Search results for: robust filtering
933 Italian Speech Vowels Landmark Detection through the Legacy Tool 'xkl' with Integration of Combined CNNs and RNNs
Authors: Kaleem Kashif, Tayyaba Anam, Yizhi Wu
Abstract:
This paper introduces a methodology for advancing Italian speech vowels landmark detection within the distinctive feature-based speech recognition domain. Leveraging the legacy tool 'xkl' by integrating combined convolutional neural networks (CNNs) and recurrent neural networks (RNNs), the study presents a comprehensive enhancement to the 'xkl' legacy software. This integration incorporates re-assigned spectrogram methodologies, enabling meticulous acoustic analysis. Simultaneously, our proposed model, integrating combined CNNs and RNNs, demonstrates unprecedented precision and robustness in landmark detection. The augmentation of re-assigned spectrogram fusion within the 'xkl' software signifies a meticulous advancement, particularly enhancing precision related to vowel formant estimation. This augmentation catalyzes unparalleled accuracy in landmark detection, resulting in a substantial performance leap compared to conventional methods. The proposed model emerges as a state-of-the-art solution in the distinctive feature-based speech recognition systems domain. In the realm of deep learning, a synergistic integration of combined CNNs and RNNs is introduced, endowed with specialized temporal embeddings, harnessing self-attention mechanisms, and positional embeddings. The proposed model allows it to excel in capturing intricate dependencies within Italian speech vowels, rendering it highly adaptable and sophisticated in the distinctive feature domain. Furthermore, our advanced temporal modeling approach employs Bayesian temporal encoding, refining the measurement of inter-landmark intervals. Comparative analysis against state-of-the-art models reveals a substantial improvement in accuracy, highlighting the robustness and efficacy of the proposed methodology. Upon rigorous testing on a database (LaMIT) speech recorded in a silent room by four Italian native speakers, the landmark detector demonstrates exceptional performance, achieving a 95% true detection rate and a 10% false detection rate. A majority of missed landmarks were observed in proximity to reduced vowels. These promising results underscore the robust identifiability of landmarks within the speech waveform, establishing the feasibility of employing a landmark detector as a front end in a speech recognition system. The synergistic integration of re-assigned spectrogram fusion, CNNs, RNNs, and Bayesian temporal encoding not only signifies a significant advancement in Italian speech vowels landmark detection but also positions the proposed model as a leader in the field. The model offers distinct advantages, including unparalleled accuracy, adaptability, and sophistication, marking a milestone in the intersection of deep learning and distinctive feature-based speech recognition. This work contributes to the broader scientific community by presenting a methodologically rigorous framework for enhancing landmark detection accuracy in Italian speech vowels. The integration of cutting-edge techniques establishes a foundation for future advancements in speech signal processing, emphasizing the potential of the proposed model in practical applications across various domains requiring robust speech recognition systems.Keywords: landmark detection, acoustic analysis, convolutional neural network, recurrent neural network
Procedia PDF Downloads 65932 Investigating The Nexus Between Energy Deficiency, Environmental Sustainability and Renewable Energy: The Role of Energy Trade in Global Perspectives
Authors: Fahim Ullah, Muhammad Usman
Abstract:
Energy consumption and environmental sustainability are hard challenges of 21st century. Energy richness increases environmental pollution while energy poverty hinders economic growth. Considering these two aspects, present study calculates energy deficiency and examines the role of renewable energy to overcome rising energy deficiency and carbon emission for selected countries from 1990 to 2021. For empirical analysis, this study uses methods of moments panel quantile regression analysis and to check the robustness, study used panel quantile robust analysis. Graphical analysis indicated rising global energy deficiency since last three decades where energy consumption is higher than energy production. Empirical results showed that renewable energy is a significant factor for reducing energy deficiency. Secondly, the energy deficiency increases carbon emission level and again renewable energy decreases emissions level. This study recommends that global energy deficiency and rising carbon emissions can be controlled through structural change in the form of energy transition to replace non-renewable resources with renewable resources.Keywords: energy deficiency, renewable energy, carbon emission, energy trade, PQL analysis
Procedia PDF Downloads 64931 Eco-Friendly Softener Extracted from Ricinus communis (Castor) Seeds for Organic Cotton Fabric
Authors: Fisaha Asmelash
Abstract:
The processing of textiles to achieve a desired handle is a crucial aspect of finishing technology. Softeners can enhance the properties of textiles, such as softness, smoothness, elasticity, hydrophilicity, antistatic properties, and soil release properties, depending on the chemical nature used. However, human skin is sensitive to rough textiles, making softeners increasingly important. Although synthetic softeners are available, they are often expensive and can cause allergic reactions on human skin. This paper aims to extract a natural softener from Ricinus communis and produce an eco-friendly and user-friendly alternative due to its 100% herbal and organic nature. Crushed Ricinus communis seeds were soaked in a mechanical oil extractor for one hour with a 100g cotton fabric sample. The defatted cake or residue obtained after the extraction of oil from the seeds, also known as Ricinus communis meal, was obtained by filtering the raffinate and then dried at 1030c for four hours before being stored under laboratory conditions for the softening process. The softener was applied