Search results for: predictive biomarker
383 Axial, Bending Interaction Diagrams of Reinforced Concrete Columns Exposed to Chloride Attack
Authors: Rita Greco, Giuseppe Carlo Marano
Abstract:
Chloride induced reinforcement corrosion is widely accepted to be the most frequent mechanism causing premature degradation of reinforced concrete members, whose economic and social consequences are growing up continuously. Prevention of these phenomena has a great importance in structural design, and modern Codes and Standard impose prescriptions concerning design details and concrete mix proportion for structures exposed to different external aggressive conditions, grouped in environmental classes. This paper focuses on reinforced concrete columns load carrying capacity degradation over time due to chloride induced steel pitting corrosion. The structural element is considered to be exposed to marine environment and the effects of corrosion are described by the time degradation of the axial-bending interaction diagram. Because chlorides ingress and consequent pitting corrosion propagation are both time-dependent mechanisms, the study adopts a time-variant predictive approach to evaluate the residual strength of corroded reinforced concrete columns at different lifetimes. Corrosion initiation and propagation process is modelled by taking into account all the parameters, such as external environmental conditions, concrete mix proportion, concrete cover and so on, which influence the time evolution of the corrosion phenomenon and its effects on the residual strength of RC columns.Keywords: pitting corrosion, strength deterioration, diffusion coefficient, surface chloride concentration, concrete structures, marine environment
Procedia PDF Downloads 323382 Shear Stress and Effective Structural Stress Fields of an Atherosclerotic Coronary Artery
Authors: Alireza Gholipour, Mergen H. Ghayesh, Anthony Zander, Stephen J. Nicholls, Peter J. Psaltis
Abstract:
A three-dimensional numerical model of an atherosclerotic coronary artery is developed for the determination of high-risk situation and hence heart attack prediction. Employing the finite element method (FEM) using ANSYS, fluid-structure interaction (FSI) model of the artery is constructed to determine the shear stress distribution as well as the von Mises stress field. A flexible model for an atherosclerotic coronary artery conveying pulsatile blood is developed incorporating three-dimensionality, artery’s tapered shape via a linear function for artery wall distribution, motion of the artery, blood viscosity via the non-Newtonian flow theory, blood pulsation via use of one-period heartbeat, hyperelasticity via the Mooney-Rivlin model, viscoelasticity via the Prony series shear relaxation scheme, and micro-calcification inside the plaque. The material properties used to relate the stress field to the strain field have been extracted from clinical data from previous in-vitro studies. The determined stress fields has potential to be used as a predictive tool for plaque rupture and dissection. The results show that stress concentration due to micro-calcification increases the von Mises stress significantly; chance of developing a crack inside the plaque increases. Moreover, the blood pulsation varies the stress distribution substantially for some cases.Keywords: atherosclerosis, fluid-structure interaction, coronary arteries, pulsatile flow
Procedia PDF Downloads 173381 Nonlinear Passive Shunt for Electroacoustic Absorbers Using Nonlinear Energy Sink
Authors: Diala Bitar, Emmanuel Gourdon, Claude H. Lamarque, Manuel Collet
Abstract:
Acoustic absorber devices play an important role reducing the noise at the propagation and reception paths. An electroacoustic absorber consists of a loudspeaker coupled to an electric shunt circuit, where the membrane is playing the role of an absorber/reflector of sound. Although the use of linear shunt resistors at the transducer terminals, has shown to improve the performances of the dynamical absorbers, it is nearly efficient in a narrow frequency band. Therefore, and since nonlinear phenomena are promising for their ability to absorb the vibrations and sound on a larger frequency range, we propose to couple a nonlinear electric shunt circuit at the loudspeaker terminals. Then, the equivalent model can be described by a 2 degrees of freedom system, consisting of a primary linear oscillator describing the dynamics of the loudspeaker membrane, linearly coupled to a cubic nonlinear energy sink (NES). The system is analytically treated for the case of 1:1 resonance, using an invariant manifold approach at different time scales. The proposed methodology enables us to detect the equilibrium points and fold singularities at the first slow time scales, providing a predictive tool to design the nonlinear circuit shunt during the energy exchange process. The preliminary results are promising; a significant improvement of acoustic absorption performances are obtained.Keywords: electroacoustic absorber, multiple-time-scale with small finite parameter, nonlinear energy sink, nonlinear passive shunt
Procedia PDF Downloads 222380 A Machine Learning Approach for Performance Prediction Based on User Behavioral Factors in E-Learning Environments
Authors: Naduni Ranasinghe
Abstract:
E-learning environments are getting more popular than any other due to the impact of COVID19. Even though e-learning is one of the best solutions for the teaching-learning process in the academic process, it’s not without major challenges. Nowadays, machine learning approaches are utilized in the analysis of how behavioral factors lead to better adoption and how they related to better performance of the students in eLearning environments. During the pandemic, we realized the academic process in the eLearning approach had a major issue, especially for the performance of the students. Therefore, an approach that investigates student behaviors in eLearning environments using a data-intensive machine learning approach is appreciated. A hybrid approach was used to understand how each previously told variables are related to the other. A more quantitative approach was used referred to literature to understand the weights of each factor for adoption and in terms of performance. The data set was collected from previously done research to help the training and testing process in ML. Special attention was made to incorporating different dimensionality of the data to understand the dependency levels of each. Five independent variables out of twelve variables were chosen based on their impact on the dependent variable, and by considering the descriptive statistics, out of three models developed (Random Forest classifier, SVM, and Decision tree classifier), random forest Classifier (Accuracy – 0.8542) gave the highest value for accuracy. Overall, this work met its goals of improving student performance by identifying students who are at-risk and dropout, emphasizing the necessity of using both static and dynamic data.Keywords: academic performance prediction, e learning, learning analytics, machine learning, predictive model
Procedia PDF Downloads 157379 Investigation of FOXM1 Gene Expression in Breast Cancer and Its Relationship with Mir-216B-5P Expression Level
Authors: Ramin Mehdiabadi, Neda Menbari, Mohammad Nazir Menbari
Abstract:
As a pressing public health concern, breast cancer stands as the predominant oncological diagnosis and principal cause of cancer-related mortality among women globally, accounting for 11.7% of new cancer incidences and 6.9% of cancer-related deaths. The annual figures indicate that approximately 230,480 women are diagnosed with breast cancer in the United States alone, with 39,520 succumbing to the disease. While developed economies have reported a deceleration in both incidence and mortality rates across various forms of cancer, including breast cancer, emerging and low-income economies manifest a contrary escalation, largely attributable to lifestyle-mediated risk factors such as tobacco usage, physical inactivity, and high caloric intake. Breast cancer is distinctly characterized by molecular heterogeneity, manifesting in specific subtypes delineated by biomarkers—Estrogen Receptors (ER), Progesterone Receptors (PR), and Human Epidermal Growth Factor Receptor 2 (HER2). These subtypes, comprising Luminal A, Luminal B, HER2-enriched, triple-negative/basal-like, and normal-like, necessitate nuanced, subtype-specific therapeutic regimens, thereby challenging the applicability of generalized treatment protocols. Within this molecular complexity, the transcription factor Forkhead Box M1 (FoxM1) has garnered attention as a significant driver of cellular proliferation, tumorigenesis, metastatic progression, and treatment resistance in a spectrum of human malignancies, including breast cancer. Concurrently, microRNAs (miRs), specifically miR-216b-5p, have been identified as post-transcriptional gene expression regulators and potential tumor suppressors. The overarching objective of this academic investigation is to explicate the multifaceted interrelationship between FoxM1 and miR-216b-5p across the disparate molecular subtypes of breast cancer. Employing a methodologically rigorous, interdisciplinary research design that incorporates cutting-edge molecular biology techniques, sophisticated bioinformatics analytics, and exhaustive meta-analyses of extant clinical data, this scholarly endeavor aims to unveil novel biomarker-specific therapeutic pathways. By doing so, this research is positioned to make a seminal contribution to the advancement of personalized, efficacious, and minimally toxic treatment paradigms, thus profoundly impacting the global efforts to ameliorate the burden of breast cancer.Keywords: breast cancer, fox m1, microRNAs, mir-216b-5p, gene expression
Procedia PDF Downloads 78378 Machine Learning for Rational Decision-Making: Introducing Creativity to Teachers within a School System
Authors: Larry Audet
Abstract:
Creativity is suddenly and fortunately a new educational focus in the United Arab Emirates and around the world. Yet still today many leaders of creativity are not sure how to introduce it to their teachers. It is impossible to simultaneously introduce every aspect of creativity into a work climate and reach any degree of organizational coherence. The number of alternatives to explore is so great; the information teachers need to learn is so vast, that even an approximation to including every concept and theory of creativity into the school organization is hard to conceive. Effective leaders of creativity need evidence-based and practical guidance for introducing and stimulating creativity in others. Machine learning models reveal new findings from KEYS Survey© data about teacher perceptions of stimulants and barriers to their individual and collective creativity. Findings from predictive and causal models provide leaders with a rational for decision-making when introducing creativity into their organization. Leaders should focus on management practices first. Analyses reveal that creative outcomes are more likely to occur when teachers perceive supportive management practices: providing teachers with challenging work that calls for their best efforts; allowing freedom and autonomy in their practice of work; allowing teachers to form creative work-groups; and, recognizing them for their efforts. Once management practices are in place, leaders should focus their efforts on modeling risk-taking, providing optimal amounts of preparation time, and evaluating teachers fairly.Keywords: creativity, leadership, KEYS survey, teaching, work climate
Procedia PDF Downloads 167377 The Application of AI in Developing Assistive Technologies for Non-Verbal Individuals with Autism
Authors: Ferah Tesfaye Admasu
Abstract:
Autism Spectrum Disorder (ASD) often presents significant communication challenges, particularly for non-verbal individuals who struggle to express their needs and emotions effectively. Assistive technologies (AT) have emerged as vital tools in enhancing communication abilities for this population. Recent advancements in artificial intelligence (AI) hold the potential to revolutionize the design and functionality of these technologies. This study explores the application of AI in developing intelligent, adaptive, and user-centered assistive technologies for non-verbal individuals with autism. Through a review of current AI-driven tools, including speech-generating devices, predictive text systems, and emotion-recognition software, this research investigates how AI can bridge communication gaps, improve engagement, and support independence. Machine learning algorithms, natural language processing (NLP), and facial recognition technologies are examined as core components in creating more personalized and responsive communication aids. The study also discusses the challenges and ethical considerations involved in deploying AI-based AT, such as data privacy and the risk of over-reliance on technology. Findings suggest that integrating AI into assistive technologies can significantly enhance the quality of life for non-verbal individuals with autism, providing them with greater opportunities for social interaction and participation in daily activities. However, continued research and development are needed to ensure these technologies are accessible, affordable, and culturally sensitive.Keywords: artificial intelligence, autism spectrum disorder, non-verbal communication, assistive technology, machine learning
Procedia PDF Downloads 22376 Assessment of Personal Level Exposures to Particulate Matter among Children in Rural Preliminary Schools as an Indoor Air Pollution Monitoring
Authors: Seyedtaghi Mirmohammadi, J. Yazdani, S. M. Asadi, M. Rokni, A. Toosi
Abstract:
There are many indoor air quality studies with an emphasis on indoor particulate matters (PM2.5) monitoring. Whereas, there is a lake of data about indoor PM2.5 concentrations in rural area schools (especially in classrooms), since preliminary children are assumed to be more defenseless to health hazards and spend a large part of their time in classrooms. The objective of this study was indoor PM2.5 concentration quality assessment. Fifteen preliminary schools by time-series sampling were selected to evaluate the indoor air quality in the rural district of Sari city, Iran. Data on indoor air climate parameters (temperature, relative humidity and wind speed) were measured by a hygrometer and thermometer. Particulate matters (PM2.5) were collected and assessed by Real Time Dust Monitor, (MicroDust Pro, Casella, UK). The mean indoor PM2.5 concentration in the studied classrooms was 135µg/m3 in average. The multiple linear regression revealed that a correlation between PM2.5 concentration and relative humidity, distance from city center and classroom size. Classroom size yields reasonable negative relationship, the PM2.5 concentration was ranged from 65 to 540μg/m3 and statistically significant at 0.05 level and the relative humidity was ranged from 70 to 85% and dry bulb temperature ranged from 28 to 29°C were statistically significant at 0.035 and 0.05 level, respectively. A statistical predictive model was obtained from multiple regressions modeling for PM2.5 and indoor psychrometric parameters.Keywords: particulate matters, classrooms, regression, concentration, humidity
Procedia PDF Downloads 312375 Diagnostic Value of Different Noninvasive Criteria of Latent Myocarditis in Comparison with Myocardial Biopsy
Authors: Olga Blagova, Yuliya Osipova, Evgeniya Kogan, Alexander Nedostup
Abstract:
Purpose: to quantify the value of various clinical, laboratory and instrumental signs in the diagnosis of myocarditis in comparison with morphological studies of the myocardium. Methods: in 100 patients (65 men, 44.7±12.5 years) with «idiopathic» arrhythmias (n = 20) and dilated cardiomyopathy (DCM, n = 80) were performed 71 endomyocardial biopsy (EMB), 13 intraoperative biopsy, 5 study of explanted hearts, 11 autopsy with virus investigation (real-time PCR) of the blood and myocardium. Anti-heart antibodies (AHA) were also measured as well as cardiac CT (n = 45), MRI (n = 25), coronary angiography (n = 47). The comparison group included of 50 patients (25 men, 53.7±11.7 years) with non-inflammatory heart diseases who underwent open heart surgery. Results. Active/borderline myocarditis was diagnosed in 76.0% of the study group and in 21.6% of patients of the comparison group (p < 0.001). The myocardial viral genome was observed more frequently in patients of comparison group than in study group (group (65.0% and 40.2%; p < 0.01. Evaluated the diagnostic value of noninvasive markers of myocarditis. The panel of anti-heart antibodies had the greatest importance to identify myocarditis: sensitivity was 81.5%, positive and negative predictive value was 75.0 and 60.5%. It is defined diagnostic value of non-invasive markers of myocarditis and diagnostic algorithm providing an individual assessment of the likelihood of myocarditis is developed. Conclusion. The greatest significance in the diagnosis of latent myocarditis in patients with 'idiopathic' arrhythmias and DCM have AHA. The use of complex of noninvasive criteria allows estimate the probability of myocarditis and determine the indications for EMB.Keywords: myocarditis, "idiopathic" arrhythmias, dilated cardiomyopathy, endomyocardial biopsy, viral genome, anti-heart antibodies
Procedia PDF Downloads 173374 Prevalence of Workplace Bullying in Hong Kong: A Latent Class Analysis
Authors: Catalina Sau Man Ng
Abstract:
Workplace bullying is generally defined as a form of direct and indirect maltreatment at work including harassing, offending, socially isolating someone or negatively affecting someone’s work tasks. Workplace bullying is unfortunately commonplace around the world, which makes it a social phenomenon worth researching. However, the measurements and estimation methods of workplace bullying seem to be diverse in different studies, leading to dubious results. Hence, this paper attempts to examine the prevalence of workplace bullying in Hong Kong using the latent class analysis approach. It is often argued that the traditional classification of workplace bullying into the dichotomous 'victims' and 'non-victims' may not be able to fully represent the complex phenomenon of bullying. By treating workplace bullying as one latent variable and examining the potential categorical distribution within the latent variable, a more thorough understanding of workplace bullying in real-life situations may hence be provided. As a result, this study adopts a latent class analysis method, which was tested to demonstrate higher construct and higher predictive validity previously. In the present study, a representative sample of 2814 employees (Male: 54.7%, Female: 45.3%) in Hong Kong was recruited. The participants were asked to fill in a self-reported questionnaire which included measurements such as Chinese Workplace Bullying Scale (CWBS) and Chinese Version of Depression Anxiety Stress Scale (DASS). It is estimated that four latent classes will emerge: 'non-victims', 'seldom bullied', 'sometimes bullied', and 'victims'. The results of each latent class and implications of the study will also be discussed in this working paper.Keywords: latent class analysis, prevalence, survey, workplace bullying
Procedia PDF Downloads 330373 In Vivo Evaluation of Exposure to Electromagnetic Fields at 27 GHz (5G) of Danio Rerio: A Preliminary Study
Authors: Elena Maria Scalisi, Roberta Pecoraro, Martina Contino, Sara Ignoto, Carmelo Iaria, Santi Concetto Pavone, Gino Sorbello, Loreto Di Donato, Maria Violetta Brundo
Abstract:
5G Technology is evolving to satisfy a variety of service requirements that may allow high data-rate connections (1Gbps) and lower latency times than current (<1ms). In order to support a high data transmission speed and a high traffic service for eMBB (enhanced mobile broadband) use cases, 5G systems have the characteristic of using different frequency bands of the radio wave spectrum (700 MHz, 3.6-3.8 GHz and 26.5-27.5 GHz), thus taking advantage of higher frequencies than previous mobile radio generations (1G-4G). However, waves at higher frequencies have a lower capacity to propagate in free space and therefore, in order to guarantee the capillary coverage of the territory for high reliability applications, it will be necessary to install a large number of repeaters. Following the introduction of this new technology, there has been growing concern over the past few months about possible harmful effects on human health. The aim of this preliminary study is to evaluate possible short term effects induced by 5G-millimeter waves on embryonic development and early life stages of Danio rerio by Z-FET. We exposed developing zebrafish at frequency of 27 GHz, with a standard pyramidal horn antenna placed at 15 cm far from the samples holder ensuring an incident power density of 10 mW/cm2. During the exposure cycle, from 6 h post fertilization (hpf) to 96 hpf, we measured a different morphological endpoints every 24 hours. Zebrafish embryo toxicity test (Z-FET) is a short term test, carried out on fertilized eggs of zebrafish and it represents an effective alternative to acute test with adult fish (OECD, 2013). We have observed that 5G did not reveal significant impacts on mortality nor on morphology because exposed larvae showed a normal detachment of the tail, presence of heartbeat, well-organized somites, therefore hatching rate was lower than untreated larvae even at 48 h of exposure. Moreover, the immunohistochemical analysis performed on larvae showed a negativity to the HSP-70 expression used as a biomarkers. This is a preliminary study on evaluation of potential toxicity induced by 5G and it seems appropriate to underline the importance that further studies would take, aimed at clarifying the probable real risk of exposure to electromagnetic fields.Keywords: Biomarker of exposure, embryonic development, 5G waves, zebrafish embryo toxicity test
Procedia PDF Downloads 131372 Assessment of Physical Activity and Sun Exposure of Saudi Patients with Type 2 Diabetes Mellitus in Ramadan and Non-Ramadan Periods
Authors: Abdullah S. Alghamdi, Khaled Alghamdi, Richard O. Jenkins, Parvez I. Haris
Abstract:
Background: Physical activity is an important factor in the treatment and prevention of type 2 diabetes mellitus (T2DM). Reduction in HbA1c level, an important diabetes biomarker, was reported in patients who increased their daily physical activity. Although the ambient temperature was reported to be positively correlated to a negative impact on health and increase the incidences of diabetes, the exposure to bright sunlight was recently found to be associated with enhanced insulin sensitivity and improved beta-cell function. How Ramadan alters physical activity, and especially sunlight exposure, has not been adequately investigated. Aim: This study aimed to assess the physical activity and sun exposure of Saudis with T2DM over different periods (before, during, and after Ramadan) and related this to HbA1c levels. Methods: This study recruited 82 Saudis with T2DM, who chose to fast during Ramadan, from the Endocrine and Diabetic Centre of Al Iman General Hospital, Riyadh, Saudi Arabia. Ethical approvals for this study were obtained from De Montfort University and Saudi Ministry of Health. Physical activity and sun exposure were assessed by a self-administered questionnaire. Physical activity was estimated using the International Physical Activity Questionnaire (IPAQ), while the sun exposure was assessed by asking the patients about their hours per week of direct exposure to the sun, and daily hours spent outdoors. Blood samples were collected in