Search results for: mineral nitrogen
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1859

Search results for: mineral nitrogen

989 The Effect of Fermentation and Germination on the Nutrient and Antinutrient Composition of Lima Bean (Phaseolus lunatus) Flour

Authors: P. N. Okeke

Abstract:

Fermentation and germination of legumes have been an ancient practice. In this study, the influence of fermentation and germination on the chemical properties of Lima bean (Phaseolus lunatus) flour were evaluated. The flours were analyzed for their proximate and mineral composition, using the standard assay methods. The result showed that fermentation and germination increased the moisture, protein and ash content of the flours while fiber, fat and carbohydrate were decreased. The protein level of fermented and germinated lima bean increased from 21.06–26.60%. The minerals: iron, copper, zinc, and phosphorous increased due to germination and fermentation. The phytate and tannin levels were drastically reduced in both the fermented and germinated flours. The result of this study revealed that fermentation and germination makes the nutrient in lima beans more accessible as it reduces the anti-nutrients. It is therefore recommended that lima bean be process accordingly for richer and more bio-availability of the nutrients.

Keywords: nutrient, anti-nutrient, fermented, germinated, lima bean flour

Procedia PDF Downloads 391
988 Eco-Efficient Self-Compacting Concrete for Sustainable Building

Authors: Valeria Corinaldesi

Abstract:

In general, for self-compacting concrete production, a high volume of very fine materials is necessary in order to make the concrete more fluid and cohesive. For this purpose, either rubble powder (which is a powder obtained from suitable treatment of rubble from building demolition) or ash from municipal solid waste incineration was used as mineral addition in order to ensure adequate rheological properties of the self-compacting concrete in the absence of any viscosity modifying admixture. Recycled instead of natural aggregates were used by completely substituting the coarse aggregate fraction. The fresh concrete properties were evaluated through the slump flow, the V-funnel and the L-box test. Compressive strength and segregation resistance were also determined. The results obtained showed that self-compacting concrete could be successfully developed by incorporating both recycled aggregates and waste powders with an improved quality of the concrete surface finishing. This encouraging goal, beyond technical performance, matches with the more and more widely accepted sustainable development issues.

Keywords: sustainable concrete, self compacting concrete, municipal solid waste, recycled aggregate, sustainable building

Procedia PDF Downloads 85
987 Research of the Three-Dimensional Visualization Geological Modeling of Mine Based on Surpac

Authors: Honggang Qu, Yong Xu, Rongmei Liu, Zhenji Gao, Bin Wang

Abstract:

Today's mining industry is advancing gradually toward digital and visual direction. The three-dimensional visualization geological modeling of mine is the digital characterization of mineral deposits and is one of the key technology of digital mining. Three-dimensional geological modeling is a technology that combines geological spatial information management, geological interpretation, geological spatial analysis and prediction, geostatistical analysis, entity content analysis and graphic visualization in a three-dimensional environment with computer technology and is used in geological analysis. In this paper, the three-dimensional geological modeling of an iron mine through the use of Surpac is constructed, and the weight difference of the estimation methods between the distance power inverse ratio method and ordinary kriging is studied, and the ore body volume and reserves are simulated and calculated by using these two methods. Compared with the actual mine reserves, its result is relatively accurate, so it provides scientific bases for mine resource assessment, reserve calculation, mining design and so on.

Keywords: three-dimensional geological modeling, geological database, geostatistics, block model

Procedia PDF Downloads 79
986 Alternative Energy and Carbon Source for Biosurfactant Production

Authors: Akram Abi, Mohammad Hossein Sarrafzadeh

Abstract:

Because of their several advantages over chemical surfactants, biosurfactants have given rise to a growing interest in the past decades. Advantages such as lower toxicity, higher biodegradability, higher selectivity and applicable at extreme temperature and pH which enables them to be used in a variety of applications such as: enhanced oil recovery, environmental and pharmaceutical applications, etc. Bacillus subtilis produces a cyclic lipopeptide, called surfactin, which is one of the most powerful biosurfactants with ability to decrease surface tension of water from 72 mN/m to 27 mN/m. In addition to its biosurfactant character, surfactin exhibits interesting biological activities such as: inhibition of fibrin clot formation, lyses of erythrocytes and several bacterial spheroplasts, antiviral, anti-tumoral and antibacterial properties. Surfactin is an antibiotic substance and has been shown recently to possess anti-HIV activity. However, application of biosurfactants is limited by their high production cost. The cost can be reduced by optimizing biosurfactant production using cheap feed stock. Utilization of inexpensive substrates and unconventional carbon sources like urban or agro-industrial wastes is a promising strategy to decrease the production cost of biosurfactants. With suitable engineering optimization and microbiological modifications, these wastes can be used as substrates for large-scale production of biosurfactants. As an effort to fulfill this purpose, in this work we have tried to utilize olive oil as second carbon source and also yeast extract as second nitrogen source to investigate the effect on both biomass and biosurfactant production improvement in Bacillus subtilis cultures. Since the turbidity of the culture was affected by presence of the oil, optical density was compromised and no longer could be used as an index of growth and biomass concentration. Therefore, cell Dry Weight measurements with applying necessary tactics for removing oil drops to prevent interference with biomass weight were carried out to monitor biomass concentration during the growth of the bacterium. The surface tension and critical micelle dilutions (CMD-1, CMD-2) were considered as an indirect measurement of biosurfactant production. Distinctive and promising results were obtained in the cultures containing olive oil compared to cultures without it: more than two fold increase in biomass production (from 2 g/l to 5 g/l) and considerable reduction in surface tension, down to 40 mN/m at surprisingly early hours of culture time (only 5hr after inoculation). This early onset of biosurfactant production in this culture is specially interesting when compared to the conventional cultures at which this reduction in surface tension is not obtained until 30 hour of culture time. Reducing the production time is a very prominent result to be considered for large scale process development. Furthermore, these results can be used to develop strategies for utilization of agro-industrial wastes (such as olive oil mill residue, molasses, etc.) as cheap and easily accessible feed stocks to decrease the high costs of biosurfactant production.

