Search results for: integrated language technologies
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9690

Search results for: integrated language technologies

660 Tagging a corpus of Media Interviews with Diplomats: Challenges and Solutions

Authors: Roberta Facchinetti, Sara Corrizzato, Silvia Cavalieri

Abstract:

Increasing interconnection between data digitalization and linguistic investigation has given rise to unprecedented potentialities and challenges for corpus linguists, who need to master IT tools for data analysis and text processing, as well as to develop techniques for efficient and reliable annotation in specific mark-up languages that encode documents in a format that is both human and machine-readable. In the present paper, the challenges emerging from the compilation of a linguistic corpus will be taken into consideration, focusing on the English language in particular. To do so, the case study of the InterDiplo corpus will be illustrated. The corpus, currently under development at the University of Verona (Italy), represents a novelty in terms both of the data included and of the tag set used for its annotation. The corpus covers media interviews and debates with diplomats and international operators conversing in English with journalists who do not share the same lingua-cultural background as their interviewees. To date, this appears to be the first tagged corpus of international institutional spoken discourse and will be an important database not only for linguists interested in corpus analysis but also for experts operating in international relations. In the present paper, special attention will be dedicated to the structural mark-up, parts of speech annotation, and tagging of discursive traits, that are the innovational parts of the project being the result of a thorough study to find the best solution to suit the analytical needs of the data. Several aspects will be addressed, with special attention to the tagging of the speakers’ identity, the communicative events, and anthropophagic. Prominence will be given to the annotation of question/answer exchanges to investigate the interlocutors’ choices and how such choices impact communication. Indeed, the automated identification of questions, in relation to the expected answers, is functional to understand how interviewers elicit information as well as how interviewees provide their answers to fulfill their respective communicative aims. A detailed description of the aforementioned elements will be given using the InterDiplo-Covid19 pilot corpus. The data yielded by our preliminary analysis of the data will highlight the viable solutions found in the construction of the corpus in terms of XML conversion, metadata definition, tagging system, and discursive-pragmatic annotation to be included via Oxygen.

Keywords: spoken corpus, diplomats’ interviews, tagging system, discursive-pragmatic annotation, english linguistics

Procedia PDF Downloads 175
659 Reinventing Smart Tourism via Use of Smart Gamified and Gaming Applications in Greece

Authors: Sofia Maria Poulimenou, Ioannis Deliyannis, Elisavet Filippidou, Stamatella Laboura

Abstract:

Smart technologies are being actively used to improve the experience of travel and promote or demote a destination’s reputation via a wide variety of social media applications and platforms. This paper conceptualises the design and deployment of smart management apps to promote culture, sustainability and accessibility within two destinations in Greece that represent the extremes of visiting scale. One is the densely visited Corfu, which is a UNESCO’s heritage site. The problems caused by the lack of organisation of the visiting experience and infrastructures affect all parties interacting within the site: visitors, citizens, public and private sector. Second is Kilkis, a low tourism destination with high seasonality and mostly inbound tourism. Here the issue faced is that traditional approaches to inform and motivate locals and visitors to explore and taste of the culture have not flourished. The problem is apprehended via the design and development of two systems named “Hologrammatic Corfu” for Corfu old town and “BRENDA” for the area of Kilkis. Although each system is designed independently, featuring different solutions to the problems, both approaches have been designed by the same team and a novel gaming and gamification methodology. The “Hologramatic Corfu” application has been designed, for the exploration of the site covering user requirments before, during and after the trip, with the use of transmedia content such as photos, 360-degree videos, augmented reality and hologrammatic videos. Also, a statistical analysis of travellers’ visits to specific points of interest is actively utilized enabling visitors to dynamically re-rooted during their visit, safeguarding sustainability and accessibility and inclusivity along the entire tourism cycle. “BRENDA” is designed specifically to promote gastronomic and historical tourism. This serious game implements and combines gaming and gamification elements in order to connect local businesses with cultural points of interest. As the environment of the project has a strong touristic orientation, “BRENDA” supports food-related gamified processes and historical games involving active participation of both local communities (content providers) and visitors (players) which are more likely to be successfully performed in the informal environment of travelling and promote sustainable tourism experiences. Finally, the paper presents the ability to re-use existing gaming components within new areas of interest via minimal adaptation and the use of transmedia aspects that enables destinations to be rebranded into smart destinations.

Keywords: smart tourism, gamification, user experience, transmedia content

Procedia PDF Downloads 167
658 Translation And Cultural Adaptation Of The Rivermead Behavioural Memory Test–3rd Edition Into the Arabic Language

Authors: Mai Alharthy, Agnes Shiel, Hynes Sinead

Abstract:

Objectives: The objectives of the study are to translate and culturally adapt the RBMT-3 to be appropriate for use within an Arabic-speaking population and to achieve maximum equivalency between the translated and original versions and to evaluate the psychometric properties of the Arabic version of the RBMT-3. Participants' numbers are 16 (10 females and 6 males). All participants are bilingual speakers of Arabic and English, above 18 years old and with no current nor past memory impairment. Methods: The study was conducted in two stages: Translation and cultural adaptation stage: Forward and backward translations were completed by professional translators. Five out of the 14 RBMT-3 subtests required cultural adaptations. Half of the faces in the face recognition subtests were replaced with Arabic faces by a professional photographer. Pictures that are irrelevant to the Arabic culture in the picture recognition subtests were replaced. Names, story and orientations subtests were also adapted to suit the Arabic culture. An expert committee was formed to compare the translated and original versions and to advise on further changes required for test materials. Validation of the Arabic RBMT-3- pilot: 16 Participants were tested on version 1 of the English version and the two versions of the Arabic RBMT-3 ( counterbalanced ). The assessment period was 6 weeks long, with two weeks gap between tests. All assessments took place in a quiet room in the National University of Ireland Galway. Two qualified occupational therapists completed the assessments. Results: Wilcox signed-rank test was used to compare between subtest scores. Significant differences were found in the story, orientation and names subtests between the English and Arabic versions. No significant differences were found in subtests from both Arabic versions except for the story subtest. Conclusion: The story and orientation subtests should be revised by the expert committee members to make further adaptations. The rest of the Arabic RBMT-3 subtests are equivalent to the subtests of the English version. The psychometric properties of the Arabic RBMT-3 will be investigated in a larger Arabic-speaking sample in Saudi Arabia. The outcome of this research is to provide clinicians and researchers with a reliable tool to assess memory problems in Arabic speaking population.

Keywords: memory impairment, neuropsychological assessment, cultural adaptation, cognitive assessment

Procedia PDF Downloads 252
657 Techno-Economic Analysis of 1,3-Butadiene and ε-Caprolactam Production from C6 Sugars

Authors: Iris Vural Gursel, Jonathan Moncada, Ernst Worrell, Andrea Ramirez

Abstract:

In order to achieve the transition from a fossil to bio-based economy, biomass needs to replace fossil resources in meeting the world’s energy and chemical needs. This calls for development of biorefinery systems allowing cost-efficient conversion of biomass to chemicals. In biorefinery systems, feedstock is converted to key intermediates called platforms which are converted to wide range of marketable products. The C6 sugars platform stands out due to its unique versatility as precursor for multiple valuable products. Among the different potential routes from C6 sugars to bio-based chemicals, 1,3-butadiene and ε-caprolactam appear to be of great interest. Butadiene is an important chemical for the production of synthetic rubbers, while caprolactam is used in production of nylon-6. In this study, ex-ante techno-economic performance of 1,3-butadiene and ε-caprolactam routes from C6 sugars were assessed. The aim is to provide insight from an early stage of development into the potential of these new technologies, and the bottlenecks and key cost-drivers. Two cases for each product line were analyzed to take into consideration the effect of possible changes on the overall performance of both butadiene and caprolactam production. Conceptual process design for the processes was developed using Aspen Plus based on currently available data from laboratory experiments. Then, operating and capital costs were estimated and an economic assessment was carried out using Net Present Value (NPV) as indicator. Finally, sensitivity analyses on processing capacity and prices was done to take into account possible variations. Results indicate that both processes perform similarly from an energy intensity point of view ranging between 34-50 MJ per kg of main product. However, in terms of processing yield (kg of product per kg of C6 sugar), caprolactam shows higher yield by a factor 1.6-3.6 compared to butadiene. For butadiene production, with the economic parameters used in this study, for both cases studied, a negative NPV (-642 and -647 M€) was attained indicating economic infeasibility. For the caprolactam production, one of the cases also showed economic infeasibility (-229 M€), but the case with the higher caprolactam yield resulted in a positive NPV (67 M€). Sensitivity analysis indicated that the economic performance of caprolactam production can be improved with the increase in capacity (higher C6 sugars intake) reflecting benefits of the economies of scale. Furthermore, humins valorization for heat and power production was considered and found to have a positive effect. Butadiene production was found sensitive to the price of feedstock C6 sugars and product butadiene. However, even at 100% variation of the two parameters, butadiene production remained economically infeasible. Overall, the caprolactam production line shows higher economic potential in comparison to that of butadiene. The results are useful in guiding experimental research and providing direction for further development of bio-based chemicals.

