Search results for: multimodal designs
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1146

Search results for: multimodal designs

276 Characterising the Dynamic Friction in the Staking of Plain Spherical Bearings

Authors: Jacob Hatherell, Jason Matthews, Arnaud Marmier

Abstract:

Anvil Staking is a cold-forming process that is used in the assembly of plain spherical bearings into a rod-end housing. This process ensures that the bearing outer lip conforms to the chamfer in the matching rod end to produce a lightweight mechanical joint with sufficient strength to meet the pushout load requirement of the assembly. Finite Element (FE) analysis is being used extensively to predict the behaviour of metal flow in cold forming processes to support industrial manufacturing and product development. On-going research aims to validate FE models across a wide range of bearing and rod-end geometries by systematically isolating and understanding the uncertainties caused by variations in, material properties, load-dependent friction coefficients and strain rate sensitivity. The improved confidence in these models aims to eliminate the costly and time-consuming process of experimental trials in the introduction of new bearing designs. Previous literature has shown that friction coefficients do not remain constant during cold forming operations, however, the understanding of this phenomenon varies significantly and is rarely implemented in FE models. In this paper, a new approach to evaluate the normal contact pressure versus friction coefficient relationship is outlined using friction calibration charts generated via iterative FE models and ring compression tests. When compared to previous research, this new approach greatly improves the prediction of forming geometry and the forming load during the staking operation. This paper also aims to standardise the FE approach to modelling ring compression test and determining the friction calibration charts.

Keywords: anvil staking, finite element analysis, friction coefficient, spherical plain bearing, ring compression tests

Procedia PDF Downloads 185
275 A Pilot Study of Influences of Scan Speed on Image Quality for Digital Tomosynthesis

Authors: Li-Ting Huang, Yu-Hsiang Shen, Cing-Ciao Ke, Sheng-Pin Tseng, Fan-Pin Tseng, Yu-Ching Ni, Chia-Yu Lin

Abstract:

Chest radiography is the most common technique for the diagnosis and follow-up of pulmonary diseases. However, the lesions superimposed with normal structures are difficult to be detected in chest radiography. Chest tomosynthesis is a relatively new technique to obtain 3D section images from a set of low-dose projections acquired over a limited angular range. However, there are some limitations with chest tomosynthesis. Patients undergoing tomosynthesis have to be able to hold their breath firmly for 10 seconds. A digital tomosynthesis system with advanced reconstruction algorithm and high-stability motion mechanism was developed by our research group. The potential for the system to perform a bidirectional chest scan within 10 seconds is expected. The purpose of this study is to realize the influences of the scan speed on the image quality for our digital tomosynthesis system. The major factors that lead image blurring are the motion of the X-ray source and the patient. For the fore one, an experiment of imaging a chest phantom with three different scan speeds, which are 6 cm/s, 8 cm/s, and 15 cm/s, was proceeded to understand the scan speed influences on the image quality. For the rear factor, a normal SD (Sprague-Dawley) rat was imaged with it alive and sacrificed to assess the impact on the image quality due to breath motion. In both experiments, the profile of the ROIs (region of interest) and the CNRs (contrast-to-noise ratio) of the ROIs to the normal tissue of the reconstructed images was examined to realize the degradations of the qualities of the images. The preliminary results show that no obvious degradation of the image quality was observed with increasing scan speed, possibly due to the advanced designs for the hardware and software of the system. It implies that higher speed (15 cm/s) than that of the commercialized tomosynthesis system (12 cm/s) for the proposed system is achieved, and therefore a complete chest scan within 10 seconds is expected.

Keywords: chest radiography, digital tomosynthesis, image quality, scan speed

Procedia PDF Downloads 306
274 Numerical Investigation of 3D Printed Pin Fin Heat Sinks for Automotive Inverter Cooling Application

Authors: Alexander Kospach, Fabian Benezeder, Jürgen Abraham

Abstract:

E-mobility poses new challenges for inverters (e.g., higher switching frequencies) in terms of thermal behavior and thermal management. Due to even higher switching frequencies, thermal losses become greater, and the cooling of critical components (like insulated gate bipolar transistor and diodes) comes into focus. New manufacturing methods, such as 3D printing, enable completely new pin-fin structures that can handle higher waste heat to meet the new thermal requirements. Based on the geometrical specifications of the industrial partner regarding the manufacturing possibilities for 3D printing, different and completely new pin-fin structures were numerically investigated for their hydraulic and thermal behavior in fundamental studies assuming an indirect liquid cooling. For the 3D computational fluid dynamics (CFD) thermal simulations OpenFOAM was used, which has as numerical method the finite volume method for solving the conjugate heat transfer problem. A steady-state solver for turbulent fluid flow and solid heat conduction with conjugate heat transfer between solid and fluid regions was used for the simulations. In total, up to fifty pinfin structures and arrangements, some of them completely new, were numerically investigated. On the basis of the results of the principal investigations, the best two pin-fin structures and arrangements for the complete module cooling of an automotive inverter were numerically investigated and compared. There are clear differences in the maximum temperatures for the critical components, such as IGTBs and diodes. In summary, it was shown that 3D pin fin structures can significantly contribute to the improvement of heat transfer and cooling of an automotive inverter. This enables in the future smaller cooling designs and a better lifetime of automotive inverter modules. The new pin fin structures and arrangements can also be applied to other cooling applications where 3D printing can be used.

Keywords: pin fin heat sink optimization, 3D printed pin fins, CFD simulation, power electronic cooling, thermal management

Procedia PDF Downloads 65
273 A Needs-Based Top-Down Approach for a Tailor-Made Smart City Roadmap

Authors: Mustafa Eruyar, Ersoy Pehlivan, Fatih Kafalı, Fatih Gundogan

Abstract:

All megacities are not only under the pressure of common urbanization and growth problems but also dealing with different challenges according to their specific circumstances. However, the majority of cities focuses mainly on popular smart city projects, which are usually driven by strong private sector, regardless of their characteristics, each city needs to develop customized projects within a tailor-made smart city roadmap to be able to solve its own challenges. Smart city manifest, helps citizens to feel the action better than good reading smart city vision statements, which consists of five elements; namely purpose, values, mission, vision, and strategy. This study designs a methodology for smart city roadmap based on a top-down approach, breaking down of smart city manifest to feasible projects for a systematic smart city transformation. This methodology was implemented in Istanbul smart city transformation program which includes smart city literature review, current state analysis, roadmap, and architecture projects, respectively. Istanbul smart city roadmap project followed an extensive literature review of certain leading smart cities around the world and benchmarking of the city’s current state using well known smart city indices. In the project, needs of citizens and service providers of the city were identified via stakeholder, persona and social media analysis. The project aimed to develop smart city projects targeting fulfilling related needs by implementing a gap analysis between current state and foreseen plans. As a result, in 11 smart city domains and enablers; 24 strategic objectives, 50 programs, and 101 projects were developed with the support of 183 smart city stakeholder entities and based on 125 citizen persona profiles and last one-year social media analysis. In conclusion, the followed methodology helps cities to identify and prioritize their needs and plan for long-term sustainable development, despite limited resources.

