Search results for: low frequency RF power
615 Feminising Football and Its Fandom: The Ideological Construction of Women's Super League
Authors: Donna Woodhouse, Beth Fielding-Lloyd, Ruth Sequerra
Abstract:
This paper explores the structure and culture of the English Football Association (FA) the governing body of soccer in England, in relation to the development of the FA Women’s Super League (WSL). In doing so, it examines the organisation’s journey from banning the sport in 1921 to establishing the country’s first semi professional female soccer league in 2011. As the FA has a virtual monopoly on defining the structures of the elite game, we attempted to understand its behaviour in the context of broader issues of power, control and resistance by giving voice to the experiences of those affected by its decisions. Observations were carried out at 39 matches over three years. Semi structured interviews with 17 people involved in the women’s game, identified via snowball sampling, were also carried out. Transcripts accompanied detailed field notes and were inductively coded to identify themes. What emerged was the governing body’s desire to create a new product, jettisoning the long history of the women’s game in order to shape and control the sport in a way it is no longer able to, with the elite male club game. The League created was also shaped by traditional conceptualisations of gender, in terms of the portrayal of its style of play and target audience, setting increased participation and spectatorship targets as measures of ‘success’. The national governing body has demonstrated pseudo inclusion and a lack of enthusiasm for the implementation of equity reforms, driven by a belief that the organisation is already representative, fair and accessible. Despite a consistent external pressure, the Football Association is still dominated at its most senior levels by males. Via claiming to hold a monopoly on expertise around the sport, maintaining complex committee structures and procedures, and with membership rules rooted in the amateur game, it remains a deeply gendered organisation, resistant to structural and cultural change. In WSL, the FA's structure and culture have created a franchise over which it retains almost complete control, dictating the terms of conditions of entry and marginalising alternative voices. The organisation presents a feminised version of both play and spectatorship, portraying the sport as a distinct, and lesser, version of soccer.Keywords: football association, organisational culture, soccer, women’s super league
Procedia PDF Downloads 352614 Dynamic Two-Way FSI Simulation for a Blade of a Small Wind Turbine
Authors: Alberto Jiménez-Vargas, Manuel de Jesús Palacios-Gallegos, Miguel Ángel Hernández-López, Rafael Campos-Amezcua, Julio Cesar Solís-Sanchez
Abstract:
An optimal wind turbine blade design must be able of capturing as much energy as possible from the wind source available at the area of interest. Many times, an optimal design means the use of large quantities of material and complicated processes that make the wind turbine more expensive, and therefore, less cost-effective. For the construction and installation of a wind turbine, the blades may cost up to 20% of the outline pricing, and become more important due to they are part of the rotor system that is in charge of transmitting the energy from the wind to the power train, and where the static and dynamic design loads for the whole wind turbine are produced. The aim of this work is the develop of a blade fluid-structure interaction (FSI) simulation that allows the identification of the major damage zones during the normal production situation, and thus better decisions for design and optimization can be taken. The simulation is a dynamic case, since we have a time-history wind velocity as inlet condition instead of a constant wind velocity. The process begins with the free-use software NuMAD (NREL), to model the blade and assign material properties to the blade, then the 3D model is exported to ANSYS Workbench platform where before setting the FSI system, a modal analysis is made for identification of natural frequencies and modal shapes. FSI analysis is carried out with the two-way technic which begins with a CFD simulation to obtain the pressure distribution on the blade surface, then these results are used as boundary condition for the FEA simulation to obtain the deformation levels for the first time-step. For the second time-step, CFD simulation is reconfigured automatically with the next time-step inlet wind velocity and the deformation results from the previous time-step. The analysis continues the iterative cycle solving time-step by time-step until the entire load case is completed. This work is part of a set of projects that are managed by a national consortium called “CEMIE-Eólico” (Mexican Center in Wind Energy Research), created for strengthen technological and scientific capacities, the promotion of creation of specialized human resources, and to link the academic with private sector in national territory. The analysis belongs to the design of a rotor system for a 5 kW wind turbine design thought to be installed at the Isthmus of Tehuantepec, Oaxaca, Mexico.Keywords: blade, dynamic, fsi, wind turbine
Procedia PDF Downloads 482613 Disparities in Language Competence and Conflict: The Moderating Role of Cultural Intelligence in Intercultural Interactions
Authors: Catherine Peyrols Wu
Abstract:
Intercultural interactions are becoming increasingly common in organizations and life. These interactions are often the stage of miscommunication and conflict. In management research, these problems are commonly attributed to cultural differences in values and interactional norms. As a result, the notion that intercultural competence can minimize these challenges is widely accepted. Cultural differences, however, are not the only source of a challenge during intercultural interactions. The need to rely on a lingua franca – or common language between people who have different mother tongues – is another important one. In theory, a lingua franca can improve communication and ease coordination. In practice however, disparities in people’s ability and confidence to communicate in the language can exacerbate tensions and generate inefficiencies. In this study, we draw on power theory to develop a model of disparities in language competence and conflict in a multicultural work context. Specifically, we hypothesized that differences in language competence between interaction partners would be positively related to conflict such that people would report greater conflict with partners who have more dissimilar levels of language competence and lesser conflict with partners with more similar levels of language competence. Furthermore, we proposed that cultural intelligence (CQ) an intercultural competence that denotes an individual’s capability to be effective in intercultural situations, would weaken the relationship between disparities in language competence and conflict such that people would report less conflict with partners who have more dissimilar levels of language competence when the interaction partner has high CQ and more conflict when the partner has low CQ. We tested this model with a sample of 135 undergraduate students working in multicultural teams for 13 weeks. We used a round-robin design to examine conflict in 646 dyads nested within 21 teams. Results of analyses using social relations modeling provided support for our hypotheses. Specifically, we found that in intercultural dyads with large disparities in language competence, partners with the lowest level of language competence would report higher levels of interpersonal conflict. However, this relationship disappeared when the partner with higher language competence was also high in CQ. These findings suggest that communication in a lingua franca can be a source of conflict in intercultural collaboration when partners differ in their level of language competence and that CQ can alleviate these effects during collaboration with partners who have relatively lower levels of language competence. Theoretically, this study underscores the benefits of CQ as a complement to language competence for intercultural effectiveness. Practically, these results further attest to the benefits of investing resources to develop language competence and CQ in employees engaged in multicultural work.Keywords: cultural intelligence, intercultural interactions, language competence, multicultural teamwork
Procedia PDF Downloads 166612 Using Structured Analysis and Design Technique Method for Unmanned Aerial Vehicle Components
Authors: Najeh Lakhoua
Abstract:
Introduction: Scientific developments and techniques for the systemic approach generate several names to the systemic approach: systems analysis, systems analysis, structural analysis. The main purpose of these reflections is to find a multi-disciplinary approach which organizes knowledge, creates universal language design and controls complex sets. In fact, system analysis is structured sequentially by steps: the observation of the system by various observers in various aspects, the analysis of interactions and regulatory chains, the modeling that takes into account the evolution of the system, the simulation and the real tests in order to obtain the consensus. Thus the system approach allows two types of analysis according to the structure and the function of the system. The purpose of this paper is to present an application of system analysis of Unmanned Aerial Vehicle (UAV) components in order to represent the architecture of this system. Method: There are various analysis methods which are proposed, in the literature, in to carry out actions of global analysis and different points of view as SADT method (Structured Analysis and Design Technique), Petri Network. The methodology adopted in order to contribute to the system analysis of an Unmanned Aerial Vehicle has been proposed in this paper and it is based on the use of SADT. In fact, we present a functional analysis based on the SADT method of UAV components Body, power supply and platform, computing, sensors, actuators, software, loop principles, flight controls and communications). Results: In this part, we present the application of SADT method for the functional analysis of the UAV components. This SADT model will be composed exclusively of actigrams. It starts with the main function ‘To analysis of the UAV components’. Then, this function is broken into sub-functions and this process is developed until the last decomposition level has been reached (levels A1, A2, A3 and A4). Recall that SADT techniques are semi-formal; however, for the same subject, different correct models can be built without having to know with certitude which model is the good or, at least, the best. In fact, this kind of model allows users a sufficient freedom in its construction and so the subjective factor introduces a supplementary dimension for its validation. That is why the validation step on the whole necessitates the confrontation of different points of views. Conclusion: In this paper, we presented an application of system analysis of Unmanned Aerial Vehicle components. In fact, this application of system analysis is based on SADT method (Structured Analysis Design Technique). This functional analysis proved the useful use of SADT method and its ability of describing complex dynamic systems.Keywords: system analysis, unmanned aerial vehicle, functional analysis, architecture
Procedia PDF Downloads 204611 Dividend Policy in Family Controlling Firms from a Governance Perspective: Empirical Evidence in Thailand
Authors: Tanapond S.