Keywords: bio-based chemicals, biorefinery, C6 sugars, economic analysis, process modelling

Procedia PDF Downloads 147
656 Survey for Mango Seed Weevils and Pulp Weevil Sternochetus Species (Coleoptera:Curculionidae) on Mango, Mangifera indica in Shan State-South, Myanmar

Authors: Khin Nyunt Yee, Mu Mu Thein

Abstract:

Detection survey of mango seed and Pulp weevils was undertaken at major mango production areas, Yat Sauk, Taunggyi, Nyaung Shwe and Hopong Townships, in Shan State (South) of Myanmar on two mango cultivars of Sein Ta Lone and Yinkwe from May to August 2016 to coincide with fruiting season to conduct a survey of mango seed and pulp weevils population. The total numbers of 6300 fruits of both mango cultivars were sampled. Among them, 2900 fruits from 5674 fruit bearing plants were collected for Sein Ta Lone cultivar of five well managed, one unmanaged orchards and Urban in Yatsauk Twonship, 400 fruits from only one well managed orchard in Taunggyi Township, 400 fruits from two managed orchards in Nyaung Shwe Township and 400 fruits from one managed orchard in Hopong Township from May to June. 2200 fruits were collected from 4043 fruit bearing plants for Yinkwe Cultivar of four well managed orchards, one unmanaged orchards and one wild tree only in Yat Sauk Township from July to August, 2016. Fruit sample size was 200 fruits /orchard, / wild or /volunteer trees as minimum number. The pulps of all randomly sampling fruits were longitudinal cut open into three slices on each side of fruit and seed were cut longitudinally to inspect the presence of mango weevils. The collected weevils were identified up to species level at Plant Quarantine Laboratory, Plant Protection Division, Department of Agriculture, Ministry of Agriculture, Livestock and Irrigation, Yangon, Myanmar. Mango Pulp and Seed weevils were found on Sein Ta Lone Mango Cultivar in three out of four surveyed Townships except Hopong with the level of infestation ranged from 0.0% to 3.5% of fruits per Township with 0.0% to 39.0% of fruits per orchard. The highest infestation rate per township was 3.5% of fruits (n=400 fruits) in Nyaung Shwe, then, at Yat Suak, the rate was 2.47% (n=2900 fruits). A well-managed orchard at Taung Gyi had 0.75% (n=400 fruits) whereas Hopong was free 0.0% (n=400). The weevils were also recorded on Yinkwe Mango Cultivar in Yatsauk Township where the infestation level was 12.63% of fruits (n=2200) with 0.0% to 67.0% of fruits per orchard. This high level of infestation was obtained by including an absolutely non Integrated Pest Management (non IPM) orchards in both survey with the infestation rates 63.0% of fruits (n=200) and 67.0% of fruits (n=200) respectively on Yinkwe cultivar. Two different species; mango pulp weevil, Sternochetus frigitus, and mango seed weevil Sternochetus olivieri (Faust) of family Curculionidae under the order Coleoptera were recorded. Sternochetus mangiferae was not found during these surveys. Three different developmental stages of mango seed and pulp weevils: larva, pupa and adult were first detected since the first survey in 3rd week of May and mostly were recorded as adult stages in the following surveys in June, July and August The number of Mango pulp weevil was statistically higher than that of mango seed weevils at P < 0.001%. More precise surveys should be carried out national wide to detect the mango weevils.

Keywords: mango pulp weevil, Sternochetus frigitus, mango seed weevil Sternochetus olivieri, faust, Sternochetus mangiferae, fabricius, Sein Ta Lone, Yinkwe mango cultivars, Shan State (South) Myanmar

Procedia PDF Downloads 300
655 Bio-Medical Equipment Technicians: Crucial Workforce to Improve Quality of Health Services in Rural Remote Hospitals in Nepal

Authors: C. M. Sapkota, B. P. Sapkota

Abstract:

Background: Continuous developments in science and technology are increasing the availability of thousands of medical devices – all of which should be of good quality and used appropriately to address global health challenges. It is obvious that bio medical devices are becoming ever more indispensable in health service delivery and among the key workforce responsible for their design, development, regulation, evaluation and training in their use: biomedical technician (BMET) is the crucial. As a pivotal member of health workforce, biomedical technicians are an essential component of the quality health service delivery mechanism supporting the attainment of the Sustainable Development Goals. Methods: The study was based on cross sectional descriptive design. Indicators measuring the quality of health services were assessed in Mechi Zonal Hospital (MZH) and Sagarmatha Zonal Hospital (SZH). Indicators were calculated based on the data about hospital utilization and performance of 2018 available in Medical record section of both hospitals. MZH had employed the BMET during 2018 but SZH had no BMET in 2018.Focus Group Discussion with health workers in both hospitals was conducted to validate the hospital records. Client exit interview was conducted to assess the level of client satisfaction in both the hospitals. Results: In MZH there was round the clock availability and utilization of Radio diagnostics equipment, Laboratory equipment. Operation Theater was functional throughout the year. Bed Occupancy rate in MZH was 97% but in SZH it was only 63%.In SZH, OT was functional only 54% of the days in 2018. CT scan machine was just installed but not functional. Computerized X-Ray in SZH was functional only in 72% of the days. Level of client satisfaction was 87% in MZH but was just 43% in SZH. MZH performed all (256) the Caesarean Sections but SZH performed only 36% of 210 Caesarean Sections in 2018. In annual performance ranking of Government Hospitals, MZH was placed in 1st rank while as SZH was placed in 19th rank out of 32 referral hospitals nationwide in 2018. Conclusion: Biomedical technicians are the crucial member of the human resource for health team with the pivotal role. Trained and qualified BMET professionals are required within health-care systems in order to design, evaluate, regulate, acquire, maintain, manage and train on safe medical technologies. Applying knowledge of engineering and technology to health-care systems to ensure availability, affordability, accessibility, acceptability and utilization of the safer, higher quality, effective, appropriate and socially acceptable bio medical technology to populations for preventive, promotive, curative, rehabilitative and palliative care across all levels of the health service delivery.

Keywords: biomedical equipment technicians, BMET, human resources for health, HRH, quality health service, rural hospitals

Procedia PDF Downloads 122
654 Using Genre Analysis to Teach Contract Negotiation Discourse Practices

Authors: Anthony Townley

Abstract:

Contract negotiation is fundamental to commercial law practice. For this study, genre and discourse analytical methodology was used to examine the legal negotiation of a Merger & Acquisition (M&A) deal undertaken by legal and business professionals in English across different jurisdictions in Europe. While some of the most delicate negotiations involved in this process were carried on face-to-face or over the telephone, these were generally progressed more systematically – and on the record – in the form of emails, email attachments, and as comments and amendments recorded in successive ‘marked-up’ versions of the contracts under negotiation. This large corpus of textual data was originally obtained by the author, in 2012, for the purpose of doctoral research. For this study, the analysis is particularly concerned with the use of emails and covering letters to exchange legal advice about the negotiations. These two genres help to stabilize and progress the negotiation process and account for negotiation activities. Swalesian analysis of functional Moves and Steps was able to identify structural similarities and differences between these text types and to identify certain salient discursive features within them. The analytical findings also indicate how particular linguistic strategies are more appropriately and more effectively associated with one legal genre rather than another. The concept of intertextuality is an important dimension of contract negotiation discourse and this study also examined how the discursive relationships between the different texts influence the way that texts are constructed. In terms of materials development, the research findings can contribute to more authentic English for Legal & Business Purposes pedagogies for students and novice lawyers and business professionals. The findings can first be used to design discursive maps that provide learners with a coherent account of the intertextual nature of the contract negotiation process. These discursive maps can then function as a framework in which to present detailed findings about the textual and structural features of the text types by applying the Swalesian genre analysis. Based on this acquired knowledge of the textual nature of contract negotiation, the authentic discourse materials can then be used to provide learners with practical opportunities to role-play negotiation activities and experience professional ways of thinking and using language in preparation for the written discourse challenges they will face in this important area of legal and business practice.

Keywords: English for legal and business purposes, discourse analysis, genre analysis, intertextuality, pedagogical materials

Procedia PDF Downloads 143
653 Analyzing Temperature and Pressure Performance of a Natural Air-Circulation System

Authors: Emma S. Bowers

Abstract:

Perturbations in global environments and temperatures have heightened the urgency of creating cost-efficient, energy-neutral building techniques. Structural responses to this thermal crisis have included designs (including those of the building standard PassivHaus) with airtightness, window placement, insulation, solar orientation, shading, and heat-exchange ventilators as potential solutions or interventions. Limitations in the predictability of the circulation of cooled air through the ambient temperature gradients throughout a structure are one of the major obstacles facing these enhanced building methods. A diverse range of air-cooling devices utilizing varying technologies is implemented around the world. Many of them worsen the problem of climate change by consuming energy. Using natural ventilation principles of air buoyancy and density to circulate fresh air throughout a building with no energy input can combat these obstacles. A unique prototype of an energy-neutral air-circulation system was constructed in order to investigate potential temperature and pressure gradients related to the stack effect (updraft of air through a building due to changes in air pressure). The stack effect principle maintains that since warmer air rises, it will leave an area of low pressure that cooler air will rush in to fill. The result is that warmer air will be expelled from the top of the building as cooler air is directed through the bottom, creating an updraft. Stack effect can be amplified by cooling the air near the bottom of a building and heating the air near the top. Using readily available, mostly recyclable or biodegradable materials, an insulated building module was constructed. A tri-part construction model was utilized: a subterranean earth-tube heat exchanger constructed of PVC pipe and placed in a horizontally oriented trench, an insulated, airtight cube aboveground to represent a building, and a solar chimney (painted black to increase heat in the out-going air). Pressure and temperature sensors were placed at four different heights within the module as well as outside, and data was collected for a period of 21 days. The air pressures and temperatures over the course of the experiment were compared and averaged. The promise of this design is that it represents a novel approach which directly addresses the obstacles of air flow and expense, using the physical principle of stack effect to draw a continuous supply of fresh air through the structure, using low-cost and readily available materials (and zero manufactured energy). This design serves as a model for novel approaches to creating temperature controlled buildings using zero energy and opens the door for future research into the effects of increasing module scale, increasing length and depth of the earth tube, and shading the building. (Model can be provided).