Keywords: agro-industrial waste, bacillus subtilis, biosurfactant, fermentation, second carbon and nitrogen source, surfactin

Procedia PDF Downloads 301
985 Role of Baseline Measurements in Assessing Air Quality Impact of Shale Gas Operations

Authors: Paula Costa, Ana Picado, Filomena Pinto, Justina Catarino

Abstract:

Environmental impact associated with large scale shale gas development is of major concern to the public, policy makers and other stakeholders. To assess this impact on the atmosphere, it is important to monitoring ambient air quality prior to and during all shale gas operation stages. Baseline observations can provide a standard of the pre-shale gas development state of the environment. The lack of baseline concentrations was identified as an important knowledge gap to assess the impact of emissions to the air due to shale gas operations. In fact baseline monitoring of air quality are missing in several regions, where there is a strong possibility of future shale gas exploration. This makes it difficult to properly identify, quantify and characterize environmental impacts that may be associated with shale gas development. The implementation of a baseline air monitoring program is imperative to be able to assess the total emissions related with shale gas operations. In fact, any monitoring programme should be designed to provide indicative information on background levels. A baseline air monitoring program should identify and characterize targeted air pollutants, most frequently described from monitoring and emission measurements, as well as those expected from hydraulic fracturing activities, and establish ambient air conditions prior to start-up of potential emission sources from shale gas operations. This program has to be planned for at least one year accounting for ambient variations. In the literature, in addition to GHG emissions of CH4, CO2 and nitrogen oxides (NOx), fugitive emissions from shale gas production can release volatile organic compounds (VOCs), aldehydes (formaldehyde, acetaldehyde) and hazardous air pollutants (HAPs). The VOCs include a.o., benzene, toluene, ethyl benzene, xylenes, hexanes, 2,2,4-trimethylpentane, styrene. The concentrations of six air pollutants (ozone, particulate matter (PM), carbon monoxide (CO), nitrogen oxides (NOx), sulphur oxides (SOx), and lead) whose regional ambient air levels are regulated by the Environmental Protection Agency (EPA), are often discussed. However, the main concern in the emissions to air associated to shale gas operations, seems to be the leakage of methane. Methane is identified as a compound of major concern due to its strong global warming potential. The identification of methane leakage from shale gas activities is complex due to the existence of several other CH4 sources (e.g. landfill, agricultural activity or gas pipeline/compressor station). An integrated monitoring study of methane emissions may be a suitable mean of distinguishing the contribution of different sources of methane to ambient levels. All data analysis needs to be carefully interpreted taking, also, into account the meteorological conditions of the site. This may require the implementation of a more intensive monitoring programme. So, it is essential the development of a low-cost sampling strategy, suitable for establishing pre-operations baseline data as well as an integrated monitoring program to assess the emissions from shale gas operation sites. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 640715.

Keywords: air emissions, baseline, green house gases, shale gas

Procedia PDF Downloads 330
984 Estimating Directional Shadow Prices of Air Pollutant Emissions by Transportation Modes

Authors: Huey-Kuo Chen

Abstract:

This paper applies directional marginal productivity model to study the shadow price of emissions by transportation modes in the years of 2011 and 2013 with the aim to provide a reference for policy makers to improve the emission of pollutants. One input variable (i.e., energy consumption), one desirable output variable (i.e., vehicle kilometers traveled) and three undesirable output variables (i.e., carbon dioxide, sulfur oxides and nitrogen oxides) generated by road transportation modes were used to evaluate directional marginal productivity and directional shadow price for 18 transportation modes. The results show that the directional shadow price (DSP) of SOx is much higher than CO2 and NOx. Nevertheless, the emission of CO2 is the largest among the three kinds of pollutants. To improve the air quality, the government should pay more attention to the emission of CO2 and apply the alternative solution such as promoting public transportation and subsidizing electric vehicles to reduce the use of private vehicles.

Keywords: marginal productivity, road transportation modes, shadow price, undesirable outputs

Procedia PDF Downloads 148
983 Study of Dual Fuel Engine as Environmentally Friendly Engine

Authors: Nilam S. Octaviani, Semin

Abstract:

The diesel engine is an internal combustion engine that uses compressed air to combust. The diesel engines are widely used in the world because it has the most excellent combustion efficiency than other types of internal combustion engine.  However, the exhaust emissions of it produce pollutants that are harmful to human health and the environment. Therefore, natural gas used as an alternative fuel using on compression ignition engine to respond those environment issues. This paper aims to discuss the comparison of the technical characteristics and exhaust gases emission from conventional diesel engine and dual fuel diesel engine. According to the study, the dual fuel engine applications have a lower compression pressure and has longer ignition delay compared with normal diesel mode. The engine power is decreased at dual fuel mode. However, the exhaust gases emission on dual fuel engine significantly reduce the nitrogen oxide (NOx), carbon dioxide (CO2) and particular metter (PM) emissions.