directly to 100% cotton fabric using the padding process, and the fabric was tested for stiffness, crease recovery, and drape ability. The effect of different concentrations of finishing agents on fabric stiffness, crease recovery, and drape ability was also analyzed. The results showed that the change in fabric softness depends on the concentration of the finish used. As the concentration of the finish was increased, there was a decrease in bending length and drape coefficient. Fabrics with a high concentration of softener showed a maximum decrease in drape coefficient and stiffness, comparable to commercial softeners such as silicon. The highest decrease in drape coefficient was found to be comparable with commercial softeners, silicon. Maximum increases in crease recovery were seen in fabrics treated with Ricinus communis softener at a concentration of 30gpl. From the results, the extracted softener proved to be effective in the treatment of 100% cotton fabricKeywords: ricinus communis, crease recovery, drapability, softeners, stiffness
Procedia PDF Downloads 92930 Stationary Methanol Steam Reforming to Hydrogen Fuel for Fuel-Cell Filling Stations
Authors: Athanasios A. Tountas, Geoffrey A. Ozin, Mohini M. Sain
Abstract:
Renewable hydrogen (H₂) carriers such as methanol (MeOH), dimethyl ether (DME), oxymethylene dimethyl ethers (OMEs), and conceivably ammonia (NH₃) can be reformed back into H₂ and are fundamental chemical conversions for the long-term viability of the H₂ economy due to their higher densities and ease of transportability compared to H₂. MeOH is an especially important carrier as it is a simple C1 chemical that can be produced from green solar-PV-generated H₂ and direct-air-captured CO₂ with a current commercially practical solar-to-fuel efficiency of 10% from renewable solar energy. MeOH steam reforming (MSR) in stationary systems next to H₂ fuel-cell filling stations can eliminate the need for onboard mobile reformers, and the former systems can be more robust in terms of attaining strict H₂ product specifications, and MeOH is a safe, lossless, and compact medium for long-term H₂ storage. Both thermal- and photo-catalysts are viable options for achieving the stable, long-term performance of stationary MSR systems.Keywords: fuel-cell vehicle filling stations, methanol steam reforming, hydrogen transport and storage, stationary reformer, liquid hydrogen carriers
Procedia PDF Downloads 102929 Simple and Scalable Thermal-Assisted Bar-Coating Process for Perovskite Solar Cell Fabrication in Open Atmosphere
Authors: Gizachew Belay Adugna
Abstract:
Perovskite solar cells (PSCs) shows rapid development as an emerging photovoltaic material; however, the fast device degradation due to the organic nature, mainly hole transporting material (HTM) and lack of robust and reliable upscaling process for photovoltaic module hindered its commercialization. Herein, HTM molecules with/without fluorine-substituted cyclopenta[2,1-b;3,4-b’]dithiophene derivatives (HYC-oF, HYC-mF, and HYC-H) were developed for PSCs application. The fluorinated HTM molecules exhibited better hole mobility and overall charge extraction in the devices mainly due to strong molecular interaction and packing in the film. Thus, the highest power conversion efficiency (PCE) of 19.64% with improved long stability was achieved for PSCs based on HYC-oF HTM. Moreover, the fluorinated HYC-oF demonstrated excellent film processability in a larger-area substrate (10 cm×10 cm) prepared sequentially with the absorption perovskite underlayer via a scalable bar coating process in ambient air and owned a higher PCE of 18.49% compared to the conventional spiro-OMeTAD (17.51%). The result demonstrates a facile development of HTM towards stable and efficient PSCs for future industrial-scale PV modules.Keywords: perovskite solar cells, upscaling film coating, power conversion efficiency, solution processing
Procedia PDF Downloads 75928 The Effectiveness of Environmental Policy Instruments for Promoting Renewable Energy Consumption: Command-and-Control Policies versus Market-Based Policies
Authors: Mahmoud Hassan
Abstract:
Understanding the impact of market- and non-market-based environmental policy instruments on renewable energy consumption (REC) is crucial for the design and choice of policy packages. This study aims to empirically investigate the effect of environmental policy stringency index (EPS) and its components on REC in 27 OECD countries over the period from 1990 to 2015, and then use the results to identify what the appropriate environmental policy mix should look like. By relying on the two-step system GMM estimator, we provide evidence that increasing environmental policy stringency as a whole promotes renewable energy consumption in these 27 developed economies. Moreover, policymakers are able, through the market- and non-market-based environmental policy instruments, to increase the use of renewable energy. However, not all of these instruments are effective for achieving this goal. The results indicate that R&D subsidies and trading schemes have a positive and significant impact on REC, while taxes, feed-in tariff and emission standards have not a significant effect. Furthermore, R&D subsidies are more effective than trading schemes for stimulating the use of clean energy. These findings proved to be robust across the three alternative panel techniques used.Keywords: environmental policy stringency, renewable energy consumption, two-step system-GMM estimation, linear dynamic panel data model
Procedia PDF Downloads 181927 Simulation with Uncertainties of Active Controlled Vibration Isolation System for Astronaut’s Exercise Platform
Authors: Shield B. Lin, Ziraguen O. Williams
Abstract:
In a task to assist NASA in analyzing the dynamic forces caused by operational countermeasures of an astronaut’s exercise platform impacting the spacecraft, an active proportional-integral-derivative controller commanding a linear actuator is proposed in a vibration isolation system to regulate the movement of the exercise platform. Computer simulation shows promising results that most exciter forces can be reduced or even eliminated. This paper emphasizes on parameter uncertainties, variations and exciter force variations. Drift and variations of system parameters in the vibration isolation system for astronaut’s exercise platform are analyzed. An active controlled scheme is applied with the goals to reduce the platform displacement and to minimize the force being transmitted to the spacecraft structure. The controller must be robust enough to accommodate the wide variations of system parameters and exciter forces. Computer simulation for the vibration isolation system was performed via MATLAB/Simulink and Trick. The simulation results demonstrate the achievement of force reduction with small platform displacement under wide ranges of variations in system parameters.Keywords: control, counterweight, isolation, vibration
Procedia PDF Downloads 147926 Using Simulation Modeling Approach to Predict USMLE Steps 1 and 2 Performances
Authors: Chau-Kuang Chen, John Hughes, Jr., A. Dexter Samuels
Abstract:
The prediction models for the United States Medical Licensure Examination (USMLE) Steps 1 and 2 performances were constructed by the Monte Carlo simulation modeling approach via linear regression. The purpose of this study was to build robust simulation models to accurately identify the most important predictors and yield the valid range estimations of the Steps 1 and 2 scores. The application of simulation modeling approach was deemed an effective way in predicting student performances on licensure examinations. Also, sensitivity analysis (a/k/a what-if analysis) in the simulation models was used to predict the magnitudes of Steps 1 and 2 affected by changes in the National Board of Medical Examiners (NBME) Basic Science Subject Board scores. In addition, the study results indicated that the Medical College Admission Test (MCAT) Verbal Reasoning score and Step 1 score were significant predictors of the Step 2 performance. Hence, institutions could screen qualified student applicants for interviews and document the effectiveness of basic science education program based on the simulation results.Keywords: prediction model, sensitivity analysis, simulation method, USMLE
Procedia PDF Downloads 340925 A Probabilistic Theory of the Buy-Low and Sell-High for Algorithmic Trading
Authors: Peter Shi
Abstract:
Algorithmic trading is a rapidly expanding domain within quantitative finance, constituting a substantial portion of trading volumes in the US financial market. The demand for rigorous and robust mathematical theories underpinning these trading algorithms is ever-growing. In this study, the author establishes a new stock market model that integrates the Efficient Market Hypothesis and the statistical arbitrage. The model, for the first time, finds probabilistic relations between the rational price and the market price in terms of the conditional expectation. The theory consequently leads to a mathematical justification of the old market adage: buy-low and sell-high. The thresholds for “low” and “high” are precisely derived using a max-min operation on Bayes’s error. This explicit connection harmonizes the Efficient Market Hypothesis and Statistical Arbitrage, demonstrating their compatibility in explaining market dynamics. The amalgamation represents a pioneering contribution to quantitative finance. The study culminates in comprehensive numerical tests using historical market data, affirming that the “buy-low” and “sell-high” algorithm derived from this theory significantly outperforms the general market over the long term in four out of six distinct market environments.Keywords: efficient market hypothesis, behavioral finance, Bayes' decision, algorithmic trading, risk control, stock market
Procedia PDF Downloads 72924 Image Features Comparison-Based Position Estimation Method Using a Camera Sensor
Authors: Jinseon Song, Yongwan Park
Abstract:
In this paper, propose method that can user’s position that based on database is built from single camera. Previous positioning calculate distance by arrival-time of signal like GPS (Global Positioning System), RF(Radio Frequency). However, these previous method have weakness because these have large error range according to signal interference. Method for solution estimate position by camera sensor. But, signal camera is difficult to obtain relative position data and stereo camera is difficult to provide real-time position data because of a lot of image data, too. First of all, in this research we build image database at space that able to provide positioning service with single camera. Next, we judge similarity through image matching of database image and transmission image from user. Finally, we decide position of user through position of most similar database image. For verification of propose method, we experiment at real-environment like indoor and outdoor. Propose method is wide positioning range and this method can verify not only position of user but also direction.Keywords: positioning, distance, camera, features, SURF(Speed-Up Robust Features), database, estimation
Procedia PDF Downloads 350923 Real Time Implementation of Efficient DFIG-Variable Speed Wind Turbine Control
Authors: Fayssal Amrane, Azeddine Chaiba, Bruno Francois
Abstract:
In this paper, design and experimental study based on Direct Power Control (DPC) of DFIG is proposed for Stand-alone mode in Variable Speed Wind Energy Conversion System (VS-WECS). The proposed IDPC method based on robust IP (Integral-Proportional) controllers in order to control the Rotor Side Converter (RSC) by the means of the rotor current d-q axes components (Ird* and Irq*) of Doubly Fed Induction Generator (DFIG) through AC-DC-AC converter. The implementation is realized using dSPACE dS1103 card under Sub and Super-synchronous operations (means < and > of the synchronous speed “1500 rpm”). Finally, experimental results demonstrate that the proposed control using IP provides improved dynamic responses, and decoupled control of the wind turbine has driven DFIG with high performances (good reference tracking, short response time and low power error) despite for sudden variation of wind speed and rotor references currents.Keywords: Direct Power Control (DPC), Doubly fed induction generator (DFIG), Wind Energy Conversion System (WECS), Experimental study.