each period for measuring HbA1c. Results: Low physical activity was observed in more than 60% of the patients, with no significant changes between periods. There were no significant variances between periods in the daily hours spent outdoors and the total number of weekly hours of direct exposure to the sun. The majority of patients reported only few hours of exposure to the sun (1h or less per week) and time spent outdoors (1h or less per day). The mean HbA1c significantly changed between periods (P = 0.001), with lowest level during Ramadan. There were significant differences in the mean HbA1c between the groups for the level of physical activity (P < 0.001), with significant lower mean HbA1c in the higher-level group. There were no significant variances in the mean of HbA1c between the groups for the daily hours spent outdoors. The mean HbA1c of the patients, who reported never in their total weekly hours of exposure to the sun, was significantly lower than the mean HbA1c of those who reported 1 hour or less (P = 0.001). Conclusion: Physical inactivity was prevalent among the study population with very little exposure to the sun or time spent outdoors. Higher level of physical activity was associated with lower mean HbA1c levels. Encouraging T2DM patients to achieve the recommended levels of physical activity may help them to obtain greater benefits of Ramadan fasting, such as reducing their HbA1c levels. The impact of low direct exposure to the sun and the time spent outdoors needs to be further investigated in both healthy and diabetic patients.Keywords: diabetes, fasting, physical activity, sunlight, Ramadan
Procedia PDF Downloads 160371 Predicting the Next Offensive Play Types will be Implemented to Maximize the Defense’s Chances of Success in the National Football League
Authors: Chris Schoborg, Morgan C. Wang
Abstract:
In the realm of the National Football League (NFL), substantial dedication of time and effort is invested by both players and coaches in meticulously analyzing the game footage of their opponents. The primary aim is to anticipate the actions of the opposing team. Defensive players and coaches are especially focused on deciphering their adversaries' intentions to effectively counter their strategies. Acquiring insights into the specific play type and its intended direction on the field would confer a significant competitive advantage. This study establishes pre-snap information as the cornerstone for predicting both the play type (e.g., deep pass, short pass, or run) and its spatial trajectory (right, left, or center). The dataset for this research spans the regular NFL season data for all 32 teams from 2013 to 2022. This dataset is acquired using the nflreadr package, which conveniently extracts play-by-play data from NFL games and imports it into the R environment as structured datasets. In this study, we employ a recently developed machine learning algorithm, XGBoost. The final predictive model achieves an impressive lift of 2.61. This signifies that the presented model is 2.61 times more effective than random guessing—a significant improvement. Such a model has the potential to markedly enhance defensive coaches' ability to formulate game plans and adequately prepare their players, thus mitigating the opposing offense's yardage and point gains.Keywords: lift, NFL, sports analytics, XGBoost
Procedia PDF Downloads 56370 The Design of a Vehicle Traffic Flow Prediction Model for a Gauteng Freeway Based on an Ensemble of Multi-Layer Perceptron
Authors: Tebogo Emma Makaba, Barnabas Ndlovu Gatsheni
Abstract:
The cities of Johannesburg and Pretoria both located in the Gauteng province are separated by a distance of 58 km. The traffic queues on the Ben Schoeman freeway which connects these two cities can stretch for almost 1.5 km. Vehicle traffic congestion impacts negatively on the business and the commuter’s quality of life. The goal of this paper is to identify variables that influence the flow of traffic and to design a vehicle traffic prediction model, which will predict the traffic flow pattern in advance. The model will unable motorist to be able to make appropriate travel decisions ahead of time. The data used was collected by Mikro’s Traffic Monitoring (MTM). Multi-Layer perceptron (MLP) was used individually to construct the model and the MLP was also combined with Bagging ensemble method to training the data. The cross—validation method was used for evaluating the models. The results obtained from the techniques were compared using predictive and prediction costs. The cost was computed using combination of the loss matrix and the confusion matrix. The predicted models designed shows that the status of the traffic flow on the freeway can be predicted using the following parameters travel time, average speed, traffic volume and day of month. The implications of this work is that commuters will be able to spend less time travelling on the route and spend time with their families. The logistics industry will save more than twice what they are currently spending.Keywords: bagging ensemble methods, confusion matrix, multi-layer perceptron, vehicle traffic flow
Procedia PDF Downloads 344369 Information Overload, Information Literacy and Use of Technology by Students
Authors: Elena Krelja Kurelović, Jasminka Tomljanović, Vlatka Davidović
Abstract:
The development of web technologies and mobile devices makes creating, accessing, using and sharing information or communicating with each other simpler every day. However, while the amount of information constantly increasing it is becoming harder to effectively organize and find quality information despite the availability of web search engines, filtering and indexing tools. Although digital technologies have overall positive impact on students’ lives, frequent use of these technologies and digital media enriched with dynamic hypertext and hypermedia content, as well as multitasking, distractions caused by notifications, calls or messages; can decrease the attention span, make thinking, memorizing and learning more difficult, which can lead to stress and mental exhaustion. This is referred to as “information overload”, “information glut” or “information anxiety”. Objective of this study is to determine whether students show signs of information overload and to identify the possible predictors. Research was conducted using a questionnaire developed for the purpose of this study. The results show that students frequently use technology (computers, gadgets and digital media), while they show moderate level of information literacy. They have sometimes experienced symptoms of information overload. According to the statistical analysis, higher frequency of technology use and lower level of information literacy are correlated with larger information overload. The multiple regression analysis has confirmed that the combination of these two independent variables has statistically significant predictive capacity for information overload. Therefore, the information science teachers should pay attention to improving the level of students’ information literacy and educate them about the risks of excessive technology use.Keywords: information overload, computers, mobile devices, digital media, information literacy, students
Procedia PDF Downloads 279368 Comparison of the Classification of Cystic Renal Lesions Using the Bosniak Classification System with Contrast Enhanced Ultrasound and Magnetic Resonance Imaging to Computed Tomography: A Prospective Study
Authors: Dechen Tshering Vogel, Johannes T. Heverhagen, Bernard Kiss, Spyridon Arampatzis
Abstract:
In addition to computed tomography (CT), contrast enhanced ultrasound (CEUS), and magnetic resonance imaging (MRI) are being increasingly used for imaging of renal lesions. The aim of this prospective study was to compare the classification of complex cystic renal lesions using the Bosniak classification with CEUS and MRI to CT. Forty-eight patients with 65 cystic renal lesions were included in this study. All participants signed written informed consent. The agreement between the Bosniak classifications of complex renal lesions ( ≥ BII-F) on CEUS and MRI were compared to that of CT and were tested using Cohen’s Kappa. Sensitivity, specificity, positive and negative predictive values (PPV/NPV) and the accuracy of CEUS and MRI compared to CT in the detection of complex renal lesions were calculated. Twenty-nine (45%) out of 65 cystic renal lesions were classified as complex using CT. The agreement between CEUS and CT in the classification of complex cysts was fair (agreement 50.8%, Kappa 0.31), and was excellent between MRI and CT (agreement 93.9%, Kappa 0.88). Compared to CT, MRI had a sensitivity of 96.6%, specificity of 91.7%, a PPV of 54.7%, and an NPV of 54.7% with an accuracy of 63.1%. The corresponding values for CEUS were sensitivity 100.0%, specificity 33.3%, PPV 90.3%, and NPV 97.1% with an accuracy 93.8%. The classification of complex renal cysts based on MRI and CT scans correlated well, and MRI can be used instead of CT for this purpose. CEUS can exclude complex lesions, but due to higher sensitivity, cystic lesions tend to be upgraded. However, it is useful for initial imaging, for follow up of lesions and in those patients with contraindications to CT and MRI.Keywords: Bosniak classification, computed tomography, contrast enhanced ultrasound, cystic renal lesions, magnetic resonance imaging
Procedia PDF Downloads 144367 Study of Circulatory MiR-122 and MiR-130a Expression among Chronic Hepatitis C Egyptian Patients
Authors: Hend K. Moosa, Eman A. Rashwan, Ezzat M. Hassan, Amany A. Ghazy, Amel G. Sheredy
Abstract:
The stability of microRNA (miR) in the circulation can show a great progress toward the discovery of non-invasive diagnostic and prognostic biomarkers in many diseases. In the present study, circulatory miR-122 and miR-130a were analysed in chronic hepatitis C Egyptian patients in predicting the clinical outcome of interferon treatment. In addition, their expression levels were correlated to viral RNA levels, necro-inflammatory markers (AST, ALT) and to each other. This study was conducted on 51 subjects where 36 were chronic HCV patients in which they were divided into naive and interferon treated HCV patients (responders and non-responders) and 15 matched healthy controls. Serum quantification of miR-122 and miR-130a were performed by quantitative Real-time Polymerase Chain Reaction (qRT-PCR). The results showed a significant upregulation of miR-122 in non-responder patients (P=0.049). By receiver operating characteristic analysis curve, miR-122 revealed 65% sensitivity and 92.3% specificity in predicting non-responsiveness of patients to IFN treatment, while miR-130a showed a sensitivity of 100% and specificity of 53.85%. Remarkably, there was a significant positive correlation between miR-122 and miR-130a in naive HCV patients (r=0.714, p=0.003). However, there was no significant correlation between serum miR-122, miR-130a expression levels and necro-inflammatory markers (AST, ALT). To conclude, miR-122 and miR-130a have a significant association with viral RNA levels and accordingly, they may have a synergistic power in promoting viral replication. Interestingly, miR-122 and miR-130a have a predictive power in predicting clinical outcome of IFN treatment which can be further studied in currently used drugs in order to reduce the socio-economic burden of potentially non-responders.Keywords: hepatitis C, microRNA, miR-122, miR-130a
Procedia PDF Downloads 170366 Using Lysosomal Immunogenic Cell Death to Target Breast Cancer via Xanthine Oxidase/Micro-Antibody Fusion Protein
Authors: Iulianna Taritsa, Kuldeep Neote, Eric Fossel
Abstract:
Lysosome-induced immunogenic cell death (LIICD) is a powerful mechanism of targeting cancer cells that kills circulating malignant cells and primes the host’s immune cells against future remission. Current immunotherapies for cancer are limited in preventing recurrence – a gap that can be bridged by training the immune system to recognize cancer neoantigens. Lysosomal leakage can be induced therapeutically to traffic antigens from dying cells to dendritic cells, which can later present those tumorigenic antigens to T cells. Previous research has shown that oxidative agents administered in the tumor microenvironment can initiate LIICD. We generated a fusion protein between an oxidative agent known as xanthine oxidase (XO) and a mini-antibody specific for EGFR/HER2-sensitive breast tumor cells. The anti-EGFR single domain antibody fragment is uniquely sourced from llama, which is functional without the presence of a light chain. These llama micro-antibodies have been shown to be better able to penetrate tissues and have improved physicochemical stability as compared to traditional monoclonal antibodies. We demonstrate that the fusion protein created is stable and can induce early markers of immunogenic cell death in an in vitro human breast cancer cell line (SkBr3). Specifically, we measured overall cell death, as well as surface-expressed calreticulin, extracellular ATP release, and HMGB1 production. These markers are consensus indicators of ICD. Flow cytometry, luminescence assays, and ELISA were used respectively to quantify biomarker levels between treated versus untreated cells. We also included a positive control group of SkBr3 cells dosed with doxorubicin (a known inducer of LIICD) and a negative control dosed with cisplatin (a known inducer of cell death, but not of the immunogenic variety). We looked at each marker at various time points after cancer cells were treated with the XO/antibody fusion protein, doxorubicin, and cisplatin. Upregulated biomarkers after treatment with the fusion protein indicate an immunogenic response. We thus show the potential for this fusion protein to induce an anticancer effect paired with an adaptive immune response against EGFR/HER2+ cells. Our research in human cell lines here provides evidence for the success of the same therapeutic method for patients and serves as the gateway to developing a new treatment approach against breast cancer.Keywords: apoptosis, breast cancer, immunogenic cell death, lysosome
Procedia PDF Downloads 199365 Optimizing the Morphology and Flow Patterns of Scaffold Perfusion Systems for Effective Cell Deposition Using Computational Fluid Dynamics
Authors: Vineeth Siripuram, Abhineet Nigam
Abstract:
A bioreactor is an engineered system that supports a biologically active environment. Along the years, the advancements in bioreactors have been widely accepted all over the world for varied applications ranging from sewage treatment to tissue cloning. Driven by tissue and organ shortage, tissue engineering has emerged as an alternative to transplantation for the reconstruction of lost or damaged organs. In this study, Computational fluid dynamics (CFD) has been used to model porous medium flow in scaffolds (taken from the literature) with different flow patterns. A detailed analysis of different scaffold geometries and their influence on cell deposition in the perfusion system is been carried out using Computational fluid dynamics (CFD). Considering the fact that, the scaffold should mimic the organs or tissues structures in a three-dimensional manner, certain assumptions were made accordingly. The research on scaffolds has been extensively carried out in different bioreactors. However, there has been less focus on the morphology of the scaffolds and the flow patterns in which the perfusion system is laid upon. The objective of this paper is to employ a computational approach using CFD simulation to determine the optimal morphology and the anisotropic measurements of the various samples of scaffolds. Using predictive computational modelling approach, variables which exert dominant effects on the cell deposition within the scaffold were prioritised and corresponding changes in morphology of scaffold and flow patterns in the perfusion systems are made. A Eulerian approach was carried on in multiple CFD simulations, and it is observed that the morphological and topological changes in the scaffold perfusion system are of great importance in the commercial applications of scaffolds.Keywords: cell seeding, CFD, flow patterns, modelling, perfusion systems, scaffold