Abstract:
Typically, most of the controlling firms are relate to family firms which are widespread and important for economic growth particularly in Asian Pacific region. The unique characteristics of the controlling families tend to play an important role in determining the corporate policies such as dividend policy. Given the complexity of the family business phenomenon, the empirical evidence has been unclear on how the families behind business groups influence dividend policy in Asian markets with the prevalent existence of cross-shareholdings and pyramidal structure. Dividend policy as one of an important determinant of firm value could also be implemented in order to examine the effect of the controlling families behind business groups on strategic decisions-making in terms of a governance perspective and agency problems. The purpose of this paper is to investigate the impact of ownership structure and concentration which are influential internal corporate governance mechanisms in family firms on dividend decision-making. Using panel data and constructing a unique dataset of family ownership and control through hand-collecting information from the nonfinancial companies listed in Stock Exchange of Thailand (SET) between 2000 and 2015, the study finds that family firms with large stakes distribute higher dividends than family firms with small stakes. Family ownership can mitigate the agency problems and the expropriation of minority investors in family firms. To provide insight into the distinguish between ownership rights and control rights, this study examines specific firm characteristics including the degrees of concentration of controlling shareholders by classifying family ownership in different categories. The results show that controlling families with large deviation between voting rights and cash flow rights have more power and affect lower dividend payment. These situations become worse when second blockholders are families. To the best knowledge of the researcher, this study is the first to examine the association between family firms’ characteristics and dividend policy from the corporate governance perspectives in Thailand with weak investor protection environment and high ownership concentration. This research also underscores the importance of family control especially in a context in which family business groups and pyramidal structure are prevalent. As a result, academics and policy makers can develop markets and corporate policies to eliminate agency problem.Keywords: agency theory, dividend policy, family control, Thailand
Procedia PDF Downloads 292610 Deep-Learning Coupled with Pragmatic Categorization Method to Classify the Urban Environment of the Developing World
Authors: Qianwei Cheng, A. K. M. Mahbubur Rahman, Anis Sarker, Abu Bakar Siddik Nayem, Ovi Paul, Amin Ahsan Ali, M. Ashraful Amin, Ryosuke Shibasaki, Moinul Zaber
Abstract:
Thomas Friedman, in his famous book, argued that the world in this 21st century is flat and will continue to be flatter. This is attributed to rapid globalization and the interdependence of humanity that engendered tremendous in-flow of human migration towards the urban spaces. In order to keep the urban environment sustainable, policy makers need to plan based on extensive analysis of the urban environment. With the advent of high definition satellite images, high resolution data, computational methods such as deep neural network analysis, and hardware capable of high-speed analysis; urban planning is seeing a paradigm shift. Legacy data on urban environments are now being complemented with high-volume, high-frequency data. However, the first step of understanding urban space lies in useful categorization of the space that is usable for data collection, analysis, and visualization. In this paper, we propose a pragmatic categorization method that is readily usable for machine analysis and show applicability of the methodology on a developing world setting. Categorization to plan sustainable urban spaces should encompass the buildings and their surroundings. However, the state-of-the-art is mostly dominated by classification of building structures, building types, etc. and largely represents the developed world. Hence, these methods and models are not sufficient for developing countries such as Bangladesh, where the surrounding environment is crucial for the categorization. Moreover, these categorizations propose small-scale classifications, which give limited information, have poor scalability and are slow to compute in real time. Our proposed method is divided into two steps-categorization and automation. We categorize the urban area in terms of informal and formal spaces and take the surrounding environment into account. 50 km × 50 km Google Earth image of Dhaka, Bangladesh was visually annotated and categorized by an expert and consequently a map was drawn. The categorization is based broadly on two dimensions-the state of urbanization and the architectural form of urban environment. Consequently, the urban space is divided into four categories: 1) highly informal area; 2) moderately informal area; 3) moderately formal area; and 4) highly formal area. In total, sixteen sub-categories were identified. For semantic segmentation and automatic categorization, Google’s DeeplabV3+ model was used. The model uses Atrous convolution operation to analyze different layers of texture and shape. This allows us to enlarge the field of view of the filters to incorporate larger context. Image encompassing 70% of the urban space was used to train the model, and the remaining 30% was used for testing and validation. The model is able to segment with 75% accuracy and 60% Mean Intersection over Union (mIoU). In this paper, we propose a pragmatic categorization method that is readily applicable for automatic use in both developing and developed world context. The method can be augmented for real-time socio-economic comparative analysis among cities. It can be an essential tool for the policy makers to plan future sustainable urban spaces.Keywords: semantic segmentation, urban environment, deep learning, urban building, classification
Procedia PDF Downloads 192609 Comparison of Traditional and Green Building Designs in Egypt: Energy Saving
Authors: Hala M. Abdel Mageed, Ahmed I. Omar, Shady H. E. Abdel Aleem
Abstract:
This paper describes in details a commercial green building that has been designed and constructed in Marsa Matrouh, Egypt. The balance between homebuilding and the sustainable environment has been taken into consideration in the design and construction of this building. The building consists of one floor with 3 m height and 2810 m2 area while the envelope area is 1400 m2. The building construction fulfills the natural ventilation requirements. The glass curtain walls are about 50% of the building and the windows area is 300 m2. 6 mm greenish gray tinted temper glass as outer board lite, 6 mm safety glass as inner board lite and 16 mm thick dehydrated air spaces are used in the building. Visible light with 50% transmission, 0.26 solar factor, 0.67 shading coefficient and 1.3 W/m2.K thermal insulation U-value are implemented to realize the performance requirements. Optimum electrical distribution for lighting system, air conditions and other electrical loads has been carried out. Power and quantity of each type of the lighting system lamps and the energy consumption of the lighting system are investigated. The design of the air conditions system is based on summer and winter outdoor conditions. Ventilated, air conditioned spaces and fresh air rates are determined. Variable Refrigerant Flow (VRF) is the air conditioning system used in this building. The VRF outdoor units are located on the roof of the building and connected to indoor units through refrigerant piping. Indoor units are distributed in all building zones through ducts and air outlets to ensure efficient air distribution. The green building energy consumption is evaluated monthly all over one year and compared with the consumed energy in the non-green conditions using the Hourly Analysis Program (HAP) model. The comparison results show that the total energy consumed per year in the green building is about 1,103,221 kWh while the non-green energy consumption is about 1,692,057 kWh. In other words, the green building total annual energy cost is reduced from 136,581 $ to 89,051 $. This means that, the energy saving and consequently the money-saving of this green construction is about 35%. In addition, 13 points are awarded by applying one of the most popular worldwide green energy certification programs (Leadership in Energy and Environmental Design “LEED”) as a rating system for the green construction. It is concluded that this green building ensures sustainability, saves energy and offers an optimum energy performance with minimum cost.Keywords: energy consumption, energy saving, green building, leadership in energy and environmental design, sustainability
Procedia PDF Downloads 301608 Degradation and Detoxification of Tetracycline by Sono-Fenton and Ozonation
Authors: Chikang Wang, Jhongjheng Jian, Poming Huang
Abstract:
Among a wide variety of pharmaceutical compounds, tetracycline antibiotics are one of the largest groups of pharmaceutical compounds extensively used in human and veterinary medicine to treat and prevent bacterial infections. Because it is water soluble, biologically active, stable and bio-refractory, release to the environment threatens aquatic life and increases the risk posed by antibiotic-resistant pathogens. In practice, due to its antibacterial nature, tetracycline cannot be effectively destructed by traditional biological methods. Hence, in this study, two advanced oxidation processes such as ozonation and sono-Fenton processes were conducted individually to degrade the tetracycline for investigating their feasibility on tetracycline degradation. Effect of operational variables on tetracycline degradation, release of nitrogen and change of toxicity were also proposed. Initial tetracycline concentration was 50 mg/L. To evaluate the efficiency of tetracycline degradation by ozonation, the ozone gas was produced by an ozone generator (Model LAB2B, Ozonia) and introduced into the reactor with different flows (25 - 500 mL/min) at varying pH levels (pH 3 - pH 11) and reaction temperatures (15 - 55°C). In sono-Fenton system, an ultrasonic transducer (Microson VCX 750, USA) operated at 20 kHz combined with H₂O₂ (2 mM) and Fe²⁺ (0.2 mM) were carried out at different pH levels (pH 3 - pH 11), aeration gas and flows (air and oxygen; 0.2 - 1.0 L/min), tetracycline concentrations (10 - 200 mg/L), reaction temperatures (15 - 55°C) and ultrasonic powers (25 - 200 Watts), respectively. Sole ultrasound was ineffective on tetracycline degradation, where the degradation efficiencies were lower than 10% with 60 min reaction. Contribution of Fe²⁺ and H₂O₂ on the degradation of tetracycline was significant, where the maximum tetracycline degradation efficiency in sono-Fenton process was as high as 91.3% followed by 45.8% mineralization. Effect of initial pH level on tetracycline degradation was insignificant from pH 3 to pH 6 but significantly decreased as the pH was greater than pH 7. Increase of the ultrasonic power was slightly increased the degradation efficiency of tetracycline, which indicated that the hydroxyl radicals dominated the oxidation of tetracycline. Effects of aeration of air or oxygen with different flows and reaction temperatures were insignificant. Ozonation showed better efficiencies in tetracycline degradation, where the optimum reaction condition was found at pH 3, 100 mL O₃/min and 25°C with 94% degradation and 60% mineralization. The toxicity of tetracycline was significantly decreased due to the mineralization of tetracycline. In addition, less than 10% of nitrogen content was released to solution phase as NH₃-N, and the most degraded tetracycline cannot be full mineralized to CO₂. The results shown in this study indicated that both the sono-Fenton process and ozonation can effectively degrade the tetracycline and reduce its toxicity at profitable condition. The costs of two systems needed to be further investigated to understand the feasibility in tetracycline degradation.Keywords: degradation, detoxification, mineralization, ozonation, sono-Fenton process, tetracycline
