Search results for: stock pattern
2496 A 'Systematic Literature Review' of Specific Types of Inventory Faced by the Management of Firms
Authors: Rui Brito
Abstract:
This contribution regards a literature review of inventory management that is a relevant topic for the firms, due to its important use of capital with implications in firm’s profitability within the complexity of a more competitive and globalized world. Firms look for small inventories in order to reduce holding costs, namely opportunity cost, warehousing and handling costs, deterioration and being out of style, but larger inventories are required by some reasons, such as customer service, ordering cost, transportation cost, supplier’s payment to reduce unit costs or to take advantage of price increase in the near future, and equipment setup cost. Thus, management shall address a trade-off between small inventories and larger inventories. This literature review concerns three types of inventory (spare parts, safety stock, and vendor) whose management usually is beyond the scope of logistics. The applied methodology consisted of an online search of databases regarding scientific documents in English, namely Elsevier, Springer, Emerald, Wiley, and Taylor & Francis, but excluding books except if edited, using search engines, such as Google Scholar and B-on. The search was based on three keywords/strings (themes) which had to be included just as in the article title, suggesting themes were very relevant to the researchers. The whole search period was between 2009 and 2018 with the aim of collecting between twenty and forty studies considered relevant within each of the key words/strings specified. Documents were sorted by relevance and to prevent the exclusion of the more recent articles, based on lower quantity of citations partially due to less time to be cited in new research articles, the search period was divided into two sub-periods (2009-2015 and 2016-2018). The number of surveyed articles by theme showed a variation from 40 to 200 and the number of citations of those articles showed a wider variation from 3 to 216. Selected articles from the three themes were analyzed and the first seven of the first sub-period and the first three of the second sub-period with more citations were read in full to make a synopsis of each article. Overall, the findings show that the majority of article types were models, namely mathematical, although with different sub-types for each theme. Almost all articles suggest further studies, with some mentioning it for their own author(s), which widen the diversity of the previous research. Identified research gaps concern the use of surveys to know which are the models more used by firms, the reasons for not using the models with more performance and accuracy, and which are the satisfaction levels with the outcomes of the inventories management and its effect on the improvement of the firm’s overall performance. The review ends with the limitations and contributions of the study.Keywords: inventory management, safety stock, spare parts inventory, vendor managed inventory
Procedia PDF Downloads 952495 The Relationship between Top Management Replacement and Risk, Sale and Cash Volatilities with Respect to Unqualified Audit Opinion
Authors: Mehdi Dasineh, Yadollah Tariverdi, Marzieh H. Takhti
Abstract:
This paper investigated the relationship between top management turnover with risk volatility, sale volatility and fluctuations in the company's cash depending on the unqualified audit report in Tehran Stock Exchange (TSE). In this study, we examined 104 firms over the period 2009-2014 which were selected from (TSE). There was 624 observed year-company data in this research. Hypotheses of this research have been evaluated by using regression tests for example F-statistical and Durbin-Watson. Based on our sample we found significant relationship between top management replacement and risk volatility, sale Volatility and cash volatility with tendency unqualified audit opinion.Keywords: top management replacement, risk volatility, sale volatility, cash volatility, unqualified audit opinion
Procedia PDF Downloads 2802494 Evaluate the Influence of Culture on the Choice of Capital Structure Management Companies
Authors: Sahar Jami, Iman Valizadeh
Abstract:
The purpose of the study: The aim of this study was to evaluate the influence of culture on the choice of capital structure management companies are listed in the Tehran Stock Exchange. Methods: This study was a cross-document using data after the event (Retrospective) in 1394 was performed. To select a sample of elimination sampling (screening) is used to determine the sample size was 123 companies. Results: The results showed that the variables of culture, return on equity, a significant positive impact on the capital structure (ROA, QTobins) and financial leverage and firm size variables and a significant negative impact on the capital structure (ROA, QTobins).Keywords: culture management, capital structure, ROA, QTobins, variables of culture
Procedia PDF Downloads 4642493 Motivation on Vocabulary and Reading Skill via Teacher-Created Website for Thai Students
Authors: P. Klinkesorn, S. Yordchim, T. Gibbs, J. Achariyopas
Abstract:
Vocabulary and reading skill were examined in terms of teaching and learning via teacher-created website. The aims of this study are 1) to survey students’ opinions on the teacher-created website for learning vocabulary and reading skill 2) to survey the students’ motivation for learning vocabulary and reading skill through the teacher-created website. Motivation was applied to the results of the questionnaires and interview forms. Finding suggests that Teacher-Created Website can increase students’ motivation to read more, build up a large stock of vocabulary and improve their understanding of the vocabulary. Implications for developing both social engagement and emotional satisfaction are discussed.Keywords: motivation, teacher-created website, Thai students, vocabulary and reading skill
Procedia PDF Downloads 4622492 Dexamethasone Treatment Deregulates Proteoglycans Expression in Normal Brain Tissue
Authors: A. Y. Tsidulko, T. M. Pankova, E. V. Grigorieva
Abstract:
High-grade gliomas are the most frequent and most aggressive brain tumors which are characterized by active invasion of tumor cells into the surrounding brain tissue, where the extracellular matrix (ECM) plays a crucial role. Disruption of ECM can be involved in anticancer drugs effectiveness, side-effects and also in tumor relapses. The anti-inflammatory agent dexamethasone is a common drug used during high-grade glioma treatment for alleviating cerebral edema. Although dexamethasone is widely used in the clinic, its effects on normal brain tissue ECM remain poorly investigated. It is known that proteoglycans (PGs) are a major component of the extracellular matrix in the central nervous system. In our work, we studied the effects of dexamethasone on the ECM proteoglycans (syndecan-1, glypican-1, perlecan, versican, brevican, NG2, decorin, biglican, lumican) using RT-PCR in the experimental animal model. It was shown that proteoglycans in rat brain have age-specific expression patterns. In early post-natal rat brain (8 days old rat pups) overall PGs expression was quite high and mainly expressed PGs were