Keywords: diesel engine, dual fuel diesel engine, emission reduction, technical characteristics

Procedia PDF Downloads 307
982 Construction and Application of Zr-MCM41 Nanoreactors as Highly Active and Efficiently Catalyst in the Synthesis of Biginelli-Type Compounds

Authors: Zohreh Derikvand

Abstract:

Nanoreactors Zr-MCM-41were prepared via the reaction of ZrOCl2, Fumed silica, sodium hydroxide and cethyltrimethyl ammonium bromide under hydrothermal condition. The prepared nanoreactors were characterized by FT-IR spectroscopy, X-ray diffraction (XRD), Scanning electron micrographs (SEM) and nitrogen adsorption-desorption. The XRD pattern of Zr-MCM-41 exhibits a high-intensity (100) and two low-intensity reflections (110 and 200) which are characteristic of hexagonal structure, exhibiting the long-range order and good textural uniformity of mesoporous structure. Based on the green chemistry approach, we report an efficient and environmentally benign protocol to study the catalytic activity of Zr-MCM-41 in the Biginelli type reactions initially. Nanoreactors Zr-MCM-41 were used as highly recoverable and reusable catalyst for synthesis of 3,4-dihydropyrimidin-2(1H)-one, octahydroquinazolinone, benzimidazolo-quinazolineone and 4,6-diarylpyrimidin-2(1H)-one. The methodology offers several advantages such as short reaction time, high yields and simple operation. The catalyst was active up to three cycles.

Keywords: Zr-MCM-41 nanoreactors, Biginelli like reactions, 3, 4-dihydropyrimidin-2(1H)-ones, ctahydroquinazolinones

Procedia PDF Downloads 206
981 Effect of Plasticizer Additives on the Mechanical Properties of Cement Composite: A Molecular Dynamics Analysis

Authors: R. Mohan, V. Jadhav, A. Ahmed, J. Rivas, A. Kelkar

Abstract:

Cementitious materials are an excellent example of a composite material with complex hierarchical features and random features that range from nanometer (nm) to millimeter (mm) scale. Multi-scale modeling of complex material systems requires starting from fundamental building blocks to capture the scale relevant features through associated computational models. In this paper, molecular dynamics (MD) modeling is employed to predict the effect of plasticizer additive on the mechanical properties of key hydrated cement constituent calcium-silicate-hydrate (CSH) at the molecular, nanometer scale level. Due to complexity, still unknown molecular configuration of CSH, a representative configuration widely accepted in the field of mineral Jennite is employed. The effectiveness of the Molecular Dynamics modeling to understand the predictive influence of material chemistry changes based on molecular/nanoscale models is demonstrated.

Keywords: cement composite, mechanical properties, molecular dynamics, plasticizer additives

Procedia PDF Downloads 454
980 Development of a Bacterial Resistant Concrete for Use in Low Cost Kitchen Floors

Authors: S. S. Mahlangu, R. K. K. Mbaya, D. D. Delport, H. Van. Zyl

Abstract:

The degrading effect due to bacterial growth on the structural integrity of concrete floor surfaces is predictable; this consequently cause development of surface micro cracks in which organisms penetrate through resulting in surface spalling. Hence, the need to develop mix design meeting the requirement of floor surfaces exposed to aggressive agent to improve certain material properties with good workability, extended lifespan and low cost is essential. In this work, tests were performed to examine the microbial activity on kitchen floor surfaces and the effect of adding admixtures. The biochemical test shows the existence of microorganisms (E.coli, Streptococcus) on newly casted structure. Of up to 6% porosity was reduced and improvement on structural integrity was observed upon adding mineral admixtures from the concrete mortar. The SEM result after 84 days of curing specimens, shows that chemical admixtures have significant role to enable retard bacterial penetration and good quality structure is achieved.

Keywords: admixture, organisms, porosity, strength

Procedia PDF Downloads 236
979 Characterization of Chemically Deposited CdS Thin Films Annealed in Different Atmospheres

Authors: J. Pantoja Enríquez, G. P. Hernández, G. I. Duharte, X. Mathew, J. Moreira, P. J. Sebastian

Abstract:

Cadmium sulfide films were deposited onto glass substrates by chemical bath deposition (CBD) from a bath containing cadmium acetate, ammonium acetate, thiourea, and ammonium hydroxide. The CdS thin films were annealed in air, argon, hydrogen and nitrogen for 1 h at various temperatures (300, 350, 400, 450 and 500 °C). The changes in optical and electrical properties of annealed treated CdS thin films were analyzed. The results showed that, the band-gap and resistivity depend on the post-deposition annealing atmosphere and temperatures. Thus, it was found that these properties of the films, were found to be affected by various processes with opposite effects, some beneficial and others unfavorable. The energy gap and resistivity for different annealing atmospheres was seen to oscillate by thermal annealing. Recrystallization, oxidation, surface passivation, sublimation and materials evaporation were found the main factors of the heat-treatment process responsible for this oscillating behavior. Annealing over 400 °C was seen to degrade the optical and electrical properties of the film.