Keywords: needs-based, manifest, roadmap, smart city, top-down approach

Procedia PDF Downloads 192
272 Energy Efficient Autonomous Lower Limb Exoskeleton for Human Motion Enhancement

Authors: Nazim Mir-Nasiri, Hudyjaya Siswoyo Jo

Abstract:

The paper describes conceptual design, control strategies, and partial simulation for a new fully autonomous lower limb wearable exoskeleton system for human motion enhancement that can support its weight and increase strength and endurance. Various problems still remain to be solved where the most important is the creation of a power and cost efficient system that will allow an exoskeleton to operate for extended period without batteries being frequently recharged. The designed exoskeleton is enabling to decouple the weight/mass carrying function of the system from the forward motion function which reduces the power and size of propulsion motors and thus the overall weight, cost of the system. The decoupling takes place by blocking the motion at knee joint by placing passive air cylinder across the joint. The cylinder is actuated when the knee angle has reached the minimum allowed value to bend. The value of the minimum bending angle depends on usual walk style of the subject. The mechanism of the exoskeleton features a seat to rest the subject’s body weight at the moment of blocking the knee joint motion. The mechanical structure of each leg has six degrees of freedom: four at the hip, one at the knee, and one at the ankle. Exoskeleton legs are attached to subject legs by using flexible cuffs. The operation of all actuators depends on the amount of pressure felt by the feet pressure sensors and knee angle sensor. The sensor readings depend on actual posture of the subject and can be classified in three distinct cases: subject stands on one leg, subject stands still on both legs and subject stands on both legs but transit its weight from one leg to other. This exoskeleton is power efficient because electrical motors are smaller in size and did not participate in supporting the weight like in all other existing exoskeleton designs.

Keywords: energy efficient system, exoskeleton, motion enhancement, robotics

Procedia PDF Downloads 349
271 Study on Seismic Performance of Reinforced Soil Walls in Order to Offer Modified Pseudo Static Method

Authors: Majid Yazdandoust

Abstract:

This study, tries to suggest a design method based on displacement using finite difference numerical modeling in reinforcing soil retaining wall with steel strip. In this case, dynamic loading characteristics such as duration, frequency, peak ground acceleration, geometrical characteristics of reinforced soil structure and type of the site are considered to correct the pseudo static method and finally introduce the pseudo static coefficient as a function of seismic performance level and peak ground acceleration. For this purpose, the influence of dynamic loading characteristics, reinforcement length, height of reinforced system and type of the site are investigated on seismic behavior of reinforcing soil retaining wall with steel strip. Numerical results illustrate that the seismic response of this type of wall is highly dependent to cumulative absolute velocity, maximum acceleration, and height and reinforcement length so that the reinforcement length can be introduced as the main factor in shape of failure. Considering the loading parameters, mechanically stabilized earth wall parameters and type of the site showed that the used method in this study leads to most efficient designs in comparison with other methods which are generally suggested in cods that are usually based on limit-equilibrium concept. The outputs show the over-estimation of equilibrium design methods in comparison with proposed displacement based methods here.

Keywords: pseudo static coefficient, seismic performance design, numerical modeling, steel strip reinforcement, retaining walls, cumulative absolute velocity, failure shape

Procedia PDF Downloads 462
270 The Digitalization of Occupational Health and Safety Training: A Fourth Industrial Revolution Perspective

Authors: Deonie Botha

Abstract:

Digital transformation and the digitization of occupational health and safety training have grown exponentially due to a variety of contributing factors. The literature suggests that digitalization has numerous benefits but also has associated challenges. The aim of the paper is to develop an understanding of both the perceived benefits and challenges of digitalization in an occupational health and safety context in an effort to design and develop e-learning interventions that will optimize the benefits of digitalization and address the associated challenges. The paper proposes, deliberate and tests the design principles of an e-learning intervention to ensure alignment with the requirements of a digitally transformed environment. The results of the research are based on a literature review regarding the requirements and effect of the Fourth Industrial Revolution on learning and e-learning in particular. The findings of the literature review are enhanced with empirical research in the form of a case study conducted in an organization that designs and develops e-learning content in the occupational health and safety industry. The primary findings of the research indicated that: (i) The requirements of learners and organizations in respect of e-learning are different than previously (i.e., a pre-Fourth Industrial Revolution related work setting). (ii) The design principles of an e-learning intervention need to be aligned with the entire value chain of the organization. (iii) Digital twins support and enhance the design and development of e-learning. (iv)Learning should incorporate a multitude of sensory experiences and should not only be based on visual stimulation. (v) Data that are generated as a result of e-learning interventions should be incorporated into big data streams to be analyzed and to become actionable. It is therefore concluded that there is general consensus on the requirements that e-learning interventions need to adhere to in a digitally transformed occupational health and safety work environment. The challenge remains for organizations to incorporate data generated as a result of e-learning interventions into the digital ecosystem of the organization.

Keywords: digitalization, training, fourth industrial revolution, big data

Procedia PDF Downloads 130
269 Improvement of the Geometric of Dental Bridge Framework through Automatic Program

Authors: Rong-Yang Lai, Jia-Yu Wu, Chih-Han Chang, Yung-Chung Chen

Abstract:

The dental bridge is one of the clinical methods of the treatment for missing teeth. The dental bridge is generally designed for two layers, containing the inner layer of the framework(zirconia) and the outer layer of the porcelain-fused to framework restorations. The design of a conventional bridge is generally based on the antagonist tooth profile so that the framework evenly indented by an equal thickness from outer contour. All-ceramic dental bridge made of zirconia have well demonstrated remarkable potential to withstand a higher physiological occlusal load in posterior region, but it was found that there is still the risk of all-ceramic bridge failure in five years. Thus, how to reduce the incidence of failure is still a problem to be solved. Therefore, the objective of this study is to develop mechanical designs for all-ceramic dental bridges framework by reducing the stress and enhancing fracture resistance under given loading conditions by finite element method. In this study, dental design software is used to design dental bridge based on tooth CT images. After building model, Bi-directional Evolutionary Structural Optimization (BESO) Method algorithm implemented in finite element software was employed to analyze results of finite element software and determine the distribution of the materials in dental bridge; BESO searches the optimum distribution of two different materials, namely porcelain and zirconia. According to the previous calculation of the stress value of each element, when the element stress value is higher than the threshold value, the element would be replaced by the framework material; besides, the difference of maximum stress peak value is less than 0.1%, calculation is complete. After completing the design of dental bridge, the stress distribution of the whole structure is changed. BESO reduces the peak values of principle stress of 10% in outer-layer porcelain and avoids producing tensile stress failure.