biglycan, decorin, and syndecan-1. The overall transcriptional activity of PGs in adult rat brain is 1.5-fold decreased compared to post-natal brain. The expression pattern was changed as well with biglycan, decorin, syndecan-1, glypican-1 and brevican becoming almost equally expressed. PGs expression patterns create a specific tissue microenvironment that differs in developing and adult brain. Dexamethasone regimen close to the one used in the clinic during high-grade glioma treatment significantly affects proteoglycans expression. It was shown that overall PGs transcription activity is 1.5-2-folds increased after dexamethasone treatment. The most up-regulated PGs were biglycan, decorin, and lumican. The PGs expression pattern in adult brain changed after treatment becoming quite close to the expression pattern in developing brain. It is known that microenvironment in developing tissues promotes cells proliferation while in adult tissues proliferation is usually suppressed. The changes occurring in the adult brain after dexamethasone treatment may lead to re-activation of cell proliferation due to signals from changed microenvironment. Taken together obtained data show that dexamethasone treatment significantly affects the normal brain ECM, creating the appropriate microenvironment for tumor cells proliferation and thus can reduce the effectiveness of anticancer treatment and promote tumor relapses. This work has been supported by a Russian Science Foundation (RSF Grant 16-15-10243)Keywords: dexamthasone, extracellular matrix, glioma, proteoglycan
Procedia PDF Downloads 1982491 Using Wearable Device with Neuron Network to Classify Severity of Sleep Disorder
Authors: Ru-Yin Yang, Chi Wu, Cheng-Yu Tsai, Yin-Tzu Lin, Wen-Te Liu
Abstract:
Background: Sleep breathing disorder (SDB) is a condition demonstrated by recurrent episodes of the airway obstruction leading to intermittent hypoxia and quality fragmentation during sleep time. However, the procedures for SDB severity examination remain complicated and costly. Objective: The objective of this study is to establish a simplified examination method for SDB by the respiratory impendence pattern sensor combining the signal processing and machine learning model. Methodologies: We records heart rate variability by the electrocardiogram and respiratory pattern by impendence. After the polysomnography (PSG) been done with the diagnosis of SDB by the apnea and hypopnea index (AHI), we calculate the episodes with the absence of flow and arousal index (AI) from device record. Subjects were divided into training and testing groups. Neuron network was used to establish a prediction model to classify the severity of the SDB by the AI, episodes, and body profiles. The performance was evaluated by classification in the testing group compared with PSG. Results: In this study, we enrolled 66 subjects (Male/Female: 37/29; Age:49.9±13.2) with the diagnosis of SDB in a sleep center in Taipei city, Taiwan, from 2015 to 2016. The accuracy from the confusion matrix on the test group by NN is 71.94 %. Conclusion: Based on the models, we established a prediction model for SDB by means of the wearable sensor. With more cases incoming and training, this system may be used to rapidly and automatically screen the risk of SDB in the future.Keywords: sleep breathing disorder, apnea and hypopnea index, body parameters, neuron network
Procedia PDF Downloads 1482490 Features of Rail Strength Analysis in Conditions of Increased Force Loading
Authors: G. Guramishvili, M. Moistsrapishvili, L. Andghuladze
Abstract:
In the article are considered the problems arising at increasing of transferring from rolling stock axles on rail loading from 210 KN up to 270 KN and is offered for rail strength analysis definition of rail force loading complex integral characteristic with taking into account all affecting force factors that is characterizing specific operation condition of rail structure and defines the working capability of structure. As result of analysis due mentioned method is obtained that in the conditions of 270 KN loading the rail meets the working assessment criteria of rail and rail structures: Strength, rail track stability, rail links stability and its transverse stability, traffic safety condition that is rather important for post-Soviet countries railways.Keywords: axial loading, rail force loading, rail structure, rail strength analysis, rail track stability
Procedia PDF Downloads 4232489 Evotrader: Bitcoin Trading Using Evolutionary Algorithms on Technical Analysis and Social Sentiment Data
Authors: Martin Pellon Consunji
Abstract:
Due to the rise in popularity of Bitcoin and other crypto assets as a store of wealth and speculative investment, there is an ever-growing demand for automated trading tools, such as bots, in order to gain an advantage over the market. Traditionally, trading in the stock market was done by professionals with years of training who understood patterns and exploited market opportunities in order to gain a profit. However, nowadays a larger portion of market participants are at minimum aided by market-data processing bots, which can generally generate more stable signals than the average human trader. The rise in trading bot usage can be accredited to the inherent advantages that bots have over humans in terms of processing large amounts of data, lack of emotions of fear or greed, and predicting market prices using past data and artificial intelligence, hence a growing number of approaches have been brought forward to tackle this task. However, the general limitation of these approaches can still be broken down to the fact that limited historical data doesn’t always determine the future, and that a lot of market participants are still human emotion-driven traders. Moreover, developing markets such as those of the cryptocurrency space have even less historical data to interpret than most other well-established markets. Due to this, some human traders have gone back to the tried-and-tested traditional technical analysis tools for exploiting market patterns and simplifying the broader spectrum of data that is involved in making market predictions. This paper proposes a method which uses neuro evolution techniques on both sentimental data and, the more traditionally human-consumed, technical analysis data in order to gain a more accurate forecast of future market behavior and account for the way both automated bots and human traders affect the market prices of Bitcoin and other cryptocurrencies. This study’s approach uses evolutionary algorithms to automatically develop increasingly improved populations of bots which, by using the latest inflows of market analysis and sentimental data, evolve to efficiently predict future market price movements. The effectiveness of the approach is validated by testing the system in a simulated historical trading scenario, a real Bitcoin market live trading scenario, and testing its robustness in other cryptocurrency and stock market scenarios. Experimental results during a 30-day period show that this method outperformed the buy and hold strategy by over 260% in terms of net profits, even when taking into consideration standard trading fees.Keywords: neuro-evolution, Bitcoin, trading bots, artificial neural networks, technical analysis, evolutionary algorithms