Procedia PDF Downloads 126922 Soil Micromorphological Analysis from the Hinterland of the Pharaonic Town, Sai Island, Sudan
Authors: Sayantani Neogi, Sean Taylor, Julia Budka
Abstract:
This paper presents the results of the investigations of soil/sediment sequences associated with the New Kingdom town at Sai Island, Sudan. During the course of this study, geoarchaeological surveys have been undertaken in the vicinity of this Pharaonic town within the island and the soil block samples for soil micromorphological analysis were accordingly collected. The intention was to better understand the archaeological site in its environmental context and the nature of the land surface prior to the establishment of the settlement. Soil micromorphology, a very powerful geoarchaeological methodology, is concerned with the description, measurement and interpretation of soil components and pedological features at a microscopic scale. Since soil profiles themselves are archives of their own history, soil micromorphology investigates the environmental and cultural signatures preserved within buried soils and sediments. A study of the thin sections from these soils/sediments has been able to provide robust data for providing interesting insights into the various nuances of this site, for example, the nature of the topography and existent environmental condition during the time of Pharaonic site establishment. These geoarchaeological evaluations have indicated that there is a varied hidden landscape context for this pharaonic settlement, which indicates a symbiotic relationship with the Nilotic environmental system.Keywords: geoarchaeology, New Kingdom, Nilotic environment, soil micromorphology
Procedia PDF Downloads 264921 Dependence of the Photoelectric Exponent on the Source Spectrum of the CT
Authors: Rezvan Ravanfar Haghighi, V. C. Vani, Suresh Perumal, Sabyasachi Chatterjee, Pratik Kumar
Abstract:
X-ray attenuation coefficient [µ(E)] of any substance, for energy (E), is a sum of the contributions from the Compton scattering [ μCom(E)] and photoelectric effect [µPh(E)]. In terms of the, electron density (ρe) and the effective atomic number (Zeff) we have µCom(E) is proportional to [(ρe)fKN(E)] while µPh(E) is proportional to [(ρeZeffx)/Ey] with fKN(E) being the Klein-Nishina formula, with x and y being the exponents for photoelectric effect. By taking the sample's HU at two different excitation voltages (V=V1, V2) of the CT machine, we can solve for X=ρe, Y=ρeZeffx from these two independent equations, as is attempted in DECT inversion. Since µCom(E) and µPh(E) are both energy dependent, the coefficients of inversion are also dependent on (a) the source spectrum S(E,V) and (b) the detector efficiency D(E) of the CT machine. In the present paper we tabulate these coefficients of inversion for different practical manifestations of S(E,V) and D(E). The HU(V) values from the CT follow: <µ(V)>=<µw(V)>[1+HU(V)/1000] where the subscript 'w' refers to water and the averaging process <….> accounts for the source spectrum S(E,V) and the detector efficiency D(E). Linearity of μ(E) with respect to X and Y implies that (a) <µ(V)> is a linear combination of X and Y and (b) for inversion, X and Y can be written as linear combinations of two independent observations <µ(V1)>, <µ(V2)> with V1≠V2. These coefficients of inversion would naturally depend upon S(E, V) and D(E). We numerically investigate this dependence for some practical cases, by taking V = 100 , 140 kVp, as are used for cardiological investigations. The S(E,V) are generated by using the Boone-Seibert source spectrum, being superposed on aluminium filters of different thickness lAl with 7mm≤lAl≤12mm and the D(E) is considered to be that of a typical Si[Li] solid state and GdOS scintilator detector. In the values of X and Y, found by using the calculated inversion coefficients, errors are below 2% for data with solutions of glycerol, sucrose and glucose. For low Zeff materials like propionic acid, Zeffx is overestimated by 20% with X being within1%. For high Zeffx materials like KOH the value of Zeffx is underestimated by 22% while the error in X is + 15%. These imply that the source may have additional filtering than the aluminium filter specified by the manufacturer. Also it is found that the difference in the values of the inversion coefficients for the two types of detectors is negligible. The type of the detector does not affect on the DECT inversion algorithm to find the unknown chemical characteristic of the scanned materials. The effect of the source should be considered as an important factor to calculate the coefficients of inversion.Keywords: attenuation coefficient, computed tomography, photoelectric effect, source spectrum
Procedia PDF Downloads 402920 Attention-Based ResNet for Breast Cancer Classification
Authors: Abebe Mulugojam Negash, Yongbin Yu, Ekong Favour, Bekalu Nigus Dawit, Molla Woretaw Teshome, Aynalem Birtukan Yirga
Abstract:
Breast cancer remains a significant health concern, necessitating advancements in diagnostic methodologies. Addressing this, our paper confronts the notable challenges in breast cancer classification, particularly the imbalance in datasets and the constraints in the accuracy and interpretability of prevailing deep learning approaches. We proposed an attention-based residual neural network (ResNet), which effectively combines the robust features of ResNet with an advanced attention mechanism. Enhanced through strategic data augmentation and positive weight adjustments, this approach specifically targets the issue of data imbalance. The proposed model is tested on the BreakHis dataset and achieved accuracies of 99.00%, 99.04%, 98.67%, and 98.08% in different magnifications (40X, 100X, 200X, and 400X), respectively. We evaluated the performance by using different evaluation metrics such as precision, recall, and F1-Score and made comparisons with other state-of-the-art methods. Our experiments demonstrate that the proposed model outperforms existing approaches, achieving higher accuracy in breast cancer classification.Keywords: residual neural network, attention mechanism, positive weight, data augmentation
Procedia PDF Downloads 105919 The Truism of the True and Fair View of Auditor’s Report
Authors: Ofuan James Ilaboya, Okhae J. Ibhadode
Abstract:
The objective of this paper is to theoretically examine the truism of the “true and fair view” in the context of financial reporting. The paper examines the concepts such as true, fair, true and fair view, problems of true and fair view, the origin/history of true and fair view, review of attributes and key issues relating to true and fair view. The methodological approach adopted in this paper is library-based research, focusing on the review of relevant and related extant literature. The findings based on the review of relevant and related literature is suggestive of the fact that the true and fair concept in financial reporting environment is contentious. The study concludes that given the circumstances as chronicled on this paper, it is evident that the truism of the true and fair view of the auditor’s opinion is under serious threat. The way forward may be for the auditor to certify the accuracy and the correctness of the financial statement. While this position being canvassed here may help to substantially bridge the age-long expectation gap, it may as well require an upward review of the current audit fee structure in order to be able to operationalize the onerous task of certifying the accuracy and correctness of the financial statement. This position is contentious and will require a robust consideration which is not within the purview of the present review.Keywords: fiduciary duty, financial statement, true and correct, true and fair
