Search results for: nonlinear dynamic model
19058 Exploring SSD Suitable Allocation Schemes Incompliance with Workload Patterns
Authors: Jae Young Park, Hwansu Jung, Jong Tae Kim
Abstract:
Whether the data has been well parallelized is an important factor in the Solid-State-Drive (SSD) performance. SSD parallelization is affected by allocation scheme and it is directly connected to SSD performance. There are dynamic allocation and static allocation in representative allocation schemes. Dynamic allocation is more adaptive in exploiting write operation parallelism, while static allocation is better in read operation parallelism. Therefore, it is hard to select the appropriate allocation scheme when the workload is mixed read and write operations. We simulated conditions on a few mixed data patterns and analyzed the results to help the right choice for better performance. As the results, if data arrival interval is long enough prior operations to be finished and continuous read intensive data environment static allocation is more suitable. Dynamic allocation performs the best on write performance and random data patterns.Keywords: dynamic allocation, NAND flash based SSD, SSD parallelism, static allocation
Procedia PDF Downloads 33919057 The Effect of Soil-Structure Interaction on the Post-Earthquake Fire Performance of Structures
Authors: A. T. Al-Isawi, P. E. F. Collins
Abstract:
The behaviour of structures exposed to fire after an earthquake is not a new area of engineering research, but there remain a number of areas where further work is required. Such areas relate to the way in which seismic excitation is applied to a structure, taking into account the effect of soil-structure interaction (SSI) and the method of analysis, in addition to identifying the excitation load properties. The selection of earthquake data input for use in nonlinear analysis and the method of analysis are still challenging issues. Thus, realistic artificial ground motion input data must be developed to certify that site properties parameters adequately describe the effects of the nonlinear inelastic behaviour of the system and that the characteristics of these parameters are coherent with the characteristics of the target parameters. Conversely, ignoring the significance of some attributes, such as frequency content, soil site properties and earthquake parameters may lead to misleading results, due to the misinterpretation of required input data and the incorrect synthesise of analysis hypothesis. This paper presents a study of the post-earthquake fire (PEF) performance of a multi-storey steel-framed building resting on soft clay, taking into account the effects of the nonlinear inelastic behaviour of the structure and soil, and the soil-structure interaction (SSI). Structures subjected to an earthquake may experience various levels of damage; the geometrical damage, which indicates the change in the initial structure’s geometry due to the residual deformation as a result of plastic behaviour, and the mechanical damage which identifies the degradation of the mechanical properties of the structural elements involved in the plastic range of deformation. Consequently, the structure presumably experiences partial structural damage but is then exposed to fire under its new residual material properties, which may result in building failure caused by a decrease in fire resistance. This scenario would be more complicated if SSI was also considered. Indeed, most earthquake design codes ignore the probability of PEF as well as the effect that SSI has on the behaviour of structures, in order to simplify the analysis procedure. Therefore, the design of structures based on existing codes which neglect the importance of PEF and SSI can create a significant risk of structural failure. In order to examine the criteria for the behaviour of a structure under PEF conditions, a two-dimensional nonlinear elasto-plastic model is developed using ABAQUS software; the effects of SSI are included. Both geometrical and mechanical damages have been taken into account after the earthquake analysis step. For comparison, an identical model is also created, which does not include the effects of soil-structure interaction. It is shown that damage to structural elements is underestimated if SSI is not included in the analysis, and the maximum percentage reduction in fire resistance is detected in the case when SSI is included in the scenario. The results are validated using the literature.Keywords: Abaqus Software, Finite Element Analysis, post-earthquake fire, seismic analysis, soil-structure interaction
Procedia PDF Downloads 12119056 Experimental Studies of the Reverse Load-Unloading Effect on the Mechanical, Linear and Nonlinear Elastic Properties of n-AMg6/C60 Nanocomposite
Authors: Aleksandr I. Korobov, Natalia V. Shirgina, Aleksey I. Kokshaiskiy, Vyacheslav M. Prokhorov
Abstract:
The paper presents the results of an experimental study of the effect of reverse mechanical load-unloading on the mechanical, linear, and nonlinear elastic properties of n-AMg6/C60 nanocomposite. Samples for experimental studies of n-AMg6/C60 nanocomposite were obtained by grinding AMg6 polycrystalline alloy in a planetary mill with 0.3 wt % of C60 fullerite in an argon atmosphere. The resulting product consisted of 200-500-micron agglomerates of nanoparticles. X-ray coherent scattering (CSL) method has shown that the average nanoparticle size is 40-60 nm. The resulting preform was extruded at high temperature. Modifications of C60 fullerite interferes the process of recrystallization at grain boundaries. In the samples of n-AMg6/C60 nanocomposite, the load curve is measured: the dependence of the mechanical stress σ on the strain of the sample ε under its multi-cycle load-unloading process till its destruction. The hysteresis dependence σ = σ(ε) was observed, and insignificant residual strain ε < 0.005 were recorded. At