Procedia PDF Downloads 1222488 A Communication Signal Recognition Algorithm Based on Holder Coefficient Characteristics
Authors: Hui Zhang, Ye Tian, Fang Ye, Ziming Guo
Abstract:
Communication signal modulation recognition technology is one of the key technologies in the field of modern information warfare. At present, communication signal automatic modulation recognition methods are mainly divided into two major categories. One is the maximum likelihood hypothesis testing method based on decision theory, the other is a statistical pattern recognition method based on feature extraction. Now, the most commonly used is a statistical pattern recognition method, which includes feature extraction and classifier design. With the increasingly complex electromagnetic environment of communications, how to effectively extract the features of various signals at low signal-to-noise ratio (SNR) is a hot topic for scholars in various countries. To solve this problem, this paper proposes a feature extraction algorithm for the communication signal based on the improved Holder cloud feature. And the extreme learning machine (ELM) is used which aims at the problem of the real-time in the modern warfare to classify the extracted features. The algorithm extracts the digital features of the improved cloud model without deterministic information in a low SNR environment, and uses the improved cloud model to obtain more stable Holder cloud features and the performance of the algorithm is improved. This algorithm addresses the problem that a simple feature extraction algorithm based on Holder coefficient feature is difficult to recognize at low SNR, and it also has a better recognition accuracy. The results of simulations show that the approach in this paper still has a good classification result at low SNR, even when the SNR is -15dB, the recognition accuracy still reaches 76%.Keywords: communication signal, feature extraction, Holder coefficient, improved cloud model
Procedia PDF Downloads 1532487 Spatial Differentiation Patterns and Influencing Mechanism of Urban Greening in China: Based on Data of 289 Cities
Authors: Fangzheng Li, Xiong Li
Abstract:
Significant differences in urban greening have occurred in Chinese cities, which accompanied with China's rapid urbanization. However, few studies focused on the spatial differentiation of urban greening in China with large amounts of data. The spatial differentiation pattern, spatial correlation characteristics and the distribution shape of urban green space ratio, urban green coverage rate and public green area per capita were calculated and analyzed, using Global and Local Moran's I using data from 289 cities in 2014. We employed Spatial Lag Model and Spatial Error Model to assess the impacts of urbanization process on urban greening of China. Then we used Geographically Weighted Regression to estimate the spatial variations of the impacts. The results showed: 1. a significant spatial dependence and heterogeneity existed in urban greening values, and the differentiation patterns were featured by the administrative grade and the spatial agglomeration simultaneously; 2. it revealed that urbanization has a negative correlation with urban greening in Chinese cities. Among the indices, the the proportion of secondary industry, urbanization rate, population and the scale of urban land use has significant negative correlation with the urban greening of China. Automobile density and per capita Gross Domestic Product has no significant impact. The results of GWR modeling showed that the relationship between urbanization and urban greening was not constant in space. Further, the local parameter estimates suggested significant spatial variation in the impacts of various urbanization factors on urban greening.Keywords: China’s urbanization, geographically weighted regression, spatial differentiation pattern, urban greening
Procedia PDF Downloads 4592486 Clustering-Based Computational Workload Minimization in Ontology Matching
Authors: Mansir Abubakar, Hazlina Hamdan, Norwati Mustapha, Teh Noranis Mohd Aris
Abstract:
In order to build a matching pattern for each class correspondences of ontology, it is required to specify a set of attribute correspondences across two corresponding classes by clustering. Clustering reduces the size of potential attribute correspondences considered in the matching activity, which will significantly reduce the computation workload; otherwise, all attributes of a class should be compared with all attributes of the corresponding class. Most existing ontology matching approaches lack scalable attributes discovery methods, such as cluster-based attribute searching. This problem makes ontology matching activity computationally expensive. It is therefore vital in ontology matching to design a scalable element or attribute correspondence discovery method that would reduce the size of potential elements correspondences during mapping thereby reduce the computational workload in a matching process as a whole. The objective of this work is 1) to design a clustering method for discovering similar attributes correspondences and relationships between ontologies, 2) to discover element correspondences by classifying elements of each class based on element’s value features using K-medoids clustering technique. Discovering attribute correspondence is highly required for comparing instances when matching two ontologies. During the matching process, any two instances across two different data sets should be compared to their attribute values, so that they can be regarded to be the same or not. Intuitively, any two instances that come from classes across which there is a class correspondence are likely to be identical to each other. Besides, any two instances that hold more similar attribute values are more likely to be matched than the ones with less similar attribute values. Most of the time, similar attribute values exist in the two instances across which there is an attribute correspondence. This work will present how to classify attributes of each class with K-medoids clustering, then, clustered groups to be mapped by their statistical value features. We will also show how to map attributes of a clustered group to attributes of the mapped clustered group, generating a set of potential attribute correspondences that would be applied to generate a matching pattern. The K-medoids clustering phase would largely reduce the number of attribute pairs that are not corresponding for comparing instances as only the coverage probability of attributes pairs that reaches 100% and attributes above the specified threshold can be considered as potential attributes for a matching. Using clustering will reduce the size of potential elements correspondences to be considered during mapping activity, which will in turn reduce the computational workload significantly. Otherwise, all element of the class in source ontology have to be compared with all elements of the corresponding classes in target ontology. K-medoids can ably cluster attributes of each class, so that a proportion of attribute pairs that are not corresponding would not be considered when constructing the matching pattern.Keywords: attribute correspondence, clustering, computational workload, k-medoids clustering, ontology matching