Keywords: air circulation, PassivHaus, stack effect, thermal gradient

Procedia PDF Downloads 152
652 Digital Transformation in Fashion System Design: Tools and Opportunities

Authors: Margherita Tufarelli, Leonardo Giliberti, Elena Pucci

Abstract:

The fashion industry's interest in virtuality is linked, on the one hand, to the emotional and immersive possibilities of digital resources and the resulting languages and, on the other, to the greater efficiency that can be achieved throughout the value chain. The interaction between digital innovation and deep-rooted manufacturing traditions today translates into a paradigm shift for the entire fashion industry where, for example, the traditional values of industrial secrecy and know-how give way to experimentation in an open as well as participatory way, and the complete emancipation of virtual reality from actual 'reality'. The contribution aims to investigate the theme of digitisation in the Italian fashion industry, analysing its opportunities and the criticalities that have hindered its diffusion. There are two reasons why the most common approach in the fashion sector is still analogue: (i) the fashion product lives in close contact with the human body, so the sensory perception of materials plays a central role in both the use and the design of the product, but current technology is not able to restore the sense of touch; (ii) volumes are obtained by stitching flat surfaces that once assembled, given the flexibility of the material, can assume almost infinite configurations. Managing the fit and styling of virtual garments involves a wide range of factors, including mechanical simulation, collision detection, and user interface techniques for garment creation. After briefly reviewing some of the salient historical milestones in the resolution of problems related to the digital simulation of deformable materials and the user interface for the procedures for the realisation of the clothing system, the paper will describe the operation and possibilities offered today by the latest generation of specialised software. Parametric avatars and digital sartorial approach; drawing tools optimised for pattern making; materials both from the point of view of simulated physical behaviour and of aesthetic performance, tools for checking wearability, renderings, but also tools and procedures useful to companies both for dialogue with prototyping software and machinery and for managing the archive and the variants to be made. The article demonstrates how developments in technology and digital procedures now make it possible to intervene in different stages of design in the fashion industry. An integrated and additive process in which the constructed 3D models are usable both in the prototyping and communication of physical products and in the possible exclusively digital uses of 3D models in the new generation of virtual spaces. Mastering such tools requires the acquisition of specific digital skills and, at the same time, traditional skills for the design of the clothing system, but the benefits are manifold and applicable to different business dimensions. We are only at the beginning of the global digital transformation: the emergence of new professional figures and design dynamics leaves room for imagination, but in addition to applying digital tools to traditional procedures, traditional fashion know-how needs to be transferred into emerging digital practices to ensure the continuity of the technical-cultural heritage beyond the transformation.

Keywords: digital fashion, digital technology and couture, digital fashion communication, 3D garment simulation

Procedia PDF Downloads 64
651 Erasmus+ Program in Vocational Education: Effects of European International Mobility in Portuguese Vocational Schools

Authors: José Carlos Bronze, Carlinda Leite, Angélica Monteiro

Abstract:

The creation of the Erasmus Program in 1987 represented a milestone in promoting and funding international mobility in higher education in Europe. Its effects were so significant that they influenced the creation of the European Higher Education Area through the Bologna Process and ensured the program’s continuation and maintenance. Over the last decades, the escalating figures of participants and funds instigated significant scientific studies on the program's effects on higher education. More recently, in 2014, the program was renamed “Erasmus+” when it expanded into other fields of education, namely Vocational Education and Training (VET). Despite being now running in this field of education for a decade (2014-2024), its effects on VET remain less studied and less known, while the higher education field keeps attracting researchers’ attention. Given this gap, it becomes relevant to study the effects of E+ on VET, particularly in the priority domains of the Program: “Inclusion and Diversity,” “Participation in Democratic Life, Common Values and Civic Engagement,” “Environment and Fight Against Climate Change,” and “Digital Transformation.” This latter has been recently emphasized due to the COVID-19 pandemic that forced the so-called emergency remote teaching, leading schools to quickly transform and adapt to a new reality regardless of the preparedness levels of teachers and students. Together with the remaining E+ priorities, they directly relate to an emancipatory perspective of education sustained in soft skills such as critical thinking, intercultural awareness, autonomy, active citizenship, teamwork, and problem-solving, among others. Based on this situation, it is relevant to know the effects of E+ on the VET field, namely questioning how international mobility instigates digitalization processes and supports emancipatory queries therein. As an education field that more directly connects to hard skills and an instrumental approach oriented to the labor market’s needs, a study was conducted to determine the effects of international mobility on developing digital literacy and soft skills in the VET field. In methodological terms, the study used semi-structured interviews with teaching and non-teaching staff from three VET schools who are strongly active in the E+ Program. The interviewees were three headmasters, four mobility project managers, and eight teachers experienced in international mobility. The data was subjected to qualitative content analysis using the NVivo 14 application. The results show that E+ international mobility promotes and facilitates the use of digital technologies as a pedagogical resource at VET schools and enhances and generates students’ soft skills. In conclusion, E+ mobility in the VET field supports adopting the program’s priorities by increasing the teachers’ knowledge and use of digital resources and amplifying and generating participants’ soft skills.

Keywords: Erasmus international mobility, digital literacy, soft skills, vocational education and training

Procedia PDF Downloads 25
650 Comparative Analysis of Costs and Well Drilling Techniques for Water, Geothermal Energy, Oil and Gas Production

Authors: Thales Maluf, Nazem Nascimento

Abstract:

The development of society relies heavily on the total amount of energy obtained and its consumption. Over the years, there has been an advancement on energy attainment, which is directly related to some natural resources and developing systems. Some of these resources should be highlighted for its remarkable presence in world´s energy grid, such as water, petroleum, and gas, while others deserve attention for representing an alternative to diversify the energy grid, like geothermal sources. Therefore, because all these resources can be extracted from the underground, drilling wells is a mandatory activity in terms of exploration, and it involves a previous geological study and an adequate preparation. It also involves a cleaning process and an extraction process that can be executed by different procedures. For that reason, this research aims the enhancement of exploration processes through a comparative analysis of drilling costs and techniques used to produce them. The analysis itself is based on a bibliographical review based on books, scientific papers, schoolwork and mainly explore drilling methods and technologies, equipment used, well measurements, extraction methods, and production costs. Besides techniques and costs regarding the drilling processes, some properties and general characteristics of these sources are also compared. Preliminary studies show that there are some major differences regarding the exploration processes, mostly because these resources are naturally distinct. Water wells, for instance, have hundreds of meters of length because water is stored close to the surface, while oil, gas, and geothermal production wells can reach thousands of meters, which make them more expensive to be drilled. The drilling methods present some general similarities especially regarding the main mechanism of perforation, but since water is a resource stored closer to the surface than the other ones, there is a wider variety of methods. Water wells can be drilled by rotary mechanisms, percussion mechanisms, rotary-percussion mechanisms, and some other simpler methods. Oil and gas production wells, on the other hand, require rotary or rotary-percussion drilling with a proper structure called drill rig and resistant materials for the drill bits and the other components, mostly because they´re stored in sedimentary basins that can be located thousands of meters under the ground. Geothermal production wells also require rotary or rotary-percussion drilling and require the existence of an injection well and an extraction well. The exploration efficiency also depends on the permeability of the soil, and that is why it has been developed the Enhanced Geothermal Systems (EGS). Throughout this review study, it can be verified that the analysis of the extraction processes of energy resources is essential since these resources are responsible for society development. Furthermore, the comparative analysis of costs and well drilling techniques for water, geothermal energy, oil, and gas production, which is the main goal of this research, can enable the growth of energy generation field through the emergence of ideas that improve the efficiency of energy generation processes.