σ≈500 MPa and ε≈0.025, the sample was destroyed. The destruction of the sample was fragile. Microhardness was measured before and after destruction of the sample. It was found that the loading-unloading process led to an increase in its microhardness. The effect of the reversible mechanical stress on the linear and nonlinear elastic properties of the n-AMg6/C60 nanocomposite was studied experimentally by ultrasonic method on the automated complex Ritec RAM-5000 SNAP SYSTEM. In the n-AMg6/C60 nanocomposite, the velocities of the longitudinal and shear bulk waves were measured with the pulse method, and all the second-order elasticity coefficients and their dependence on the magnitude of the reversible mechanical stress applied to the sample were calculated. Studies of nonlinear elastic properties of the n-AMg6/C60 nanocomposite at reversible load-unloading of the sample were carried out with the spectral method. At arbitrary values of the strain of the sample (up to its breakage), the dependence of the amplitude of the second longitudinal acoustic harmonic at a frequency of 2f = 10MHz on the amplitude of the first harmonic at a frequency f = 5MHz of the acoustic wave is measured. Based on the results of these measurements, the values of the nonlinear acoustic parameter in the n-AMg6/C60 nanocomposite sample at different mechanical stress were determined. The obtained results can be used in solid-state physics, materials science, for development of new techniques for nondestructive testing of structural materials using methods of nonlinear acoustic diagnostics. This study was supported by the Russian Science Foundation (project №14-22-00042).Keywords: nanocomposite, generation of acoustic harmonics, nonlinear acoustic parameter, hysteresis
Procedia PDF Downloads 15119055 Finite Dynamic Programming to Decision Making in the Use of Industrial Residual Water Treatment Plants
Authors: Oscar Vega Camacho, Andrea Vargas, Ellery Ariza
Abstract:
This paper presents the application of finite dynamic programming, specifically the "Markov Chain" model, as part of the decision making process of a company in the cosmetics sector located in the vicinity of Bogota DC. The objective of this process was to decide whether the company should completely reconstruct its waste water treatment plant or instead optimize the plant through the addition of equipment. The goal of both of these options was to make the required improvements in order to comply with parameters established by national legislation regarding the treatment of waste before it is released into the environment. This technique will allow the company to select the best option and implement a solution for the processing of waste to minimize environmental damage and the acquisition and implementation costs.Keywords: decision making, markov chain, optimization, waste water
Procedia PDF Downloads 41319054 Efficient Frequent Itemset Mining Methods over Real-Time Spatial Big Data
Authors: Hamdi Sana, Emna Bouazizi, Sami Faiz
Abstract:
In recent years, there is a huge increase in the use of spatio-temporal applications where data and queries are continuously moving. As a result, the need to process real-time spatio-temporal data seems clear and real-time stream data management becomes a hot topic. Sliding window model and frequent itemset mining over dynamic data are the most important problems in the context of data mining. Thus, sliding window model for frequent itemset mining is a widely used model for data stream mining due to its emphasis on recent data and its bounded memory requirement. These methods use the traditional transaction-based sliding window model where the window size is based on a fixed number of transactions. Actually, this model supposes that all transactions have a constant rate which is not suited for real-time applications. And the use of this model in such applications endangers their performance. Based on these observations, this paper relaxes the notion of window size and proposes the use of a timestamp-based sliding window model. In our proposed frequent itemset mining algorithm, support conditions are used to differentiate frequents and infrequent patterns. Thereafter, a tree is developed to incrementally maintain the essential information. We evaluate our contribution. The preliminary results are quite promising.Keywords: real-time spatial big data, frequent itemset, transaction-based sliding window model, timestamp-based sliding window model, weighted frequent patterns, tree, stream query
Procedia PDF Downloads 16119053 Spatiotemporal Modeling of Under-Five Mortality and Associated Risk Factors in Ethiopia
Authors: Melkamu A. Zeru, Aweke A. Mitiku, Endashaw Amuka
Abstract:
Background: Under-five mortality is the likelihood that a baby will pass away before turning exactly 5 years old, represented as a percentage per 1,000 live births. Exploring the spatial distribution and identifying the temporal pattern is important to reducing under-five child mortality globally, including in Ethiopia. Thus, this study aimed to identify the risk factors of under-five mortality and the spatiotemporal variation in Ethiopian administrative zones. Method: This study used the 2000-2016 Ethiopian Demographic and Health Survey (EDHS) data, which were collected using a two-stage sampling method. A total of 43,029 (10,873 in 2000, 9,861 in 2005, 11,654 in 2011, and 10,641 in 2016) weighted sample under-five child mortality was used. The space-time dynamic model was employed to account for spatial and time effects in 65 administrative zones in Ethiopia. Results: From the result of a general nesting spatial-temporal dynamic model, there was a significant space-time interaction effect [γ = -0.1444, 95 % CI (-0.6680, -0.1355)] for under-five mortality. The increase in the percentages of mothers illiteracy [𝛽 = 0.4501, 95% CI (0.2442, 0.6559)], not vaccinated[𝛽= 0.7681, 95% CI (0.5683, 0.9678)], unimproved water[𝛽= 0.5801, CI (0.3793, 0.7808)] were increased death rates for under five children while increased percentage of contraceptive use [𝛽= -0.6609, 95% CI (-0.8636, -0.4582)] and ANC visit > 4 times [𝛽= -0.1585, 95% CI(-0.1812, -0.1357)] were contributed to the decreased under-five mortality rate at the zone in Ethiopia. Conclusions: Even though the mortality rate for children under five has decreased over time, still there is still higher in different zones of Ethiopia. There exists spatial and temporal variation in under-five mortality among zones. Therefore, it is very important to consider spatial neighbourhoods and temporal context when aiming to avoid under-five mortality.Keywords: under-five children mortality, space-time dynamic, spatiotemporal, Ethiopia
