that make up the developed score; each of this variables was dichotomized and a cut-off point that divides the population into two groups with different mean mortalities was found; if the patient is in the group that presents a higher mortality a one is assigned to the particular variable, otherwise a zero is assigned. These binary variables are used in a logistic regression (LR) model, and its coefficients were rounded to the nearest integer. The resulting integers are the point values that make up the score when multiplied with each binary variables and summed. The one-year mortality probability was estimated using the score as the only variable in a LR model. Predictive power of the score, was evaluated using the 1695 admissions of the validation subset obtaining an area under the receiver operating characteristic curve of 0.7528, which outperforms the results obtained with Sequential Organ Failure Assessment (SOFA), Oxford Acute Severity of Illness Score (OASIS) and Simplified Acute Physiology Score II (SAPSII) scores on the same validation subset. Observed and predicted mortality rates within estimated probabilities deciles were compared graphically and found to be similar, indicating that the risk estimate obtained with the score is close to the observed mortality, it is also observed that the number of events (deaths) is indeed increasing as the outcome go from the decile with the lowest probabilities to the decile with the highest probabilities. Sepsis is a syndrome that carries a high mortality, 43.3% for the patients included in this study; therefore, tools that help clinicians to quickly and accurately predict a worse prognosis are needed. This work demonstrates the importance of customization of mortality prediction scores since the developed score provides better performance than traditional scoring systems.Keywords: intensive care, logistic regression model, mortality prediction, sepsis, severity of illness, stochastic gradient boosting
Procedia PDF Downloads 22218918 Determination of Crustal Structure and Moho Depth within the Jammu and Kashmir Region, Northwest Himalaya through Receiver Function
Authors: Shiv Jyoti Pandey, Shveta Puri, G. M. Bhat, Neha Raina
Abstract:
The Jammu and Kashmir (J&K) region of Northwest Himalaya has a long history of earthquake activity which falls within Seismic Zones IV and V. To know the crustal structure beneath this region, we utilized teleseismic receiver function method. This paper presents the results of the analyses of the teleseismic earthquake waves recorded by 10 seismic observatories installed in the vicinity of major thrusts and faults. The teleseismic waves at epicentral distance between 30o and 90o with moment magnitudes greater than or equal to 5.5 that contains large amount of information about the crust and upper mantle structure directly beneath a receiver has been used. The receiver function (RF) technique has been widely applied to investigate crustal structures using P-to-S converted (Ps) phases from velocity discontinuities. The arrival time of the Ps, PpPs and PpSs+ PsPs converted and reverberated phases from the Moho can be combined to constrain the mean crustal thickness and Vp/Vs ratio. Over 500 receiver functions from 10 broadband stations located in the Jammu & Kashmir region of Northwest Himalaya were analyzed. With the help of H-K stacking method, we determined the crustal thickness (H) and average crustal Vp/Vs ratio (K) in this region. We also used Neighbourhood algorithm technique to verify our results. The receiver function results for these stations show that the crustal thickness under Jammu & Kashmir ranges from 45.0 to 53.6 km with an average value of 50.01 km. The Vp/Vs ratio varies from 1.63 to 1.99 with an average value of 1.784 which corresponds to an average Poisson’s ratio of 0.266 with a range from 0.198 to 0.331. High Poisson’s ratios under some stations may be related to partial melting in the crust near the uppermost mantle. The crustal structure model developed from this study can be used to refine the velocity model used in the precise epicenter location in the region, thereby increasing the knowledge to understand current seismicity in the region.Keywords: H-K stacking, Poisson’s ratios, receiver function, teleseismic
Procedia PDF Downloads 24818917 Time Synchronization between the eNBs in E-UTRAN under the Asymmetric IP Network
Abstract:
In this paper, we present a method for a time synchronization between the two eNodeBs (eNBs) in E-UTRAN (Evolved Universal Terrestrial Radio Access) network. The two eNBs are cooperating in so-called inter eNB CA (Carrier Aggregation) case and connected via asymmetrical IP network. We solve the problem by using broadcasting signals generated in E-UTRAN as synchronization signals. The results show that the time synchronization with the proposed method is possible with the error significantly less than 1 ms which is sufficient considering the time transmission interval is 1 ms in E-UTRAN. This makes this method (with low complexity) more suitable than Network Time Protocol (NTP) in the mobile applications with generated broadcasting signals where time synchronization in asymmetrical network is required.Keywords: IP scheduled throughput, E-UTRAN, Evolved Universal Terrestrial Radio Access Network, NTP, Network Time Protocol, assymetric network, delay
Procedia PDF Downloads 36118916 Development of a Bus Information Web System
Authors: Chiyoung Kim, Jaegeol Yim
Abstract:
Bus service is often either main or the only public transportation available in cities. In metropolitan areas, both subways and buses are available whereas in the medium sized cities buses are usually the only type of public transportation available. Bus Information Systems (BIS) provide current locations of running buses, efficient routes to travel from one place to another, points of interests around a given bus stop, a series of bus stops consisting of a given bus route, and so on to users. Thanks to BIS, people do not have to waste time at a bus stop waiting for a bus because BIS provides exact information on bus arrival times at a given bus stop. Therefore, BIS does a lot to promote the use of buses contributing to pollution reduction and saving natural resources. BIS implementation costs a huge amount of budget as it requires a lot of special equipment such as road side equipment, automatic vehicle identification and location systems, trunked radio systems, and so on. Consequently, medium and small sized cities with a low budget cannot afford to install BIS even though people in these cities need BIS service more desperately than people in metropolitan areas. It is possible to provide BIS service at virtually no cost under the assumption that everybody carries a smartphone and there is at least one person with a smartphone in a running bus who is willing to reveal his/her location details while he/she is sitting in a bus. This assumption is usually true in the real world. The smartphone penetration rate is greater than 100% in the developed countries and there is no reason for a bus driver to refuse to reveal his/her location details while driving. We have developed a mobile app that periodically reads values of sensors including GPS and sends GPS data to the server when the bus stops or when the elapsed time from the last send attempt is greater than a threshold. This app detects the bus stop state by investigating the sensor values. The server that receives GPS data from this app has also been developed. Under the assumption that the current locations of all running buses collected by the mobile app are recorded in a database, we have also developed a web site that provides all kinds of information that most BISs provide to users through the Internet. The development environment is: OS: Windows 7 64bit, IDE: Eclipse Luna 4.4.1, Spring IDE 3.7.0, Database: MySQL 5.1.7, Web Server: Apache Tomcat 7.0, Programming Language: Java 1.7.0_79. Given a start and a destination bus stop, it finds a shortest path from the start to the destination using the Dijkstra algorithm. Then, it finds a convenient route considering number of transits. For the user interface, we use the Google map. Template classes that are used by the Controller, DAO, Service and Utils classes include BUS, BusStop, BusListInfo, BusStopOrder, RouteResult, WalkingDist, Location, and so on. We are now integrating the mobile app system and the web app system.Keywords: bus information system, GPS, mobile app, web site
Procedia PDF Downloads 21618915 A Hyperexponential Approximation to Finite-Time and Infinite-Time Ruin Probabilities of Compound Poisson Processes
Authors: Amir T. Payandeh Najafabadi
Abstract:
This article considers the problem of evaluating infinite-time (or finite-time) ruin probability under a given compound Poisson surplus process by approximating the claim size distribution by a finite mixture exponential, say Hyperexponential, distribution. It restates the infinite-time (or finite-time) ruin probability as a solvable ordinary differential equation (or a partial differential equation). Application of our findings has been given through a simulation study.Keywords: ruin probability, compound poisson processes, mixture exponential (hyperexponential) distribution, heavy-tailed distributions
Procedia PDF Downloads 34118914 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra
Authors: Bitewulign Mekonnen
Abstract:
Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network
Procedia PDF Downloads 9418913 Optimization of a High-Growth Investment Portfolio for the South African Market Using Predictive Analytics
Authors: Mia Françoise
Abstract:
This report aims to develop a strategy for assisting short-term investors to benefit from the current economic climate in South Africa by utilizing technical analysis techniques and predictive analytics. As part of this research, value investing and technical analysis principles will be combined to maximize returns for South African investors while optimizing volatility. As an emerging market, South Africa offers many opportunities for high growth in sectors where other developed countries cannot grow at the same rate. Investing in South African companies with significant growth potential can be extremely rewarding. Although the risk involved is more significant in countries with less developed markets and infrastructure, there is more room for growth in these countries. According to recent research, the offshore market is expected to outperform the local market over the long term; however, short-term investments in the local market will likely be more profitable, as the Johannesburg Stock Exchange is predicted to outperform the S&P500 over the short term. The instabilities in the economy contribute to increased market volatility, which can benefit investors if appropriately utilized. Price prediction and portfolio optimization comprise the two primary components of this methodology. As part of this process, statistics and other predictive modeling techniques will be used to predict the future performance of stocks listed on the Johannesburg Stock Exchange. Following predictive data analysis, Modern Portfolio Theory, based on Markowitz's Mean-Variance Theorem, will be applied to optimize the allocation of assets within an investment portfolio. By combining different assets within an investment portfolio, this optimization method produces a portfolio with an optimal ratio of expected risk to expected return. This methodology aims to provide a short-term investment with a stock portfolio that offers the best risk-to-return profile for stocks listed on the JSE by combining price prediction and portfolio optimization.Keywords: financial stocks, optimized asset allocation, prediction modelling, South Africa
Procedia PDF Downloads 9718912 A Time-Reducible Approach to Compute Determinant |I-X|
Authors: Wang Xingbo
Abstract:
Computation of determinant in the form |I-X| is primary and fundamental because it can help to compute many other determinants. This article puts forward a time-reducible approach to compute determinant |I-X|. The approach is derived from the Newton’s identity and its time complexity is no more than that to compute the eigenvalues of the square matrix X. Mathematical deductions and numerical example are presented in detail for the approach. By comparison with classical approaches the new approach is proved to be superior to the classical ones and it can naturally reduce the computational time with the improvement of efficiency to compute eigenvalues of the square matrix.Keywords: algorithm, determinant, computation, eigenvalue, time complexity