Keywords: drilling, water, oil, Gas, geothermal energy

Procedia PDF Downloads 136
649 Targeting Peptide Based Therapeutics: Integrated Computational and Experimental Studies of Autophagic Regulation in Host-Parasite Interaction

Authors: Vrushali Guhe, Shailza Singh

Abstract:

Cutaneous leishmaniasis is neglected tropical disease present worldwide caused by the protozoan parasite Leishmania major, the therapeutic armamentarium for leishmaniasis are showing several limitations as drugs are showing toxic effects with increasing resistance by a parasite. Thus identification of novel therapeutic targets is of paramount importance. Previous studies have shown that autophagy, a cellular process, can either facilitate infection or aid in the elimination of the parasite, depending on the specific parasite species and host background in leishmaniasis. In the present study, our objective was to target the essential autophagy protein ATG8, which plays a crucial role in the survival, infection dynamics, and differentiation of the Leishmania parasite. ATG8 in Leishmania major and its homologue, LC3, in Homo sapiens, act as autophagic markers. Present study manifested the crucial role of ATG8 protein as a potential target for combating Leishmania major infection. Through bioinformatics analysis, we identified non-conserved motifs within the ATG8 protein of Leishmania major, which are not present in LC3 of Homo sapiens. Against these two non-conserved motifs, we generated a peptide library of 60 peptides on the basis of physicochemical properties. These peptides underwent a filtering process based on various parameters, including feasibility of synthesis and purification, compatibility with Selective Reaction Monitoring (SRM)/Multiple reaction monitoring (MRM), hydrophobicity, hydropathy index, average molecular weight (Mw average), monoisotopic molecular weight (Mw monoisotopic), theoretical isoelectric point (pI), and half-life. Further filtering criterion shortlisted three peptides by using molecular docking and molecular dynamics simulations. The direct interaction between ATG8 and the shortlisted peptides was confirmed through Surface Plasmon Resonance (SPR) experiments. Notably, these peptides exhibited the remarkable ability to penetrate the parasite membrane and exert profound effects on Leishmania major. The treatment with these peptides significantly impacted parasite survival, leading to alterations in the cell cycle and morphology. Furthermore, the peptides were found to modulate autophagosome formation, particularly under starved conditions, suggesting their involvement in disrupting the regulation of autophagy within Leishmania major. In vitro, studies demonstrated that the selected peptides effectively reduced the parasite load within infected host cells. Encouragingly, these findings were corroborated by in vivo experiments, which showed a reduction in parasite burden upon peptide administration. Additionally, the peptides were observed to affect the levels of LC3II within host cells. In conclusion, our findings highlight the efficacy of these novel peptides in targeting Leishmania major’s ATG8 and disrupting parasite survival. These results provide valuable insights into the development of innovative therapeutic strategies against leishmaniasis via targeting autophagy protein ATG8 of Leishmania major.

Keywords: ATG8, leishmaniasis, surface plasmon resonance, MD simulation, molecular docking, peptide designing, therapeutics

Procedia PDF Downloads 73
648 Sequential Pulsed Electric Field and Ultrasound Assisted Extraction of Bioactive Enriched Fractions from Button Mushroom Stalks

Authors: Bibha Kumari, Nigel P. Brunton, Dilip K. Rai, Brijesh K. Tiwari

Abstract:

Edible mushrooms possess numerous functional components like homo- and hetero- β-glucans [β(1→3), β(1→4) and β(1→6) glucosidic linkages], chitins, ergosterols, bioactive polysaccharides and peptides imparting health beneficial properties to mushrooms. Some of the proven biological activities of mushroom extracts are antioxidant, antimicrobial, immunomodulatory, cholesterol lowering activity by inhibiting a key cholesterol metabolism enzyme i.e. 3-hydroxy-3-methyl-glutaryl CoA reductase (HMGCR), angiotensin I-converting enzyme (ACE) inhibition. Application of novel extraction technologies like pulsed electric field (PEF) and high power ultrasound offers clean, green, faster and efficient extraction alternatives with enhanced and good quality extracts. Sequential PEF followed by ultrasound assisted extraction (UAE) were applied to recover bioactive enriched fractions from industrial white button mushroom (Agaricus bisporus) stalk waste using environmentally friendly and GRAS solvents i.e. water and water/ethanol combinations. The PEF treatment was carried out at 60% output voltage, 2 Hz frequency for 500 pulses of 20 microseconds pulse width, using KCl salt solution of 0.6 mS/cm conductivity by the placing 35g of chopped fresh mushroom stalks and 25g of salt solution in the 4x4x4cm3 treatment chamber. Sequential UAE was carried out on the PEF pre-treated samples using ultrasonic-water-bath (USB) of three frequencies (25 KHz, 35 KHz and 45 KHz) for various treatment times (15-120 min) at 80°C. Individual treatment using either PEF or UAE were also investigation to compare the effect of each treatment along with the combined effect on the recovery and bioactivity of the crude extracts. The freeze dried mushroom stalk powder was characterised for proximate compositional parameters (dry weight basis) showing 64.11% total carbohydrate, 19.12% total protein, 7.21% total fat, 31.2% total dietary fiber, 7.9% chitin (as glucosamine equivalent) and 1.02% β-glucan content. The total phenolic contents (TPC) were determined by the Folin-Ciocalteu procedure and expressed as gallic-acid-equivalents (GAE). The antioxidant properties were ascertained using DPPH and FRAP assays and expressed as trolox-equivalents (TE). HMGCR activity and molecular mass of β-glucans will be measured using the commercial HMG-CoA Reductase Assay kit (Sigma-Aldrich) and size exclusion chromatography (HPLC-SEC), respectively. Effects of PEF, UAE and their combination on the antioxidant capacity, HMGCR inhibition and β-glucans content will be presented.

Keywords: β-glucan, mushroom stalks, pulsed electric field (PEF), ultrasound assisted extraction (UAE)

Procedia PDF Downloads 286
647 The Gender Dialectic in Mothers and Daughters’ Relationships

Authors: Ronit Even Zahav

Abstract:

Objectives: Mother-daughter relationships are often portrayed as one of the most constitutive ties that shape women's identities throughout their lives. Yet, to the best of author’s knowledge, only few studies examine mother-daughter relationships in adulthood in the context of cross-cultural transition. Most of them focus on the mother-daughter relationship among one origin group. Hence, the existing knowledge about these relationships in adulthood, in the context of intercultural transition and encounters between different cultures, remain limited. Based on a critical feminist approach critical and cultural perspectives the current study focuses on a cross-cultural comparison of adult mother-daughter relationships among three groups of origin: Ethiopia, Russia, and Israel. The study aimed to: Explore the voices of women participating in a mother-daughter discourse in the context of gender and ethnicity; examine the differences in the mother-daughter relationship through number of factors (e.g. expectations of similarity and difference, perceptions of gender roles, gender identity, emotional closeness, sharing and stress) and finally, to develop a gender informed tool for understanding the gender dialectic in mother-daughter relationship in the context of cross cultural transitions. Method: 37 dyads of mothers and adult daughters participated in a qualitative study. A semi-structured interview was conducted that included questions about socio-demographic characteristics, language proficiency, social distance, closeness, emotional stress, and expectations of similarity and difference in mother-daughter relationships. Results: Analysis of the findings yielded three relationship patterns of gender dialectic and expectations of similarity and difference that characterize the groups of origin. Ethiopian mothers reported more sharing their daughters, fewer expectations of similarity, and felt more stress in the relationship compered to women from the two other origin groups. Conclusions: The study highlighted the impact of intercultural transition and social exclusion on mother-daughter relationships in adulthood in the context of the gender dialectic and women’s status in society. The presentation will explore the findings that were brought up by participants. The discussion will focus on the practices related to gender dialectic and intersecting inequalities regarding diverse groups and discuss gender development reducing inequalities and promoting empowerment to transform oppressive conditions.

Keywords: gender informed perspectives, gender dialectic, mother-daughter relationships, multiculturalism

Procedia PDF Downloads 61
646 Interactions between Sodium Aerosols and Fission Products: A Theoretical Chemistry and Experimental Approach

Authors: Ankita Jadon, Sidi Souvi, Nathalie Girault, Denis Petitprez

Abstract:

Safety requirements for Generation IV nuclear reactor designs, especially the new generation sodium-cooled fast reactors (SFR) require a risk-informed approach to model severe accidents (SA) and their consequences in case of outside release. In SFRs, aerosols are produced during a core disruptive accident when primary system sodium is ejected into the containment and burn in contact with the air; producing sodium aerosols. One of the key aspects of safety evaluation is the in-containment sodium aerosol behavior and their interaction with fission products. The study of the effects of sodium fires is essential for safety evaluation as the fire can both thermally damage the containment vessel and cause an overpressurization risk. Besides, during the fire, airborne fission product first dissolved in the primary sodium can be aerosolized or, as it can be the case for fission products, released under the gaseous form. The objective of this work is to study the interactions between sodium aerosols and fission products (Iodine, toxic and volatile, being the primary concern). Sodium fires resulting from an SA would produce aerosols consisting of sodium peroxides, hydroxides, carbonates, and bicarbonates. In addition to being toxic (in oxide form), this aerosol will then become radioactive. If such aerosols are leaked into the environment, they can pose a danger to the ecosystem. Depending on the chemical affinity of these chemical forms with fission products, the radiological consequences of an SA leading to containment leak tightness loss will also be affected. This work is split into two phases. Firstly, a method to theoretically understand the kinetics and thermodynamics of the heterogeneous reaction between sodium aerosols and fission products: I2 and HI are proposed. Ab-initio, density functional theory (DFT) calculations using Vienna ab-initio simulation package are carried out to develop an understanding of the surfaces of sodium carbonate (Na2CO3) aerosols and hence provide insight on its affinity towards iodine species. A comprehensive study of I2 and HI adsorption, as well as bicarbonate formation on the calculated lowest energy surface of Na2CO3, was performed which provided adsorption energies and description of the optimized configuration of adsorbate on the stable surface. Secondly, the heterogeneous reaction between (I2)g and Na2CO3 aerosols were investigated experimentally. To study this, (I2)g was generated by heating a permeation tube containing solid I2, and, passing it through a reaction chamber containing Na2CO3 aerosol deposit. The concentration of iodine was then measured at the exit of the reaction chamber. Preliminary observations indicate that there is an effective uptake of (I2)g on Na2CO3 surface, as suggested by our theoretical chemistry calculations. This work is the first step in addressing the gaps in knowledge of in-containment and atmospheric source term which are essential aspects of safety evaluation of SFR SA. In particular, this study is aimed to determine and characterize the radiological and chemical source term. These results will then provide useful insights for the developments of new models to be implemented in integrated computer simulation tool to analyze and evaluate SFR safety designs.