Procedia PDF Downloads 3719052 Numerical Investigation of Static and Dynamic Responses of Fiber Reinforced Sand
Authors: Sandeep Kumar, Mahesh Kumar Jat, Rajib Sarkar
Abstract:
Soil reinforced with randomly distributed fibers is an attractive means to improve the performance of soil in a cost effective manner. Static and dynamic characterization of fiber reinforced soil have become important to evaluate adequate performance for all classes of geotechnical engineering problems. Present study investigates the behaviour of fiber reinforced cohesionless soil through numerical simulation of triaxial specimen. The numerical model has been validated with the existing literature of laboratory triaxial compression testing. A parametric study has been done to find out optimum fiber content for shear resistance. Cyclic triaxial testing has been simulated and the stress-strain response of fiber-reinforced sand has been examined considering different combination of fiber contents. Shear modulus values and damping values of fiber-reinforced sand are evaluated. It has been observed from results that for 1.0 percent fiber content shear modulus increased 2.28 times and damping ratio decreased 4.6 times. The influence of amplitude of cyclic strain, confining pressure and frequency of loading on the dynamic properties of fiber reinforced sand has been investigated and presented.Keywords: damping, fiber reinforced soil, numerical modelling, shear modulus
Procedia PDF Downloads 27819051 Effect of Masonry Infill in R.C. Framed Buildings
Authors: Pallab Das, Nabam Zomleen
Abstract:
Effective dissipation of lateral loads that are coming due to seismic force determines the strength, durability and safety concern of the structure. Masonry infill has high stiffness and strength capabilities which can be put into an effective utilization for lateral load dissipation by incorporating it into building construction, but masonry behaves in highly nonlinear manner, so it is highly important to find out generalized, yet a rational approach to determine its nonlinear behavior and failure mode and it’s response when it is incorporated into building. But most of the countries do not specify the procedure for design of masonry infill wall. Whereas, there are many analytical modeling method available in literature, e.g. equivalent diagonal strut method, finite element modeling etc. In this paper the masonry infill is modeled and 6-storey bare framed building and building with masonry infill is analyzed using SAP-200014 in order to find out inter-storey drift by time-history analysis and capacity curve by Pushover analysis. The analysis shows that, while, the structure is well within CP performance level for both the case, whereas, there is considerable reduction of inter-storey drift of about 28%, when the building is analyzed with masonry infill wall.Keywords: capacity curve, masonry infill, nonlinear analysis, time history analysis
Procedia PDF Downloads 38319050 Research on the United Navigation Mechanism of Land, Sea and Air Targets under Multi-Sources Information Fusion
Authors: Rui Liu, Klaus Greve
Abstract:
The navigation information is a kind of dynamic geographic information, and the navigation information system is a kind of special geographic information system. At present, there are many researches on the application of centralized management and cross-integration application of basic geographic information. However, the idea of information integration and sharing is not deeply applied into the research of navigation information service. And the imperfection of navigation target coordination and navigation information sharing mechanism under certain navigation tasks has greatly affected the reliability and scientificity of navigation service such as path planning. Considering this, the project intends to study the multi-source information fusion and multi-objective united navigation information interaction mechanism: first of all, investigate the actual needs of navigation users in different areas, and establish the preliminary navigation information classification and importance level model; and then analyze the characteristics of the remote sensing and GIS vector data, and design the fusion algorithm from the aspect of improving the positioning accuracy and extracting the navigation environment data. At last, the project intends to analyze the feature of navigation information of the land, sea and air navigation targets, and design the united navigation data standard and navigation information sharing model under certain navigation tasks, and establish a test navigation system for united navigation simulation experiment. The aim of this study is to explore the theory of united navigation service and optimize the navigation information service model, which will lay the theory and technology foundation for the united navigation of land, sea and air targets.Keywords: information fusion, united navigation, dynamic path planning, navigation information visualization
Procedia PDF Downloads 28819049 Quoting Jobshops Due Dates Subject to Exogenous Factors in Developing Nations
Authors: Idris M. Olatunde, Kareem B.