Procedia PDF Downloads 135918 One-Step Synthesis and Characterization of Biodegradable ‘Click-Able’ Polyester Polymer for Biomedical Applications
Authors: Wadha Alqahtani
Abstract:
In recent times, polymers have seen a great surge in interest in the field of medicine, particularly chemotherapeutics. One recent innovation is the conversion of polymeric materials into “polymeric nanoparticles”. These nanoparticles can be designed and modified to encapsulate and transport drugs selectively to cancer cells, minimizing collateral damage to surrounding healthy tissues, and improve patient quality of life. In this study, we have synthesized pseudo-branched polyester polymers from bio-based small molecules, including sorbitol, glutaric acid and a propargylic acid derivative to further modify the polymer to make it “click-able" with an azide-modified target ligand. Melt polymerization technique was used for this polymerization reaction, using lipase enzyme catalyst NOVO 435. This reaction was conducted between 90- 95 °C for 72 hours. The polymer samples were collected in 24-hour increments for characterization and to monitor reaction progress. The resulting polymer was purified with the help of methanol dissolving and filtering with filter paper then characterized via NMR, GPC, FTIR, DSC, TGA and MALDI-TOF. Following characterization, these polymers were converted to a polymeric nanoparticle drug delivery system using solvent diffusion method, wherein DiI optical dye and chemotherapeutic drug Taxol can be encapsulated simultaneously. The efficacy of the nanoparticle’s apoptotic effects were analyzed in-vitro by incubation with prostate cancer (LNCaP) and healthy (CHO) cells. MTT assays and fluorescence microscopy were used to assess the cellular uptake and viability of the cells after 24 hours at 37 °C and 5% CO2 atmosphere. Results of the assays and fluorescence imaging confirmed that the nanoparticles were successful in both selectively targeting and inducing apoptosis in 80% of the LNCaP cells within 24 hours without affecting the viability of the CHO cells. These results show the potential of using biodegradable polymers as a vehicle for receptor-specific drug delivery and a potential alternative for traditional systemic chemotherapy. Detailed experimental results will be discussed in the e-poster.Keywords: chemotherapeutic drug, click chemistry, nanoparticle, prostat cancer
Procedia PDF Downloads 117917 Coupled Spacecraft Orbital and Attitude Modeling and Simulation in Multi-Complex Modes
Authors: Amr Abdel Azim Ali, G. A. Elsheikh, Moutaz Hegazy
Abstract:
This paper presents verification of a modeling and simulation for a Spacecraft (SC) attitude and orbit control system. Detailed formulation of coupled SC orbital and attitude equations of motion is performed in order to achieve accepted accuracy to meet the requirements of multitargets tracking and orbit correction complex modes. Correction of the target parameter based on the estimated state vector during shooting time to enhance pointing accuracy is considered. Time-optimal nonlinear feedback control technique was used in order to take full advantage of the maximum torques that the controller can deliver. This simulation provides options for visualizing SC trajectory and attitude in a 3D environment by including an interface with V-Realm Builder and VR Sink in Simulink/MATLAB. Verification data confirms the simulation results, ensuring that the model and the proposed control law can be used successfully for large and fast tracking and is robust enough to keep the pointing accuracy within the desired limits with considerable uncertainty in inertia and control torque.Keywords: attitude and orbit control, time-optimal nonlinear feedback control, modeling and simulation, pointing accuracy, maximum torques
Procedia PDF Downloads 332916 Optimized and Secured Digital Watermarking Using Entropy, Chaotic Grid Map and Its Performance Analysis
Authors: R. Rama Kishore, Sunesh
Abstract:
This paper presents an optimized, robust, and secured watermarking technique. The methodology used in this work is the combination of entropy and chaotic grid map. The proposed methodology incorporates Discrete Cosine Transform (DCT) on the host image. To improve the imperceptibility of the method, the host image DCT blocks, where the watermark is to be embedded, are further optimized by considering the entropy of the blocks. Chaotic grid is used as a key to reorder the DCT blocks so that it will further increase security while selecting the watermark embedding locations and its sequence. Without a key, one cannot reveal the exact watermark from the watermarked image. The proposed method is implemented on four different images. It is concluded that the proposed method is giving better results in terms of imperceptibility measured through PSNR and found to be above 50. In order to prove the effectiveness of the method, the performance analysis is done after implementing different attacks on the watermarked images. It is found that the methodology is very strong against JPEG compression attack even with the quality parameter up to 15. The experimental results are confirming that the combination of entropy and chaotic grid map method is strong and secured to different image processing attacks.Keywords: digital watermarking, discreate cosine transform, chaotic grid map, entropy
Procedia PDF Downloads 254915 A Comprehensive Review of Electronic Health Records Implementation in Healthcare
Authors: Lateefat Amao, Misagh Faezipour
Abstract:
Implementing electronic health records (EHR) in healthcare is a pivotal transition aimed at digitizing and optimizing patient health information management. The expectations associated with this transition are high, even towards other health information systems (HIS) and health technology. This multifaceted process involves careful planning and execution to improve the quality and efficiency of patient care, especially as healthcare technology is a sensitive niche. Key considerations include a thorough needs assessment, judicious vendor selection, robust infrastructure development, and training and adaptation of healthcare professionals. Comprehensive training programs, data migration from legacy systems and models, interoperability, as well as security and regulatory compliance are imperative for healthcare staff to navigate EHR systems adeptly. The purpose of this work is to offer a comprehensive review of the literature on EHR implementation. It explores the impact of this health technology on health practices, highlights challenges and barriers to its successful utility, and offers practical strategies that can impact its success in healthcare. This paper provides a thorough review of studies on the adoption of EHRs, emphasizing the wide range of experiences and results connected to EHR use in the medical field, especially across different types of healthcare organizations.Keywords: healthcare, electronic health records, EHR implementation, patient care, interoperability