Procedia PDF Downloads 161364 Navigating the Nexus of HIV/AIDS Care: Leveraging Statistical Insight to Transform Clinical Practice and Patient Outcomes
Authors: Nahashon Mwirigi
Abstract:
The management of HIV/AIDS is a global challenge, demanding precise tools to predict disease progression and guide tailored treatment. CD4 cell count dynamics, a crucial immune function indicator, play an essential role in understanding HIV/AIDS progression and enhancing patient care through effective modeling. While several models assess disease progression, existing methods often fall short in capturing the complex, non-linear nature of HIV/AIDS, especially across diverse demographics. A need exists for models that balance predictive accuracy with clinical applicability, enabling individualized care strategies based on patient-specific progression rates. This study utilizes patient data from Kenyatta National Hospital (2003–2014) to model HIV/AIDS progression across six CD4-defined states. The Exponential, 2-Parameter Weibull, and 3-Parameter Weibull models are employed to analyze failure rates and explore progression patterns by age and gender. Model selection is based on Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) to identify models best representing disease progression variability across demographic groups. The 3-Parameter Weibull model emerges as the most effective, accurately capturing HIV/AIDS progression dynamics, particularly by incorporating delayed progression effects. This model reflects age and gender-specific variations, offering refined insights into patient trajectories and facilitating targeted interventions. One key finding is that older patients progress more slowly through CD4-defined stages, with a delayed onset of advanced stages. This suggests that older patients may benefit from extended monitoring intervals, allowing providers to optimize resources while maintaining consistent care. Recognizing slower progression in this demographic helps clinicians reduce unnecessary interventions, prioritizing care for faster-progressing groups. Gender-based analysis reveals that female patients exhibit more consistent progression, while male patients show greater variability. This highlights the need for gender-specific treatment approaches, as men may require more frequent assessments and adaptive treatment plans to address their variable progression. Tailoring treatment by gender can improve outcomes by addressing distinct risk patterns in each group. The model’s ability to account for both accelerated and delayed progression equips clinicians with a robust tool for estimating the duration of each disease stage. This supports individualized treatment planning, allowing clinicians to optimize antiretroviral therapy (ART) regimens based on demographic factors and expected disease trajectories. Aligning ART timing with specific progression patterns can enhance treatment efficacy and adherence. The model also has significant implications for healthcare systems, as its predictive accuracy enables proactive patient management, reducing the frequency of advanced-stage complications. For resource limited providers, this capability facilitates strategic intervention timing, ensuring that high-risk patients receive timely care while resources are allocated efficiently. Anticipating progression stages enhances both patient care and resource management, reinforcing the model’s value in supporting sustainable HIV/AIDS healthcare strategies. This study underscores the importance of models that capture the complexities of HIV/AIDS progression, offering insights to guide personalized, data-informed care. The 3-Parameter Weibull model’s ability to accurately reflect delayed progression and demographic risk variations presents a valuable tool for clinicians, supporting the development of targeted interventions and resource optimization in HIV/AIDS management.Keywords: HIV/AIDS progression, 3-parameter Weibull model, CD4 cell count stages, antiretroviral therapy, demographic-specific modeling
Procedia PDF Downloads 12363 A Case Study on the Condition Monitoring of a Critical Machine in a Tyre Manufacturing Plant
Authors: Ramachandra C. G., Amarnath. M., Prashanth Pai M., Nagesh S. N.
Abstract:
The machine's performance level drops down over a period of time due to the wear and tear of its components. The early detection of an emergent fault becomes very vital in order to obtain uninterrupted production in a plant. Maintenance is an activity that helps to keep the machine's performance at an anticipated level, thereby ensuring the availability of the machine to perform its intended function. At present, a number of modern maintenance techniques are available, such as preventive maintenance, predictive maintenance, condition-based maintenance, total productive maintenance, etc. Condition-based maintenance or condition monitoring is one such modern maintenance technique in which the machine's condition or health is checked by the measurement of certain parameters such as sound level, temperature, velocity, displacement, vibration, etc. It can recognize most of the factors restraining the usefulness and efficacy of the total manufacturing unit. This research work is conducted on a Batch Mill in a tire production unit located in the Southern Karnataka region. The health of the mill is assessed using amplitude of vibration as a parameter of measurement. Most commonly, the vibration level is assessed using various points on the machine bearing. The normal or standard level is fixed using reference materials such as manuals or catalogs supplied by the manufacturers and also by referring vibration standards. The Rio-Vibro meter is placed in different locations on the batch-off mill to record the vibration data. The data collected are analyzed to identify the malfunctioning components in the batch off the mill, and corrective measures are suggested.Keywords: availability, displacement, vibration, rio-vibro, condition monitoring
Procedia PDF Downloads 92362 Modeling Core Flooding Experiments for Co₂ Geological Storage Applications
Authors: Avinoam Rabinovich
Abstract:
CO₂ geological storage is a proven technology for reducing anthropogenic carbon emissions, which is paramount for achieving the ambitious net zero emissions goal. Core flooding experiments are an important step in any CO₂ storage project, allowing us to gain information on the flow of CO₂ and brine in the porous rock extracted from the reservoir. This information is important for understanding basic mechanisms related to CO₂ geological storage as well as for reservoir modeling, which is an integral part of a field project. In this work, a different method for constructing accurate models of CO₂-brine core flooding will be presented. Results for synthetic cases and real experiments will be shown and compared with numerical models to exhibit their predictive capabilities. Furthermore, the various mechanisms which impact the CO₂ distribution and trapping in the rock samples will be discussed, and examples from models and experiments will be provided. The new method entails solving an inverse problem to obtain a three-dimensional permeability distribution which, along with the relative permeability and capillary pressure functions, constitutes a model of the flow experiments. The model is more accurate when data from a number of experiments are combined to solve the inverse problem. This model can then be used to test various other injection flow rates and fluid fractions which have not been tested in experiments. The models can also be used to bridge the gap between small-scale capillary heterogeneity effects (sub-core and core scale) and large-scale (reservoir scale) effects, known as the upscaling problem.Keywords: CO₂ geological storage, residual trapping, capillary heterogeneity, core flooding, CO₂-brine flow