Abstract:
In manufacturing systems, especially job shops, service performance is a key factor that determines customer satisfaction. Service performance depends not only on the quality of the output but on the delivery lead times as well. Besides product quality enhancement, delivery lead time must be minimized for optimal patronage. Quoting accurate due dates is sine quo non for job shop operational survival in a global competitive environment. Quoting accurate due dates in job shops has been a herculean task that nearly defiled solutions from many methods employed due to complex jobs routing nature of the system. This class of NP-hard problems possessed no rigid algorithms that can give an optimal solution. Jobshop operational problem is more complex in developing nations due to some peculiar factors. Operational complexity in job shops emanated from political instability, poor economy, technological know-how, and the non-promising socio-political environment. The mentioned exogenous factors were hardly considered in the previous studies on scheduling problem related to due date determination in job shops. This study has filled the gap created in the past studies by developing a dynamic model that incorporated the exogenous factors for accurate determination of due dates for varying jobs complexity. Real data from six job shops selected from the different part of Nigeria, were used to test the efficacy of the model, and the outcomes were analyzed statistically. The results of the analyzes showed that the model is more promising in determining accurate due dates than the traditional models deployed by many job shops in terms of patronage and lead times minimization.Keywords: due dates prediction, improved performance, customer satisfaction, dynamic model, exogenous factors, job shops
Procedia PDF Downloads 41219048 Coefficient of Performance (COP) Optimization of an R134a Cross Vane Expander Compressor Refrigeration System
Authors: Y. D. Lim, K. S. Yap, K. T. Ooi
Abstract:
Cross Vane Expander Compressor (CVEC) is a newly invented expander-compressor combined unit, where it is introduced to replace the compressor and the expansion valve in traditional refrigeration system. The mathematical model of CVEC has been developed to examine its performance, and it was found that the energy consumption of a conventional refrigeration system was reduced by as much as 18%. It is believed that energy consumption can be further reduced by optimizing the device. In this study, the coefficient of performance (COP) of CVEC has been optimized under predetermined operational parameters and constrained main design parameters. Several main design parameters of CVEC were selected to be the variables, and the optimization was done with theoretical model in a simulation program. The theoretical model consists of geometrical model, dynamic model, heat transfer model and valve dynamics model. Complex optimization method, which is a constrained, direct search and multi-variables method was used in the study. As a result, the optimization study suggested that with an appropriate combination of design parameters, a 58% COP improvement in CVEC R134a refrigeration system is possible.Keywords: COP, cross vane expander-compressor, CVEC, design, simulation, refrigeration system, air-conditioning, R134a, multi variables
Procedia PDF Downloads 33419047 Research on the Torsional Vibration of a Power-Split Hybrid Powertrain Equipped with a Dual Mass Flywheel
Authors: Xiaolin Tang, Wei Yang, Xiaoan Chen
Abstract:
The research described in this paper was aimed at exploring the torsional vibration characteristics of a power-split hybrid powertrain equipped with a dual mass flywheel. The dynamic equations of governing torsional vibration for this hybrid driveline are presented, and the multi-body dynamic model for the powertrain is established with the software of ADAMS. Accordingly, different parameters of dual mass flywheel are investigated by forced vibration to reduce the torsional vibration of hybrid drive train. The analysis shows that the implementation of a dual mass flywheel is an effective way to decrease the torsional vibration of the hybrid powertrain. At last, the optimal combination of parameters yielding the lowest vibration is provided.Keywords: dual mass flywheel, hybrid electric vehicle, torsional vibration, powertrain, dynamics
Procedia PDF Downloads 40919046 Diffusion Dynamics of Leech-Heart Inter-Neuron Model
Authors: Arnab Mondal, Sanjeev Kumar Sharma, Ranjit Kumar Upadhyay
Abstract:
We study the spatiotemporal dynamics of a neuronal cable. The processes of one- dimensional (1D) and 2D diffusion are considered for a single variable, which is the membrane voltage, i.e., membrane voltage diffusively interacts for spatiotemporal pattern formalism. The recovery and other variables interact through the membrane voltage. A 3D Leech-Heart (LH) model is introduced to investigate the nonlinear responses of an excitable neuronal cable. The deterministic LH model shows different types of firing properties. We explore the parameter space of the uncoupled LH model and based on the bifurcation diagram, considering v_k2_ashift as a bifurcation parameter, we analyze the 1D diffusion dynamics in three regimes: bursting, regular spiking, and a quiescent state. Depending on parameters, it is shown that the diffusive system may generate regular and irregular bursting or spiking behavior. Further, it is explored a 2D diffusion acting on the membrane voltage, where different types of patterns can be observed. The results show that the LH neurons with different firing characteristics depending on the control parameters participate in a collective behavior of an information processing system that depends on the overall network.Keywords: bifurcation, pattern formation, spatio-temporal dynamics, stability analysis