Keywords: cds, thin films, annealing, optical, electrical properties

Procedia PDF Downloads 510
978 Thermal Regeneration of CO2 Spent Palm Shell-Polyetheretherketone Activated Carbon Sorbents

Authors: Usman D. Hamza, Noor S. Nasri, Mohammed Jibril, Husna M. Zain

Abstract:

Activated carbons (M4P0, M4P2, and M5P2) used in this research were produced from palm shell and polyetherether ketone (PEEK) via carbonization, impregnation, and microwave activation. The adsorption/desorption process was carried out using static volumetric adsorption. Regeneration is important in the overall economy of the process and waste minimization. This work focuses on the thermal regeneration of the CO2 exhausted microwave activated carbons. The regeneration strategy adopted was thermal with nitrogen purge desorption with N2 feed flow rate of 20 ml/min for 1 h at atmospheric pressure followed by drying at 1500C. Seven successive adsorption/regeneration processes were carried out on the material. It was found that after seven adsorption regeneration cycles; the regeneration efficiency (RE) for CO2 activated carbon from palm shell only (M4P0) was more than 90% while that of hybrid palm shell-PEEK (M4P2, M5P2) was above 95%. The cyclic adsorption and regeneration shows the stability of the adsorbent materials.

Keywords: activated carbon, palm shell-PEEK, regeneration, thermal

Procedia PDF Downloads 488
977 A Density Functional Theory Study of Metal-Porphyrin Graphene for CO2 Hydration

Authors: Manju Verma, Parag A. Deshpande

Abstract:

Electronic structure calculations of hydrogen terminated metal-porphyrin graphene were carried out to explore the catalytic activity for CO2 hydration reaction. A ruthenium atom was substituted in place of carbon atom of graphene and ruthenium chelated carbon atoms were replaced by four nitrogen atoms in metal-porphyrin graphene system. Ruthenium atom created the active site for CO2 hydration reaction. Ruthenium-porphyrin graphene followed the mechanism of carbonic anhydrase enzyme for CO2 conversion to HCO3- ion. CO2 hydration reaction over ruthenium-porphyrin graphene proceeded via the elementary steps: OH- formation from H2O dissociation, CO2 bending in presence of nucleophilic attack of OH- ion, HCO3- ion formation from proton migration, HCO3- ion desorption by H2O addition. Proton transfer to yield HCO3- ion was observed as a rate limiting step from free energy landscape.

Keywords: ruthenium-porphyrin graphene, CO2 hydration, carbonic anhydrase, heterogeneous catalyst, density functional theory

Procedia PDF Downloads 260
976 Reclamation of Mining Using Vegetation - A Comparative Study of Open Pit Mining

Authors: G. Surendra Babu

Abstract:

We all know the importance of mineral wealth, which has been buried inside the layers of the earth for decades. These are the natural energy sources that are used in our day to day life like fuel, electricity, construction, etc. but the process of extraction causes damage to the nature that can’t be returned back and which are left over after completion of mining we can see these are barren from decades these remain unused degraded land. Most of them are covered with vegetation before the start during mining which damages the native vegetation of the region and disturbs the watershed boundary of the regions and it also disturbs the biodiversity of the reign. The major motto of the study is to understand the various issues that are found and to understand various methods of reclamations process that are suitable for revegetating and also variously practiced which are carried out in the different case studies and government guidelines procedure of lease licenses which includes the environmental clearances and also to study the vegetation pattern according to the major issues identified. And finally suggesting the new guidelines with respect to the old guidelines which helps in the revegetation of the mine-sites which helps in establishing of its own sustainable ecosystem in future.

Keywords: reclamation, open-pit mining, revegetation, reclamation methods

Procedia PDF Downloads 193
975 Petrology and Hydrothermal Alteration Mineral Distribution of Wells LA-9D and LA-10D in Aluto Geothermal Field, Ethiopia

Authors: Dereje Moges Azbite

Abstract:

Laboratory analysis of igneous rocks is performed with the help of the main oxide plots. The lithology of the two wells was identified using the main oxides obtained using the XRF method. Twenty-four (24) cutting samples with different degrees of alteration were analyzed to determine and identify the rock types by plotting these well samples on special diagrams and correlating with the regional rocks. The results for the analysis of the main oxides and trace elements of 24 samples are presented. Alteration analysis in the two well samples was conducted for 21 samples from two wells for identifying clay minerals. Bulk sample analysis indicated quartz, illite & micas, calcite, cristobalite, smectite, pyrite, epidote, alunite, chlorite, wairakite, diaspore and kaolin minerals present in both wells. Hydrothermal clay minerals such as illite, chlorite, smectite and kaoline minerals were identified in both wells by X-ray diffraction.