Procedia PDF Downloads 71361 Attachment and Decision-Making in Infertility
Authors: Anisa Luli, Alessandra Santona
Abstract:
Wanting a child and experiencing the impossibility to conceive is a painful condition that often is linked to infertility and often leads infertile individuals to experience psychological, relational and social problems. In this situation, infertile couples have to review their choices and take into consideration new ones. Few studies have focused on the decision-making style used by infertile individuals to solve their problem and on the factors that influences it. The aim of this paper is to define the style of decision-making used by infertile persons to give a solution to the “problem” and the predictive role of the attachment, of the representations of the relationship with parents in childhood and of the dyadic adjustment. The total sample is composed by 251 participants, divided in two groups: the experimental group composed by 114 participants, 62 males and 52 females, age between 25 and 59 years, and the control group composed by 137 participants, 65 males and 72 females, age between 22 and 49 years. The battery of instruments comprises: General Decision Making Style (GDMS), Experiences in Close Relationships Questionnaire Revised (ECR-R), Dyadic Adjustment Scale (DAS), Parental Bonding Instrument (PBI) and Symptom Checklist-90-R (SCL-90-R). The results from the analysis of the samples showed a prevalence of the rational decision-making style for both males and females, experimental and control group. There have been founded significant statistical relationships between the attachment scales, the representations of the parenting style, the dyadic adjustment and the decision-making styles. These results contribute to enrich the literature on the subject of decision-making in infertile people and show the relationship between the attachment and decision-making styles, confirming the few results in literature.Keywords: attachment, decision-making style, infertility, dyadic adjustment
Procedia PDF Downloads 581360 Non-Linear Assessment of Chromatographic Lipophilicity of Selected Steroid Derivatives
Authors: Milica Karadžić, Lidija Jevrić, Sanja Podunavac-Kuzmanović, Strahinja Kovačević, Anamarija Mandić, Aleksandar Oklješa, Andrea Nikolić, Marija Sakač, Katarina Penov Gaši
Abstract:
Using chemometric approach, the relationships between the chromatographic lipophilicity and in silico molecular descriptors for twenty-nine selected steroid derivatives were studied. The chromatographic lipophilicity was predicted using artificial neural networks (ANNs) method. The most important in silico molecular descriptors were selected applying stepwise selection (SS) paired with partial least squares (PLS) method. Molecular descriptors with satisfactory variable importance in projection (VIP) values were selected for ANN modeling. The usefulness of generated models was confirmed by detailed statistical validation. High agreement between experimental and predicted values indicated that obtained models have good quality and high predictive ability. Global sensitivity analysis (GSA) confirmed the importance of each molecular descriptor used as an input variable. High-quality networks indicate a strong non-linear relationship between chromatographic lipophilicity and used in silico molecular descriptors. Applying selected molecular descriptors and generated ANNs the good prediction of chromatographic lipophilicity of the studied steroid derivatives can be obtained. This article is based upon work from COST Actions (CM1306 and CA15222), supported by COST (European Cooperation and Science and Technology).Keywords: artificial neural networks, chemometrics, global sensitivity analysis, liquid chromatography, steroids
Procedia PDF Downloads 347359 Self-Care Behavior and Performance Level Associated with Algerian Chronically Ill Patients
Authors: S. Aberkane, N. Djabali, S. Fafi, A. Baghezza
Abstract:
Chronic illnesses affect many Algerians. It is possible to investigate the impact of illness representations and coping on quality of life and whether illness representations are indirectly associated with quality of life through their influence on coping. This study aims at investigating the relationship between illness perception, coping strategies and quality of life with chronic illness. Illness perceptions are indirectly associated with the quality of life through their influence on coping mediation. A sample of 316 participants with chronic illness living in the region of Batna, Algeria, has been adopted in this study. A correlation statistical analysis is used to determine the relationship between illness perception, coping strategies, and quality of life. Multiple regression analysis was employed to highlight the predictive ability of the dimensions of illness perception and coping strategies on the dependent variables of quality of life, where mediation analysis is considered in the exploration of the indirect effect significance of the mediator. This study provides insights about the relationship between illness perception, coping strategies and quality of life in the considered sample (r = 0.39, p < 0.01). Therefore, it proves that there is an effect of illness identity perception, external and medical attributions related to emotional role, physical functioning, and mental health perceived, and these were fully mediated by the asking for assistance (c’= 0.04, p < 0.05), the guarding (c’= 0.00, p < 0.05), and the task persistence strategy (c’= 0.05, p < 0.05). The findings imply partial support for the common-sense model of illness representations in a chronic illness population. Directions for future research are highlighted, as well as implications for psychotherapeutic interventions which target unhelpful beliefs and maladaptive coping strategies (e.g., cognitive behavioral therapy).Keywords: chronic illness, coping, illness perception, quality of life, self- regulation model
Procedia PDF Downloads 224358 Design of New Sustainable Pavement Concrete: An Experimental Road
Authors: Manuel Rosales, Francisco Agrela, Julia Rosales
Abstract:
The development of concrete pavements that include recycled waste with active and predictive safety features is a possible approach to mitigate the harmful impacts of the construction industry, such as CO2 emissions and the consumption of energy and natural resources during the construction and maintenance of road infrastructure. This study establishes the basis for formulating new smart materials for concrete pavements and carrying out the in-situ implementation of an experimental road section. To this end, a comprehensive recycled pavement solution is developed that combines eco-hybrid cement made with 25% mixed recycled aggregate powder (pMRA) and biomass bottom ash powder (pBBA) and a 30% substitution of natural aggregate by MRA and BBA. This work is grouped in three lines. 1) construction materials with high rates of use of recycled material, 2) production processes with efficient consumption of natural resources and use of cleaner energies, and 3) implementation and monitoring of road section with sustainable concrete made from waste. The objective of this study is to ensure satisfactory rheology, mechanical strength, durability, and CO2 capture of pavement concrete manufactured from waste and its subsequent application in real road section as well as its monitoring to establish the optimal range of recycled material. The concrete developed during this study are aimed at the reuse of waste, promoting the circular economy. For this purpose, and after having carried out different tests in the laboratory, three mixtures were established to be applied on the experimental road.Keywords: biomass bottom ash, construction and demolition waste, recycled concrete pavements, full-scale experimental road, monitoring