Procedia PDF Downloads 22219045 Comprehensive Critical Review for Static and Dynamic Soil-Structure Interaction Between Winkler, Pasternak and Three-Dimensional Method of Buried Pipelines
Authors: N. E.Sam, S. R.Singh
Abstract:
Pipeline infrastructure are a valuable asset to the country that help in transporting fluid and gas from one place to another and contribute in keeping the country functioning both physically and economically. During seismic activity, additional loads are acted on the buried pipelines becoming a salient parameter to be studied in soil pipe interaction. Winkler Beam Theory is a commonly used approach for design of underground buried structures however this theory does not take into account shear and dynamic loading parameters in consideration. Shear can be addressed in Pasternak Theory – an improved model of Winkler Theory. However dynamic loading condition and horizontal displacement is not considered in either method. A comprehensive critical review between Winkler Beam Method, Pasternak Method and Three-Dimensional Method in finite element analysis is to be done in this paper for seismic forces. Study of the influence of depth and displacement of soil in correspondence to stiffness value and influence of horizontal displacement for design of underground structures is considered.Keywords: finite element, pasternak theory, seismic, soil-structure interaction, three-dimensional theory, winkler theory
Procedia PDF Downloads 7419044 Simscape Library for Large-Signal Physical Network Modeling of Inertial Microelectromechanical Devices
Authors: S. Srinivasan, E. Cretu
Abstract:
The information flow (e.g. block-diagram or signal flow graph) paradigm for the design and simulation of Microelectromechanical (MEMS)-based systems allows to model MEMS devices using causal transfer functions easily, and interface them with electronic subsystems for fast system-level explorations of design alternatives and optimization. Nevertheless, the physical bi-directional coupling between different energy domains is not easily captured in causal signal flow modeling. Moreover, models of fundamental components acting as building blocks (e.g. gap-varying MEMS capacitor structures) depend not only on the component, but also on the specific excitation mode (e.g. voltage or charge-actuation). In contrast, the energy flow modeling paradigm in terms of generalized across-through variables offers an acausal perspective, separating clearly the physical model from the boundary conditions. This promotes reusability and the use of primitive physical models for assembling MEMS devices from primitive structures, based on the interconnection topology in generalized circuits. The physical modeling capabilities of Simscape have been used in the present work in order to develop a MEMS library containing parameterized fundamental building blocks (area and gap-varying MEMS capacitors, nonlinear springs, displacement stoppers, etc.) for the design, simulation and optimization of MEMS inertial sensors. The models capture both the nonlinear electromechanical interactions and geometrical nonlinearities and can be used for both small and large signal analyses, including the numerical computation of pull-in voltages (stability loss). Simscape behavioral modeling language was used for the implementation of reduced-order macro models, that present the advantage of a seamless interface with Simulink blocks, for creating hybrid information/energy flow system models. Test bench simulations of the library models compare favorably with both analytical results and with more in-depth finite element simulations performed in ANSYS. Separate MEMS-electronic integration tests were done on closed-loop MEMS accelerometers, where Simscape was used for modeling the MEMS device and Simulink for the electronic subsystem.Keywords: across-through variables, electromechanical coupling, energy flow, information flow, Matlab/Simulink, MEMS, nonlinear, pull-in instability, reduced order macro models, Simscape
Procedia PDF Downloads 13619043 Simulation of Piezoelectric Laminated Smart Structure under Strong Electric Field
Authors: Shun-Qi Zhang, Shu-Yang Zhang, Min Chen
Abstract:
Applying strong electric field on piezoelectric actuators, on one hand very significant electroelastic material nonlinear effects will occur, on the other hand piezo plates and shells may undergo large displacements and rotations. In order to give a precise prediction of piezolaminated smart structures under large electric field, this paper develops a finite element (FE) model accounting for both electroelastic material nonlinearity and geometric nonlinearity with large rotations based on the first order shear deformation (FSOD) hypothesis. The proposed FE model is applied to analyze a piezolaminated semicircular shell structure.Keywords: smart structures, piezolamintes, material nonlinearity, strong electric field
Procedia PDF Downloads 42719042 Spatial Behavioral Model-Based Dynamic Data-Driven Diagram Information Model
Authors: Chiung-Hui Chen
Abstract:
Diagram and drawing are important ways to communicate and the reproduce of architectural design, Due to the development of information and communication technology, the professional thinking of architecture and interior design are also change rapidly. In development process of design, diagram always play very important role. This study is based on diagram theories, observe and record interaction between man and objects, objects and space, and space and time in a modern nuclear family. Construct a method for diagram to systematically and visualized describe the space plan of a modern nuclear family toward a intelligent design, to assist designer to retrieve information and check/review event pattern of past and present.Keywords: digital diagram, information model, context aware, data analysis
Procedia PDF Downloads 33319041 Calcium Silicate Bricks – Ultrasonic Pulse Method: Effects of Natural Frequency of Transducers on Measurement Results
Authors: Jiri Brozovsky
Abstract:
Modulus of elasticity is one of the important parameters of construction materials, which considerably influence their deformation properties and which can also be determined by means of non-destructive test methods like ultrasonic pulse method. However, measurement results of ultrasonic pulse methods are influenced by various factors, one of which is the natural frequency of the transducers. The paper states knowledge about influence of natural frequency of the transducers (54; 82 and 150kHz) on ultrasonic pulse velocity and dynamic modulus of elasticity (Young's Dynamic modulus of elasticity). Differences between ultrasonic pulse velocity and dynamic modulus of elasticity were found with the same smallest dimension of test specimen in the direction of sounding and density their value decreases as the natural frequency of transducers grew.Keywords: calcium silicate brick, ultrasonic pulse method, ultrasonic pulse velocity, dynamic modulus of elasticity
Procedia PDF Downloads 41619040 A Tool for Rational Assessment of Dynamic Trust in Networked Organizations
Authors: Simon Samwel Msanjila
Abstract:
Networked environments which provides platforms and environments for business organizations are configured in different forms depending on many factors including life time, member characteristics, communication structure, and business objectives, among others. With continuing advances in digital technologies the distance has become a less barrier for business minded collaboration among organizations. With the need and ease to make business collaborate nowadays organizations are sometimes forced to co-work with others that are either unknown or less known to them in terms of history and performance. A promising approach for sustaining established collaboration has been establishment of trust relationship among organizations based on assessed trustworthiness for each participating organization. It has been stated in research that trust in organization is dynamic and thus assessment of trust level must address such dynamic nature. This paper assess relevant aspects of trust and applies the concepts to propose a semi-automated system for assessing the Sustainability and Evolution of trust in organizations participating in specific objective in a networked organizations environment.Keywords: trust evolution, trust sustainability, networked organizations, dynamic trust
Procedia PDF Downloads 43119039 The Effects of Electron Trapping by Electron-Ecoustic Waves Excited with Electron Beam
Authors: Abid Ali Abid
Abstract:
One-dimensional (1-D) particle-in-cell (PIC) electrostatic simulations are carried out to investigate the electrostatic waves, whose constituents are hot, cold and beam electrons in the background of motionless positive ions. In fact, the electrostatic modes excited are electron acoustic waves, beam driven waves as well as Langmuir waves. It is assessed that the relevant plasma parameters, for example, hot electron temperature, beam electron drift speed, and the electron beam density significantly modify the electrostatics wave's profiles. In the nonlinear stage, the wave-particle interaction becomes more evident and the waves have obtained its saturation level. Consequently, electrons become trapped in the waves and trapping vortices are clearly formed. Because of this trapping vortices and mixing of the electrons in phase space, finally, lead to electrons thermalization. It is observed that for the high-density value of the beam-electron, the solitary waves having a bipolar form of the electric field. These solitons are the nonlinear Brenstein-Greene and Kruskal wave mode that attributes the trapping of electrons potential well of phase-space hole. These examinations revealed that electrostatic waves have been exited in beam-plasma model and producing waves having broad-frequency ranges, which may clarify the broadband electrostatic noise (BEN) spectrum studied in the auroral zone.Keywords: electron acoustic waves, trapping of cold electron, Langmuir waves, particle-in cell simulation
Procedia PDF Downloads 20619038 Calculating All Dark Energy and Dark Matter Effects through Dynamic Gravity Theory
Authors: Sean Michael Kinney
Abstract:
In 1666, Newton created the Law of Universal Gravitation. And in 1915, Einstein improved it to incorporate factors such as time dilation and gravitational lensing. But currently, there is a problem with this “universal” law. The math doesn’t work outside the confines of our solar system. And something is missing; any evidence of what gravity actually is and how it manifests. This paper explores the notion that gravity must obey the law of conservation of energy as all other forces in this universe have been shown to do. Explaining exactly what gravity is and how it manifests itself. And looking at many different implications that would be created are explained. And finally, use the math of Dynamic gravity to calculate Dark Energy and Dark Matter effects to explain all observations without the need for exotic measures.Keywords: dynamic gravity, gravity, dark matter, dark energy
Procedia PDF Downloads 7819037 Wrinkling Prediction of Membrane Composite of Varying Orientation under In-Plane Shear
Abstract:
In this article, the wrinkling failure of orthotropic composite membranes due to in-plane shear deformation is investigated using nonlinear finite element analyses. A nonlinear post-buckling analysis is performed to show the evolution of shear-induced wrinkles. The method of investigation is based on the post-buckling finite element analysis adopted from commercial FEM code; ANSYS. The resulting wrinkling patterns, their amplitude and their wavelengths under the prescribed loads and boundary conditions were confirmed by experimental results. Our study reveals that wrinkles develop when both the magnitudes and coverage of the minimum principal stresses in the laminated composite laminates are sufficiently large to trigger wrinkling.Keywords: composite, FEM, membrane, wrinkling