Keywords: dental bridge, finite element analysis, framework, automatic program

Procedia PDF Downloads 265
268 A Sociological Investigation on the Population and Public Spaces of Nguyen Cong Tru, a Soviet-Style Collective Housing Complex in Hanoi in Regards to Its New Community-Focused Architectural Design

Authors: Duy Nguyen Do, Bart Julien Dewancker

Abstract:

Many Soviet-style collective housing complexes (also known as KTT) were built since the 1960s in Hanoi to support the post-war population growth. Those low-rise buildings have created well-knitted, robust communities, so much to the point that in most complexes, all families in one housing block would know each other, occasionally interact and provide supports in need. To understand how the community of collective housing complexes have developed and maintained in order to adapt their advantages into modern housing designs, the study is executed on the site of Nguyen Cong Tru KTT. This is one of the oldest KTT in Hanoi, completed in 1954. The complex also has an unique characteristic that is closely related to its community: the symbiotic relationship with Hom – a flea market that has been co-developing with Nguyen Cong Tru KTT since its beginning. The research consists of three phases: the first phase is a sociological investigation with Nguyen Cong Tru KTT’s current residents and a site survey on the complex’s economic and architectural characteristics. In the second phase, the collected data is analyzed to find out people’s opinions with the KTT’s concerning their satisfaction with the current housing status, floor plan organization, community, the relationship between the KTT’s dedicated public spaces with the flea market and their usage. Simultaneously, the master plan and gathered information regarding current architectural characteristics of the complex are also inspected. On the third phase, the analyses’ results will provide information regarding the issues, positive trends and significant historical features of the complex’s architecture in order to generate suitable proposals for the redesigning project of Nguyen Cong Tru KTT, a design focused on vitalizing modern apartments’ communities.

Keywords: collective house community, collective house public space, community-focused, redesigning Nguyen Cong Tru KTT, sociological investigation

Procedia PDF Downloads 335
267 Climate Change Impact on Slope Stability: A Study of Slope Drainage Design and Operation

Authors: Elena Mugarza, Stephanie Glendinning, Ross Stirling, Colin Davies

Abstract:

The effects of climate change and increased rainfall events on UK-based infrastructure are observable, with an increasing number being reported on in the national press. The fatal derailment at Stonehaven in 2020 prompted a wider review of Network Rail-owned earthworks assets. The event was indicated by the Rail Accident Investigation Branch (RAIB) to be caused by mis-installed drainage on the adjacent cutting. The slope failure on Snake Pass (public highway A57) was reportedly caused by significant water ingress following numerous storm events and resulted in the road’s closure for several months. This problem is only projected to continue with greater intensity and more prolonged rainfall events forecasted in the future. Subsequently, this project is designed to evaluate effective drainage trench design within infrastructure embankments, considering the capillary barrier phenomenon that may govern their deterioration and resultant failure. Theoretically, the differential between grain sizes of the embankment clays and gravels, customarily used in drainage trenches, would have a limiting effect on infiltration. As such, it is anticipated that the inclusion of an additional material with an intermediate grain size should improve the hydraulic conductivity across the drainage boundary. Multiple drainage designs will be studied using instrumentation within the drain and surrounding clays. Data from the real-world installation at the BIONICS embankment will be collected and compared with laboratory and Finite Element (FE) simulations. This research aims to reduce the risk of infrastructure slope failures by improving the resilience of earthwork drainage and lessening the consequential impact on transportation networks.

Keywords: earthworks, slope drainage, transportation slopes, deterioration, capillary barriers, field study

Procedia PDF Downloads 27
266 Fused Deposition Modeling Printing of Bioinspired Triply Periodic Minimal Surfaces Based Polyvinylidene Fluoride Materials for Scaffold Development in Biomedical Application

Authors: Farusil Najeeb Mullaveettil, Rolanas Dauksevicius

Abstract:

Cellular structures produced by additive manufacturing have earned wide research attention due to their unique specific strength and energy absorption potentiality. The literature review concludes that pattern type and density are vital parameters that affect the mechanical properties of parts formed by additive manufacturing techniques and have an influence on printing time and material consumption. Fused deposition modeling technique (FDM) is used here to produce Polyvinylidene fluoride (PVDF) parts. In this work, patterns are based on triply periodic minimal surfaces (TPMS) produced by PVDF-based filaments using the FDM technique. PVDF homopolymer filament Fluorinar-H™ and PVDF copolymer filament Fluorinar-C™ are printed with three types of TPMS patterns. The patterns printed are Gyroid, Schwartz diamond, and Schwartz primitive. Tensile, flexural, and compression tests under quasi-static loading conditions are performed in compliance with ISO standards. The investigation elucidates the deformation mechanisms and a study that establishes a relationship between the printed and nominal specimens' dimensional accuracy. In comparison to the examined TPMS pattern, Schwartz diamond showed a higher relative elastic modulus and strength than the other patterns in tensile loading, and the Gyroid pattern showed the highest mechanical characteristics in flexural loading. The concluded results could be utilized to produce informed cellular designs for biomedical and mechanical applications.

Keywords: additive manufacturing, FDM, PVDF, gyroid, schwartz primitive, schwartz diamond, TPMS, tensile, flexural

Procedia PDF Downloads 115
265 Advanced Exergetic Analysis: Decomposition Method Applied to a Membrane-Based Hard Coal Oxyfuel Power Plant

Authors: Renzo Castillo, George Tsatsaronis

Abstract:

High-temperature ceramic membranes for air separation represents an important option to reduce the significant efficiency drops incurred in state-of-the-art cryogenic air separation for high tonnage oxygen production required in oxyfuel power stations. This study is focused on the thermodynamic analysis of two power plant model designs: the state-of-the-art supercritical 600ᵒC hard coal plant (reference power plant Nordrhein-Westfalen) and the membrane-based oxyfuel concept implemented in this reference plant. In the latter case, the oxygen is separated through a mixed-conducting hollow fiber perovskite membrane unit in the three-end operation mode, which has been simulated under vacuum conditions on the permeate side and at high-pressure conditions on the feed side. The thermodynamic performance of each plant concept is assessed by conventional exergetic analysis, which determines location, magnitude and sources of efficiency losses, and advanced exergetic analysis, where endogenous/exogenous and avoidable/unavoidable parts of exergy destruction are calculated at the component and full process level. These calculations identify thermodynamic interdependencies among components and reveal the real potential for efficiency improvements. The endogenous and exogenous exergy destruction portions are calculated by the decomposition method, a recently developed straightforward methodology, which is suitable for complex power stations with a large number of process components. Lastly, an improvement priority ranking for relevant components, as well as suggested changes in process layouts are presented for both power stations.