Procedia PDF Downloads 269607 Photocatalytic Disintegration of Naphthalene and Naphthalene Similar Compounds in Indoors Air
Authors: Tobias Schnabel
Abstract:
Naphthalene and naphthalene similar compounds are a common problem in the indoor air of buildings from the 1960s and 1970s in Germany. Often tar containing roof felt was used under the concrete floor to prevent humidity to come through the floor. This tar containing roof felt has high concentrations of PAH (Polycyclic aromatic hydrocarbon) and naphthalene. Naphthalene easily evaporates and contaminates the indoor air. Especially after renovations and energetically modernization of the buildings, the naphthalene concentration rises because no forced air exchange can happen. Because of this problem, it is often necessary to change the floors after renovation of the buildings. The MFPA Weimar (Material research and testing facility) developed in cooperation a project with LEJ GmbH and Reichmann Gebäudetechnik GmbH. It is a technical solution for the disintegration of naphthalene in naphthalene, similar compounds in indoor air with photocatalytic reforming. Photocatalytic systems produce active oxygen species (hydroxyl radicals) through trading semiconductors on a wavelength of their bandgap. The light energy separates the charges in the semiconductor and produces free electrons in the line tape and defect electrons. The defect electrons can react with hydroxide ions to hydroxyl radicals. The produced hydroxyl radicals are a strong oxidation agent, and can oxidate organic matter to carbon dioxide and water. During the research, new titanium oxide catalysator surface coatings were developed. This coating technology allows the production of very porous titan oxide layer on temperature stable carrier materials. The porosity allows the naphthalene to get easily absorbed by the surface coating, what accelerates the reaction of the heterogeneous photocatalysis. The photocatalytic reaction is induced by high power and high efficient UV-A (ultra violet light) Leds with a wavelength of 365nm. Various tests in emission chambers and on the reformer itself show that a reduction of naphthalene in important concentrations between 2 and 250 µg/m³ is possible. The disintegration rate was at least 80%. To reduce the concentration of naphthalene from 30 µg/m³ to a level below 5 µg/m³ in a usual 50 ² classroom, an energy of 6 kWh is needed. The benefits of the photocatalytic indoor air treatment are that every organic compound in the air can be disintegrated and reduced. The use of new photocatalytic materials in combination with highly efficient UV leds make a safe and energy efficient reduction of organic compounds in indoor air possible. At the moment the air cleaning systems take the step from prototype stage into the usage in real buildings.Keywords: naphthalene, titandioxide, indoor air, photocatalysis
Procedia PDF Downloads 144606 Friction and Wear Characteristics of Diamond Nanoparticles Mixed with Copper Oxide in Poly Alpha Olefin
Authors: Ankush Raina, Ankush Anand
Abstract:
Plyometric training is a form of specialised strength training that uses fast muscular contractions to improve power and speed in sports conditioning by coaches and athletes. Despite its useful role in sports conditioning programme, the information about plyometric training on the athletes cardiovascular health especially Electrocardiogram (ECG) has not been established in the literature. The purpose of the study was to determine the effects of lower and upper body plyometric training on ECG of athletes. The study was guided by three null hypotheses. Quasi–experimental research design was adopted for the study. Seventy-two university male athletes constituted the population of the study. Thirty male athletes aged 18 to 24 years volunteered to participate in the study, but only twenty-three completed the study. The volunteered athletes were apparently healthy, physically active and free of any lower and upper extremity bone injuries for past one year and they had no medical or orthopedic injuries that may affect their participation in the study. Ten subjects were purposively assigned to one of the three groups: lower body plyometric training (LBPT), upper body plyometric training (UBPT), and control (C). Training consisted of six plyometric exercises: lower (ankle hops, squat jumps, tuck jumps) and upper body plyometric training (push-ups, medicine ball-chest throws and side throws) with moderate intensity. The general data were collated and analysed using Statistical Package for Social Science (SPSS version 22.0). The research questions were answered using mean and standard deviation, while paired samples t-test was also used to test for the hypotheses. The results revealed that athletes who were trained using LBPT had reduced ECG parameters better than those in the control group. The results also revealed that athletes who were trained using both LBPT and UBPT indicated lack of significant differences following ten weeks plyometric training than those in the control group in the ECG parameters except in Q wave, R wave and S wave (QRS) complex. Based on the findings of the study, it was recommended among others that coaches should include both LBPT and UBPT as part of athletes’ overall training programme from primary to tertiary institution to optimise performance as well as reduce the risk of cardiovascular diseases and promotes good healthy lifestyle.Keywords: boundary lubrication, copper oxide, friction, nano diamond
Procedia PDF Downloads 123605 The Decision-Making Process of the Central Banks of Brazil and India in Regional Integration: A Comparative Analysis of MERCOSUR and SAARC (2003-2014)
Authors: Andre Sanches Siqueira Campos
Abstract:
Central banks can play a significant role in promoting regional economic and monetary integration by strengthening the payment and settlement systems. However, close coordination and cooperation require facilitating the implementation of reforms at domestic and cross-border levels in order to benchmark with international standards and commitments to the liberal order. This situation reflects the normative power of the regulatory globalization dimension of strong states, which may drive or constrain regional integration. In the MERCOSUR and SAARC regions, central banks have set financial initiatives that could facilitate South America and South Asia regions to move towards convergence integration and facilitate trade and investments connectivities. This is qualitative method research based on a combination of the Process-Tracing method with Qualitative Comparative Analysis (QCA). This research approaches multiple forms of data based on central banks, regional organisations, national governments, and financial institutions supported by existing literature. The aim of this research is to analyze the decision-making process of the Central Bank of Brazil (BCB) and the Reserve Bank of India (RBI) towards regional financial cooperation by identifying connectivity instruments that foster, gridlock, or redefine cooperation. The BCB and The RBI manage the monetary policy of the largest economies of those regions, which makes regional cooperation a relevant framework to understand how they provide an effective institutional arrangement for regional organisations to achieve some of their key policies and economic objectives. The preliminary conclusion is that both BCB and RBI demonstrate a reluctance to deepen regional cooperation because of the existing economic, political, and institutional asymmetries. Deepening regional cooperation is constrained by the interests of central banks in protecting their economies from risks of instability due to different degrees of development between countries in their regions and international financial crises that have impacted the international system in the 21st century. Reluctant regional integration also provides autonomy for national development and political ground for the contestation of Global Financial Governance by Brazil and India.Keywords: Brazil, central banks, decision-making process, global financial governance, India, MERCOSUR, connectivity, payment system, regional cooperation, SAARC
Procedia PDF Downloads 114604 Analysis of Waterjet Propulsion System for an Amphibious Vehicle
Authors: Nafsi K. Ashraf, C. V. Vipin, V. Anantha Subramanian
Abstract:
This paper reports the design of a waterjet propulsion system for an amphibious vehicle based on circulation distribution over the camber line for the sections of the impeller and stator. In contrast with the conventional waterjet design, the inlet duct is straight for water entry parallel and in line with the nozzle exit. The extended nozzle after the stator bowl makes the flow more axial further improving thrust delivery. Waterjet works on the principle of volume flow rate through the system and unlike the propeller, it is an internal flow system. The major difference between the propeller and the waterjet occurs at the flow passing the actuator. Though a ducted propeller could constitute the equivalent of waterjet propulsion, in a realistic situation, the nozzle area for the Waterjet would be proportionately larger to the inlet area and propeller disc area. Moreover, the flow rate through impeller disk is controlled by nozzle area. For these reasons the waterjet design is based on pump systems rather than propellers and therefore it is important to bring out the characteristics of the flow from this point of view. The analysis is carried out using computational fluid dynamics. Design of waterjet propulsion is carried out adapting the axial flow pump design and performance analysis was done with three-dimensional computational fluid dynamics (CFD) code. With the varying environmental conditions as well as with the necessity of high discharge and low head along with the space confinement for the given amphibious vehicle, an axial pump design is suitable. The major problem of inlet velocity distribution is the large variation of velocity in the circumferential direction which gives rise to heavy blade loading that varies with time. The cavitation criteria have also been taken into account as per the hydrodynamic pump design. Generally, waterjet propulsion system can be parted into the inlet, the pump, the nozzle and the steering device. The pump further comprises an impeller and a stator. Analytical and numerical approaches such as RANSE solver has been undertaken to understand the performance of designed waterjet propulsion system. Unlike in case of propellers the analysis was based on head flow curve with efficiency and power curves. The modeling of the impeller is performed using rigid body motion approach. The realizable k-ϵ model has been used for turbulence modeling. The appropriate boundary conditions are applied for the domain, domain size and grid dependence studies are carried out.Keywords: amphibious vehicle, CFD, impeller design, waterjet propulsion
Procedia PDF Downloads 229603 Modeling and Optimizing of Sinker Electric Discharge Machine Process Parameters on AISI 4140 Alloy Steel by Central Composite Rotatable Design Method
Authors: J. Satya Eswari, J. Sekhar Babub, Meena Murmu, Govardhan Bhat
Abstract:
Electrical Discharge Machining (EDM) is an unconventional manufacturing process based on removal of material from a part by means of a series of repeated electrical sparks created by electric pulse generators at short intervals between a electrode tool and the part to be machined emmersed in dielectric fluid. In this paper, a study will be performed on the influence of the factors of peak current, pulse on time, interval time and power supply voltage. The output responses measured were material removal rate (MRR) and surface roughness. Finally, the parameters were optimized for maximum MRR with the desired surface roughness. RSM involves establishing mathematical relations between the design variables and the resulting responses and optimizing the process conditions. RSM is not free from problems when it is applied to multi-factor and multi-response situations. Design of experiments (DOE) technique to select the optimum machining conditions for machining AISI 4140 using EDM. The purpose of this paper is to determine the optimal factors of the electro-discharge machining (EDM) process investigate feasibility of design of experiment techniques. The work pieces used were rectangular plates of AISI 4140 grade steel alloy. The study of optimized settings of key machining factors like pulse on time, gap voltage, flushing pressure, input current and duty cycle on the material removal, surface roughness is been carried out using central composite design. The objective is to maximize the Material removal rate (MRR). Central composite design data is used to develop second order polynomial models with interaction terms. The insignificant coefficients’ are eliminated with these models by using student t test and F test for the goodness of fit. CCD is first used to establish the determine the optimal factors of the electro-discharge machining (EDM) for maximizing the MRR. The responses are further treated through a objective function to establish the same set of key machining factors to satisfy the optimization problem of the electro-discharge machining (EDM) process. The results demonstrate the better performance of CCD data based RSM for optimizing the electro-discharge machining (EDM) process.Keywords: electric discharge machining (EDM), modeling, optimization, CCRD
Procedia PDF Downloads 343602 An Anthropometric Index Capable of Differentiating Morbid Obesity from Obesity and Metabolic Syndrome in Children
Authors: Mustafa Metin Donma
Abstract:
Circumference measurements are important because they are easily obtained values for the identification of the weight gain without determining body fat. They may give meaningful information about the varying stages of obesity. Besides, some formulas may be derived from a number of body circumference measurements to estimate body fat. Waist (WC), hip (HC) and neck (NC) circumferences are currently the most frequently used measurements. The aim of this study was to develop a formula derived from these three anthropometric measurements, each giving a valuable information independently, to question whether their combined power within a formula was capable of being helpful for the differential diagnosis of morbid obesity without metabolic syndrome (MetS) from MetS. One hundred and eighty seven children were recruited from the pediatrics outpatient clinic of Tekirdag Namik Kemal University Faculty of Medicine. The parents of the participants were informed about asked to fill and sign the consent forms. The study was carried out according to the Helsinki Declaration. The study protocol was approved by the institutional non-interventional ethics committee. The study population was divided into four groups as normal-body mass index (N-BMI), obese (OB), morbid obese (MO) and MetS, which were composed of 35, 44, 75 and 33 children, respectively. Age- and gender-adjusted BMI percentile values were used for the classification of groups. The children in MetS group were selected based upon the nature of the MetS components described as MetS criteria. Anthropometric measurements, laboratory analysis and statistical evaluation confined to study population were performed. Body mass index values were calculated. A circumference index, advanced Donma circumference index (ADCI) was introduced as WC*HC/NC. The statistical significance degree was chosen as p value smaller than 0.05. Body mass index values were 17.7±2.8, 24.5±3.3, 28.8±5.7, 31.4±8.0 kg/m2, for N-BMI, OB, MO, MetS groups, respectively. The corresponding values for ADCI were 165±35, 240±42, 270±55, and 298±62. Significant differences were obtained between BMI values of N-BMI and OB, MO, MetS groups (p=0.001). Obese group BMI values also differed from MO group BMI values (p=0.001). However, the increase in MetS group compared to MO group was not significant (p=0.091). For the new index, significant differences were obtained between N-BMI and OB, MO, MetS groups (p=0.001). Obese group ADCI values also differed from MO group ADCI values (p=0.015). A significant difference between MO and MetS groups was detected (p=0.043). The correlation coefficient value and the significance check of the correlation was found between BMI and ADCI as r=0.0883 and p=0.001 upon consideration of all participants. In conclusion, in spite of the strong correlation between BMI and ADCI values obtained when all groups were considered, ADCI, but not BMI, was the index, which was capable of differentiating cases with morbid obesity from cases with morbid obesity and MetS.Keywords: anthropometry, body mass index, child, circumference, metabolic syndrome, obesity
Procedia PDF Downloads 64601 Comparative Analysis of the Antioxidant Capacities of Pre-Germinated and Germinated Pigmented Rice (Oryza sativa L. Cv. Superjami and Superhongmi)
Authors: Soo Im Chung, Lara Marie Pangan Lo, Yao Cheng Zhang, Su Jin Nam, Xingyue Jin, Mi Young Kang
Abstract:
Rice (Oryza sativa L.) is one of the most widely consumed grains. Due to the growing number of demand as a potential functional food and nutraceutical source and the increasing awareness of people towards healthy diet and good quality of living, more researches dwell upon the development of new rice cultivars for population consumption. However, studies on the antioxidant capacities of newly developed rice were limited as well as the effects of germination in these rice cultivars. Therefore, this study aimed to focus on analysis of the antioxidant potential of pre-germinated and germinated pigmented rice cultivars in South Korea such as purple cultivar Superjami (SJ) and red cultivar Super hongmi (SH) in comparison with the non-pigmented Normal Brown (NB) Rice. The powdered rice grain samples were extracted with 80% methanol and their antioxidant activities were determined. The Results showed that pre-germinated pigmented rice cultivars have higher Fe2+ Chelating Ability (Fe2+), Reducing Power (RP), 2,2´-azinobis[3-ethylbenzthiazoline]-6-sulfonic acid (ABTS) radical scavenging and Superoxide Dismutase activity than the control NB rice. Moreover, it is revealed that germination process induced a significant increased in the antioxidant activities of all the rice samples regardless of their strains. Purple rice SJ showed greater Fe2+ (88.82 + 0.53%), RP (0.82 + 0.01) , ABTS (143.63 + 2.38 mg VCEAC/100 g) and SOD (59.31 + 0.48%) activities than the red grain SH and the control NB having the lowest antioxidant potential among the three (3) rice samples examined. The Effective concentration at 50% (EC50) of 1, 1-Diphenyl-2-picrylhydrazyl (DPPH) and Hydroxyradical (-OH) Scavenging activity for the rice samples were also obtained. SJ showed lower EC50 in terms of its DPPH (3.81 + 0.15 mg/mL) and –OH (5.19 + 0.08 mg/mL) radical scavenging activities than the red grain SH and control NB rice indicating that at lower concentrations, it can readily exhibit antioxidant effects against reactive oxygen species (ROS). These results clearly suggest the higher antioxidant potential of pigmented rice varieties as compared with the widely consumed NB rice. Also, it is revealed in the study that even at lower concentrations, pigmented rice varieties can exhibit their antioxidant activities. Germination process further enhanced the antioxidant capacities of the rice samples regardless of their types. With these results at hand, these new rice varieties can be further developed as a good source of bio functional elements that can help alleviate the growing number of cases of metabolic disorders.Keywords: antioxidant capacity, germinated rice, pigmented rice, super hongmi, superjami
Procedia PDF Downloads 444600 Foundations for Global Interactions: The Theoretical Underpinnings of Understanding Others
Authors: Randall E. Osborne
Abstract:
In a course on International Psychology, 8 theoretical perspectives (Critical Psychology, Liberation Psychology, Post-Modernism, Social Constructivism, Social Identity Theory, Social Reduction Theory, Symbolic Interactionism, and Vygotsky’s Sociocultural Theory) are used as a framework for getting students to understand the concept of and need for Globalization. One of critical psychology's main criticisms of conventional psychology is that it fails to consider or deliberately ignores the way power differences between social classes and groups can impact the mental and physical well-being of individuals or groups of people. Liberation psychology, also known as liberation social psychology or psicología social de la liberación, is an approach to psychological science that aims to understand the psychology of oppressed and impoverished communities by addressing the oppressive sociopolitical structure in which they exist. Postmodernism is largely a reaction to the assumed certainty of scientific, or objective, efforts to explain reality. It stems from a recognition that reality is not simply mirrored in human understanding of it, but rather, is constructed as the mind tries to understand its own particular and personal reality. Lev Vygotsky argued that all cognitive functions originate in, and must therefore be explained as products of social interactions and that learning was not simply the assimilation and accommodation of new knowledge by learners. Social Identity Theory discusses the implications of social identity for human interactions with and assumptions about other people. Social Identification Theory suggests people: (1) categorize—people find it helpful (humans might be perceived as having a need) to place people and objects into categories, (2) identify—people align themselves with groups and gain identity and self-esteem from it, and (3) compare—people compare self to others. Social reductionism argues that all behavior and experiences can be explained simply by the affect of groups on the individual. Symbolic interaction theory focuses attention on the way that people interact through symbols: words, gestures, rules, and roles. Meaning evolves from human their interactions in their environment and with people. Vygotsky’s sociocultural theory of human learning describes learning as a social process and the origination of human intelligence in society or culture. The major theme of Vygotsky’s theoretical framework is that social interaction plays a fundamental role in the development of cognition. This presentation will discuss how these theoretical perspectives are incorporated into a course on International Psychology, a course on the Politics of Hate, and a course on the Psychology of Prejudice, Discrimination and Hate to promote student thinking in a more ‘global’ manner.Keywords: globalization, international psychology, society and culture, teaching interculturally
Procedia PDF Downloads 252599 Influence of Marital Status on Nutritional, Physical, Mental, and Social Health: A Study on Women in Faisalabad, Pakistan
Authors: Anum Obaid, Iman Fatima, Wanisha Feroz, Haleema Imran, Hammad Tariq
Abstract:
Unmarried women over thirty years of age as a health issue is a relatively young phenomenon, but it is rapidly growing in Pakistan; therefore, it is a public health issue. The challenges affecting nutrition and public health are some of the indispensable components that need to be met to achieve sustainable development goals (SDGs). This research intends to explain these goals in the context of nutrition and public health, especially analyzing the issues related to unmarried women above the age of thirty in Faisalabad, Pakistan. Still, this research is not feasible in Pakistan. In Pakistan alone, 10 million women over the age of 35 are unmarried, based on a recent United Nations report. The United Nations, in cooperation with the World Health Organization, has identified health as a state of being healthy, free from illness or disease, and not just a condition where there are no diseases or bodily disabilities. The current generation of women is unmarried and living a life under constant pressure from society to deliver changes like the diet these women take, and hence, their nutritional status defines their comprehensive health triangle, a mix of physical, mental, and social well-being. The research was carried out under the qualitative research paradigm, specifically through interviews with the participants who were unmarried women and married women above the age of thirty. This qualitative study explores how marriage affects the intake of nutrients, nutritional health, psychological and social well-being and their effects. The realization of well-being consisted of factors like physical health, mental and emotional health, pressure from society, social health, economic independence, and decision-making power to reveal the impact of singleness on well-being. The findings disclosed that marital status had a notable impact on the diet habits and nutritional behaviors of women in Faisalabad. Also, it was found that single women suffer from more stress and are not as positive as married women because they are lonely, as their husbands are absent from their lives. The findings established that nutritional understanding is differentially affected by marital status as a determinant of the health triangle consisting of physical, mental, and social health. Awareness of these factors is significant in designing specific goal-directed interventions that can enhance the nutritional well-being and general health status of unmarried women in Faisalabad. Hence, this study underscores the necessity of maintaining supportive environments and increasing the regard concerning the health state of single ladies beyond thirty.Keywords: health triangle, over thirty, singleness, age barriers, unmarried women, women’s health, well-being
Procedia PDF Downloads 29598 Experimental and Numerical Investigation on the Torque in a Small Gap Taylor-Couette Flow with Smooth and Grooved Surface
Authors: L. Joseph, B. Farid, F. Ravelet
Abstract:
Fundamental studies were performed on bifurcation, instabilities and turbulence in Taylor-Couette flow and applied to many engineering applications like astrophysics models in the accretion disks, shrouded fans, and electric motors. Such rotating machinery performances need to have a better understanding of the fluid flow distribution to quantify the power losses and the heat transfer distribution. The present investigation is focused on high gap ratio of Taylor-Couette flow with high rotational speeds, for smooth and grooved surfaces. So far, few works has been done in a very narrow gap and with very high rotation rates and, to the best of our knowledge, not with this combination with grooved surface. We study numerically the turbulent flow between two coaxial cylinders where R1 and R2 are the inner and outer radii respectively, where only the inner is rotating. The gap between the rotor and the stator varies between 0.5 and 2 mm, which corresponds to a radius ratio η = R1/R2 between 0.96 and 0.99 and an aspect ratio Γ= L/d between 50 and 200, where L is the length of the rotor and d being the gap between the two cylinders. The scaling of the torque with the Reynolds number is determined at different gaps for different smooth and grooved surfaces (and also with different number of grooves). The fluid in the gap is air. Re varies between 8000 and 30000. Another dimensionless parameter that plays an important role in the distinction of the regime of the flow is the Taylor number that corresponds to the ratio between the centrifugal forces and the viscous forces (from 6.7 X 105 to 4.2 X 107). The torque will be first evaluated with RANS and U-RANS models, and compared to empirical models and experimental results. A mesh convergence study has been done for each rotor-stator combination. The results of the torque are compared to different meshes in 2D dimensions. For the smooth surfaces, the models used overestimate the torque compared to the empirical equations that exist in the bibliography. The closest models to the empirical models are those solving the equations near to the wall. The greatest torque achieved with grooved surface. The tangential velocity in the gap was always higher in between the rotor and the stator and not on the wall of rotor. Also the greater one was in the groove in the recirculation zones. In order to avoid endwall effects, long cylinders are used in our setup (100 mm), torque is measured by a co-rotating torquemeter. The rotor is driven by an air turbine of an automotive turbo-compressor for high angular velocities. The results of the experimental measurements are at rotational speed of up to 50 000 rpm. The first experimental results are in agreement with numerical ones. Currently, quantitative study is performed on grooved surface, to determine the effect of number of grooves on the torque, experimentally and numerically.Keywords: Taylor-Couette flow, high gap ratio, grooved surface, high speed
Procedia PDF Downloads 411597 SAFECARE: Integrated Cyber-Physical Security Solution for Healthcare Critical Infrastructure
Authors: Francesco Lubrano, Fabrizio Bertone, Federico Stirano
Abstract:
Modern societies strongly depend on Critical Infrastructures (CI). Hospitals, power supplies, water supplies, telecommunications are just few examples of CIs that provide vital functions to societies. CIs like hospitals are very complex environments, characterized by a huge number of cyber and physical systems that are becoming increasingly integrated. Ensuring a high level of security within such critical infrastructure requires a deep knowledge of vulnerabilities, threats, and potential attacks that may occur, as well as defence and prevention or mitigation strategies. The possibility to remotely monitor and control almost everything is pushing the adoption of network-connected devices. This implicitly introduces new threats and potential vulnerabilities, posing a risk, especially to those devices connected to the Internet. Modern medical devices used in hospitals are not an exception and are more and more being connected to enhance their functionalities and easing the management. Moreover, hospitals are environments with high flows of people, that are difficult to monitor and can somehow easily have access to the same places used by the staff, potentially creating damages. It is therefore clear that physical and cyber threats should be considered, analysed, and treated together as cyber-physical threats. This means that an integrated approach is required. SAFECARE, an integrated cyber-physical security solution, tries to respond to the presented issues within healthcare infrastructures. The challenge is to bring together the most advanced technologies from the physical and cyber security spheres, to achieve a global optimum for systemic security and for the management of combined cyber and physical threats and incidents and their interconnections. Moreover, potential impacts and cascading effects are evaluated through impact propagation models that rely on modular ontologies and a rule-based engine. Indeed, SAFECARE architecture foresees i) a macroblock related to cyber security field, where innovative tools are deployed to monitor network traffic, systems and medical devices; ii) a physical security macroblock, where video management systems are coupled with access control management, building management systems and innovative AI algorithms to detect behavior anomalies; iii) an integration system that collects all the incoming incidents, simulating their potential cascading effects, providing alerts and updated information regarding assets availability.Keywords: cyber security, defence strategies, impact propagation, integrated security, physical security