Procedia PDF Downloads 41518911 Multidisciplinary Approach for a Tsunami Reconstruction Plan in Coquimbo, Chile
Authors: Ileen Van den Berg, Reinier J. Daals, Chris E. M. Heuberger, Sven P. Hildering, Bob E. Van Maris, Carla M. Smulders, Rafael Aránguiz
Abstract:
Chile is located along the subduction zone of the Nazca plate beneath the South American plate, where large earthquakes and tsunamis have taken place throughout history. The last significant earthquake (Mw 8.2) occurred in September 2015 and generated a destructive tsunami, which mainly affected the city of Coquimbo (71.33°W, 29.96°S). The inundation area consisted of a beach, damaged seawall, damaged railway, wetland and old neighborhood; therefore, local authorities started a reconstruction process immediately after the event. Moreover, a seismic gap has been identified in the same area, and another large event could take place in the near future. The present work proposed an integrated tsunami reconstruction plan for the city of Coquimbo that considered several variables such as safety, nature & recreation, neighborhood welfare, visual obstruction, infrastructure, construction process, and durability & maintenance. Possible future tsunami scenarios are simulated by means of the Non-hydrostatic Evolution of Ocean WAVEs (NEOWAVE) model with 5 nested grids and a higher grid resolution of ~10 m. Based on the score from a multi-criteria analysis, the costs of the alternatives and a preference for a multifunctional solution, the alternative that includes an elevated coastal road with floodgates to reduce tsunami overtopping and control the return flow of a tsunami was selected as the best solution. It was also observed that the wetlands are significantly restored to their former configuration; moreover, the dynamic behavior of the wetlands is stimulated. The numerical simulation showed that the new coastal protection decreases damage and the probability of loss of life by delaying tsunami arrival time. In addition, new evacuation routes and a smaller inundation zone in the city increase safety for the area.Keywords: tsunami, Coquimbo, Chile, reconstruction, numerical simulation
Procedia PDF Downloads 24118910 Real-Time Visualization Using GPU-Accelerated Filtering of LiDAR Data
Authors: Sašo Pečnik, Borut Žalik
Abstract:
This paper presents a real-time visualization technique and filtering of classified LiDAR point clouds. The visualization is capable of displaying filtered information organized in layers by the classification attribute saved within LiDAR data sets. We explain the used data structure and data management, which enables real-time presentation of layered LiDAR data. Real-time visualization is achieved with LOD optimization based on the distance from the observer without loss of quality. The filtering process is done in two steps and is entirely executed on the GPU and implemented using programmable shaders.Keywords: filtering, graphics, level-of-details, LiDAR, real-time visualization
Procedia PDF Downloads 30818909 Construction Time - Cost Trade-Off Analysis Using Fuzzy Set Theory
Authors: V. S. S. Kumar, B. Vikram, G. C. S. Reddy
Abstract:
Time and cost are the two critical objectives of construction project management and are not independent but intricately related. Trade-off between project duration and cost are extensively discussed during project scheduling because of practical relevance. Generally when the project duration is compressed, the project calls for an increase in labor and more productive equipments, which increases the cost. Thus, the construction time-cost optimization is defined as a process to identify suitable construction activities for speeding up to attain the best possible savings in both time and cost. As there is hidden tradeoff relationship between project time and cost, it might be difficult to predict whether the total cost would increase or decrease as a result of compressing the schedule. Different combinations of duration and cost for the activities associated with the project determine the best set in the time-cost optimization. Therefore, the contractors need to select the best combination of time and cost to perform each activity, all of which will ultimately determine the project duration and cost. In this paper, the fuzzy set theory is used to model the uncertainties in the project environment for time-cost trade off analysis.Keywords: fuzzy sets, uncertainty, qualitative factors, decision making
Procedia PDF Downloads 65218908 Distributed Perceptually Important Point Identification for Time Series Data Mining
Authors: Tak-Chung Fu, Ying-Kit Hung, Fu-Lai Chung
Abstract:
In the field of time series data mining, the concept of the Perceptually Important Point (PIP) identification process is first introduced in 2001. This process originally works for financial time series pattern matching and it is then found suitable for time series dimensionality reduction and representation. Its strength is on preserving the overall shape of the time series by identifying the salient points in it. With the rise of Big Data, time series data contributes a major proportion, especially on the data which generates by sensors in the Internet of Things (IoT) environment. According to the nature of PIP identification and the successful cases, it is worth to further explore the opportunity to apply PIP in time series ‘Big Data’. However, the performance of PIP identification is always considered as the limitation when dealing with ‘Big’ time series data. In this paper, two distributed versions of PIP identification based on the Specialized Binary (SB) Tree are proposed. The proposed approaches solve the bottleneck when running the PIP identification process in a standalone computer. Improvement in term of speed is obtained by the distributed versions.Keywords: distributed computing, performance analysis, Perceptually Important Point identification, time series data mining
Procedia PDF Downloads 434