Keywords: iodine adsorption, sodium aerosols, sodium cooled reactor, DFT calculations, sodium carbonate

Procedia PDF Downloads 213
645 Discussion of Blackness in Wrestling

Authors: Jason Michael Crozier

Abstract:

The wrestling territories of the mid-twentieth century in the United States are widely considered the birthplace of modern professional wrestling, and by many professional wrestlers, to be a beacon of hope for the easing of racial tensions during the civil rights era and beyond. The performers writing on this period speak of racial equality but fail to acknowledge the exploitation of black athletes as a racialized capital commodity who suffered the challenges of systemic racism, codified by a false narrative of aspirational exceptionalism and equality measured by audience diversity. The promoters’ ability to equate racial and capital exploitation with equality leads to a broader discussion of the history of Muscular Christianity in the United States and the exploitation of black bodies. Narratives of racial erasure that dominate the historical discourse when examining athleticism and exceptionalism redefined how blackness existed and how physicality and race are conceived of in sport and entertainment spaces. When discussing the implications of race and professional wrestling, it is important to examine the role of promotions as ‘imagined communities’ where the social agency of wrestlers is defined and quantified based on their ‘desired elements’ as a performer. The intentionally vague nature of this language masks a deep history of racialization that has been perpetuated by promoters and never fully examined by scholars. Sympathetic racism and the omission of cultural identity are also key factors in the limitations and racial barriers placed upon black athletes in the squared circle. The use of sympathetic racism within professional wrestling during the twentieth century defined black athletes into two distinct categorizations, the ‘black savage’ or the ‘black minstrel’. Black wrestlers of the twentieth century were defined by their strength as a capital commodity and their physicality rather than their knowledge of the business and in-ring skill. These performers had little agency in their ability to shape their own character development inside and outside the ring. Promoters would often create personas that heavily racialized the performer by tying them to a regional past or memory, such as that of slavery in the deep south using dog collar matches and adoring black characters in chains. Promoters softened cultural memory by satirizing the historic legacy of slavery and the black identity.

Keywords: sympathetic racism, social agency, racial commodification, stereotyping

Procedia PDF Downloads 124
644 Geotechnical Education in the USA: A Comparative Analysis of Academic Schooling vs. Industry Needs in the Area of Earth Retaining Structures

Authors: Anne Lemnitzer, Eric Tavarez

Abstract:

The academic rigor of the geotechnical engineering curriculum indicates strong institutional and geographical variations. Geotechnical engineering deals with the most challenging civil engineering material, as opposed to structural engineering, environmental studies, transportation engineering, and water resources. Yet, technical expectations posed by the practicing professional community do not necessarily consider the challenges inherent to the disparity in academic rigor and disciplinary differences. To recognize the skill shortages among current graduates as well as identify opportunities to better equip graduate students in specific fields of geotechnical engineering, a two-part survey was developed in collaboration with the Earth Retaining Structures (ERS) Committee of the American Society of Civil Engineers. Earth Retaining Structures are critical components of infrastructure systems and integral components to many major engineering projects. Within the geotechnical curriculum, Earth Retaining Structures is either taught as a separate course or major subject within a foundation design class. Part 1 of the survey investigated the breadth and depth of the curriculum with respect to ERS by requesting faculty across the United States to provide data on their curricular content, integration of practice-oriented course content, student preparation for professional licensing, and level of technical competency expected upon student graduation. Part 2 of the survey enables a comparison of training provided versus training needed. This second survey addressed practicing geotechnical engineers in all sectors of the profession (e.g., private engineering consulting, governmental agencies, contractors, suppliers/manufacturers) and collected data on the expectations with respect to technical and non-technical skills of engineering graduates entering the professional workforce. Results identified skill shortages in soft skills, critical thinking, analytical and language skills, familiarity with design codes and standards, and communication with various stakeholders. The data will be used to develop educational tools to advance the proficiency and expertise of geotechnical engineering students to meet and exceed the expectations of the profession and to stimulate a lifelong interest in advancing the field of geotechnical engineering.

Keywords: geotechnical engineering, academic training, industry requirements, earth retaining structures

Procedia PDF Downloads 118
643 Hydrodynamics in Wetlands of Brazilian Savanna: Electrical Tomography and Geoprocessing

Authors: Lucas M. Furlan, Cesar A. Moreira, Jepherson F. Sales, Guilherme T. Bueno, Manuel E. Ferreira, Carla V. S. Coelho, Vania Rosolen

Abstract:

Located in the western part of the State of Minas Gerais, Brazil, the study area consists of a savanna environment, represented by sedimentary plateau and a soil cover composed by lateritic and hydromorphic soils - in the latter, occurring the deferruginization and concentration of high-alumina clays, exploited as refractory material. In the hydromorphic topographic depressions (wetlands) the hydropedogical relationships are little known, but it is observed that in times of rainfall, the depressed region behaves like a natural seasonal reservoir - which suggests that the wetlands on the surface of the plateau are places of recharge of the aquifer. The aquifer recharge areas are extremely important for the sustainable social, economic and environmental development of societies. The understanding of hydrodynamics in relation to the functioning of the ferruginous and hydromorphic lateritic soils system in the savanna environment is a subject rarely explored in the literature, especially its understanding through the joint application of geoprocessing by UAV (Unmanned Aerial Vehicle) and electrical tomography. The objective of this work is to understand the hydrogeological dynamics in a wetland (with an area of 426.064 m²), in the Brazilian savanna,as well as the understanding of the subsurface architecture of hydromorphic depressions in relation to the recharge of aquifers. The wetland was compartmentalized in three different regions, according to the geoprocessing. Hydraulic conductivity studies were performed in each of these three portions. Electrical tomography was performed on 9 lines of 80 meters in length and spaced 10 meters apart (direction N45), and a line with 80 meters perpendicular to all others. With the data, it was possible to generate a 3D cube. The integrated analysis showed that the area behaves like a natural seasonal reservoir in the months of greater precipitation (December – 289mm; January – 277,9mm; February – 213,2mm), because the hydraulic conductivity is very low in all areas. In the aerial images, geotag correction of the images was performed, that is, the correction of the coordinates of the images by means of the corrected coordinates of the Positioning by Precision Point of the Brazilian Institute of Geography and Statistics (IBGE-PPP). Later, the orthomosaic and the digital surface model (DSM) were generated, which with specific geoprocessing generated the volume of water that the wetland can contain - 780,922m³ in total, 265,205m³ in the region with intermediate flooding and 49,140m³ in the central region, where a greater accumulation of water was observed. Through the electrical tomography it was possible to identify that up to the depth of 6 meters the water infiltrates vertically in the central region. From the 8 meters depth, the water encounters a more resistive layer and the infiltration begins to occur horizontally - tending to concentrate the recharge of the aquifer to the northeast and southwest of the wetland. The hydrodynamics of the area is complex and has many challenges in its understanding. The next step is to relate hydrodynamics to the evolution of the landscape, with the enrichment of high-alumina clays, and to propose a management model for the seasonal reservoir.

Keywords: electrical tomography, hydropedology, unmanned aerial vehicle, water resources management

Procedia PDF Downloads 140
642 Airport Pavement Crack Measurement Systems and Crack Density for Pavement Evaluation

Authors: Ali Ashtiani, Hamid Shirazi

Abstract:

This paper reviews the status of existing practice and research related to measuring pavement cracking and using crack density as a pavement surface evaluation protocol. Crack density for pavement evaluation is currently not widely used within the airport community and its use by the highway community is limited. However, surface cracking is a distress that is closely monitored by airport staff and significantly influences the development of maintenance, rehabilitation and reconstruction plans for airport pavements. Therefore crack density has the potential to become an important indicator of pavement condition if the type, severity and extent of surface cracking can be accurately measured. A pavement distress survey is an essential component of any pavement assessment. Manual crack surveying has been widely used for decades to measure pavement performance. However, the accuracy and precision of manual surveys can vary depending upon the surveyor and performing surveys may disrupt normal operations. Given the variability of manual surveys, this method has shown inconsistencies in distress classification and measurement. This can potentially impact the planning for pavement maintenance, rehabilitation and reconstruction and the associated funding strategies. A substantial effort has been devoted for the past 20 years to reduce the human intervention and the error associated with it by moving toward automated distress collection methods. The automated methods refer to the systems that identify, classify and quantify pavement distresses through processes that require no or very minimal human intervention. This principally involves the use of a digital recognition software to analyze and characterize pavement distresses. The lack of established protocols for measurement and classification of pavement cracks captured using digital images is a challenge to developing a reliable automated system for distress assessment. Variations in types and severity of distresses, different pavement surface textures and colors and presence of pavement joints and edges all complicate automated image processing and crack measurement and classification. This paper summarizes the commercially available systems and technologies for automated pavement distress evaluation. A comprehensive automated pavement distress survey involves collection, interpretation, and processing of the surface images to identify the type, quantity and severity of the surface distresses. The outputs can be used to quantitatively calculate the crack density. The systems for automated distress survey using digital images reviewed in this paper can assist the airport industry in the development of a pavement evaluation protocol based on crack density. Analysis of automated distress survey data can lead to a crack density index. This index can be used as a means of assessing pavement condition and to predict pavement performance. This can be used by airport owners to determine the type of pavement maintenance and rehabilitation in a more consistent way.