Procedia PDF Downloads 166596 Digimesh Wireless Sensor Network-Based Real-Time Monitoring of ECG Signal
Authors: Sahraoui Halima, Dahani Ameur, Tigrine Abedelkader
Abstract:
DigiMesh technology represents a pioneering advancement in wireless networking, offering cost-effective and energy-efficient capabilities. Its inherent simplicity and adaptability facilitate the seamless transfer of data between network nodes, extending the range and ensuring robust connectivity through autonomous self-healing mechanisms. In light of these advantages, this study introduces a medical platform harnessed with DigiMesh wireless network technology characterized by low power consumption, immunity to interference, and user-friendly operation. The primary application of this platform is the real-time, long-distance monitoring of Electrocardiogram (ECG) signals, with the added capacity for simultaneous monitoring of ECG signals from multiple patients. The experimental setup comprises key components such as Raspberry Pi, E-Health Sensor Shield, and Xbee DigiMesh modules. The platform is composed of multiple ECG acquisition devices labeled as Sensor Node 1 and Sensor Node 2, with a Raspberry Pi serving as the central hub (Sink Node). Two communication approaches are proposed: Single-hop and multi-hop. In the Single-hop approach, ECG signals are directly transmitted from a sensor node to the sink node through the XBee3 DigiMesh RF Module, establishing peer-to-peer connections. This approach was tested in the first experiment to assess the feasibility of deploying wireless sensor networks (WSN). In the multi-hop approach, two sensor nodes communicate with the server (Sink Node) in a star configuration. This setup was tested in the second experiment. The primary objective of this research is to evaluate the performance of both Single-hop and multi-hop approaches in diverse scenarios, including open areas and obstructed environments. Experimental results indicate the DigiMesh network's effectiveness in Single-hop mode, with reliable communication over distances of approximately 300 meters in open areas. In the multi-hop configuration, the network demonstrated robust performance across approximately three floors, even in the presence of obstacles, without the need for additional router devices. This study offers valuable insights into the capabilities of DigiMesh wireless technology for real-time ECG monitoring in healthcare applications, demonstrating its potential for use in diverse medical scenarios.Keywords: DigiMesh protocol, ECG signal, real-time monitoring, medical platform
Procedia PDF Downloads 81595 The Ideal Memory Substitute for Computer Memory Hierarchy
Authors: Kayode A. Olaniyi, Olabanji F. Omotoye, Adeola A. Ogunleye
Abstract:
Computer system components such as the CPU, the Controllers, and the operating system, work together as a team, and storage or memory is the essential parts of this team apart from the processor. The memory and storage system including processor caches, main memory, and storage, form basic storage component of a computer system. The characteristics of the different types of storage are inherent in the design and the technology employed in the manufacturing. These memory characteristics define the speed, compatibility, cost, volatility, and density of the various storage types. Most computers rely on a hierarchy of storage devices for performance. The effective and efficient use of the memory hierarchy of the computer system therefore is the single most important aspect of computer system design and use. The memory hierarchy is becoming a fundamental performance and energy bottleneck, due to the widening gap between the increasing demands of modern computer applications and the limited performance and energy efficiency provided by traditional memory technologies. With the dramatic development in the computers systems, computer storage has had a difficult time keeping up with the processor speed. Computer architects are therefore facing constant challenges in developing high-speed computer storage with high-performance which is energy-efficient, cost-effective and reliable, to intercept processor requests. It is very clear that substantial advancements in redesigning the existing memory physical and logical structures to meet up with the latest processor potential is crucial. This research work investigates the importance of computer memory (storage) hierarchy in the design of computer systems. The constituent storage types of the hierarchy today were investigated looking at the design technologies and how the technologies affect memory characteristics: speed, density, stability and cost. The investigation considered how these characteristics could best be harnessed for overall efficiency of the computer system. The research revealed that the best single type of storage, which we refer to as ideal memory is that logical single physical memory which would combine the best attributes of each memory type that make up the memory hierarchy. It is a single memory with access speed as high as one found in CPU registers, combined with the highest storage capacity, offering excellent stability in the presence or absence of power as found in the magnetic and optical disks as against volatile DRAM, and yet offers a cost-effective attribute that is far away from the expensive SRAM. The research work suggests that to overcome these barriers it may then mean that memory manufacturing will take a total deviation from the present technologies and adopt one that overcomes the associated challenges with the traditional memory technologies.Keywords: cache, memory-hierarchy, memory, registers, storage
Procedia PDF Downloads 167594 The Effect of Acute Consumption of a Nutritional Supplement Derived from Vegetable Extracts Rich in Nitrate on Athletic Performance
Authors: Giannis Arnaoutis, Dimitra Efthymiopoulou, Maria-Foivi Nikolopoulou, Yannis Manios
Abstract:
AIM: Nitrate-containing supplements have been used extensively as ergogenic in many sports. However, extract fractions from plant-based nutritional sources high in nitrate and their effect on athletic performance, has not been systematically investigated. The purpose of the present study was to examine the possible effect of acute consumption of a “smart mixture” from beetroot and rocket on exercise capacity. MATERIAL & METHODS: 12 healthy, nonsmoking, recreationally active, males (age: 25±4 years, % fat: 15.5±5.7, Fat Free Mass: 65.8±5.6 kg, VO2 max: 45.46.1 mL . kg -1 . min -1) participated in a double-blind, placebo-controlled trial study, in a randomized and counterbalanced order. Eligibility criteria for participation in this study included normal physical examination, and absence of any metabolic, cardiovascular, or renal disease. All participants completed a time to exhaustion cycling test at 75% of their maximum power output, twice. The subjects consumed either capsules containing 360 mg of nitrate in total or placebo capsules, in the morning, under fasted state. After 3h of passive recovery the performance test followed. Blood samples were collected upon arrival of the participants and 3 hours after the consumption of the corresponding capsules. Time until exhaustion, pre- and post-test lactate concentrations, and rate of perceived exertion for the same time points were assessed. RESULTS: Paired-sample t-test analysis found a significant difference in time to exhaustion between the trial with the nitrate consumption versus placebo [16.1±3.0 Vs 13.5±2.6 min, p=0.04] respectively. No significant differences were observed for the concentrations of lactic acid as well as for the values in the Borg scale between the two trials (p>0.05). CONCLUSIONS: Based on the results of the present study, it appears that a nutritional supplement derived from vegetable extracts rich in nitrate, improves athletic performance in recreationally active young males. However, the precise mechanism is not clear and future studies are needed. Acknowledgment: This research has been co‐financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH – CREATE – INNOVATE (project code:T2EDK-00843).Keywords: sports performance, ergogenic supplements, nitrate, extract fractions
Procedia PDF Downloads 67593 Variability of the X-Ray Sun during Descending Period of Solar Cycle 23
Authors: Zavkiddin Mirtoshev, Mirabbos Mirkamalov
Abstract:
We have analyzed the time series of full disk integrated soft X-ray (SXR) and hard X-ray (HXR) emission from the solar corona during 2004 January 1 to 2009 December 31, covering the descending phase of solar cycle 23. We employed the daily X-ray index (DXI) derived from X-ray observations from the Solar X-ray Spectrometer (SOXS) mission in four different energy bands: 4-5.5; 5.5-7.5 keV (SXR) and 15-20; 20-25 keV (HXR). The application of Lomb-Scargle periodogram technique to the DXI time series observed by the Silicium detector in the energy bands reveals several short and intermediate periodicities of the X-ray corona. The DXI explicitly show the periods of 13.6 days, 26.7 days, 128.5 days, 151 days, 180 days, 220 days, 270 days, 1.24 year and 1.54 year periods in SXR as well as in HXR energy bands. Although all periods are above 70% confidence level in all energy bands, they show strong power in HXR emission in comparison to SXR emission. These periods are distinctly clear in three bands but somehow not unambiguously clear in 5.5-7.5 keV band. This might be due to the presence of Ferrum and Ferrum/Niccolum line features, which frequently vary with small scale flares like micro-flares. The regular 27-day rotation and 13.5 day period of sunspots from the invisible side of the Sun are found stronger in HXR band relative to SXR band. However, flare activity Rieger periods (150 and 180 days) and near Rieger period 220 days are very strong in HXR emission which is very much expected. On the other hand, our current study reveals strong 270 day periodicity in SXR emission which may be connected with tachocline, similar to a fundamental rotation period of the Sun. The 1.24 year and 1.54 year periodicities, represented from the present research work, are well observable in both SXR as well as in HXR channels. These long-term periodicities must also have connection with tachocline and should be regarded as a consequence of variation in rotational modulation over long time scales. The 1.24 year and 1.54 year periods are also found great importance and significance in the life formation and it evolution on the Earth, and therefore they also have great astro-biological importance. We gratefully acknowledge support by the Indian Centre for Space Science and Technology Education in Asia and the Pacific (CSSTEAP, the Centre is affiliated to the United Nations), Physical Research Laboratory (PRL) at Ahmedabad, India. This work has done under the supervision of Prof. Rajmal Jain and paper consist materials of pilot project and research part of the M. Tech program which was made during Space and Atmospheric Science Course.Keywords: corona, flares, solar activity, X-ray emission