Procedia PDF Downloads 27519036 Predicting Recessions with Bivariate Dynamic Probit Model: The Czech and German Case
Authors: Lukas Reznak, Maria Reznakova
Abstract:
Recession of an economy has a profound negative effect on all involved stakeholders. It follows that timely prediction of recessions has been of utmost interest both in the theoretical research and in practical macroeconomic modelling. Current mainstream of recession prediction is based on standard OLS models of continuous GDP using macroeconomic data. This approach is not suitable for two reasons: the standard continuous models are proving to be obsolete and the macroeconomic data are unreliable, often revised many years retroactively. The aim of the paper is to explore a different branch of recession forecasting research theory and verify the findings on real data of the Czech Republic and Germany. In the paper, the authors present a family of discrete choice probit models with parameters estimated by the method of maximum likelihood. In the basic form, the probits model a univariate series of recessions and expansions in the economic cycle for a given country. The majority of the paper deals with more complex model structures, namely dynamic and bivariate extensions. The dynamic structure models the autoregressive nature of recessions, taking into consideration previous economic activity to predict the development in subsequent periods. Bivariate extensions utilize information from a foreign economy by incorporating correlation of error terms and thus modelling the dependencies of the two countries. Bivariate models predict a bivariate time series of economic states in both economies and thus enhance the predictive performance. A vital enabler of timely and successful recession forecasting are reliable and readily available data. Leading indicators, namely the yield curve and the stock market indices, represent an ideal data base, as the pieces of information is available in advance and do not undergo any retroactive revisions. As importantly, the combination of yield curve and stock market indices reflect a range of macroeconomic and financial market investors’ trends which influence the economic cycle. These theoretical approaches are applied on real data of Czech Republic and Germany. Two models for each country were identified – each for in-sample and out-of-sample predictive purposes. All four followed a bivariate structure, while three contained a dynamic component.Keywords: bivariate probit, leading indicators, recession forecasting, Czech Republic, Germany
Procedia PDF Downloads 24719035 The Influence of Using Soft Knee Pads on Static and Dynamic Balance among Male Athletes and Non-Athletes
Authors: Yaser Kazemzadeh, Keyvan Molanoruzy, Mojtaba Izady
Abstract:
The balance is the key component of motor skills to maintain postural control and the execution of complex skills. The present study was designed to evaluate the impact of soft knee pads on static and dynamic balance of male athletes. For this aim, thirty young athletes in different sport fields with 3 years professional sport training background and thirty healthy young men nonathletic (age: 24.5 ± 2.9, 24.3 ± 2.4, weight: 77.2 ± 4.3 and 80/9 ± 6/3 and height: 175 ± 2/84, 172 ± 5/44 respectively) as subjects selected. Then, subjects in two manner (without knee and with soft knee pads made of neoprene) execute standard error test (BESS) to assess static balance and star test to assess dynamic balance. For analyze of data, t-tests and one-way ANOVA were significant 05/0 ≥ α statistical analysis. The results showed that the use of soft knee significantly reduced error rate in static balance test (p ≥ 0/05). Also, use a soft knee pads decreased score of athlete group and increased score of nonathletic group in star test (p ≥ 0/05). These findings, indicates that use of knees affects static and dynamic balance in athletes and nonathletic in different manner and may increased athletic performance in sports that rely on static balance and decreased performance in sports that rely on dynamic balance.Keywords: static balance, dynamic balance, soft knee, athletic men, non athletic men
Procedia PDF Downloads 29019034 Application of Finite Dynamic Programming to Decision Making in the Use of Industrial Residual Water Treatment Plants
Authors: Oscar Vega Camacho, Andrea Vargas Guevara, Ellery Rowina Ariza
Abstract:
This paper presents the application of finite dynamic programming, specifically the "Markov Chain" model, as part of the decision making process of a company in the cosmetics sector located in the vicinity of Bogota DC. The objective of this process was to decide whether the company should completely reconstruct its wastewater treatment plant or instead optimize the plant through the addition of equipment. The goal of both of these options was to make the required improvements in order to comply with parameters established by national legislation regarding the treatment of waste before it is released into the environment. This technique will allow the company to select the best option and implement a solution for the processing of waste to minimize environmental damage and the acquisition and implementation costs.Keywords: decision making, Markov chain, optimization, wastewater
Procedia PDF Downloads 48719033 Chemical Reaction Effects on Unsteady MHD Double-Diffusive Free Convective Flow over a Vertical Stretching Plate
Authors: Y. M. Aiyesimi, S. O. Abah, G. T. Okedayo
Abstract:
A general analysis has been developed to study the chemical reaction effects on unsteady MHD double-diffusive free convective flow over a vertical stretching plate. The governing nonlinear partial differential equations have been reduced to the coupled nonlinear ordinary differential equations by the similarity transformations. The resulting equations are solved numerically by using Runge-Kutta shooting technique. The effects of the chemical parameters are examined on the velocity, temperature and concentration profiles.Keywords: chemical reaction, MHD, double-diffusive, stretching plate