Keywords: auto geothermal field, igneous rocks, major oxides, tracer elements, XRF, XRD, alteration minerals

Procedia PDF Downloads 137
974 Adsorption of Phenolic Compounds on Activated Carbon DSAC36-24

Authors: Khaoula Hidouri, Ali Benhmidene, Bechir Chouachi, Dhananjay R. Mishra, Ammar Houas

Abstract:

Activated carbon DSAC36-24 iy is adsorbent materials, characterized by a specific surface area of 548.13 m²g⁻¹. Their manufacture uses the natural raw materials like the nucleus of dates. In this study the treatment is done in two stages: A chemical treatment by H3PO4 followed by a physical treatment under nitrogen for 1 hour then under stream of CO2 for 24 hours. A characterization of the various parameters was determined such as the measurement of the specific surface area, determination of pHPZC, bulk density, iodine value. The study of the adsorption of organic molecules (hydroquinone, paranitrophenol, 2,4-dinitrophenol, 2,4,6-trinitrophenol) indicates that the adsorption phenomena are essentially due to the van der Waals interaction. In the case of organic molecules carrying the polar substituents, the existence of hydrogen bonds is also proved by the donor-acceptor forces. The study of the pH effect was done with modeling by different models (Langmuir, Freundlich, Langmuir-Freundlich, Redlich-Peterson), a kinetic treatment is also followed by the application of Lagergren, Weber, Macky.

Keywords: adsoprtion ishoterms, adsorption kinetics, DSAC36-24, organic molecule

Procedia PDF Downloads 279
973 Numerical Simulation of Urea Water Solution Evaporation Behavior inside the Diesel Selective Catalytic Reduction System

Authors: Kumaresh Selvakumar, Man Young Kim

Abstract:

Selective catalytic reduction (SCR) converts the nitrogen oxides with the aid of a catalyst by adding aqueous urea into the exhaust stream. In this work, the urea water droplets are sprayed over the exhaust gases by treating with Lagrangian particle tracking. The evaporation of ammonia from a single droplet of urea water solution is investigated computationally by convection-diffusion controlled model. The conversion to ammonia due to thermolysis of urea water droplets is measured downstream at different sections using finite rate/eddy dissipation model. In this paper, the mixer installed at the upstream enhances the distribution of ammonia over the entire domain which is calculated for different time steps. Calculations are made within the respective duration such that the complete decomposition of urea is possible at a much shorter residence time.

Keywords: convection-diffusion controlled model, lagrangian particle tracking, selective catalytic reduction, thermolysis

Procedia PDF Downloads 406
972 Ceramic Composites and Its Applications for Pb Adsorption

Authors: C. L. Popa, S. L. Iconaru, A. Costescu, C. S. Ciobanu, M. Motelica Heino, R. Guegan, D. Predoi

Abstract:

Surface functionalization of ceramic composites with a special focus on tetraethyl orthosilicate (TEOS) and hydroxyapatite (HAp) is discoursed. Mesoporous ceramic HAp-TEOS composites were prepared by the incorporation of hydroxyapatite into tetraethyl orthosilicate by sol-gel method. The resulting samples were analysed by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, and Raman spectroscopy and nitrogen physisorption. The removal of Pb2+ ions from aqueous solutions was evaluated using Atomic Absorbtion Spectroscopy (AAS). Removal experiments of Pb2+ ions were carried out in aqueous solutions with controlled Pb2+ at pH ~ 3 and pH ~ 5. After removal experiment of Pb2+ at pH 3 and pH 5, porous hydroxyapatite nanoparticles is transformed into PbHAp_3 and PbHAp_5 via the adsorption of Pb2+ ions followed by the cation exchange reaction. The diffraction patterns show that THAp nanoparticles were successfully coated with teos without any structural changes. On the other, the AAS analysis showed that THAp can be useful in the removal Pb2+ from water contaminated.

Keywords: teos, hydroxyapatite, environment applications, biosystems engineering

Procedia PDF Downloads 384
971 Vitrification-Based Cryopreservation of Phalaenopsis cornu-Cervi (Breda) Blume & Rchb. f. Protocorms

Authors: Suphat Rittirat, Sutha Klaocheed, Somporn Prasertsongskun, Kanchit Thammasiri

Abstract:

Protocorms of Phalaenopsis cornu-cervi (Breda) Blume & Rchb. f. were successfully cryopreserved using a vitrification method. Two-month old protocorms at GI 4 stage were precultured in liquid MS medium supplemented with different concentrations of sucrose (0.3, 0.5, 0.7, 0.9 and 1.2 M) at 25±1°C for 2 days on an orbital shaker at 110 rpm. The protocorms were treated with loading solution (2 M glycerol plus 0.4 M sucrose) for 20 minutes at 25±1°C. Then, the protocorms were sufficiently dehydrated with vitrification solution (plant vitrification solution 2, PVS2) for various times (0, 30, 60, 90 and 120 minutes) at 25±1°C and stored in liquid nitrogen for 1 day. After rapid thawing in water bath at 40°C for 2 minutes, the explants were washed by MS liquid medium containing 0.5 ml of 1.2 M sucrose for 20 minutes. The results shown that the protocorms were precultured in liquid MS medium containing 0.5 M sucrose and dehydrated with vitrification solution for 60 minutes had the highest survival percentage of protocorm at 31±1.0 % as measured by Evan’s blue. No survival rate of protocorms was found without vitrification treatments.