Keywords: airport pavement management, crack density, pavement evaluation, pavement management

Procedia PDF Downloads 183
641 Development of the Food Market of the Republic of Kazakhstan in the Field of Milk Processing

Authors: Gulmira Zhakupova, Tamara Tultabayeva, Aknur Muldasheva, Assem Sagandyk

Abstract:

The development of technology and production of products with increased biological value based on the use of natural food raw materials are important tasks in the policy of the food market of the Republic of Kazakhstan. For Kazakhstan, livestock farming, in particular sheep farming, is the most ancient and developed industry and way of life. The history of the Kazakh people is largely connected with this type of agricultural production, with established traditions using dairy products from sheep's milk. Therefore, the development of new technologies from sheep’s milk remains relevant. In addition, one of the most promising areas for the development of food technology for therapeutic and prophylactic purposes is sheep milk products as a source of protein, immunoglobulins, minerals, vitamins, and other biologically active compounds. This article presents the results of research on the study of milk processing technology. The objective of the study is to study the possibilities of processing sheep milk and its role in human nutrition, as well as the results of research to improve the technology of sheep milk products. The studies were carried out on the basis of sanitary and hygienic requirements for dairy products in accordance with the following test methods. To perform microbiological analysis, we used the method for identifying Salmonella bacteria (Horizontal method for identifying, counting, and serotyping Salmonella) in a certain mass or volume of product. Nutritional value is a complex of properties of food products that meet human physiological needs for energy and basic nutrients. The protein mass fraction was determined by the Kjeldahl method. This method is based on the mineralization of a milk sample with concentrated sulfuric acid in the presence of an oxidizing agent, an inert salt - potassium sulfate, and a catalyst - copper sulfate. In this case, the amino groups of the protein are converted into ammonium sulfate dissolved in sulfuric acid. The vitamin composition was determined by HPLC. To determine the content of mineral substances in the studied samples, the method of atomic absorption spectrophotometry was used. The study identified the technological parameters of sheep milk products and determined the prospects for researching sheep milk products. Microbiological studies were used to determine the safety of the study product. According to the results of the microbiological analysis, no deviations from the norm were identified. This means high safety of the products under study. In terms of nutritional value, the resulting products are high in protein. Data on the positive content of amino acids were also obtained. The results obtained will be used in the food industry and will serve as recommendations for manufacturers.

Keywords: dairy, milk processing, nutrition, colostrum

Procedia PDF Downloads 51
640 Using Mathematical Models to Predict the Academic Performance of Students from Initial Courses in Engineering School

Authors: Martín Pratto Burgos

Abstract:

The Engineering School of the University of the Republic in Uruguay offers an Introductory Mathematical Course from the second semester of 2019. This course has been designed to assist students in preparing themselves for math courses that are essential for Engineering Degrees, namely Math1, Math2, and Math3 in this research. The research proposes to build a model that can accurately predict the student's activity and academic progress based on their performance in the three essential Mathematical courses. Additionally, there is a need for a model that can forecast the incidence of the Introductory Mathematical Course in the three essential courses approval during the first academic year. The techniques used are Principal Component Analysis and predictive modelling using the Generalised Linear Model. The dataset includes information from 5135 engineering students and 12 different characteristics based on activity and course performance. Two models are created for a type of data that follows a binomial distribution using the R programming language. Model 1 is based on a variable's p-value being less than 0.05, and Model 2 uses the stepAIC function to remove variables and get the lowest AIC score. After using Principal Component Analysis, the main components represented in the y-axis are the approval of the Introductory Mathematical Course, and the x-axis is the approval of Math1 and Math2 courses as well as student activity three years after taking the Introductory Mathematical Course. Model 2, which considered student’s activity, performed the best with an AUC of 0.81 and an accuracy of 84%. According to Model 2, the student's engagement in school activities will continue for three years after the approval of the Introductory Mathematical Course. This is because they have successfully completed the Math1 and Math2 courses. Passing the Math3 course does not have any effect on the student’s activity. Concerning academic progress, the best fit is Model 1. It has an AUC of 0.56 and an accuracy rate of 91%. The model says that if the student passes the three first-year courses, they will progress according to the timeline set by the curriculum. Both models show that the Introductory Mathematical Course does not directly affect the student’s activity and academic progress. The best model to explain the impact of the Introductory Mathematical Course on the three first-year courses was Model 1. It has an AUC of 0.76 and 98% accuracy. The model shows that if students pass the Introductory Mathematical Course, it will help them to pass Math1 and Math2 courses without affecting their performance on the Math3 course. Matching the three predictive models, if students pass Math1 and Math2 courses, they will stay active for three years after taking the Introductory Mathematical Course, and also, they will continue following the recommended engineering curriculum. Additionally, the Introductory Mathematical Course helps students to pass Math1 and Math2 when they start Engineering School. Models obtained in the research don't consider the time students took to pass the three Math courses, but they can successfully assess courses in the university curriculum.

Keywords: machine-learning, engineering, university, education, computational models

Procedia PDF Downloads 85
639 Assessment of the Properties of Microcapsules with Different Polymeric Shells Containing a Reactive Agent for their Suitability in Thermoplastic Self-healing Materials

Authors: Małgorzata Golonka, Jadwiga Laska

Abstract:

Self-healing polymers are one of the most investigated groups of smart materials. As materials engineering has recently focused on the design, production and research of modern materials and future technologies, researchers are looking for innovations in structural, construction and coating materials. Based on available scientific articles, it can be concluded that most of the research focuses on the self-healing of cement, concrete, asphalt and anticorrosion resin coatings. In our study, a method of obtaining and testing the properties of several types of microcapsules for use in self-healing polymer materials was developed. A method to obtain microcapsules exhibiting various mechanical properties, especially compressive strength was developed. The effect was achieved by using various polymer materials to build the shell: urea-formaldehyde resin (UFR), melamine-formaldehyde resin (MFR), melamine-urea-formaldehyde resin (MUFR). Dicyclopentadiene (DCPD) was used as the core material due to the possibility of its polymerization according to the ring-opening olefin metathesis (ROMP) mechanism in the presence of a solid Grubbs catalyst showing relatively high chemical and thermal stability. The ROMP of dicyclopentadiene leads to a polymer with high impact strength, high thermal resistance, good adhesion to other materials and good chemical and environmental resistance, so it is potentially a very promising candidate for the self-healing of materials. The capsules were obtained by condensation polymerization of formaldehyde with urea, melamine or copolymerization with urea and melamine in situ in water dispersion, with different molar ratios of formaldehyde, urea and melamine. The fineness of the organic phase dispersed in water, and consequently the size of the microcapsules, was regulated by the stirring speed. In all cases, to establish such synthesis conditions as to obtain capsules with appropriate mechanical strength. The microcapsules were characterized by determining the diameters and their distribution and measuring the shell thickness using digital optical microscopy and scanning electron microscopy, as well as confirming the presence of the active substance in the core by FTIR and SEM. Compression tests were performed to determine mechanical strength of the microcapsules. The highest repeatability of microcapsule properties was obtained for UFR resin, while the MFR resin had the best mechanical properties. The encapsulation efficiency of MFR was much lower compared to UFR, though. Therefore, capsules with a MUFR shell may be the optimal solution. The chemical reaction between the active substance present in the capsule core and the catalyst placed outside the capsules was confirmed by FTIR spectroscopy. The obtained autonomous repair systems (microcapsules + catalyst) were introduced into polyethylene in the extrusion process and tested for the self-repair of the material.