Keywords: exergy, carbon capture and storage, ceramic membranes, perovskite, oxyfuel combustion

Procedia PDF Downloads 166
264 Black-Hole Dimension: A Distinct Methodology of Understanding Time, Space and Data in Architecture

Authors: Alp Arda

Abstract:

Inspired by Nolan's ‘Interstellar’, this paper delves into speculative architecture, asking, ‘What if an architect could traverse time to study a city?’ It unveils the ‘Black-Hole Dimension,’ a groundbreaking concept that redefines urban identities beyond traditional boundaries. Moving past linear time narratives, this approach draws from the gravitational dynamics of black holes to enrich our understanding of urban and architectural progress. By envisioning cities and structures as influenced by black hole-like forces, it enables an in-depth examination of their evolution through time and space. The Black-Hole Dimension promotes a temporal exploration of architecture, treating spaces as narratives of their current state interwoven with historical layers. It advocates for viewing architectural development as a continuous, interconnected journey molded by cultural, economic, and technological shifts. This approach not only deepens our understanding of urban evolution but also empowers architects and urban planners to create designs that are both adaptable and resilient. Echoing themes from popular culture and science fiction, this methodology integrates the captivating dynamics of time and space into architectural analysis, challenging established design conventions. The Black-Hole Dimension champions a philosophy that welcomes unpredictability and complexity, thereby fostering innovation in design. In essence, the Black-Hole Dimension revolutionizes architectural thought by emphasizing space-time as a fundamental dimension. It reimagines our built environments as vibrant, evolving entities shaped by the relentless forces of time, space, and data. This groundbreaking approach heralds a future in architecture where the complexity of reality is acknowledged and embraced, leading to the creation of spaces that are both responsive to their temporal context and resilient against the unfolding tapestry of time.

Keywords: black-hole, timeline, urbanism, space and time, speculative architecture

Procedia PDF Downloads 35
263 Paper-Like and Battery Free Sensor Patches for Wound Monitoring

Authors: Xiaodi Su, Xin Ting Zheng, Laura Sutarlie, Nur Asinah binte Mohamed Salleh, Yong Yu

Abstract:

Wound healing is a dynamic process with multiple phases. Rapid profiling and quantitative characterization of inflammation and infection remain challenging. We have developed paper-like battery-free multiplexed sensors for holistic wound assessment via quantitative detection of multiple inflammation and infection markers. In one of the designs, the sensor patch consists of a wax-printed paper panel with five colorimetric sensor channels arranged in a pattern resembling a five-petaled flower (denoted as a ‘Petal’ sensor). The five sensors are for temperature, pH, trimethylamine, uric acid, and moisture. The sensor patch is sandwiched between a top transparent silicone layer and a bottom adhesive wound contact layer. In the second design, a palm-like-shaped paper strip is fabricated by a paper-cutter printer (denoted as ‘Palm’ sensor). This sensor strip carries five sensor regions connected by a stem sampling entrance that enables rapid colorimetric detection of multiple bacteria metabolites (aldehyde, lactate, moisture, trimethylamine, tryptophan) from wound exudate. For both the “\’ Petal’ and ‘Palm’ sensors, color images can be captured by a mobile phone. According to the color changes, one can quantify the concentration of the biomarkers and then determine wound healing status and identify/quantify bacterial species in infected wounds. The ‘Petal’ and ‘Palm’ sensors are validated with in-situ animal and ex-situ skin wound models, respectively. These sensors have the potential for integration with wound dressing to allow early warning of adverse events without frequent removal of the plasters. Such in-situ and early detection of non-healing condition can trigger immediate clinical intervention to facilitate wound care management.

Keywords: wound infection, colorimetric sensor, paper fluidic sensor, wound care

Procedia PDF Downloads 51
262 Assessing Sustainability of Bike Sharing Projects Using Envision™ Rating System

Authors: Tamar Trop

Abstract:

Bike sharing systems can be important elements of smart cities as they have the potential for impact on multiple levels. These systems can add a significant alternative to other modes of mass transit in cities that are continuously looking for measures to become more livable and maintain their attractiveness for citizens, businesses and tourism. Bike-sharing began in Europe in 1965, and a viable format emerged in the mid-2000s thanks to the introduction of information technology. The rate of growth in bike-sharing schemes and fleets has been very rapid since 2008 and has probably outstripped growth in every other form of urban transport. Today, public bike-sharing systems are available on five continents, including over 700 cities, operating more than 800,000 bicycles at approximately 40,000 docking stations. Since modern bike sharing systems have become prevalent only in the last decade, the existing literature analyzing these systems and their sustainability is relatively new. The purpose of the presented study is to assess the sustainability of these newly emerging transportation systems, by using the Envision™ rating system as a methodological framework and the Israeli 'Tel -O-Fun' – bike sharing project as a case study. The assessment was conducted by project team members. Envision™ is a new guidance and rating system used to assess and improve the sustainability of all types and sizes of infrastructure projects. This tool provides a holistic framework for evaluating and rating the community, environmental, and economic benefits of infrastructure projects over the course of their life cycle. This evaluation method has 60 sustainability criteria divided into five categories: Quality of life, leadership, resource allocation, natural world, and climate and risk. 'Tel -O-Fun' project was launched in Tel Aviv-Yafo on 2011 and today provides about 1,800 bikes for rent, at 180 rental stations across the city. The system is based on a complex computer terminal that is located in the docking stations. The highest-rated sustainable features that the project scored include: (a) Improving quality of life by: offering a low cost and efficient form of public transit, improving community mobility and access, enabling the flexibility of travel within a multimodal transportation system, saving commuters time and money, enhancing public health and reducing air and noise pollution; (b) improving resource allocation by: offering inexpensive and flexible last-mile connectivity, reducing space, materials and energy consumption, reducing wear and tear on public roads, and maximizing the utility of existing infrastructure, and (c) reducing of greenhouse gas emissions from transportation. Overall, 'Tel -O-Fun' project was highly scored as an environmentally sustainable and socially equitable infrastructure. The use of this practical framework for evaluation also yielded various interesting insights on the shortcoming of the system and the characteristics of good solutions. This can contribute to the improvement of the project and may assist planners and operators of bike sharing systems to develop a sustainable, efficient and reliable transportation infrastructure within smart cities.

Keywords: bike sharing, Envision™, sustainability rating system, sustainable infrastructure

Procedia PDF Downloads 317
261 Crafting a Livelihood: A Story of the Kotpad Dyers and Weavers

Authors: Anahita Suri

Abstract:

Craft -an integral part of the conduit to create something beautiful- is a visual representation of the human imagination given life through the hand. The Mirgan tribe in the Naxalite infested forests of Koraput, Odisha are not exempt from this craving for beauty. These skilled craftsmen dye and weave the simple yet sophisticated Kotpad textiles. The women undertake the time-consuming task of dyeing the cotton and silk yarns with the root of the aul tree. The men then weave these yarns into beautiful sarees and dupattas. The root of the aul tree lends the textile its maroon to brown color, which is offset against the unbleached cotton to create a minimalist and distinctive look. The motifs, incorporated through the extra weft technique, reflect the rich tribal heritage of the community. This is an eco-friendly, non-toxic textile. Kotpad fabrics were on the verge of extinction due to various factors like poor infrastructure, no innovation in traditional designs/products, customer ignorance leading to low demand. With livelihood opportunities through craft slowly dwindling, artisans were moving to alternative sources of income generation, like agriculture and daily wage labor. There was an urgent need for intervention to revive the craft, spread awareness about them in urban spaces, and strengthen the artisan’s ability to innovate and create. Recent efforts by government bodies and local designers have given Kotpad handloom a contemporary look without diluting its essence. This research explores the possibilities to leverage Kotpad handloom to find a place in the dynamic culture of the world by its promotion among different target groups and incorporating self-sustaining practices for the artisans. This could further encourage a space for handmade and handcrafted art, rich with stories about India, with a contemporary visual sensibility. This will strengthen environmental and ethical sustainability.