Keywords: protocorms, cryopreservation, Phalaenopsis cornu-cervi, vitrification

Procedia PDF Downloads 363
970 Preparation and Characterization of Cellulose Based Antimicrobial Food Packaging Materials

Authors: Memet Vezir Kahraman, Ferhat Sen

Abstract:

This study aimed to develop polyelectrolyte structured antimicrobial food packaging materials that do not contain any antimicrobial agents. Cationic hydroxyethyl cellulose was synthesized and characterized by Fourier Transform Infrared, carbon and proton Nuclear Magnetic Resonance spectroscopy. Its nitrogen content was determined by the Kjeldahl method. Polyelectrolyte structured antimicrobial food packaging materials were prepared using hydroxyethyl cellulose, cationic hydroxyethyl cellulose, and sodium alginate. Antimicrobial activity of materials was defined by inhibition zone method (disc diffusion method). Thermal stability of samples was evaluated by thermal gravimetric analysis and differential scanning calorimetry. Surface morphology of samples was investigated by scanning electron microscope. The obtained results prove that produced food packaging materials have good thermal and antimicrobial properties, and they can be used as food packaging material in many industries.

Keywords: antimicrobial food packaging, cationic hydroxyethyl cellulose, polyelectrolyte, sodium alginate

Procedia PDF Downloads 160
969 Acoustic and Thermal Insulating Materials Based on Natural Fibres Used in Floor Construction

Authors: Jitka Hroudova, Jiri Zach

Abstract:

The majority of contemporary insulation materials commonly used in the building industry is made from non-renewable raw materials; furthermore, their production often brings high energy costs. A long-term trend as far as sustainable development is concerned has been the reduction of energy and material demands of building material production. One of the solutions is the possibility of using easily renewable natural raw material sources which are considerably more ecological and their production is mostly less energy-consuming compared to the production of normal insulations (mineral wool, polystyrene). The paper describes the results of research focused on the development of thermal and acoustic insulation materials based on natural fibres intended for floor constructions. Given the characteristic open porosity of natural fibre materials, the hygrothermal behaviour of the developed materials was studied. Especially the influence of relative humidity and temperature on thermal insulation properties was observed.

Keywords: Green thermal and acoustic insulating materials, natural fibres, technical hemp, flax, floor construction

Procedia PDF Downloads 334
968 Comparison of Several Peat Qualities as Amendment to Improve Afforestation of Mine Wastes

Authors: Marie Guittonny-LarchevêQue

Abstract:

In boreal Canada, industrial activities such as forestry, peat extraction and metal mines often occur nearby. At closure, mine waste storage facilities have to be reclaimed. On tailings storage facilities, tree plantations can achieve rapid restoration of forested landscapes. However, trees poorly grow in mine tailings and organic amendments like peat are required to improve tailings’ structure and nutrients. Canada is a well-known producer of horticultural quality peat, but some lower quality peats coming from areas adjacent to the reclaimed mines could allow successful revegetation. In particular, hemic peat coming from the bottom of peat-bogs is more decomposed than fibric peat and is less valued for horticulture. Moreover, forest peat is sometimes excavated and piled by the forest industry after cuttings to stimulate tree regeneration on the exposed mineral soil. The objective of this project was to compare the ability of peats of differing quality and origin to improve tailings structure, nutrients and tree development. A greenhouse experiment was conducted along one growing season in 2016 with a complete randomized block design combining 8 repetitions (blocks) x 2 tree species (Populus tremuloides and Pinus banksiana) x 6 substrates (tailings, commercial horticultural peat, and mixtures of tailings with commercial peat, forest peat, local fibric peat, or local hemic peat) x 2 fertilization levels (with or without mineral fertilization). The used tailings came from a gold mine and were low in sulfur and trace metals. The commercial peat had a slightly acidic pH (around 6) while other peats had a clearly acidic pH (around 3). However, mixing peat with slightly alkaline tailings resulted in a pH close to 7 whatever the tested peats. The macroporosity of mixtures was intermediate between the low values of tailings (4%) and the high values of commercial peat alone (34%). Seedling survival was lower on tailings for poplar compared to all other treatments, with or without fertilization. Survival and growth were similar among all treatments for pine. Fertilization had no impact on the maximal height and diameter of poplar seedlings but changed the relative performance of the substrates. When not fertilized, poplar seedlings grown in commercial peat were the highest and largest, and the smallest and slenderest in tailings, with intermediate values in mixtures. When fertilized, poplar seedlings grown in commercial peat were smaller and slender compared to all other substrates. However for this species, foliar, shoot, and root biomass production was the greatest in commercial peat and the lowest in tailings compared to all mixtures, whether fertilized or not. The mixture with local fibric peat provided the seedlings with the lowest foliar N concentrations compared to all other substrates whatever the species or the fertilization treatment. At the short-term, the performance of all the tested peats were close when mixed to tailings, showing that peats of lower quality could be valorized instead of using horticultural peat. These results demonstrate that intersectorial synergies in accordance with the principles of circular economy may be developed in boreal Canada between local industries around the reclamation of mine waste dumps.

Keywords: boreal trees, mine spoil, mine revegetation, intersectorial synergies

Procedia PDF Downloads 250
967 The Tadpole-Shaped Polypeptides with Two Regulable (Alkyl Chain) Tails

Authors: Hua Jin, Il Kim

Abstract:

The biocompatible tadpole-shaped polypeptides with one cyclic polypeptides ring and two alkyl chain tails were synthesized by N-heterocyclic carbine (NHC)-mediated ring-opening polymerization (ROP) of α-amino acid N-carboxyanhydrides (NCAs). First, the NHC precursor, denoted as [NHC(H)][HCO₃], with two alkyl chains at the nitrogen was prepared by a simple anion metathesis of imidazole(in)ium chlorides with KHCO₃. Then NHC releasing from the [NHC(H)][HCO₃] directly initiated the ROP of NCA to produce the cyclic polypeptides. Finally, the tadpole-shaped polypeptides with two regulable tails were obtained. The target polypeptides were characterized by nuclear magnetic resonance spectrum (1H NMR), Fourier transform infrared spectroscopy (FT-IR), gel permeation chromatography (GPC) and matrix-assisted laser desorption ionization-time of flight mass spectra (MALDI-TOF MS). This pioneering approach simplifies the synthesis procedures of tadpole-shaped polypeptides compared to other methods, which usually requires specific intramolecular ring-closure reaction.