Procedia PDF Downloads 83914 Automatic Furrow Detection for Precision Agriculture
Authors: Manpreet Kaur, Cheol-Hong Min
Abstract:
The increasing advancement in the robotics equipped with machine vision sensors applied to precision agriculture is a demanding solution for various problems in the agricultural farms. An important issue related with the machine vision system concerns crop row and weed detection. This paper proposes an automatic furrow detection system based on real-time processing for identifying crop rows in maize fields in the presence of weed. This vision system is designed to be installed on the farming vehicles, that is, submitted to gyros, vibration and other undesired movements. The images are captured under image perspective, being affected by above undesired effects. The goal is to identify crop rows for vehicle navigation which includes weed removal, where weeds are identified as plants outside the crop rows. The images quality is affected by different lighting conditions and gaps along the crop rows due to lack of germination and wrong plantation. The proposed image processing method consists of four different processes. First, image segmentation based on HSV (Hue, Saturation, Value) decision tree. The proposed algorithm used HSV color space to discriminate crops, weeds and soil. The region of interest is defined by filtering each of the HSV channels between maximum and minimum threshold values. Then the noises in the images were eliminated by the means of hybrid median filter. Further, mathematical morphological processes, i.e., erosion to remove smaller objects followed by dilation to gradually enlarge the boundaries of regions of foreground pixels was applied. It enhances the image contrast. To accurately detect the position of crop rows, the region of interest is defined by creating a binary mask. The edge detection and Hough transform were applied to detect lines represented in polar coordinates and furrow directions as accumulations on the angle axis in the Hough space. The experimental results show that the method is effective.Keywords: furrow detection, morphological, HSV, Hough transform
Procedia PDF Downloads 231913 Discovering Groundbreaking Geopolymer-Based Materials with Versatile Designs, Ideal for the Construction and Infrastructure Industry
Authors: Maryam Kiani
Abstract:
Geopolymer has gained significant prominence worldwide and is now widely regarded as a potential alternative to conventional Portland cement. Nevertheless, for it to be widely accepted and incorporated into national and international standards, it is crucial to establish precise definitions and dependable mix design methodologies for geopolymer materials. The lack of a common definition and methodology has led to inconsistencies and perplexity across various areas of research. Addressing this concern is imperative for several reasons. To overcome the existing inconsistencies and confusion, concerted efforts should be made to establish clear definitions and robust mix design methodologies for geopolymer materials. This can be achieved through collaborative research, knowledge sharing, and engagement with industry experts. By doing so, we can pave the way for the widespread acceptance and utilization of geopolymer materials, revolutionizing the construction and infrastructure industry in a sustainable and environmentally friendly manner. The primary goal of this article is to offer clear explanations regarding the different meanings of geopolymer and the various methodologies used in geopolymer processes. Its main aim is to improve comprehension of both unary and binary geopolymer systems. By thoroughly exploring existing research, this article strives to illuminate the diverse methods and techniques utilized in the exciting field of geopolymer science.Keywords: geopolymer, nanomaterials, structural materials, mechanical properties
Procedia PDF Downloads 115912 Determining a Bilingualism Index: Evidence From Lebanese Control Bilinguals
Authors: Rania Kassir, Christophe Dos Santos, Halim Abboud, Olivier Godefroy
Abstract:
The ability to communicate in at least two different languages is shared by a growing number of humans. Recently, many researchers have been studying the elderly bilingual population around the world in neuroscience, and yet, until today there’s no accurate nor universal measure or methodology used to examine bilingualism across these studies which constitute a real challenge for results generalization. This study contributes to the quest of a multidimensional bilingualism index and language proficiency literature by investigating a new bilingualism index from a reliable subjective questionnaire the Language Experience and Proficiency Questionnaire (LEAP-Q), multi-linguistic tests, and a diverse bilingual population all featured in one analysis and one index. One hundred Lebanese subjects aged between 55 and 92 years old divided into three different bilingualism subgroups (Arabic prominent, balanced, and French prominent) were recruited and underwent the LEAP-Q with a set of linguistic and cognitive tests. The analysis of the collected data led to the creation of a robust bilingualism index from speaking and oral understanding scores that underline specifically bilingualism subtype according to cutoffs scored. The practice implications of this index, particularly its use within bilingual populations, are addressed in the conclusion of this work.Keywords: bilingualism, language dominance, bilingualism index, balanced bilingualism, Arabic first language, Lebanese, Arabic-French bilingualism
Procedia PDF Downloads 131911 Framework for Integrating Big Data and Thick Data: Understanding Customers Better
Authors: Nikita Valluri, Vatcharaporn Esichaikul
Abstract:
With the popularity of data-driven decision making on the rise, this study focuses on providing an alternative outlook towards the process of decision-making. Combining quantitative and qualitative methods rooted in the social sciences, an integrated framework is presented with a focus on delivering a much more robust and efficient approach towards the concept of data-driven decision-making with respect to not only Big data but also 'Thick data', a new form of qualitative data. In support of this, an example from the retail sector has been illustrated where the framework is put into action to yield insights and leverage business intelligence. An interpretive approach to analyze findings from both kinds of quantitative and qualitative data has been used to glean insights. Using traditional Point-of-sale data as well as an understanding of customer psychographics and preferences, techniques of data mining along with qualitative methods (such as grounded theory, ethnomethodology, etc.) are applied. This study’s final goal is to establish the framework as a basis for providing a holistic solution encompassing both the Big and Thick aspects of any business need. The proposed framework is a modified enhancement in lieu of traditional data-driven decision-making approach, which is mainly dependent on quantitative data for decision-making.Keywords: big data, customer behavior, customer experience, data mining, qualitative methods, quantitative methods, thick data