Keywords: craft, contemporary, handloom, natural dye, tribal

Procedia PDF Downloads 123
260 Longitudinal impact on Empowerment for Ugandan Women with Post-Primary Education

Authors: Shelley Jones

Abstract:

Assumptions abound that education for girls will, as a matter of course, lead to their economic empowerment as women; yet. little is known about the ways in which schooling for girls, who traditionally/historically would not have had opportunities for post-primary, or perhaps even primary education – such as the participants in this study based in rural Uganda - in reality, impacts their economic situations. There is a need forlongitudinal studies in which women share experiences, understandings, and reflections of their lives that can inform our knowledge of this. In response, this paper reports on stage four of a longitudinal case study (2004-2018) focused on education and empowerment for girls and women in rural Uganda, in which 13 of the 15 participants from the original study participated. This paper understands empowerment as not simply increased opportunities (e.g., employment) but also real gains in power, freedoms that enable agentive action, and authentic and viable choices/alternatives that offer ‘exit options’ from unsatisfactory situations. As with the other stages, this study used a critical, postmodernist, global feminist ethnographic methodology, multimodal and qualitative data collection. Participants participated in interviews, focus group discussions, and a two-day workshop, which explored their understandings of how/if they understood post-primary education to have contributed to their economic empowerment. A constructivist grounded theory approach was used for data analysis to capture major themes. Findings indicate that although all participants believe that post-primary education provided them with economic opportunities they would not have had otherwise, the parameters of their economic empowerment were severely constrained by historic and extant sociocultural, economic, political, and institutional structures that continue to disempower girls and women, as well as additional financial responsibilities that they assumed to support others. Even though the participants had post-primary education, and they were able to obtain employment or operate their own businesses that they would not likely have been able to do without post-primary education, the majority of the participants’ incomes were not sufficient to elevate them financially above the extreme poverty level, especially as many were single mothers and the sole income earners in their households. Furthermore, most deemed their working conditions unsatisfactory and their positions precarious; they also experienced sexual harassment and abuse in the labour force. Additionally, employment for the participants resulted in a double work burden: long days at work, surrounded by many hours of domestic work at home (which, even if they had spousal partners, still fell almost exclusively to women). In conclusion, although the participants seem to have experienced some increase in economic empowerment, largely due to skills, knowledge, and qualifications gained at the post-primary level, numerous barriers prevented them from maximizing their capabilities and making significant gains in empowerment. There is need, in addition to providing education (primary, secondary, and tertiary) to girls, to address systemic gender inequalities that mitigate against women’s empowerment, as well as opportunities and freedom for women to come together and demand fair pay, reasonable working conditions, and benefits, freedom from gender-based harassment and assault in the workplace, as well as advocate for equal distribution of domestic work as a cultural change.

Keywords: girls' post-primary education, women's empowerment, uganda, employment

Procedia PDF Downloads 121
259 Effect of Print Orientation on the Mechanical Properties of Multi Jet Fusion Additively Manufactured Polyamide-12

Authors: Tyler Palma, Praveen Damasus, Michael Munther, Mehrdad Mohsenizadeh, Keivan Davami

Abstract:

The advancement of additive manufacturing, in both research and commercial realms, is highly dependent upon continuing innovations and creativity in materials and designs. Additive manufacturing shows great promise towards revolutionizing various industries, due largely to the fact that design data can be used to create complex products and components, on demand and from the raw materials, for the end user at the point of use. However, it will be critical that the material properties of additively-made parts for engineering purposes be fully understood. As it is a relatively new additive manufacturing method, the response of properties of Multi Jet Fusion (MJF) produced parts to different printing parameters has not been well studied. In this work, testing of mechanical and tribological properties MJF-printed Polyamide 12 parts was performed to determine whether printing orientation in this method results in significantly different part performances. Material properties were studied at macro- and nanoscales. Tensile tests, in combination with tribology tests including steady-state wear, were performed. Results showed a significant difference in resultant part characteristics based on whether they were printed in a vertical or horizontal orientation. Tensile performance of vertically and horizontally printed samples varied, both in ultimate strength and strain. Tribology tests showed that printing orientation has notable effects on the resulting mechanical and wear properties of tested surfaces, due largely to layer orientation and the presence of unfused fused powder grain inclusions. This research advances the understanding of how print orientation affects the mechanical properties of additively manufactured structures, and also how print orientation can be exploited in future engineering design.

Keywords: additive manufacturing, indentation, nano mechanical characterization, print orientation

Procedia PDF Downloads 124
258 Investigation on the Energy Impact of Spatial Geometry in a Residential Building Using Building Information Modeling Technology

Authors: Shashank. S. Bagane, H. N. Rajendra Prasad

Abstract:

Building Information Modeling (BIM) has currently developed into a potent solution. The consistent development of BIM technology in the sphere of Architecture, Engineering, and Construction (AEC) industry has enhanced the effectiveness of construction and decision making. However, aggrandized global warming and energy crisis has impacted on building energy analysis. It is now becoming an important factor to be considered in the AEC industry. Amalgamating energy analysis in the planning and design phase of a structure has become a necessity. In the current construction industry, estimating energy usage and reducing its footprint is of high priority. The construction industry is giving more prominence to sustainability alongside energy efficiency. This demand is compelling the designers, planners, and engineers to inspect the sustainable performance throughout the building's life cycle. The current study primarily focuses on energy consumption, space arrangement, and spatial geometry of a residential building. Most commonly residential structures in India are constructed considering Vastu Shastra. Vastu designs are intended to integrate architecture with nature and utilizing geometric patterns, symmetry, and directional alignments. In the current study, a residential brick masonry structure is considered for BIM analysis, Architectural model of the structure will be created using Revit software, later the orientation and spatial arrangement will be finalized based on Vastu principles. Furthermore, the structure will be investigated for the impact of building orientation and spatial arrangements on energy using Green Building Studio software. Based on the BIM analysis of the structure, energy consumption of subsequent building orientations will be understood. A well-orientated building having good spatial arrangement can save a considerable amount of energy throughout its life cycle and reduces the need for heating and lighting which will prove to diminish energy usage and improve the energy efficiency of the residential building.