Keywords: cyclic polypeptides, α-amino acid N-carboxyanhydrides, N-heterocyclic carbene, ring-opening polymerization, tadpole-shaped

Procedia PDF Downloads 206
966 Experimentation and Analysis of Reinforced Basalt and Carbon Fibres Composite Laminate Mechanical Properties

Authors: Vara Prasad Vemu

Abstract:

The aim of the present work is to investigate the mechanical properties and water absorption capacity of carbon and basalt fibers mixed with matrix epoxy. At present, there is demand for nature friendly products. Basalt reinforced composites developed recently, and these mineral amorphous fibres are a valid alternative to carbon fibres for their lower cost and to glass fibres for their strength. The present paper describes briefly on basalt and carbon fibres (uni-directional) which are used as reinforcement materials for composites. The matrix epoxy (LY 556-HY 951) is taken into account to assess its influence on the evaluated parameters. In order to use reinforced composites for structural applications, it is necessary to perform a mechanical characterization. With this aim experiments like tensile strength, flexural strength, hardness and water absorption are performed. Later the mechanical properties obtained from experiments are compared with ANSYS software results.

Keywords: carbon fibre, basalt fibre, uni-directional, reinforcement, mechanical tests, water absorption test, ANSYS

Procedia PDF Downloads 197
965 Production of a Sustainable Slow-Release Urea Fertilizer Using Starch and Poly-Vinyl Alcohol

Authors: A. M. H. Shokry, N. S. M. El-Tayeb

Abstract:

The environmental impacts caused by fertilizers call for the adaptation of more sustainable technologies in order to increase agricultural production and reduce pollution due to high nutrient emissions. One particular technique has been to coat urea fertilizer granules with less-soluble chemicals that permit the gradual release of nutrients in a slow and controlled manner. The aim of this research is to develop a biodegradable slow-release fertilizer (SRF) with materials that come from sustainable sources; starch and polyvinyl alcohol (PVA). The slow-release behavior and water retention capacity of the coated granules were determined. In addition, the aqueous release and absorbency rates were also tested. Results confirmed that the release rate from coated granules was slower than through plain membranes; and that the water absorption capacity of the coated urea decreased as PVA content increased. The SRF was also tested and gave positive results that confirmed the integrity of the product.

Keywords: biodegradability, nitrogen-use efficiency, poly-vinyl alcohol, slow-release fertilizer, sustainability

Procedia PDF Downloads 214
964 Impact of Heavy Metal Toxicity on Metabolic Changes in the Diazotrophic Cyanobacterium Anabaena PCC 7120

Authors: Rishi Saxena

Abstract:

Cyanobacteria is a photosynthetic prokaryote, and these obtain their energy through photosynthesis. In this paper, we studied the effect of iron on metabolic changes in the diazotrophic cyanobacterium Anabaena PCC 7120. Nowadays, metal contamination due to natural and anthropogenic sources is a global environment concern. Iron induced changes in growth, N2-fixation, CO2 fixation and photosynthetic activity were studied in a diazotrophic cyanobacterium Anabaena PCC 7120. Iron at 50 uM concentration supported the maximum growth, heterocyst frequency, CO2 fixation, photosystem I (PS I), photosystem II (PS II) and nitrogenase activities in the organism. Higher concentration of iron inhibited these processes. Chl a and PS II activities were more sensitive to iron than the protein and PS I activity. Here, it is also mentioned that heavy metal induced altered macromolecules metabolism and changes in the central dogma of life (DNA→ mRNA → Protein). And also recent advances have been made in understanding heavy metal-cyanobacteria interaction and their application for metal detoxification.

Keywords: cyanobacterium anabaena 7120, nitrogen fixation, photosystem I (PS I), photosystem II (PS II)

Procedia PDF Downloads 137
963 Graphen-Based Nanocomposites for Glucose and Ethanol Enzymatic Biosensor Fabrication

Authors: Tesfaye Alamirew, Delele Worku, Solomon W. Fanta, Nigus Gabbiye

Abstract:

Recently graphen based nanocomposites are become an emerging research areas for fabrication of enzymatic biosensors due to their property of large surface area, conductivity and biocompatibility. This review summarizes recent research reports of graphen based nanocomposites for the fabrication of glucose and ethanol enzymatic biosensors. The newly fabricated enzyme free microwave treated nitrogen doped graphen (MN-d-GR) had provided highest sensitivity towards glucose and GCE/rGO/AuNPs/ADH composite had provided far highest sensitivity towards ethanol compared to other reported graphen based nanocomposites. The MWCNT/GO/GOx and GCE/ErGO/PTH/ADH nanocomposites had also enhanced wide linear range for glucose and ethanol detection respectively. Generally, graphen based nanocomposite enzymatic biosensors had fast direct electron transfer rate, highest sensitivity and wide linear detection ranges during glucose and ethanol sensing.