Procedia PDF Downloads 345592 Demographic Shrinkage and Reshaping Regional Policy of Lithuania in Economic Geographic Context
Authors: Eduardas Spiriajevas
Abstract:
Since the end of the 20th century, when Lithuania regained its independence, a process of demographic shrinkage started. Recently, it affects the efficiency of implementation of actions related to regional development policy and geographic scopes of created value added in the regions. The demographic structures of human resources reflect onto the regions and their economic geographic environment. Due to reshaping economies and state reforms on restructuration of economic branches such as agriculture and industry, it affects the economic significance of services’ sector. These processes influence the competitiveness of labor market and its demographic characteristics. Such vivid consequences are appropriate for the structures of human migrations, which affected the processes of demographic ageing of human resources in the regions, especially in peripheral ones. These phenomena of modern times induce the demographic shrinkage of society and its economic geographic characteristics in the actions of regional development and in regional policy. The internal and external migrations of population captured numerous regional economic disparities, and influenced on territorial density and concentration of population of the country and created the economies of spatial unevenness in such small geographically compact country as Lithuania. The processes of territorial reshaping of distribution of population create new regions and their economic environment, which is not corresponding to the main principles of regional policy and its power to create the well-being and to promote the attractiveness for economic development. These are the new challenges of national regional policy and it should be researched in a systematic way of taking into consideration the analytical approaches of regional economy in the context of economic geographic research methods. A comparative territorial analysis according to administrative division of Lithuania in relation to retrospective approach and introduction of method of location quotients, both give the results of economic geographic character with cartographic representations using the tools of spatial analysis provided by technologies of Geographic Information Systems. A set of these research methods provide the new spatially evidenced based results, which must be taken into consideration in reshaping of national regional policy in economic geographic context. Due to demographic shrinkage and increasing differentiation of economic developments within the regions, an input of economic geographic dimension is inevitable. In order to sustain territorial balanced economic development, there is a need to strengthen the roles of regional centers (towns) and to empower them with new economic functionalities for revitalization of peripheral regions, and to increase their economic competitiveness and social capacities on national scale.Keywords: demographic shrinkage, economic geography, Lithuania, regions
Procedia PDF Downloads 161591 Continuous Glucose Monitoring Systems and the Improvement in Hypoglycemic Awareness Post-Islet Transplantation: A Single-Centre Cohort Study
Authors: Clare Flood, Shareen Forbes
Abstract:
Background: Type 1 diabetes mellitus (T1DM) is an autoimmune disorder affecting >400,000 people in the UK alone, with the global prevalence expected to double in the next decade. Islet transplant offers a minimally-invasive procedure with very low morbidity and almost no mortality, and is now as effective as whole pancreas transplant. The procedure was introduced to the UK in 2011 for patients with the most severe type 1 diabetes mellitus (T1DM) – those with unstable blood glucose, frequently occurring episodes of severe hypoglycemia and impaired awareness of hypoglycemia (IAH). Objectives: To evaluate the effectiveness of islet transplantation in improving glycemic control, reducing the burden of hypoglycemia and improving awareness of hypoglycemia through a single-centre cohort study at the Royal Infirmary of Edinburgh. Glycemic control and degree of hypoglycemic awareness will be determined and monitored pre- and post-transplantation to determine effectiveness of the procedure. Methods: A retrospective analysis of data collected over three years from the 16 patients who have undergone islet transplantation in Scotland. Glycated haemoglobin (HbA1c) was measured and continuous glucose monitoring systems (CGMS) were utilised to assess glycemic control, while Gold and Clarke score questionnaires tested IAH. Results: All patients had improved glycemic control following transplant, with optimal control seen visually at 3 months post-transplant. Glycemic control significantly improved, as illustrated by percentage time in hypoglycemia in the months following transplant (p=0.0211) and HbA1c (p=0.0426). Improved Clarke (p=0.0034) and Gold (p=0.0001) scores indicate improved glycemic awareness following transplant. Conclusion: While the small sample of islet transplant recipients at the Royal Infirmary of Edinburgh prevents definitive conclusions being drawn, it is indicated that through our retrospective, single-centre cohort study of 16 patients, islet transplant is capable of improving glycemic control, reducing the burden of hypoglycemia and IAH post-transplant. Data can be combined with similar trials at other centres to increase statistical power but from research in Edinburgh, it can be suggested that the minimally invasive procedure of islet transplantation offers selected patients with extremely unstable T1DM the incredible opportunity to regain control of their condition and improve their quality of life.Keywords: diabetes, islet, transplant, CGMS
Procedia PDF Downloads 272590 Part Variation Simulations: An Industrial Case Study with an Experimental Validation
Authors: Narendra Akhadkar, Silvestre Cano, Christophe Gourru
Abstract:
Injection-molded parts are widely used in power system protection products. One of the biggest challenges in an injection molding process is shrinkage and warpage of the molded parts. All these geometrical variations may have an adverse effect on the quality of the product, functionality, cost, and time-to-market. The situation becomes more challenging in the case of intricate shapes and in mass production using multi-cavity tools. To control the effects of shrinkage and warpage, it is very important to correctly find out the input parameters that could affect the product performance. With the advances in the computer-aided engineering (CAE), different tools are available to simulate the injection molding process. For our case study, we used the MoldFlow insight tool. Our aim is to predict the spread of the functional dimensions and geometrical variations on the part due to variations in the input parameters such as material viscosity, packing pressure, mold temperature, melt temperature, and injection speed. The input parameters may vary during batch production or due to variations in the machine process settings. To perform the accurate product assembly variation simulation, the first step is to perform an individual part variation simulation to render realistic tolerance ranges. In this article, we present a method to simulate part variations coming from the input parameters variation during batch production. The method is based on computer simulations and experimental validation using the full factorial design of experiments (DoE). The robustness of the simulation model is verified through input parameter wise sensitivity analysis study performed using simulations and experiments; all the results show a very good correlation in the material flow direction. There exists a non-linear interaction between material and the input process variables. It is observed that the parameters such as packing pressure, material, and mold temperature play an important role in spread on functional dimensions and geometrical variations. This method will allow us in the future to develop accurate/realistic virtual prototypes based on trusted simulated process variation and, therefore, increase the product quality and potentially decrease the time to market.Keywords: correlation, molding process, tolerance, sensitivity analysis, variation simulation
Procedia PDF Downloads 179589 Colloid-Based Biodetection at Aqueous Electrical Interfaces Using Fluidic Dielectrophoresis
Authors: Francesca Crivellari, Nicholas Mavrogiannis, Zachary Gagnon
Abstract:
Portable diagnostic methods have become increasingly important for a number of different purposes: point-of-care screening in developing nations, environmental contamination studies, bio/chemical warfare agent detection, and end-user use for commercial health monitoring. The cheapest and most portable methods currently available are paper-based – lateral flow and dipstick methods are widely available in drug stores for use in pregnancy detection and blood glucose monitoring. These tests are successful because they are cheap to produce, easy to use, and require minimally invasive sampling. While adequate for their intended uses, in the realm of blood-borne pathogens and numerous cancers, these paper-based methods become unreliable, as they lack the nM/pM sensitivity currently achieved by clinical diagnostic methods. Clinical diagnostics, however, utilize techniques involving surface plasmon resonance (SPR) and enzyme-linked immunosorbent assays (ELISAs), which are expensive and unfeasible in terms of portability. To develop a better, competitive biosensor, we must reduce the cost of one, or increase the sensitivity of the other. Electric fields are commonly utilized in microfluidic devices to manipulate particles, biomolecules, and cells. Applications in this area, however, are primarily limited to interfaces formed between immiscible interfaces. Miscible, liquid-liquid interfaces are common in microfluidic devices, and are easily reproduced with simple geometries. Here, we demonstrate the use of electrical fields at liquid-liquid electrical interfaces, known as fluidic dielectrophoresis, (fDEP) for biodetection in a microfluidic device. In this work, we apply an AC electric field across concurrent laminar streams with differing conductivities and permittivities to polarize the interface and induce a discernible, near-immediate, frequency-dependent interfacial tilt. We design this aqueous electrical interface, which becomes the biosensing “substrate,” to be intelligent – it “moves” only when a target of interest is present. This motion requires neither labels nor expensive electrical equipment, so the biosensor is inexpensive and portable, yet still capable of sensitive detection. Nanoparticles, due to their high surface-area-to-volume ratio, are often incorporated to enhance detection capabilities of schemes like SPR and fluorimetric assays. Most studies currently investigate binding at an immobilized solid-liquid or solid-gas interface, where particles are adsorbed onto a planar surface, functionalized with a receptor to create a reactive substrate, and subsequently flushed with a fluid or gas with the relevant analyte. These typically involve many preparation and rinsing steps, and are susceptible to surface fouling. Our microfluidic device is continuously flowing and renewing the “substrate,” and is thus not subject to fouling. In this work, we demonstrate the ability to electrokinetically detect biomolecules binding to functionalized nanoparticles at liquid-liquid interfaces using fDEP. In biotin-streptavidin experiments, we report binding detection limits on the order of 1-10 pM, without amplifying signals or concentrating samples. We also demonstrate the ability to detect this interfacial motion, and thus the presence of binding, using impedance spectroscopy, allowing this scheme to become non-optical, in addition to being label-free.Keywords: biodetection, dielectrophoresis, microfluidics, nanoparticles
Procedia PDF Downloads 388588 A Review of Atomization Mechanisms Used for Spray Flash Evaporation: Their Effectiveness and Proposal of Rotary Bell Atomizer for Flashing Application
Authors: Murad A. Channa, Mehdi Khiadani. Yasir Al-Abdeli
Abstract:
Considering the severity of water scarcity around the world and its widening at an alarming rate, practical improvements in desalination techniques need to be engineered at the earliest. Atomization is the major aspect of flashing phenomena, yet it has been paid less attention to until now. There is a need to test efficient ways of atomization for the flashing process. Flash evaporation together with reverse osmosis is also a commercially matured desalination technique commonly famous as Multi-stage Flash (MSF). Even though reverse osmosis is massively practical, it is not economical or sustainable compared to flash evaporation. However, flashing evaporation has its drawbacks as well such as lower efficiency of water production per higher consumption of power and time. Flash evaporation is simply the instant boiling of a subcooled liquid which is introduced as droplets in a well-maintained negative environment. This negative pressure inside the vacuum increases the temperature of the liquid droplets far above their boiling point, which results in the release of latent heat, and the liquid droplets turn into vapor which is collected to be condensed back into an impurity-free liquid in a condenser. Atomization is the main difference between pool and spray flash evaporation. Atomization is the heart of the flash evaporation process as it increases the evaporating surface area per drop atomized. Atomization can be categorized into many levels depending on its drop size, which again becomes crucial for increasing the droplet density (drop count) per given flow rate. This review comprehensively summarizes the selective results relating to the methods of atomization and their effectiveness on the evaporation rate from earlier works to date. In addition, the reviewers propose using centrifugal atomization for the flashing application, which brings several advantages viz ultra-fine droplets, uniform droplet density, and the swirling geometry of the spray with kinetically more energetic sprays during their flight. Finally, several challenges of using rotary bell atomizer (RBA) and RBA Sprays inside the chamber have been identified which will be explored in detail. A schematic of rotary bell atomizer (RBA) integration with the chamber has been designed. This powerful centrifugal atomization has the potential to increase potable water production in commercial multi-stage flash evaporators, where it would be preferably advantageous.Keywords: atomization, desalination, flash evaporation, rotary bell atomizer
Procedia PDF Downloads 84587 Theoretical Framework and Empirical Simulation of Policy Design on Trans-Dimensional Resource Recycling
Authors: Yufeng Wu, Yifan Gu, Bin Li, Wei Wang
Abstract:
Resource recycling process contains a subsystem with interactions of three dimensions including coupling allocation of primary and secondary resources, responsibility coordination of stakeholders in forward and reverse supply chains, and trans-boundary transfer of hidden resource and environmental responsibilities between regions. Overlap or lack of responsibilities is easy to appear at the intersection of the three management dimensions. It is urgent to make an overall design of the policy system for recycling resources. From theoretical perspective, this paper analyzes the unique external differences of resource and environment in various dimensions and explores the reason why the effects of trans-dimensional policies are strongly correlated. Taking the example of the copper resources contained in the waste electrical and electronic equipment, this paper constructs reduction effect accounting model of resources recycling and set four trans-dimensional policy scenarios including resources tax and environmental tax reform of the raw and secondary resources, application of extended producer responsibility system, promotion of clean development mechanism, and strict entry barriers of imported wastes. In these ways, the paper simulates the impact effect of resources recycling process on resource deduction and emission reduction of waste water and gas, and constructs trans-dimensional policy mix scenario through integrating dominant strategy. The results show that combined application of various dimensional policies can achieve incentive compatibility and the trans-dimensional policy mix scenario can reach a better effect. Compared with baseline scenario, this scenario will increase 91.06% copper resources reduction effect and improve emission reduction of waste water and gas by eight times from 2010 to 2030. This paper further analyzes the development orientation of policies in various dimension. In resource dimension, the combined application of compulsory, market and authentication methods should be promoted to improve the use ratio of secondary resources. In supply chain dimension, resource value, residual functional value and potential information value contained in waste products should be fully excavated to construct a circular business system. In regional dimension, it should give full play to the comparative advantages of manufacturing power to improve China’s voice in resource recycling in the world.Keywords: resource recycling, trans-dimension, policy design, incentive compatibility, life cycle
Procedia PDF Downloads 127586 Critical Mathematics Education and School Education in India: A Study of the National Curriculum Framework 2022 for Foundational Stage
Authors: Eish Sharma
Abstract:
Literature around Mathematics education suggests that democratic attitudes can be strengthened through teaching and learning Mathematics. Furthermore, connections between critical education and Mathematics education are observed in the light of critical pedagogy to locate Critical Mathematics Education (CME) as the theoretical framework. Critical pedagogy applied to Mathematics education is identified as one of the key themes subsumed under Critical Mathematics Education. Through the application of critical pedagogy in mathematics, unequal power relations and social injustice can be identified, analyzed, and challenged. The research question is: have educational policies in India viewed the role of critical pedagogy applied to mathematics education (i.e., critical mathematics education) to ensure social justice as an educational aim? The National Curriculum Framework (NCF), 2005 upholds education for democracy and the role of mathematics education in facilitating the same. More than this, NCF 2005 rests on Critical Pedagogy Framework and it recommends that critical pedagogy must be practiced in all dimensions of school education. NCF 2005 visualizes critical pedagogy for social sciences as well as sciences, stating that the science curriculum, including mathematics, must be used as an “instrument for achieving social change to reduce the divide based on economic class, gender, caste, religion, and the region”. Furthermore, the implementation of NCF 2005 led to a reform in the syllabus and textbooks in school mathematics at the national level, and critical pedagogy was applied to mathematics textbooks at the primary level. This intervention led to ethnomathematics and critical mathematics education in the school curriculum in India for the first time at the national level. In October 2022, the Ministry of Education launched the National Curriculum Framework for Foundational Stage (NCF-FS), developed in light of the National Education Policy, 2020, for children in the three to eight years age group. I want to find out whether critical pedagogy-based education and critical pedagogy-based mathematics education are carried forward in NCF 2022. To find this, an argument analysis of specific sections of the National Curriculum Framework 2022 document needs to be executed. Des Gasper suggests two tables: The first table contains four columns, namely, text component, comments on meanings, possible reformulation of the same text, and identified conclusions and assumptions (both stated and unstated). This table is for understanding the components and meanings of the text and is based on Scriven’s model for understanding the components and meanings of words in the text. The second table contains four columns i.e., claim identified, given data, warrant, and stated qualifier/rebuttal. This table is for describing the structure of the argument, how and how well the components fit together and is called ‘George Table diagram based on Toulmin-Bunn Model’.Keywords: critical mathematics education, critical pedagogy, social justice, etnomathematics
Procedia PDF Downloads 82