Keywords: autonomic self-healing system, dicyclopentadiene, melamine-urea-formaldehyde resin, microcapsules, thermoplastic materials

Procedia PDF Downloads 38
638 Exploration into Bio Inspired Computing Based on Spintronic Energy Efficiency Principles and Neuromorphic Speed Pathways

Authors: Anirudh Lahiri

Abstract:

Neuromorphic computing, inspired by the intricate operations of biological neural networks, offers a revolutionary approach to overcoming the limitations of traditional computing architectures. This research proposes the integration of spintronics with neuromorphic systems, aiming to enhance computational performance, scalability, and energy efficiency. Traditional computing systems, based on the Von Neumann architecture, struggle with scalability and efficiency due to the segregation of memory and processing functions. In contrast, the human brain exemplifies high efficiency and adaptability, processing vast amounts of information with minimal energy consumption. This project explores the use of spintronics, which utilizes the electron's spin rather than its charge, to create more energy-efficient computing systems. Spintronic devices, such as magnetic tunnel junctions (MTJs) manipulated through spin-transfer torque (STT) and spin-orbit torque (SOT), offer a promising pathway to reducing power consumption and enhancing the speed of data processing. The integration of these devices within a neuromorphic framework aims to replicate the efficiency and adaptability of biological systems. The research is structured into three phases: an exhaustive literature review to build a theoretical foundation, laboratory experiments to test and optimize the theoretical models, and iterative refinements based on experimental results to finalize the system. The initial phase focuses on understanding the current state of neuromorphic and spintronic technologies. The second phase involves practical experimentation with spintronic devices and the development of neuromorphic systems that mimic synaptic plasticity and other biological processes. The final phase focuses on refining the systems based on feedback from the testing phase and preparing the findings for publication. The expected contributions of this research are twofold. Firstly, it aims to significantly reduce the energy consumption of computational systems while maintaining or increasing processing speed, addressing a critical need in the field of computing. Secondly, it seeks to enhance the learning capabilities of neuromorphic systems, allowing them to adapt more dynamically to changing environmental inputs, thus better mimicking the human brain's functionality. The integration of spintronics with neuromorphic computing could revolutionize how computational systems are designed, making them more efficient, faster, and more adaptable. This research aligns with the ongoing pursuit of energy-efficient and scalable computing solutions, marking a significant step forward in the field of computational technology.

Keywords: material science, biological engineering, mechanical engineering, neuromorphic computing, spintronics, energy efficiency, computational scalability, synaptic plasticity.

Procedia PDF Downloads 22
637 Dry Reforming of Methane Using Metal Supported and Core Shell Based Catalyst

Authors: Vinu Viswanath, Lawrence Dsouza, Ugo Ravon

Abstract:

Syngas typically and intermediary gas product has a wide range of application of producing various chemical products, such as mixed alcohols, hydrogen, ammonia, Fischer-Tropsch products methanol, ethanol, aldehydes, alcohols, etc. There are several technologies available for the syngas production. An alternative to the conventional processes an attractive route of utilizing carbon dioxide and methane in equimolar ratio to generate syngas of ratio close to one has been developed which is also termed as Dry Reforming of Methane technology. It also gives the privilege to utilize the greenhouse gases like CO2 and CH4. The dry reforming process is highly endothermic, and indeed, ΔG becomes negative if the temperature is higher than 900K and practically, the reaction occurs at 1000-1100K. At this temperature, the sintering of the metal particle is happening that deactivate the catalyst. However, by using this strategy, the methane is just partially oxidized, and some cokes deposition occurs that causing the catalyst deactivation. The current research work was focused to mitigate the main challenges of dry reforming process such coke deposition, and metal sintering at high temperature.To achieve these objectives, we employed three different strategies of catalyst development. 1) Use of bulk catalysts such as olivine and pyrochlore type materials. 2) Use of metal doped support materials, like spinel and clay type material. 3) Use of core-shell model catalyst. In this approach, a thin layer (shell) of redox metal oxide is deposited over the MgAl2O4 /Al2O3 based support material (core). For the core-shell approach, an active metal is been deposited on the surface of the shell. The shell structure formed is a doped metal oxide that can undergo reduction and oxidation reactions (redox), and the core is an alkaline earth aluminate having a high affinity towards carbon dioxide. In the case of metal-doped support catalyst, the enhanced redox properties of doped CeO2 oxide and CO2 affinity property of alkaline earth aluminates collectively helps to overcome coke formation. For all of the mentioned three strategies, a systematic screening of the metals is carried out to optimize the efficiency of the catalyst. To evaluate the performance of them, the activity and stability test were carried out under reaction conditions of temperature ranging from 650 to 850 ̊C and an operating pressure ranging from 1 to 20 bar. The result generated infers that the core-shell model catalyst showed high activity and better stable DR catalysts under atmospheric as well as high-pressure conditions. In this presentation, we will show the results related to the strategy.

Keywords: carbon dioxide, dry reforming, supports, core shell catalyst

Procedia PDF Downloads 169
636 The Practices of Creative Tourism in Urban and Rural Areas at International Level

Authors: Isabel Freitas, Paula Remoaldo, Olga Matos, Ricardo Goja, Juliana Araujo, Vitor Ribeiro, Miguel Pereira

Abstract:

Several destinations have been experiencing a transition from a massified cultural tourism to a creative tourism approach. In this new segment of tourism, urban territories have been the focus for several decades. Urban studies on creative industries and initiatives have been taking place in big cities marginalizing small towns and more specifically rural areas. This paper envisages evaluating the differences between rural and urban institutions/platforms, mostly certified by the Creative Tourism Network, in what concerns the practices and initiatives in creative tourism worldwide. In the research carried out between March 2017 and March 2018, we had three levels of primary data and qualitative analysis: i) research on Google (web) by using several keywords like 'creative tourism initiatives', 'creative cities', 'best practices in creative tourism' (from March to August 2017). With the help of the certification of institutions/platforms by the Creative Tourism Network, 24 institutions were found and declared to be developing creative initiatives. It was decided to try to unravel the type of activities and some practices and initiatives carried out by these institutions and the analysis of the differences between rural and urban initiatives. A database of 20 items (e.g., institutions in charge of implementing the initiatives, year of implementation, site, activities developed, place of development, country of origin, type of partners chosen) was created for each institution/platform; ii) A deeper analysis was made on the websites’ information on the institutions (from September to December 2017). The type of professionals involved in the activities, the language used in the activities and the type of activity performed were some of the data analysed and iii) To complement these data, semi-structured interviews were done to representatives of the institutions, conducted mainly by Skype from July 2017 to April 2018. The interviews consisted of 17 questions. In the present paper, these interviews are used to complement the analysis of the same items. Some of the qualitative analysis was supported by the narratives of the leaders of the twenty-four institutions that were surveyed. The results indicate that creative tourism is more active and diverse in urban areas. Some more consolidated communication strategies and partnerships are needed for these activities to become economically more sustainable. The findings of this research provide researchers and practitioners with a better understanding of creative tourism and give some information of how creative tourism is developed in rural and urban areas, the gaps and lack of information, and all the possible directions towards the development of the creative tourism industry.

Keywords: creative tourism, practices of creative tourism, rural areas, urban areas

Procedia PDF Downloads 176
635 Additive Manufacturing – Application to Next Generation Structured Packing (SpiroPak)

Authors: Biao Sun, Tejas Bhatelia, Vishnu Pareek, Ranjeet Utikar, Moses Tadé

Abstract:

Additive manufacturing (AM), commonly known as 3D printing, with the continuing advances in parallel processing and computational modeling, has created a paradigm shift (with significant radical thinking) in the design and operation of chemical processing plants, especially LNG plants. With the rising energy demands, environmental pressures, and economic challenges, there is a continuing industrial need for disruptive technologies such as AM, which possess capabilities that can drastically reduce the cost of manufacturing and operations of chemical processing plants in the future. However, the continuing challenge for 3D printing is its lack of adaptability in re-designing the process plant equipment coupled with the non-existent theory or models that could assist in selecting the optimal candidates out of the countless potential fabrications that are possible using AM. One of the most common packings used in the LNG process is structured packing in the packed column (which is a unit operation) in the process. In this work, we present an example of an optimum strategy for the application of AM to this important unit operation. Packed columns use a packing material through which the gas phase passes and comes into contact with the liquid phase flowing over the packing, typically performing the necessary mass transfer to enrich the products, etc. Structured packing consists of stacks of corrugated sheets, typically inclined between 40-70° from the plane. Computational Fluid Dynamics (CFD) was used to test and model various geometries to study the governing hydrodynamic characteristics. The results demonstrate that the costly iterative experimental process can be minimized. Furthermore, they also improve the understanding of the fundamental physics of the system at the multiscale level. SpiroPak, patented by Curtin University, represents an innovative structured packing solution currently at a technology readiness level (TRL) of 5~6. This packing exhibits remarkable characteristics, offering a substantial increase in surface area while significantly enhancing hydrodynamic and mass transfer performance. Recent studies have revealed that SpiroPak can reduce pressure drop by 50~70% compared to commonly used commercial packings, and it can achieve 20~50% greater mass transfer efficiency (particularly in CO2 absorption applications). The implementation of SpiroPak has the potential to reduce the overall size of columns and decrease power consumption, resulting in cost savings for both capital expenditure (CAPEX) and operational expenditure (OPEX) when applied to retrofitting existing systems or incorporated into new processes. Furthermore, pilot to large-scale tests is currently underway to further advance and refine this technology.