Procedia PDF Downloads 40919032 Numerical and Experimental Investigation of a Mechanical System with a Pendulum
Authors: Andrzej Mitura, Krzysztof Kecik, Michal Augustyniak
Abstract:
This paper presents a numerical and experimental research of a nonlinear two degrees of freedom system. The tested system consists of a mechanical oscillator (the primary subsystem) with the attached pendulum (the secondary subsystem). The oscillator is suspended on a linear (or nonlinear) coil spring and a nonlinear magnetorheorogical damper and it is excited kinematically. Added pendulum can be used to reduce vibration of a primary subsystem or to energy harvesting. The numerical and experimental investigations showed that the pendulum can perform several types of motion, for example: chaotic motion, constant position in lower or upper (stable inverted pendulum), rotation, symmetrical or asymmetrical swinging vibrations. The main objective of this study is to determine an influence of system parameters for increasing the zone when the pendulum rotates. As a final effect a semi-active control method to change the pendulum solution on the rotation is proposed. To the implementation of this method the magnetorheorogical damper is applied. Continuous rotation of the pendulum is desirable for recovery of energy. The work is financed by Grant no. 0234/IP2/2011/71 from the Polish Ministry of Science and Higher Education in years 2012-2014.Keywords: autoparametric vibrations, chaos and rotation control, magnetorheological damper
Procedia PDF Downloads 37319031 Analytical Solution of Blassius Equation Using the Kourosh Method
Authors: Mohammad Reza Shahnazari, Reza Kazemi, Ali Saberi
Abstract:
Most of the engineering problems are in nonlinear forms. Nonlinear boundary layer problems defined in infinite intervals contain specific complexities, especially in boundary layer condition conformance. As an example of these nonlinear complex problems, the well-known Blasius equation can be mentioned, which itself is one of the classic boundary layer problems. No analytical solution has been proposed yet for the Blasius equation due to its complexity. In this paper, an analytical method, namely the Kourosh method, based on the singularity perturbation method and the Liao homotopy analysis is utilized to solve the Blasius problem. In this method, an inner solution is developed in the [0,1] interval to expedite the solution convergence. The magnitude of the f ˝(0), as an essential quantity for determining the physical parameters, is directly calculated from the solution of the boundary condition problem. The advantages of this solution are that it does not need any numerical solution, it has a closed form and that its validation is shown in the entire [0,∞] interval. Furthermore, all of the desirable parameters could be extracted through a series of simple analytical operations from the final solution. This solution also satisfies the continuity conditions, which is one of the main contributions of this paper in comparison with most of the other proposed analytical solutions available in the literature. Comparison with numerical solutions reveals that the proposed method is highly accurate and convenient for application.Keywords: Blasius equation, boundary layer, Kourosh method, analytical solution
Procedia PDF Downloads 39119030 Vertical and Lateral Vibration Analysis of Conventional Elevator
Authors: Mohammadreza Saviz, Sina Najafian
Abstract:
This paper presents an analytical study of vibration moving elevator and shows the elevator 2D dynamic model to evaluate the vertical and lateral motion. Most elevators applied to tall buildings include compensating ropes to satisfy the balanced rope tension between the car and the counterweight. The elasticity of these ropes and springs of sets that connect cabin to ropes make the elevator car to vibrate. A two-dimensional model is derived to calculate vibrations and displacements. The simulation results were validated by the results of similar works.Keywords: elevator, vibration, simulation, analytical solution, 2D modeling
Procedia PDF Downloads 30519029 Investigating the Dynamics of Knowledge Acquisition in Learning Using Differential Equations
Authors: Gilbert Makanda, Roelf Sypkens
Abstract:
A mathematical model for knowledge acquisition in teaching and learning is proposed. In this study we adopt the mathematical model that is normally used for disease modelling into teaching and learning. We derive mathematical conditions which facilitate knowledge acquisition. This study compares the effects of dropping out of the course at early stages with later stages of learning. The study also investigates effect of individual interaction and learning from other sources to facilitate learning. The study fits actual data to a general mathematical model using Matlab ODE45 and lsqnonlin to obtain a unique mathematical model that can be used to predict knowledge acquisition. The data used in this study was obtained from the tutorial test results for mathematics 2 students from the Central University of Technology, Free State, South Africa in the department of Mathematical and Physical Sciences. The study confirms already known results that increasing dropout rates and forgetting taught concepts reduce the population of knowledgeable students. Increasing teaching contacts and access to other learning materials facilitate knowledge acquisition. The effect of increasing dropout rates is more enhanced in the later stages of learning than earlier stages. The study opens up a new direction in further investigations in teaching and learning using differential equations.Keywords: differential equations, knowledge acquisition, least squares nonlinear, dynamical systems
Procedia PDF Downloads 364