Procedia PDF Downloads 2472485 Development of 111In-DOTMP as a New Bone Imaging Agent
Authors: H. Yousefnia, S. Zolghadri, AR. Jalilian, A. Mirzaei, A. Bahrami-Samani, M. Erfani
Abstract:
The objective of this study is the preparation of 111In-DOTMP as a new bone imaging agent. 111In was produced at the Agricultural, Medical and Industrial Research School (AMIRS) by means of 30 MeV cyclotron via natCd(p,x)111In reaction. Complexion of In‐111 with DOTMP was carried out by adding 0.1 ml of the stock solution (50 mg/ml in 2 N NaoH) to the vial containing 1 mCi of 111In. pH of the mixture was adjusted to 7-8 by means of phosphate buffer. The radiochemical purity of the complex at the optimized condition was higher than 98% (by using whatman No.1 paper in NH4OH:MeOH: H2O (0.2:2:4)). Both the biodistribution studies and SPECT imaging indicated high bone uptake. The ratio of bone to other soft tissue accumulation was significantly high which permit to observe high quality images. The results show that 111In-DOTMP can be used as a suitable tracer for diagnosis of bone metastases by SPECT imaging.Keywords: biodistribution, DOTMP, 111In, SPECT
Procedia PDF Downloads 5312484 Antibiotic Prescribing Pattern and Associated Risk Factors Promoting Antibiotic Resistance, a Cross Sectional Study in a Regional Hospital in Ghana
Authors: Nicholas Agyepong, Paul Gyan
Abstract:
Inappropriate prescribing of antibiotic is a common healthcare concern globally resulted in an increased risk of adverse reactions and the emergence of antimicrobial resistance. The wrong antibiotic prescribing habits may lead to ineffective and unsafe treatment, worsening of disease condition, and thus increase in health care costs. The study was to examine the antibiotic prescribing pattern and associated risk factors at Regional Hospital in the Bono region of Ghana. A retrospective cross-sectional study was conducted to describe the current prescribing practices at the Hospital from January 2014 to December, 2021. A systematic random sampling method was used to select the participants for the study. STATA version 16 software was used for data management and analysis. Descriptive statistics and logistic regression analysis were used to analyze the data. Statistical significance set at p<0.05. Antibiotic consumption was equivalent to 11 per 1000 inhabitants consuming 1 DDD per day. Most common prescribed antibiotic was amoxicillin/clavulanic acid (14.39%) followed by erythromycin (11.44%), and ciprofloxacin (11.36%). Antibiotics prescription have been steadily increased over the past eight years (2014: n=59,280 to 2021: n=190,320). Prescribers above the age of 35 were more likely to prescribe antibiotics than those between the ages of 20 and 25 (COR=21.00; 95% CI: 1.78 – 48.10; p=0.016). Prescribers with at least 6 years of experience were also significantly more likely to prescribe antibiotics than those with at most 5 years of experience (COR=14.17; 95% CI: 2.39 – 84.07; p=0.004). Thus, the establishment of an antibiotic stewardship program in the hospitals is imperative, and further studies need to be conducted in other facilities to establish the national antibiotic prescription guideline.Keywords: antibiotic, antimicrobial resistance, prescription, prescribers
Procedia PDF Downloads 452483 Modeling of Production Lines Systems with Layout Constraints
Authors: Sadegh Abebi
Abstract:
There are problems with estimating time of product process of products, especially when there is variable serving time, like control stage. These problems will cause overestimation of process time. Layout constraints, reworking constraints and inflexible product schedule in multi product lines, needs a precise planning to reduce volume in particular situation of line stock. In this article, by analyzing real queue systems with layout constraints and by using concepts and principles of Markov chain in queue theory, a hybrid model has been presented. This model can be a base to assess queue systems with probable parameters of service. Here by presenting a case study, the proposed model will be described. so, production lines of a home application manufacturer will be analyzed.Keywords: Queuing theory, Markov Chain, layout, line balance
Procedia PDF Downloads 6212482 Effect of Infill Density and Pattern on the Compressive Strength of Parts Produced by Polylactic Acid Filament Using Fused Deposition Modelling
Authors: G. K. Awari, Vishwajeet V. Ambade, S. W. Rajurkar
Abstract:
The field of additive manufacturing is growing, and discoveries are being made. 3D printing machines are also being developed to accommodate a wider range of 3D printing materials, including plastics, metals (metal AM powders), composites, filaments, and other materials. There are numerous printing materials available for industrial additive manufacturing. Such materials have their unique characteristics, advantages, and disadvantages. In order to avoid errors in additive manufacturing, key elements such as 3D printing material type, texture, cost, printing technique and procedure, and so on must be examined. It can be complex to select the best material for a particular job. Polylactic acid (PLA) is made from sugar cane or cornstarch, both of which are renewable resources. "Black plastic" is another name for it. Because it is safe to use and print, it is frequently used in primary and secondary schools. This is also how FDM screen printing is done. PLA is simple to print because of its low warping impact. It's also possible to print it on a cold surface. When opposed to ABS, it allows for sharper edges and features to be printed. This material comes in a wide range of colours. Polylactic acid (PLA) is the most common material used in fused deposition modelling (FDM). PLA can be used to print a wide range of components, including medical implants, household items, and mechanical parts. The mechanical behaviour of the printed item is affected by variations in infill patterns that are subjected to compressive tests in the current investigation to examine their behaviour under compressive stresses.Keywords: fused deposition modelling, polylactic acid, infill density, infill pattern, compressive strength
Procedia PDF Downloads 732481 An Improved Adaptive Dot-Shape Beamforming Algorithm Research on Frequency Diverse Array
Authors: Yanping Liao, Zenan Wu, Ruigang Zhao
Abstract:
Frequency diverse array (FDA) beamforming is a technology developed in recent years, and its antenna pattern has a unique angle-distance-dependent characteristic. However, the beam is always required to have strong concentration, high resolution and low sidelobe level to form the point-to-point interference in the concentrated set. In order to eliminate the angle-distance coupling of the traditional FDA and to make the beam energy more concentrated, this paper adopts a multi-carrier FDA structure based on proposed power exponential frequency offset to improve the array structure and frequency offset of the traditional FDA. The simulation results show that the beam pattern of the array can form a dot-shape beam with more concentrated energy, and its resolution and sidelobe level performance are improved. However, the covariance matrix of the signal in the traditional adaptive beamforming algorithm is estimated by the finite-time snapshot data. When the number of snapshots is limited, the algorithm has an underestimation problem, which leads to the estimation error of the covariance matrix to cause beam distortion, so that the output pattern cannot form a dot-shape beam. And it also has main lobe deviation and high sidelobe level problems in the case of limited snapshot. Aiming at these problems, an adaptive beamforming technique based on exponential correction for multi-carrier FDA is proposed to improve beamforming robustness. The steps are as follows: first, the beamforming of the multi-carrier FDA is formed under linear constrained minimum variance (LCMV) criteria. Then the eigenvalue decomposition of the covariance matrix is performed to obtain the diagonal matrix composed of the interference subspace, the noise subspace and the corresponding eigenvalues. Finally, the correction index is introduced to exponentially correct the small eigenvalues of the noise subspace, improve the divergence of small eigenvalues in the noise subspace, and improve the performance of beamforming. The theoretical analysis and simulation results show that the proposed algorithm can make the multi-carrier FDA form a dot-shape beam at limited snapshots, reduce the sidelobe level, improve the robustness of beamforming, and have better performance.Keywords: adaptive beamforming, correction index, limited snapshot, multi-carrier frequency diverse array, robust
Procedia PDF Downloads 1292480 Sandstone Petrology of the Kolhan Basin, Eastern India: Implications for the Tectonic Evolution of a Half-Graben
Authors: Rohini Das, Subhasish Das, Smruti Rekha Sahoo, Shagupta Yesmin
Abstract:
The Paleoproterozoic Kolhan Group (Purana) ensemble constitutes the youngest lithostratigraphic 'outlier' in the Singhbhum Archaean craton. The Kolhan unconformably overlies both the Singhbhum granite and the Iron Ore Group (IOG). Representing a typical sandstone-shale ( +/- carbonates) sequence, the Kolhan is characterized by the development of thin and discontinuous patches of basal conglomerates draped by sandstone beds. The IOG-fault limits the western 'distal' margin of the Kolhan basin showing evidence of passive subsidence subsequent to the initial rifting stage. The basin evolved as a half-graben under the influence of an extensional stress regime. The assumption of a tectonic setting for the NE-SW trending Kolhan basin possibly relates to the basin opening to the E-W extensional stress system that prevailed during the development of the Newer Dolerite dyke. The Paleoproterozoic age of the Kolhan basin is based on the consideration of the conformable stress pattern responsible both for the basin opening and the development of the conjugate fracture system along which the Newer Dolerite dykes intruded the Singhbhum Archaean craton. The Kolhan sandstones show progressive change towards greater textural and mineralogical maturity in its upbuilding. The trend of variations in different mineralogical and textural attributes, however, exhibits inflections at different lithological levels. Petrological studies collectively indicate that the sandstones were dominantly derived from a weathered granitic crust under a humid climatic condition. Provenance-derived variations in sandstone compositions are therefore a key in unraveling regional tectonic histories. The basin axis controlled the progradation direction which was likely driven by climatically induced sediment influx, a eustatic fall, or both. In the case of the incongruent shift, increased sediment supply permitted the rivers to cross the basinal deep. Temporal association of the Kolhan with tectonic structures in the belt indicates that syn-tectonic thrust uplift, not isostatic uplift or climate, caused the influx of quartz. The sedimentation pattern in the Kolhan reflects a change from braided fluvial-ephemeral pattern to a fan-delta-lacustrine type. The channel geometries and the climate exerted a major control on the processes of sediment transfer. Repeated fault controlled uplift of the source followed by subsidence and forced regression, generated multiple sediment cyclicity that led to the fluvial-fan delta sedimentation pattern. Intermittent uplift of the faulted blocks exposed fresh bedrock to mechanical weathering that generated a large amount of detritus and resulted to forced regressions, repeatedly disrupting the cycles which may reflect a stratigraphic response of connected rift basins at the early stage of extension. The marked variations in the thickness of the fan delta succession and the stacking pattern in different measured profiles reflect the overriding tectonic controls on fan delta evolution. The accumulated fault displacement created higher accommodation and thicker delta sequences. Intermittent uplift of fault blocks exposed fresh bedrock to mechanical weathering, generated a large amount of detritus, and resulted in forced closure of the land-locked basin, repeatedly disrupting the fining upward pattern. The control of source rock lithology or climate was of secondary importance to tectonic effects. Such a retrograding fan delta could be a stratigraphic response of connected rift basins at the early stage of extension.Keywords: Kolhan basin, petrology, sandstone, tectonics
Procedia PDF Downloads 5012479 Heuristic Spatial-Spectral Hyperspectral Image Segmentation Using Bands Quartile Box Plot Profiles
Authors: Mohamed A. Almoghalis, Osman M. Hegazy, Ibrahim F. Imam, Ali H. Elbastawessy
Abstract:
This paper presents a new hyperspectral image segmentation scheme with respect to both spatial and spectral contexts. The scheme uses the 8-pixels spatial pattern to build a weight structure that holds the number of outlier bands for each pixel among its neighborhood windows in different directions. The number of outlier bands for a pixel is obtained using bands quartile box plots profile among spatial 8-pixels pattern windows. The quartile box plot weight structure represents the spatial-spectral context in the image. Instead of starting segmentation process by single pixels, the proposed methodology starts by pixels groups that proved to share the same spectral features with respect to their spatial context. As a result, the segmentation scheme starts with Jigsaw pieces that build a mosaic image. The following step builds a model for each Jigsaw piece in the mosaic image. Each Jigsaw piece will be merged with another Jigsaw piece using KNN applied to their bands' quartile box plots profiles. The scheme iterates till required number of segments reached. Experiments use two data sets obtained from Earth Observer 1 (EO-1) sensor for Egypt and France. Initial results qualitative analysis showed encouraging results compared with ground truth. Quantitative analysis for the results will be included in the final paper.Keywords: hyperspectral image segmentation, image processing, remote sensing, box plot
Procedia PDF Downloads 6032478 Investigating the Securities on Market Development in Georgia
Authors: Shota Gulbani
Abstract:
At the present stage, for the countries with developing economies, studying, and researching financial markets, gains special importance, because the situation of financial markets shapes an exact views about the carried out economic policy of the country. Besides, it’s unimaginable any country with developed economy, without healthy and functioning financial markets, whereas, for any kind of business it has got a great importance in terms of finding diversified and alternative capital. In this regard; it should be noted that the segments of Georgian financial markets are developed quite unequally, as evidenced by the fact that the Georgian financial sector is represented by 93% of commercial banks, what does not create an conformable environment for non-bank financial institutions development. In spite of the fact that Georgia has got one of the best banking system of region, it is important to properly analyze that this system should not hinder the development of other participants of Georgian financial sector.Keywords: financial markets, macroeconomics, investments, stock exchange
Procedia PDF Downloads 3552477 Evaluation of Initial Graft Tension during ACL Reconstruction Using a Three-Dimensional Computational Finite Element Simulation: Effect of the Combination of a Band of Gracilis with the Former Graft
Authors: S. Alireza Mirghasemi, Javad Parvizi, Narges R. Gabaran, Shervin Rashidinia, Mahdi M. Bijanabadi, Dariush G. Savadkoohi
Abstract:
Background: The anterior cruciate ligament is one of the most frequent ligament to be disrupted. Surgical reconstruction of the anterior cruciate ligament is a common practice to treat the disability or chronic instability of the knee. Several factors associated with success or failure of the ACL reconstruction including preoperative laxity of the knee, selection of the graft material, surgical technique, graft tension, and postoperative rehabilitation. We aimed to examine the biomechanical properties of any graft type and initial graft tensioning during ACL reconstruction using 3-dimensional computational finite element simulation. Methods: In this paper, 3-dimensional model of the knee was constructed to investigate the effect of graft tensioning on the knee joint biomechanics. Four different grafts were compared: 1) Bone-patellar tendon-bone graft (BPTB) 2) Hamstring tendon 3) BPTB and a band of gracilis4) Hamstring and a band of gracilis. The initial graft tension was set as “0, 20, 40, or 60N”. The anterior loading was set to 134 N. Findings: The resulting stress pattern and deflection in any of these models were compared to that of the intact knee. The obtained results showed that the combination of a band of gracilis with the former graft (BPTB or Hamstring) increases the structural stiffness of the knee. Conclusion: Required pretension during surgery decreases significantly by adding a band of gracilis to the proper graft.Keywords: ACL reconstruction, deflection, finite element simulation, stress pattern
Procedia PDF Downloads 2972476 Association of Maternal Diet Quality Indices and Dietary Patterns during Lactation and the Growth of Exclusive Breastfed Infant
Authors: Leila Azadbakht, Maedeh Moradi, Mohammad Reza Merasi, Farzaneh Jahangir
Abstract:
Maternal dietary intake during lactation might affect the growth rate of an exclusive breastfed infant. The present study was conducted to evaluate the effect of maternal dietary patterns and quality during lactation on the growth of the exclusive breastfed infant. Methods: 484 healthy lactating mothers with their infant were enrolled in this study. Only exclusive breastfed infants were included in this study which was conducted in Iran. Dietary intake of lactating mothers was assessed using a validated and reliable semi-quantitative food frequency questionnaire. Diet quality indices such as alternative Healthy eating index (HEI), Dietary energy density (DED), and adherence to Mediterranean dietary pattern score, Nordic and dietary approaches to stop hypertension (DASH) eating pattern were created. Anthropometric features of infant (weight, height, and head circumference) were recorded at birth, two and four months. Results: Weight, length, weight for height and head circumference of infants at two months and four months age were mostly in the normal range among those that mothers adhered more to the HEI in lactation period (normal weight: 61%; normal height: 59%). The prevalence of stunting at four months of age among those whose mothers adhered more to the HEI was 31% lower than those with the least adherence to HEI. Mothers in the top tertiles of HEI score had the lowest frequency of having underweight infants (18% vs. 33%; P=0.03). Odds ratio of being overweight or obese at four months age was the lowest among those infants whose mothers adhered more to the HEI (OR: 0.67 vs 0.91; Ptrend=0.03). However, there was not any significant association between adherence of mothers to Mediterranean diet as well as DASH diet and Nordic eating pattern and the growth of infants (none of weight, height or head circumference). Infant weight, length, weight for height and head circumference at two months and four months did not show significant differences among different tertile categories of mothers’ DED. Conclusions: Higher diet quality indices and more adherence of lactating mother to HEI (as an indicator of diet quality) may be associated with better growth indices of the breastfed infant. However, it seems that DED of the lactating mother does not affect the growth of the breastfed infant. Adherence to the different dietary patterns such as Mediterranean, DASH or Nordic among mothers had no different effect on the growth indices of the infants. However, higher diet quality indices and more adherence of lactating mother to HEI may be associated with better growth indices of the breastfed infant. Breastfeeding is a complete way that is not affected much by the dietary patterns of the mother. However, better diet quality might be associated with better growth.Keywords: breastfeeding, growth, infant, maternal diet
Procedia PDF Downloads 2082475 A Quantitative Structure-Adsorption Study on Novel and Emerging Adsorbent Materials
Authors: Marc Sader, Michiel Stock, Bernard De Baets
Abstract:
Considering a large amount of adsorption data of adsorbate gases on adsorbent materials in literature, it is interesting to predict such adsorption data without experimentation. A quantitative structure-activity relationship (QSAR) is developed to correlate molecular characteristics of gases and existing knowledge of materials with their respective adsorption properties. The application of Random Forest, a machine learning method, on a set of adsorption isotherms at a wide range of partial pressures and concentrations is studied. The predicted adsorption isotherms are fitted to several adsorption equations to estimate the adsorption properties. To impute the adsorption properties of desired gases on desired materials, leave-one-out cross-validation is employed. Extensive experimental results for a range of settings are reported.Keywords: adsorption, predictive modeling, QSAR, random forest
Procedia PDF Downloads 2252474 Development of a Green Star Certification Tool for Existing Buildings in South Africa
Authors: Bouwer Kleynhans
Abstract:
The built environment is responsible for about 40% of the world’s energy consumption and generates one third of global carbon dioxide emissions. The Green Building Council of South Africa’s (GBCSA) current rating tools are all for new buildings. By far the largest portion of buildings exist stock and therefore the need to develop a certification tool for existing buildings. Direct energy measurement comprises 27% of the total available points in this tool. The aim of this paper is to describe the development process of a green star certification tool for existing buildings in South Africa with specific emphasis on the energy measurement criteria. Successful implementation of this tool within the property market will ensure a reduced carbon footprint of buildings.Keywords: certification tool, development process, energy consumption, green buildings
Procedia PDF Downloads 3202473 Investigating the Effect of the Shape of the Side Supports of the Gates of the Gotvand Reservoir Dam (from the Peak Overflows) on the Narrowing Coefficients
Authors: M. Abbasi
Abstract:
A spillway structure is used to pass excess water and floods from upstream or upstream to downstream or tributary. The spillway is considered one of the most key members of the dam, and the failure of many dams is attributed to the inefficiency of their spillway. Weirs should be selected as strong, reliable and high-performance structures, and weirs should be ready for use in all conditions and able to drain the flood so that we do not witness many casualties and financial losses when a flood occurs. The purpose of this study is to simulate the flow pattern passing over the peak spillway in order to optimize and adjust the height of the spillway walls. In this research, the effect of the shape of the side wings on the flow pattern over the peak spillways of the Gotvand reservoir dam was simulated and modelled using Flow3D software. In this research, side wings with rounded walls with six different approach angles were used. In addition, the different value of H/Hd was used to check the effect of the tank head. The results showed that with the constant H/Hd ratio and the increase of the approach angle of the side wing, the flow depth first decreases and then increases. These changes were the opposite regarding the depth average speed of the flow and the depth average concentration of the air entering the flow. At the same time, with the constant angle of approach of the side wing and with the increase of H/Hd ratio, the flow depth increases. In general, a correct understanding of the operation of overflows and a correct design can significantly reduce construction costs and solve flooding problems.Keywords: effect of the shape, gotvand reservoir dam, narrowing coefficients, supports of the gates
Procedia PDF Downloads 642472 Funding Innovative Activities in Firms: The Ownership Structure and Governance Linkage - Evidence from Mongolia
Authors: Ernest Nweke, Enkhtuya Bavuudorj
Abstract:
The harsh realities of the scandalous failure of several notable corporations in the past two decades have inextricably resulted in a surge in corporate governance studies. Nevertheless, little or no attention has been paid to corporate governance studies in Mongolian firms and much less to the comprehension of the correlation among ownership structure, corporate governance mechanisms and trend of innovative activities. Innovation is the bed rock of enterprise success. However, the funding and support for innovative activities in many firms are to a great extent determined by the incentives provided by the firm’s internal and external governance mechanisms. Mongolia is an East Asian country currently undergoing a fast-paced transition from socialist to democratic system and it is a widely held view that private ownership as against public ownership fosters innovation. Hence, following the privatization policy of Mongolian Government which has led to the transfer of the ownership of hitherto state controlled and state directed firms to private individuals and organizations, expectations are high that sufficient motivation would be provided for firm managers to engage in innovative activities. This research focuses on the relationship between ownership structure, corporate governance on one hand and the level of innovation on the hand. The paper is empirical in nature and derives data from both reliable secondary and primary sources. Secondary data for the study was in respect of ownership structure of Mongolian listed firms and innovation trend in Mongolia generally. These were analyzed using tables, charts, bars and percentages. Personal interviews and surveys were held to collect primary data. Primary data was in respect of corporate governance practices in Mongolian firms and were collected using structured questionnaire. Out of a population of three hundred and twenty (320) companies listed on the Mongolian Stock Exchange (MSE), a sample size of thirty (30) randomly selected companies was utilized for the study. Five (5) management level employees were surveyed in each selected firm giving a total of one hundred and fifty (150) respondents. Data collected were analyzed and research hypotheses tested using Chi-Square test statistic. Research results showed that corporate governance mechanisms were better and have significantly improved overtime in privately held as opposed to publicly owned firms. Consequently, the levels of innovation in privately held firms were considerably higher. It was concluded that a significant and positive relationship exists between private ownership and good corporate governance on one hand and the level of funding provided for innovative activities in Mongolian firms on the other hand.Keywords: corporate governance, innovation, ownership structure, stock exchange
Procedia PDF Downloads 1942471 Identification of Damage Mechanisms in Interlock Reinforced Composites Using a Pattern Recognition Approach of Acoustic Emission Data
Authors: M. Kharrat, G. Moreau, Z. Aboura
Abstract:
The latest advances in the weaving industry, combined with increasingly sophisticated means of materials processing, have made it possible to produce complex 3D composite structures. Mainly used in aeronautics, composite materials with 3D architecture offer better mechanical properties than 2D reinforced composites. Nevertheless, these materials require a good understanding of their behavior. Because of the complexity of such materials, the damage mechanisms are multiple, and the scenario of their appearance and evolution depends on the nature of the exerted solicitations. The AE technique is a well-established tool for discriminating between the damage mechanisms. Suitable sensors are used during the mechanical test to monitor the structural health of the material. Relevant AE-features are then extracted from the recorded signals, followed by a data analysis using pattern recognition techniques. In order to better understand the damage scenarios of interlock composite materials, a multi-instrumentation was set-up in this work for tracking damage initiation and development, especially in the vicinity of the first significant damage, called macro-damage. The deployed instrumentation includes video-microscopy, Digital Image Correlation, Acoustic Emission (AE) and micro-tomography. In this study, a multi-variable AE data analysis approach was developed for the discrimination between the different signal classes representing the different emission sources during testing. An unsupervised classification technique was adopted to perform AE data clustering without a priori knowledge. The multi-instrumentation and the clustered data served to label the different signal