Procedia PDF Downloads 68357 Survey of the Relationship between Functional Movement Screening Tests and Anthropometric Dimensions in Healthy People, 2018
Authors: Akram Sadat Jafari Roodbandi, Parisa Kahani, Fatollah Rahimi Bafrani, Ali Dehghan, Nava Seyedi, Vafa Feyzi, Zohreh Forozanfar
Abstract:
Introduction: Movement function is considered as the ability to produce and maintain balance, stability, and movement throughout the movement chain. Having a score of 14 and above on 7 sub-tests in the functional movement screening (FMS) test shows agility and optimal movement performance. On the other hand, the person's body is an important factor in physical fitness and optimal movement performance. The aim of this study was to identify effective anthropometric dimensions in increasing motor function. Methods: This study was a descriptive-analytical and cross-sectional study using simple random sampling. FMS test and 25 anthropometric dimensions and subcutaneous in five body regions measured in 139 healthy students of Bam University of Medical Sciences. Data analysis was performed using SPSS software and univariate tests and linear regressions at a significance level of 0.05. Results: 139 students were enrolled in the study, 51.1% (71 subjects) and the rest were female. The mean and standard deviation of age, weight, height, and arm subcutaneous fat were 21.5 ± 1.45, 12.6 ± 64.3, 168.7 ± 9.8, 15.3 ± 7, respectively. 17 subjects (12.2%) of the participants in the study have a score of less than 14, and the rest were above 14. Using regression analysis, it was found that exercise and arm subcutaneous fat are predictive variables associated with obtaining a high score in the FMS test. Conclusion: Exercise and weight loss are effective factors for increasing the movement performance of individuals, and this factor is independent of the size of other physical dimensions.Keywords: functional movement, screening test, anthropometry, ergonomics
Procedia PDF Downloads 149356 Unveiling the Impact of Ultra High Vacuum Annealing Levels on Physico-Chemical Properties of Bulk ZnSe Semiconductor
Authors: Kheira Hamaida, Mohamed Salah Halati
Abstract:
In this current paper, our aim work is to link as possible the obtained simulation results and the other experimental ones, just focusing on the electronic and optical properties of ZnSe. The predictive spectra of the total and partial densities of states using the Full Potential Linearized/Augmented Plane Wave method with the newly Tran-Blaha (TB) modified Becke-Johnson (mBJ) exchange-correlation potential (EXC). So the upper valence energy (UVE) levels contain the relative contribution of Se-(4p and 3d) states with considerable contribution from the electrons of Zn-2s orbital. The dielectric function of w-ZnSe, with its two parts, appears with a noticeable anisotropy character. The microscopic origins of the electronic states that are responsible for the observed peaks in the spectrum are determined through the decomposition of the spectrum to the individual contributions of the electronic transitions between the pairs of bands, where Vi is an occupied state in the valence band, and Ci is an unoccupied state in the conduction band. X-PES (X Ray-Photo Electron Spectroscopy) is an important technique used to probe the homogeneity, stoichiometry, and purity state of the title compound. In order to check the electron transitions derived from simulations and the others from Reflected Electron Energy Loss Spectroscopy (REELS) technique which was of great sensitivity, is used to determine the interband electronic transitions. In the optical window (Eg), all the electron energy states created were also determined through the specific gaussian deconvolution of the photoluminescence spectrum (PLS) that probed under a room temperature (RT).Keywords: spectroscopy, WIEN2K, IIB-VIA semiconductors, dielectric function
Procedia PDF Downloads 64355 Focus-Latent Dirichlet Allocation for Aspect-Level Opinion Mining
Authors: Mohsen Farhadloo, Majid Farhadloo
Abstract:
Aspect-level opinion mining that aims at discovering aspects (aspect identification) and their corresponding ratings (sentiment identification) from customer reviews have increasingly attracted attention of researchers and practitioners as it provides valuable insights about products/services from customer's points of view. Instead of addressing aspect identification and sentiment identification in two separate steps, it is possible to simultaneously identify both aspects and sentiments. In recent years many graphical models based on Latent Dirichlet Allocation (LDA) have been proposed to solve both aspect and sentiment identifications in a single step. Although LDA models have been effective tools for the statistical analysis of document collections, they also have shortcomings in addressing some unique characteristics of opinion mining. Our goal in this paper is to address one of the limitations of topic models to date; that is, they fail to directly model the associations among topics. Indeed in many text corpora, it is natural to expect that subsets of the latent topics have higher probabilities. We propose a probabilistic graphical model called focus-LDA, to better capture the associations among topics when applied to aspect-level opinion mining. Our experiments on real-life data sets demonstrate the improved effectiveness of the focus-LDA model in terms of the accuracy of the predictive distributions over held out documents. Furthermore, we demonstrate qualitatively that the focus-LDA topic model provides a natural way of visualizing and exploring unstructured collection of textual data.Keywords: aspect-level opinion mining, document modeling, Latent Dirichlet Allocation, LDA, sentiment analysis
Procedia PDF Downloads 94354 Human Immune Response to Surgery: The Surrogate Prediction of Postoperative Outcomes
Authors: Husham Bayazed
Abstract:
Immune responses following surgical trauma play a pivotal role in predicting postoperative outcomes from healing and recovery to postoperative complications. Postoperative complications, including infections and protracted recovery, occur in a significant number of about 300 million surgeries performed annually worldwide. Complications cause personal suffering along with a significant economic burden on the healthcare system in any community. The accurate prediction of postoperative complications and patient-targeted interventions for their prevention remain major clinical provocations. Recent Findings: Recent studies are focusing on immune dysregulation mechanisms that occur in response to surgical trauma as a key determinant of postoperative complications. Antecedent studies mainly were plunging into the detection of inflammatory plasma markers, which facilitate in providing important clues regarding their pathogenesis. However, recent Single-cell technologies, such as mass cytometry or single-cell RNA sequencing, have markedly enhanced our ability to understand the immunological basis of postoperative immunological trauma complications and to identify their prognostic biological signatures. Summary: The advent of proteomic technologies has significantly advanced our ability to predict the risk of postoperative complications. Multiomic modeling of patients' immune states holds promise for the discovery of preoperative predictive biomarkers and providing patients and surgeons with information to improve surgical outcomes. However, more studies are required to accurately predict the risk of postoperative complications in individual patients.Keywords: immune dysregulation, postoperative complications, surgical trauma, flow cytometry
Procedia PDF Downloads 86