Keywords: building information modeling, energy impact, spatial geometry, vastu

Procedia PDF Downloads 134
257 Design Transformation to Reduce Cost in Irrigation Using Value Engineering

Authors: F. S. Al-Anzi, M. Sarfraz, A. Elmi, A. R. Khan

Abstract:

Researchers are responding to the environmental challenges of Kuwait in localized, innovative, effective and economic ways. One of the vital and significant examples of the natural challenges is lack or water and desertification. In this research, the project team focuses on redesigning a prototype, using Value Engineering Methodology, which would provide similar functionalities to the well-known technology of Waterboxx kits while reducing the capital and operational costs and simplifying the process of manufacturing and usability by regular farmers. The design employs used tires and recycled plastic sheets as raw materials. Hence, this approach is going to help not just fighting desertification but also helping in getting rid of ever growing huge tire dumpsters in Kuwait, as well as helping in avoiding hazards of tire fires yielding in a safer and friendlier environment. Several alternatives for implementing the prototype have been considered. The best alternative in terms of value has been selected after thorough Function Analysis System Technique (FAST) exercise has been developed. A prototype has been fabricated and tested in a controlled simulated lab environment that is being followed by real environment field testing. Water and soil analysis conducted on the site of the experiment to cross compare between the composition of the soil before and after the experiment to insure that the prototype being tested is actually going to be environment safe. Experimentation shows that the design was equally as effective as, and may exceed, the original design with significant savings in cost. An estimated total cost reduction using the VE approach of 43.84% over the original design. This cost reduction does not consider the intangible costs of environmental issue of waste recycling which many further intensify the total savings of using the alternative VE design. This case study shows that Value Engineering Methodology can be an important tool in innovating new designs for reducing costs.

Keywords: desertification, functional analysis, scrap tires, value engineering, waste recycling, water irrigation rationing

Procedia PDF Downloads 177
256 A Paradigm Shift towards Personalized and Scalable Product Development and Lifecycle Management Systems in the Aerospace Industry

Authors: David E. Culler, Noah D. Anderson

Abstract:

Integrated systems for product design, manufacturing, and lifecycle management are difficult to implement and customize. Commercial software vendors, including CAD/CAM and third party PDM/PLM developers, create user interfaces and functionality that allow their products to be applied across many industries. The result is that systems become overloaded with functionality, difficult to navigate, and use terminology that is unfamiliar to engineers and production personnel. For example, manufacturers of automotive, aeronautical, electronics, and household products use similar but distinct methods and processes. Furthermore, each company tends to have their own preferred tools and programs for controlling work and information flow and that connect design, planning, and manufacturing processes to business applications. This paper presents a methodology and a case study that addresses these issues and suggests that in the future more companies will develop personalized applications that fit to the natural way that their business operates. A functioning system has been implemented at a highly competitive U.S. aerospace tooling and component supplier that works with many prominent airline manufacturers around the world including The Boeing Company, Airbus, Embraer, and Bombardier Aerospace. During the last three years, the program has produced significant benefits such as the automatic creation and management of component and assembly designs (parametric models and drawings), the extensive use of lightweight 3D data, and changes to the way projects are executed from beginning to end. CATIA (CAD/CAE/CAM) and a variety of programs developed in C#, VB.Net, HTML, and SQL make up the current system. The web-based platform is facilitating collaborative work across multiple sites around the world and improving communications with customers and suppliers. This work demonstrates that the creative use of Application Programming Interface (API) utilities, libraries, and methods is a key to automating many time-consuming tasks and linking applications together.

Keywords: PDM, PLM, collaboration, CAD/CAM, scalable systems

Procedia PDF Downloads 156
255 Streamlining Coastal Defense: Investigating the Impact of Seawall Geometry on Wave Loads

Authors: Ahmadreza Ebadati, Asaad Y. Shamseldin, Amin Ghadirian

Abstract:

Seawall geometry plays a crucial role in mitigating wave impacts, though detailed exploration of its manipulation is limited. This study delves into the effects of varying cross-shore seawall geometry on the dynamics of wave impacts, with a particular focus on vertical seawalls. Inspired by foundational insights linking seawall shape to hydraulic efficiency, this investigation centres on how alterations in seawall geometry can influence wave energy dissipation and subsequent wave impacts. The study investigates the 2D interaction of regular waves with a period of 2.1s with a vertical seawall and berm featuring small-scale cross-shore protrusions and recesses. Utilising OpenFOAM® simulations and a k-ω SST turbulence model, this investigation compares results to a base case simulation, which is partially calibrated with experimental data from a flume study. The analysis evaluates various geometric modifications, specifically interchanged protrusions and recesses at different heights and orientations along the seawall. Findings suggest that specific configurations, such as interchanged protrusions and recesses, can mitigate initial impact forces, while certain arrangements may intensify subsequent impacts. Key insights include the identification of geometry configurations that can effectively reduce the force impulse of slamming waves on coastal structures and potentially decrease the frequency and cost of seawall maintenance. This research contributes to the field by advancing the understanding of how seawall geometry influences wave forces and by providing actionable insights for the design of more resilient seawall structures. Further exploration of seawall geometry variation is recommended, advocating additional case studies to optimise designs tailored to specific coastal environments.

Keywords: seawall geometry, wave impact loads, numerical simulation, coastal engineering, wave-structure interaction

Procedia PDF Downloads 17
254 The Integration of Apps for Communicative Competence in English Teaching

Authors: L. J. de Jager

Abstract:

In the South African English school curriculum, one of the aims is to achieve communicative competence, the knowledge of using language competently and appropriately in a speech community. Communicatively competent speakers should not only produce grammatically correct sentences but also produce contextually appropriate sentences for various purposes and in different situations. As most speakers of English are non-native speakers, achieving communicative competence remains a complex challenge. Moreover, the changing needs of society necessitate not merely language proficiency, but also technological proficiency. One of the burning issues in the South African educational landscape is the replacement of the standardised literacy model by the pedagogy of multiliteracies that incorporate, by default, the exploration of technological text forms that are part of learners’ everyday lives. It foresees learners as decoders, encoders, and manufacturers of their own futures by exploiting technological possibilities to constantly create and recreate meaning. As such, 21st century learners will feel comfortable working with multimodal texts that are intrinsically part of their lives and by doing so, become authors of their own learning experiences while teachers may become agents supporting learners to discover their capacity to acquire new digital skills for the century of multiliteracies. The aim is transformed practice where learners use their skills, ideas, and knowledge in new contexts. This paper reports on a research project on the integration of technology for language learning, based on the technological pedagogical content knowledge framework, conceptually founded in the theory of multiliteracies, and which aims to achieve communicative competence. The qualitative study uses the community of inquiry framework to answer the research question: How does the integration of technology transform language teaching of preservice teachers? Pre-service teachers in the Postgraduate Certificate of Education Programme with English as methodology were purposively selected to source and evaluate apps for teaching and learning English. The participants collaborated online in a dedicated Blackboard module, using discussion threads to sift through applicable apps and develop interactive lessons using the Apps. The selected apps were entered on to a predesigned Qualtrics form. Data from the online discussions, focus group interviews, and reflective journals were thematically and inductively analysed to determine the participants’ perceptions and experiences when integrating technology in lesson design and the extent to which communicative competence was achieved when using these apps. Findings indicate transformed practice among participants and research team members alike with a better than average technology acceptance and integration. Participants found value in online collaboration to develop and improve their own teaching practice by experiencing directly the benefits of integrating e-learning into the teaching of languages. It could not, however, be clearly determined whether communicative competence was improved. The findings of the project may potentially inform future e-learning activities, thus supporting student learning and development in follow-up cycles of the project.