Procedia PDF Downloads 163910 Exploring the Association between Race and Attitudes toward Physician-Assisted Death; An Analysis of the Gss Dataset
Authors: Seini G. Kaufusi
Abstract:
Background. Physician-assisted death (PAD) has and continues to be a controversial issue in the U.S. Dying with dignity statutes exists in 9 U.S. jurisdictions that permit competent adults diagnosed with a terminal illness and given a prognosis of 6 month or less to live to request medication to hasten death. Robust advocacy for and against PAD influences policy, and opinions vary. Aim. This study aims to explore the association between race and the attitudes toward physician-assisted death in the U.S. Methods. Data for this study derives from the General Social Survey (GSS) dataset, a national survey conducted by the National Opinion Research Center (NORC) that focuses on the opinions and values of American’s. A cross-sectional design and probability sample from the 2018 data set was used to randomly select respondents. Results. The results indicated that race is significantly associated with attitudes towards physician-assisted death. The level of significance suggests a strong positive association, and the direction indicated that Black and Other racial groups have higher rates of positive decision about PAD. Conclusion. Although attitudes towards PAD varied, Black and other racial groups had favorable decisions for PAD. Further research is crucial in the continuous debate on PAD and understanding the influences of predictors for or against PAD.Keywords: attitudes, euthanasia, physician-assisted death, race
Procedia PDF Downloads 163909 Molecular Evidence for Three Species of Giraffa
Authors: Alice Petzold, Alexandre Hassanin
Abstract:
The number of giraffe species has been in focus of interest since the exploration of sub-Saharan Africa by European naturalists during the 18th and 19th centuries, as previous taxonomists, like Geoffroy Saint-Hilaire, Richard Owen or William Edward de Winton, recognized two or three species of Giraffa. For the last decades, giraffes were commonly considered as a single species subdivided into nine subspecies. In this study, we have re-examined available nuclear and mitochondrial data. Our genetic admixture analyses of seven introns support three species: G. camelopardalis (i.e., northern giraffes including reticulated giraffes), G. giraffa (southern giraffe) and G. tippelskirchi (Masai giraffe). However, the nuclear alignments show small variation and our phylogenetic analyses provide high support only for the monophyly of G. camelopardalis. Comparisons with the mitochondrial tree revealed a robust conflict for the position and monophyly of G. giraffa and G. tippelskirchi, which is explained firstly by a mitochondrial introgression from Masai giraffe to southeastern giraffe, and secondly, by gene flow mediated by male dispersal between southern populations (subspecies angolensis and giraffa). We conclude that current data gives only moderate support for three giraffe species and point out that additional nuclear data need to be studied to revise giraffe taxonomy.Keywords: autosomal markers, Giraffidae, mitochondrial introgression, taxonomy
Procedia PDF Downloads 205908 On the Cluster of the Families of Hybrid Polynomial Kernels in Kernel Density Estimation
Authors: Benson Ade Eniola Afere
Abstract:
Over the years, kernel density estimation has been extensively studied within the context of nonparametric density estimation. The fundamental components of kernel density estimation are the kernel function and the bandwidth. While the mathematical exploration of the kernel component has been relatively limited, its selection and development remain crucial. The Mean Integrated Squared Error (MISE), serving as a measure of discrepancy, provides a robust framework for assessing the effectiveness of any kernel function. A kernel function with a lower MISE is generally considered to perform better than one with a higher MISE. Hence, the primary aim of this article is to create kernels that exhibit significantly reduced MISE when compared to existing classical kernels. Consequently, this article introduces a cluster of hybrid polynomial kernel families. The construction of these proposed kernel functions is carried out heuristically by combining two kernels from the classical polynomial kernel family using probability axioms. We delve into the analysis of error propagation within these kernels. To assess their performance, simulation experiments, and real-life datasets are employed. The obtained results demonstrate that the proposed hybrid kernels surpass their classical kernel counterparts in terms of performance.Keywords: classical polynomial kernels, cluster of families, global error, hybrid Kernels, Kernel density estimation, Monte Carlo simulation
Procedia PDF Downloads 95907 Growing Acts of Terrorism in Local Conflicts: A Dire Need for International Attention
Authors: Yusuf Abubakar Mamud
Abstract:
Highlighting the imperatives of local conflicts considering the dangerous dimensions of terrorism they are assuming in Africa has not attracted serious academic and political attention. The discourse about conflict in Africa was discussed within five identified conflict zones in the continent. The threats from these local conflicts are diverse and complex and the acts of terrorism in these local conflicts are driven by certain attitudes and behaviours linked to the African leadership. The paper examined and noted that the current conflict resolution model of the African Union (AU) was robust with requisite institutions to address the trends in local conflicts. However, it was observed that the AU peace and security framework lacked the requisite structural and technical capabilities to proactively address the drivers of local conflicts in Africa. It was found that the persistence of local conflicts in the African region may deny her the opportunities of achievement of the targets envisioned in the Sustainable Development Goals (SDGs). Consequently, the paper called on the international community to support Africa through provision of capacity. It urged the African leaders themselves to develop the political will to ensure that all issues concerning peace and security in the continent were guided by the provisions of the AU Constitutive Act. The need to strengthen the APRM in the light of the current trends in local conflicts was also highlighted.Keywords: conflicts, local conflicts, terrorism, sustainable development