families and to build a learning database. This latter is useful to construct a supervised classifier that can be used for automatic recognition of the AE signals. Several materials with different ingredients were tested under various solicitations in order to feed and enrich the learning database. The methodology presented in this work was useful to refine the damage threshold for the new generation materials. The damage mechanisms around this threshold were highlighted. The obtained signal classes were assigned to the different mechanisms. The isolation of a 'noise' class makes it possible to discriminate between the signals emitted by damages without resorting to spatial filtering or increasing the AE detection threshold. The approach was validated on different material configurations. For the same material and the same type of solicitation, the identified classes are reproducible and little disturbed. The supervised classifier constructed based on the learning database was able to predict the labels of the classified signals.Keywords: acoustic emission, classifier, damage mechanisms, first damage threshold, interlock composite materials, pattern recognition
Procedia PDF Downloads 1542470 Modelling of Passengers Exchange between Trains and Platforms
Authors: Guillaume Craveur
Abstract:
The evaluation of the passenger exchange time is necessary for railway operators in order to optimize and dimension rail traffic. Several influential parameters are identified and studied. Each parameter leads to a modeling completed with the buildingEXODUS software. The objective is the modelling of passenger exchanges measured by passenger counting. Population size is dimensioned using passenger counting files which are a report of the train service and contain following useful informations: number of passengers who get on and leave the train, exchange time. These information are collected by sensors placed at the top of each train door. With passenger counting files it is possible to know how many people are engaged in the exchange and how long is the exchange, but it is not possible to know passenger flow of the door. All the information about observed exchanges are thus not available. For this reason and in order to minimize inaccuracies, only short exchanges (less than 30 seconds) with a maximum of people are performed.Keywords: passengers exchange, numerical tools, rolling stock, platforms
Procedia PDF Downloads 2262469 A Study on the Determinants of Earnings Response Coefficient in an Emerging Market
Authors: Bita Mashayekhi, Zeynab Lotfi Aghel
Abstract:
The determinants of Earnings Response Coefficient (ERC), including firm size, earnings growth, and earnings persistence are studied in this research. These determinants are supposed to be moderator variables that affect ERC and Return Response Coefficient. The research sample contains 82 Iranian listed companies in Tehran Stock Exchange (TSE) from 2001 to 2012. Gathered data have been processed by EVIEWS Software. Results show a significant positive relation between firm size and ERC, and also between earnings growth and ERC; however, there is no significant relation between earnings persistence and ERC. Also, the results show that ERC will be increased by firm size and earnings growth, but there is no relation between earnings persistence and ERC.Keywords: earnings response coefficient (ERC), return response coefficient (RRC), firm size, earnings growth, earnings persistence
Procedia PDF Downloads 3282468 FRATSAN: A New Software for Fractal Analysis of Signals
Authors: Hamidreza Namazi
Abstract:
Fractal analysis is assessing fractal characteristics of data. It consists of several methods to assign fractal characteristics to a dataset which may be a theoretical dataset or a pattern or signal extracted from phenomena including natural geometric objects, sound, market fluctuations, heart rates, digital images, molecular motion, networks, etc. Fractal analysis is now widely used in all areas of science. An important limitation of fractal analysis is that arriving at an empirically determined fractal dimension does not necessarily prove that a pattern is fractal; rather, other essential characteristics have to be considered. For this purpose a Visual C++ based software called FRATSAN (FRActal Time Series ANalyser) was developed which extract information from signals through three measures. These measures are Fractal Dimensions, Jeffrey’s Measure and Hurst Exponent. After computing these measures, the software plots the graphs for each measure. Besides computing three measures the software can classify whether the signal is fractal or no. In fact, the software uses a dynamic method of analysis for all the measures. A sliding window is selected with a value equal to 10% of the total number of data entries. This sliding window is moved one data entry at a time to obtain all the measures. This makes the computation very sensitive to slight changes in data, thereby giving the user an acute analysis of the data. In order to test the performance of this software a set of EEG signals was given as input and the results were computed and plotted. This software is useful not only for fundamental fractal analysis of signals but can be used for other purposes. For instance by analyzing the Hurst exponent plot of a given EEG signal in patients with epilepsy the onset of seizure can be predicted by noticing the sudden changes in the plot.Keywords: EEG signals, fractal analysis, fractal dimension, hurst exponent, Jeffrey’s measure
Procedia PDF Downloads 4662467 An Image Processing Scheme for Skin Fungal Disease Identification
Authors: A. A. M. A. S. S. Perera, L. A. Ranasinghe, T. K. H. Nimeshika, D. M. Dhanushka Dissanayake, Namalie Walgampaya
Abstract:
Nowadays, skin fungal diseases are mostly found in people of tropical countries like Sri Lanka. A skin fungal disease is a particular kind of illness caused by fungus. These diseases have various dangerous effects on the skin and keep on spreading over time. It becomes important to identify these diseases at their initial stage to control it from spreading. This paper presents an automated skin fungal disease identification system implemented to speed up the diagnosis process by identifying skin fungal infections in digital images. An image of the diseased skin lesion is acquired and a comprehensive computer vision and image processing scheme is used to process the image for the disease identification. This includes colour analysis using RGB and HSV colour models, texture classification using Grey Level Run Length Matrix, Grey Level Co-Occurrence Matrix and Local Binary Pattern, Object detection, Shape Identification and many more. This paper presents the approach and its outcome for identification of four most common skin fungal infections, namely, Tinea Corporis, Sporotrichosis, Malassezia and Onychomycosis. The main intention of this research is to provide an automated skin fungal disease identification system that increase the diagnostic quality, shorten the time-to-diagnosis and improve the efficiency of detection and successful treatment for skin fungal diseases.Keywords: Circularity Index, Grey Level Run Length Matrix, Grey Level Co-Occurrence Matrix, Local Binary Pattern, Object detection, Ring Detection, Shape Identification
Procedia PDF Downloads 228