Keywords: Additive Manufacturing (AM), 3D printing, Computational Fluid Dynamics (CFD, structured packing (SpiroPak)

Procedia PDF Downloads 69
634 MXene Mediated Layered 2D-3D-2D g-C3N4@WO3@Ti3C2 Multijunctional Heterostructure with Enhanced Photoelectrochemical and Photocatalytic Properties

Authors: Lekgowa Collen Makola, Cecil Naphtaly Moro Ouma, Sharon Moeno, Langelihle Dlamini

Abstract:

In recent years, advancement in the field of nanotechnology has evolved new strategies to address energy and environmental issues. Amongst the developing technologies, visible-light-driven photocatalysis is regarded as a sustainable approach for energy production and environmental detoxifications, where transition metal oxides (TMOs) and metal-free carbon-based semiconductors such as graphitic carbon nitride (CN) evidenced notable potential in this matter. Herein, g-C₃N₄@WO₃@Ti₃C₂Tx three-component multijunction photocatalyst was fabricated via facile ultrasonic-assisted self-assembly, followed by calcination to facilitate extensive integrations of the materials. A series of different Ti₃C₂ wt% loading in the g-C₃N4@WO₃@Ti₃C₂Tx were prepared and represented as 1-CWT, 3-CWT, 5-CWT, and 7-CWT corresponding to 1, 3, 5, and 7wt%, respectively. Systematic characterization using spectroscopic and microscopic techniques were employed to validate the successful preparation of the photocatalysts. Enhanced optoelectronic and photoelectrochemical properties were observed for the WO₃@Ti₃C2@g-C₃N4 heterostructure with respect to the individual materials. Photoluminescence spectra and Nyquist plots show restrained recombination rates and improved photocarrier conductivities, respectively, and this was credited to the synergistic coupling effect and the presence of highly conductive Ti₃C2 MXene. The strong interfacial contact surfaces upon the formation of the composite were confirmed using XPS. Multiple charge transfer mechanisms were proposed for the WO3@Ti3C₂@g-C3N4, which couples Z-scheme and Schottky-junction mediated with Ti3C2 MXene. Bode phase plots show improved charge carrier life-times upon the formation of the multijunctional photocatalyst. Moreover, transient photocurrent density of 7-CWT is 40 and seven (7) times higher compared to that of g-C₃N4 and WO3, correspondingly. Unlike in the traditional Z-Scheme, the formed ternary heterostructure possesses interfaces through the metallic 2D Ti₃C₂ MXene, which provided charge transfer channels for efficient photocarrier transfers with carrier concentrations (ND) of 17.49×1021 cm-3 and 4.86% photo-to-chemical conversion efficiency. The as-prepared ternary g-C₃N₄@WO₃@Ti₃C₂Tx exhibited excellent photoelectrochemical properties with reserved redox band potential potencies to facilitate efficient photo-oxidation and -reduction reactions. The fabricated multijunction photocatalyst exhibits potentials to be used in an extensive range of photocatalytic process vis., production of valuable hydrocarbons from CO₂, production of H₂, and degradation of a plethora of pollutants from wastewater.

Keywords: photocatalysis, Z-scheme, multijunction heterostructure, Ti₃C₂ MXene, g-C₃N₄

Procedia PDF Downloads 114
633 Simple Model of Social Innovation Based on Entrepreneurship Incidence in Mexico

Authors: Vicente Espinola, Luis Torres, Christhian Gonzalez

Abstract:

Entrepreneurship is a topic of current interest in Mexico and the World, which has been fostered through public policies with great impact on its generation. The strategies used in Mexico have not been successful, being motivational strategies aimed at the masses with the intention that someone in the process generates a venture. The strategies used for its development have been "picking of winners" favoring those who have already overcome the initial stages of undertaking without effective support. This situation shows a disarticulation that appears even more in social entrepreneurship; due to this, it is relevant to research on those elements that could develop them and thus integrate a model of entrepreneurship and social innovation for Mexico. Social entrepreneurship should be generating social innovation, which is translated into business models in order to make the benefits reach the population. These models are proposed putting the social impact before the economic impact, without forgetting its sustainability in the medium and long term. In this work, we present a simple model of innovation and social entrepreneurship for Guanajuato, Mexico. This algorithm was based on how social innovation could be generated in a systemic way for Mexico through different institutions that promote innovation. In this case, the technological parks of the state of Guanajuato were studied because these are considered one of the areas of Mexico where its main objectives are to make technology transfer to companies but overlooking the social sector and entrepreneurs. An experimental design of n = 60 was carried out with potential entrepreneurs to identify their perception of the social approach that the enterprises should have, the skills they consider required to create a venture, as well as their interest in generating ventures that solve social problems. This experiment had a 2K design, the value of k = 3 and the computational simulation was performed in R statistical language. A simple model of interconnected variables is proposed, which allows us to identify where it is necessary to increase efforts for the generation of social enterprises. The 96.67% of potential entrepreneurs expressed interest in ventures that solve social problems. In the analysis of the variables interaction, it was identified that the isolated development of entrepreneurial skills would only replicate the generation of traditional ventures. The variable of social approach presented positive interactions, which may influence the generation of social entrepreneurship if this variable was strengthened and permeated in the processes of training and development of entrepreneurs. In the future, it will be necessary to analyze the institutional actors that are present in the social entrepreneurship ecosystem, in order to analyze the interaction necessary to strengt the innovation and social entrepreneurship ecosystem.

Keywords: social innovation, model, entrepreneurship, technological parks

Procedia PDF Downloads 268
632 X-Ray Detector Technology Optimization In CT Imaging

Authors: Aziz Ikhlef

Abstract:

Most of multi-slices CT scanners are built with detectors composed of scintillator - photodiodes arrays. The photodiodes arrays are mainly based on front-illuminated technology for detectors under 64 slices and on back-illuminated photodiode for systems of 64 slices or more. The designs based on back-illuminated photodiodes were being investigated for CT machines to overcome the challenge of the higher number of runs and connection required in front-illuminated diodes. In backlit diodes, the electronic noise has already been improved because of the reduction of the load capacitance due to the routing reduction. This translated by a better image quality in low signal application, improving low dose imaging in large patient population. With the fast development of multi-detector-rows CT (MDCT) scanners and the increasing number of examinations, the clinical community has raised significant concerns on radiation dose received by the patient in both medical and regulatory community. In order to reduce individual exposure and in response to the recommendations of the International Commission on Radiological Protection (ICRP) which suggests that all exposures should be kept as low as reasonably achievable (ALARA), every manufacturer is trying to implement strategies and solutions to optimize dose efficiency and image quality based on x-ray emission and scanning parameters. The added demands on the CT detector performance also comes from the increased utilization of spectral CT or dual-energy CT in which projection data of two different tube potentials are collected. One of the approaches utilizes a technology called fast-kVp switching in which the tube voltage is switched between 80kVp and 140kVp in fraction of a millisecond. To reduce the cross-contamination of signals, the scintillator based detector temporal response has to be extremely fast to minimize the residual signal from previous samples. In addition, this paper will present an overview of detector technologies and image chain improvement which have been investigated in the last few years to improve the signal-noise ratio and the dose efficiency CT scanners in regular examinations and in energy discrimination techniques. Several parameters of the image chain in general and in the detector technology contribute in the optimization of the final image quality. We will go through the properties of the post-patient collimation to improve the scatter-to-primary ratio, the scintillator material properties such as light output, afterglow, primary speed, crosstalk to improve the spectral imaging, the photodiode design characteristics and the data acquisition system (DAS) to optimize for crosstalk, noise and temporal/spatial resolution.

Keywords: computed tomography, X-ray detector, medical imaging, image quality, artifacts

Procedia PDF Downloads 259
631 Empowering Learners: From Augmented Reality to Shared Leadership

Authors: Vilma Zydziunaite, Monika Kelpsiene

Abstract:

In early childhood and preschool education, play has an important role in learning and cognitive processes. In the context of a changing world, personal autonomy and the use of technology are becoming increasingly important for the development of a wide range of learner competencies. By integrating technology into learning environments, the educational reality is changed, promoting unusual learning experiences for children through play-based activities. Alongside this, teachers are challenged to develop encouragement and motivation strategies that empower children to act independently. The aim of the study was to reveal the changes in the roles and experiences of teachers in the application of AR technology for the enrichment of the learning process. A quantitative research approach was used to conduct the study. The data was collected through an electronic questionnaire. Participants: 319 teachers of 5-6-year-old children using AR technology tools in their educational process. Methods of data analysis: Cronbach alpha, descriptive statistical analysis, normal distribution analysis, correlation analysis, regression analysis (SPSS software). Results. The results of the study show a significant relationship between children's learning and the educational process modeled by the teacher. The strongest predictor of child learning was found to be related to the role of the educator. Other predictors, such as pedagogical strategies, the concept of AR technology, and areas of children's education, have no significant relationship with child learning. The role of the educator was found to be a strong determinant of the child's learning process. Conclusions. The greatest potential for integrating AR technology into the teaching-learning process is revealed in collaborative learning. Teachers identified that when integrating AR technology into the educational process, they encourage children to learn from each other, develop problem-solving skills, and create inclusive learning contexts. A significant relationship has emerged - how the changing role of the teacher relates to the child's learning style and the aspiration for personal leadership and responsibility for their learning. Teachers identified the following key roles: observer of the learning process, proactive moderator, and creator of the educational context. All these roles enable the learner to become an autonomous and active participant in the learning process. This provides a better understanding and explanation of why it becomes crucial to empower the learner to experiment, explore, discover, actively create, and foster collaborative learning in the design and implementation of the educational content, also for teachers to integrate AR technologies and the application of the principles of shared leadership. No statistically significant relationship was found between the understanding of the definition of AR technology and the teacher’s choice of role in the learning process. However, teachers reported that their understanding of the definition of AR technology influences their choice of role, which has an impact on children's learning.

Keywords: teacher, learner, augmented reality, collaboration, shared leadership, preschool education

Procedia PDF Downloads 33