Procedia PDF Downloads 276906 A Novel Breast Cancer Detection Algorithm Using Point Region Growing Segmentation and Pseudo-Zernike Moments
Authors: Aileen F. Wang
Abstract:
Mammography has been one of the most reliable methods for early detection and diagnosis of breast cancer. However, mammography misses about 17% and up to 30% of breast cancers due to the subtle and unstable appearances of breast cancer in their early stages. Recent computer-aided diagnosis (CADx) technology using Zernike moments has improved detection accuracy. However, it has several drawbacks: it uses manual segmentation, Zernike moments are not robust, and it still has a relatively high false negative rate (FNR)–17.6%. This project will focus on the development of a novel breast cancer detection algorithm to automatically segment the breast mass and further reduce FNR. The algorithm consists of automatic segmentation of a single breast mass using Point Region Growing Segmentation, reconstruction of the segmented breast mass using Pseudo-Zernike moments, and classification of the breast mass using the root mean square (RMS). A comparative study among the various algorithms on the segmentation and reconstruction of breast masses was performed on randomly selected mammographic images. The results demonstrated that the newly developed algorithm is the best in terms of accuracy and cost effectiveness. More importantly, the new classifier RMS has the lowest FNR–6%.Keywords: computer aided diagnosis, mammography, point region growing segmentation, pseudo-zernike moments, root mean square
Procedia PDF Downloads 453905 Selection of Green Fluorescent Protein and mCherry Nanobodies Using the Yeast Surface Display Method
Authors: Lavinia Ruta, Ileana Farcasanu
Abstract:
The yeast surface display (YSD) technique enables the expression of proteins on yeast cell surfaces, facilitating the identification and isolation of proteins with targeted binding properties, such as nanobodies. Nanobodies, derived from camelid species, are single-domain antibody fragments renowned for their high affinity and specificity towards target proteins, making them valuable in research and potentially in therapeutics. Their advantages include a compact size (~15 kDa), robust stability, and the ability to target challenging epitopes. The project endeavors to establish and validate a platform for producing Green Fluorescent Protein (GFP) and mCherry nanobodies using the yeast surface display method. mCherry, a prevalent red fluorescent protein sourced from coral species, is commonly utilized as a genetic marker in biological studies due to its vibrant red fluorescence. The GFP-nanobody, a single variable domain of heavy-chain antibodies (VHH), exhibits specific binding to GFP, offering a potent means for isolating and engineering fluorescent protein fusions across various biological research domains. Both GFP and mCherry nanobodies find specific utility in cellular imaging and protein analysis applications.Keywords: YSD, nanobodies, GFP, Saccharomyces cerevisiae
Procedia PDF Downloads 62904 Characterizing and Developing the Clinical Grade Microbiome Assay with a Robust Bioinformatics Pipeline for Supporting Precision Medicine Driven Clinical Development
Authors: Danyi Wang, Andrew Schriefer, Dennis O'Rourke, Brajendra Kumar, Yang Liu, Fei Zhong, Juergen Scheuenpflug, Zheng Feng
Abstract:
Purpose: It has been recognized that the microbiome plays critical roles in disease pathogenesis, including cancer, autoimmune disease, and multiple sclerosis. To develop a clinical-grade assay for exploring microbiome-derived clinical biomarkers across disease areas, a two-phase approach is implemented. 1) Identification of the optimal sample preparation reagents using pre-mixed bacteria and healthy donor stool samples coupled with proprietary Sigma-Aldrich® bioinformatics solution. 2) Exploratory analysis of patient samples for enabling precision medicine. Study Procedure: In phase 1 study, we first compared the 16S sequencing results of two ATCC® microbiome standards (MSA 2002 and MSA 2003) across five different extraction kits (Kit A, B, C, D & E). Both microbiome standards samples were extracted in triplicate across all extraction kits. Following isolation, DNA quantity was determined by Qubit assay. DNA quality was assessed to determine purity and to confirm extracted DNA is of high molecular weight. Bacterial 16S ribosomal ribonucleic acid (rRNA) amplicons were generated via amplification of the V3/V4 hypervariable region of the 16S rRNA. Sequencing was performed using a 2x300 bp paired-end configuration on the Illumina MiSeq. Fastq files were analyzed using the Sigma-Aldrich® Microbiome Platform. The Microbiome Platform is a cloud-based service that offers best-in-class 16S-seq and WGS analysis pipelines and databases. The Platform and its methods have been extensively benchmarked using microbiome standards generated internally by MilliporeSigma and other external providers. Data Summary: The DNA yield using the extraction kit D and E is below the limit of detection (100 pg/µl) of Qubit assay as both extraction kits are intended for samples with low bacterial counts. The pre-mixed bacterial pellets at high concentrations with an input of 2 x106 cells for MSA-2002 and 1 x106 cells from MSA-2003 were not compatible with the kits. Among the remaining 3 extraction kits, kit A produced the greatest yield whereas kit B provided the least yield (Kit-A/MSA-2002: 174.25 ± 34.98; Kit-A/MSA-2003: 179.89 ± 30.18; Kit-B/MSA-2002: 27.86 ± 9.35; Kit-B/MSA-2003: 23.14 ± 6.39; Kit-C/MSA-2002: 55.19 ± 10.18; Kit-C/MSA-2003: 35.80 ± 11.41 (Mean ± SD)). Also, kit A produced the greatest yield, whereas kit B provided the least yield. The PCoA 3D visualization of the Weighted Unifrac beta diversity shows that kits A and C cluster closely together while kit B appears as an outlier. The kit A sequencing samples cluster more closely together than both the other kits. The taxonomic profiles of kit B have lower recall when compared to the known mixture profiles indicating that kit B was inefficient at detecting some of the bacteria. Conclusion: Our data demonstrated that the DNA extraction method impacts DNA concentration, purity, and microbial communities detected by next-generation sequencing analysis. Further microbiome analysis performance comparison of using healthy stool samples is underway; also, colorectal cancer patients' samples will be acquired for further explore the clinical utilities. Collectively, our comprehensive qualification approach, including the evaluation of optimal DNA extraction conditions, the inclusion of positive controls, and the implementation of a robust qualified bioinformatics pipeline, assures accurate characterization of the microbiota in a complex matrix for deciphering the deep biology and enabling precision medicine.Keywords: 16S rRNA sequencing, analytical validation, bioinformatics pipeline, metagenomics
Procedia PDF Downloads 170