Keywords: apps, communicative competence, English teaching, technology integration, technological pedagogical content knowledge

Procedia PDF Downloads 130
253 A Fluid-Walled Microfluidic Device for Cell Migration Studies

Authors: Cyril Deroy, Agata Rumianek, David R. Greaves, Peter R. Cook, Edmond J. Walsh

Abstract:

Various microfluidic platforms have been developed in the past couple of decades offering experimental methods for the study of cell migration; however, their implementation in the laboratory has remained limited. Some reasons cited for the lack of uptake include the technical complexity of the devices, high failure rate associated with gas-bubbles, biocompatibility concerns with the use of polydimethylsiloxane (PDMS) and equipment/time/expertise requirements for operation and manufacture. As sample handling remains challenging due to the closed format of microfluidic devices, open microfluidic systems have been developed offering versatility and simplicity of use. Rather than confining fluids by solid walls, samples can be accessed directly over the open platform, by removing at least one of the solid boundaries, such as the cover. In this paper, a method for the fabrication of open fluid-walled microfluidic circuits for cell migration studies is introduced, where only materials commonly used by the life-science community are required; tissue culture dishes and cell media. The simplicity of the method, and ability to retrieve cells of interest are two key features of the method. Both passive and active flow-devices can be created in this way. To demonstrate the versatility of the method a cell migration assay is performed, which requires fabricating circuits for establishing chemical gradients, loading cells and incubating, creating chemical gradients, real time imaging of cell migration and finally retrieval of cells. The open architecture has high fidelity as it eliminates air bubble related failures and enables the precise control of gradients. The ability to fabricate custom microfluidic designs in minutes should make this method suitable for use in a wide range of cell migration studies.

Keywords: chemotaxis, fluid walls, gradient generation, open microfluidics

Procedia PDF Downloads 121
252 Scheduling Flexibility and Employee Health Outcomes: A Meta-Analytic Review

Authors: Nicole V. Shifrin

Abstract:

Scheduling flexibility is becoming an increasingly available option for employees struggling to balance their work and life responsibilities, allowing employees to coordinate work schedules with their additional roles. The goal of such opportunities is to help employees manage the demands they face across domains of life by allowing employees to work from home, design their own work hours, take time off when necessary, along with various other scheduling accommodations. Organizations are also turning to utilizing scheduling flexibility to facilitate employee health and wellbeing through the reduction of stress and maximization of efficiency. The purpose of the present study is to investigate the effects of scheduling flexibility on employee health-related behaviors and outcomes through a synthesis of research. The current meta-analytic review of 19 samples within 16 studies with a total sample size of 20,707 employees examines the relationship between the degree of scheduling flexibility available to employees and the resulting health outcomes and exercise habits. The results demonstrate that reduced scheduling flexibility is associated with poorer health status, suggesting that schedule inflexibility can hinder employees’ ability to maintain and support their health. These findings hold practical implications for developing work schedules to promote employee health and health-related behaviors, such as eating well and exercising. Additionally, there was a positive association between increased scheduling flexibility and engagement in exercise, suggesting that employees with more flexible schedules exercise more frequently than those with less flexible schedules. A potential explanation for the resulting relationship is that flexible schedules leave employees more time due to shorter work days, shorter or eliminated commutes, etc. with which they can use to engage in healthy behaviors. These findings stress the importance of promoting job designs that facilitate employee engagement in healthy behaviors, which directly impact their overall health status. Implications for practice are discussed as well as future directions in examining the link between job design and employee health and well-being.

Keywords: exercise, health, meta-analysis, job design, scheduling flexibility

Procedia PDF Downloads 113
251 Libyan Residents in Britain and Identity of Place

Authors: Intesar Ibrahim

Abstract:

Large-scale Libyan emigration is a relatively new phenomenon. Most of the Libyan families in the UK are new immigrants, unlike the other neighbouring countries of Egypt, Tunisia, Algeria and even Sudan. Libyans have no particular history of large-scale migration. On the other hand, many Libyan families live in modest homes located in large Muslim communities of Pakistanis and Yemenis. In the UK as a whole, there are currently 16 Libyan schools most of which are run during the weekend for children of school age. There are three such weekend schools in Sheffield that teach a Libyan school curriculum, and Libyan women and men run these schools. Further, there is also a Masjid (mosque) that is operated by Libyans, beside the other Masjids in the city, which most of the Libyan community attend for prayer and for other activities such as writing marriage contracts. The presence of this Masjid increases the attraction for Libyans to reside in the Sheffield area. This paper studies how Libyan immigrants in the UK make their decisions on their housing and living environment in the UK. Libyan residents in the UK come from different Libyan regions, social classes and lifestyles; this may have an impact on their choices in the interior designs of their houses in the UK. A number of case studies were chosen from Libyan immigrants who came from different types of dwellings in Libya, in order to compare with their homes and their community lifestyle in the UK and those in Libya. This study explores the meaning and the ways of using living rooms in Libyan emigrants’ houses in the UK and compares those with those in their houses back in their home country. For example, the way they set up furniture in rooms acts as an indicator of the hierarchical structure of society. The design of furniture for Libyan sitting rooms for floor-seating is different from that of the traditional English sitting room. The paper explores the identity and cultural differences that affected the style and design of the living rooms for Libyan immigrants in the UK. The study is carried out based on the "production of space" theory that any culture has its needs, style of living and way of thinking. I argue that the study found more than 70% of Libyan immigrants in the UK still furnish the living room in their traditional way (flooring seating).

Keywords: place, identity, culture, immigrants

Procedia PDF Downloads 254
250 Psychological Stress and Accelerated Aging in SCI Patients - A Longitudinal Pilot Feasibility Study

Authors: Simona Capossela, Ramona Schaniel, Singer Franziska, Aquino Fournier Catharine, Daniel Stekhoven, Jivko Stoyanov

Abstract:

A spinal cord injury (SCI) is a traumatic life event that often results in ageing associated health conditions such as muscle mass decline, adipose tissue increase, decline in immune function, frailty, systemic chronic inflammation, and psychological distress and depression. Psychological, oxidative, and metabolic stressors may facilitate accelerated ageing in the SCI population with reduced life expectancy. Research designs using biomarkers of aging and stress are needed to elucidate the role of psychological distress in accelerated aging. The aim of this project is a feasibility pilot study to observe changes in stress biomarkers and correlate them with aging markers in SCI patients during their first rehabilitation (longitudinal cohort study). Biological samples were collected in the SwiSCI (Swiss Spinal Cord Injury Cohort Study) Biobank in Nottwil at 4 weeks±12 days after the injury (T1) and at the end of the first rehabilitation (discharge, T4). The "distress thermometer" is used as a selfassessment tool for psychological distress. Stress biomarkers, as cortisol and protein carbonyl content (PCC), and markers of cellular aging, such as telomere lengths, will be measured. 2 Preliminary results showed that SCI patients (N= 129) are still generally distressed at end of rehabilitation, however we found a statistically significant (p< 0.001) median decrease in distress from 6 (T1) to 5 (T4) during the rehabilitation. In addition, an explorative transcriptomics will be conducted on N=50 SCI patients to compare groups of persons with SCI who have different trajectories of selfreported distress at the beginning and end of the first rehabilitation after the trauma. We identified 4 groups: very high chronic stress (stress thermometer values above 7 at T1 and T4; n=14); transient stress (high to low; n=14), low stress (values below 5 at T1 and T4; n=14), increasing stress (low to high; n=8). The study will attempt to identify and address issues that may occur in relation to the design and conceptualization of future study on stress and aging in the SCI population.

Keywords: stress, aging, spinal cord injury, biomarkers

Procedia PDF Downloads 79
249 The Role of Building Services in Energy Conservation into Residential Buildings

Authors: Osama Ahmed Ibrahim Masoud, Mohamed Ibrahim Mohamed Abdelhadi, Ahmed Mohamed Seddik Hassan

Abstract:

The problem of study focuses on thermal comfort realization in a residential building during hot and dry climate periods consumes a major electrical energy for air conditioning operation. Thermal comfort realization in a residential building during such climate becomes more difficult regarding the phenomena of climate change, and the use of building and construction materials which have the feature of heat conduction as (bricks-reinforced concrete) and the global energy crises. For that, this study aims to how to realize internal thermal comfort through how to make the best use of building services (temporarily used service spaces) for reducing the electrical energy transfer and saving self-shading. In addition, the possibility of reduction traditional energy (fossil fuel) consumed in cooling through the use of building services for reducing the internal thermal comfort and the relationship between them. This study is based on measuring the consumed electrical energy rate in cooling (by using Design-Builder program) for a residential building (the place of study is: Egypt- Suez Canal- Suez City), this design model has lots of alternatives designs for the place of building services (center of building- the eastern front- southeastern front- the southern front- the south-west front, the western front). The building services are placed on the fronts with different rates for determining the best rate on fronts which realizes thermal comfort with the lowest of energy consumption used in cooling. Findings of the study indicate to that the best position for building services is on the west front then the south-west front, and the more the building services increase, the more energy consumption used in cooling of residential building decreases. Recommendations indicate to the need to study the building services positions in the new projects progress to select the best alternatives to realize ‘Energy conservation’ used in cooling or heating into the buildings in general, residential buildings particularly.

Keywords: residential buildings, energy conservation, thermal comfort, building services, temporary used service spaces, DesignBuilder

Procedia PDF Downloads 254
248 Enhancing Project Success: A Case Study of Investment Strategies and Planning Practices in Rwanda’s Housing Projects Managed by Rwanda Social Security Board

Authors: Amina Umulisa

Abstract:

Background: Despite efforts to enhance profitability and project planning, Rwanda has experienced a decline in project success rates, notably in housing projects managed by the Rwanda Social Security Board (RSSB). This study aims to assess the impact of investment strategies and project planning practices on the performance of pension funds projects in Rwanda, focusing on housing projects by RSSB. Methods: Using descriptive and correlational research designs, this study surveyed 109 randomly selected respondents from a pool of 148 workers. Data analysis was conducted using descriptive and inferential statistics in STATA version 18. Results: Findings revealed that 54% of respondents acknowledged the importance of personnel generation. Additionally, 61% agreed with the effectiveness of training programs, and 79% supported the cost of human resource utilization. In terms of project management practices, 65.7% could determine when a project needed adjustments, 65.7% agreed with the approved budget, and 73% supported forecasted expenses. Furthermore, 68% agreed with order placement, 76.0% with using the right materials, and 64.4% with defining project scope. The study found significant associations between order placement and project quality outcomes (r=0.711, P-value <0.001), as well as with time management (Pearson was 0.701 and sing was 0.00) and cost management (r=0.885, P-value <0.001). Moreover, project time targets were found to significantly affect quality management (Pearson was 0.798, sing was 0.000), time management, and cost management (r=0.740, P-value <0.001). Conclusion: The findings highlight the positive association between the project implementation stage and quality management, indicating effective project planning practices among senior staff. However, there is a need to enhance project team collaboration and coordination to improve the performance of constructed houses.

Keywords: project success rates, investment strategies, training programs, cost management

Procedia PDF Downloads 22
247 Resolving Urban Mobility Issues through Network Restructuring of Urban Mass Transport

Authors: Aditya Purohit, Neha Bansal

Abstract:

Unplanned urbanization and multidirectional sprawl of the cities have resulted in increased motorization and deteriorating transport conditions like traffic congestion, longer commuting, pollution, increased carbon footprint, and above all increased fatalities. In order to overcome these problems, various practices have been adopted including– promoting and implementing mass transport; traffic junction channelization; smart transport etc. However, these methods are found to be primarily focusing on vehicular mobility rather than people accessibility. With this research gap, this paper tries to resolve the mobility issues for Ahmedabad city in India, which being the economic capital Gujarat state has a huge commuter and visitor inflow. This research aims to resolve the traffic congestion and urban mobility issues focusing on Gujarat State Regional Transport Corporation (GSRTC) for the city of Ahmadabad by analyzing the existing operations and network structure of GSRTC followed by finding possibilities of integrating it with other modes of urban transport. The network restructuring (NR) methodology is used with appropriate variations, based on commuter demand and growth pattern of the city. To do these ‘scenarios’ based on priority issues (using 12 parameters) and their best possible solution, are established after route network analysis for 2700 population sample of 20 traffic junctions/nodes across the city. Approximately 5% sample (of passenger inflow) at each node is considered using random stratified sampling technique two scenarios are – Scenario 1: Resolving mobility issues by use of Special Purpose Vehicle (SPV) in joint venture to GSRTC and Private Operators for establishing feeder service, which shall provide a transfer service for passenger for movement from inner city area to identified peripheral terminals; and Scenario 2: Augmenting existing mass transport services such as BRTS and AMTS for using them as feeder service to the identified peripheral terminals. Each of these has now been analyzed for the best suitability/feasibility in network restructuring. A desire-line diagram is constructed using this analysis which indicated that on an average 62% of designated GSRTC routes are overlapping with mass transportation service routes of BRTS and AMTS in the city. This has resulted in duplication of bus services causing traffic congestion especially in the Central Bus Station (CBS). Terminating GSRTC services on the periphery of the city is found to be the best restructuring network proposal. This limits the GSRTC buses at city fringe area and prevents them from entering into the city core areas. These end-terminals of GSRTC are integrated with BRTS and AMTS services which help in segregating intra-state and inter-state bus services. The research concludes that absence of integrated multimodal transport network resulted in complexity of transport access to the commuters. As a further scope of research comparing and understanding of value of access time in total travel time and its implication on generalized cost on trip and how it varies city wise may be taken up.

Keywords: mass transportation, multi-modal integration, network restructuring, travel behavior, urban transport

Procedia PDF Downloads 179