Keywords: glucose, ethanol, enzymatic biosensor, graphen, nanocomposite

Procedia PDF Downloads 126
962 From Biowaste to Biobased Products: Life Cycle Assessment of VALUEWASTE Solution

Authors: Andrés Lara Guillén, José M. Soriano Disla, Gemma Castejón Martínez, David Fernández-Gutiérrez

Abstract:

The worldwide population is exponentially increasing, which causes a rising demand for food, energy and non-renewable resources. These demands must be attended to from a circular economy point of view. Under this approach, the obtention of strategic products from biowaste is crucial for the society to keep the current lifestyle reducing the environmental and social issues linked to the lineal economy. This is the main objective of the VALUEWASTE project. VALUEWASTE is about valorizing urban biowaste into proteins for food and feed and biofertilizers, closing the loop of this waste stream. In order to achieve this objective, the project validates three value chains, which begin with the anaerobic digestion of the biowaste. From the anaerobic digestion, three by-products are obtained: i) methane that is used by microorganisms, which will be transformed into microbial proteins; ii) digestate that is used by black soldier fly, producing insect proteins; and iii) a nutrient-rich effluent, which will be transformed into biofertilizers. VALUEWASTE is an innovative solution, which combines different technologies to valorize entirely the biowaste. However, it is also required to demonstrate that the solution is greener than other traditional technologies (baseline systems). On one hand, the proteins from microorganisms and insects will be compared with other reference protein production systems (gluten, whey and soybean). On the other hand, the biofertilizers will be compared to the production of mineral fertilizers (ammonium sulphate and synthetic struvite). Therefore, the aim of this study is to provide that biowaste valorization can reduce the environmental impacts linked to both traditional proteins manufacturing processes and mineral fertilizers, not only at a pilot-scale but also at an industrial one. In the present study, both baseline system and VALUEWASTE solution are evaluated through the Environmental Life Cycle Assessment (E-LCA). The E-LCA is based on the standards ISO 14040 and 14044. The Environmental Footprint methodology was the one used in this study to evaluate the environmental impacts. The results for the baseline cases show that the food proteins coming from whey have the highest environmental impact on ecosystems compared to the other proteins sources: 7.5 and 15.9 folds higher than soybean and gluten, respectively. Comparing feed soybean and gluten, soybean has an environmental impact on human health 195.1 folds higher. In the case of biofertilizers, synthetic struvite has higher impacts than ammonium sulfate: 15.3 (ecosystems) and 11.8 (human health) fold, respectively. The results shown in the present study will be used as a reference to demonstrate the better environmental performance of the bio-based products obtained through the VALUEWASTE solution. Other originalities that the E-LCA performed in the VALUEWASTE project provides are the diverse direct implications on investment and policies. On one hand, better environmental performance will serve to remove the barriers linked to these kinds of technologies, boosting the investment that is backed by the E-LCA. On the other hand, it will be a germ to design new policies fostering these types of solutions to achieve two of the key targets of the European Community: being self-sustainable and carbon neutral.

Keywords: anaerobic digestion, biofertilizers, circular economy, nutrients recovery

Procedia PDF Downloads 88
961 Biohydrogen Production from Starch Residues

Authors: Francielo Vendruscolo

Abstract:

This review summarizes the potential of starch agroindustrial residues as substrate for biohydrogen production. Types of potential starch agroindustrial residues, recent developments and bio-processing conditions for biohydrogen production will be discussed. Biohydrogen is a clean energy source with great potential to be an alternative fuel, because it releases energy explosively in heat engines or generates electricity in fuel cells producing water as only by-product. Anaerobic hydrogen fermentation or dark fermentation seems to be more favorable, since hydrogen is yielded at high rates and various organic waste enriched with carbohydrates as substrate result in low cost for hydrogen production. Abundant biomass from various industries could be source for biohydrogen production where combination of waste treatment and energy production would be an advantage. Carbohydrate-rich nitrogen-deficient solid wastes such as starch residues can be used for hydrogen production by using suitable bioprocess technologies. Alternatively, converting biomass into gaseous fuels, such as biohydrogen is possibly the most efficient way to use these agroindustrial residues.

Keywords: biofuel, dark fermentation, starch residues, food waste

Procedia PDF Downloads 399
960 Developing a Town Based Soil Database to Assess the Sensitive Zones in Nutrient Management

Authors: Sefa Aksu, Ünal Kızıl

Abstract:

For this study, a town based soil database created in Gümüşçay District of Biga Town, Çanakkale, Turkey. Crop and livestock production are major activities in the district. Nutrient management is mainly based on commercial fertilizer application ignoring the livestock manure. Within the boundaries of district, 122 soil sampling points determined over the satellite image. Soil samples collected from the determined points with the help of handheld Global Positioning System. Labeled samples were sent to a commercial laboratory to determine 11 soil parameters including salinity, pH, lime, organic matter, nitrogen, phosphorus, potassium, iron, manganese, copper and zinc. Based on the test results soil maps for mentioned parameters were developed using remote sensing, GIS, and geostatistical analysis. In this study we developed a GIS database that will be used for soil nutrient management. Methods were explained and soil maps and their interpretations were summarized in the study.

Keywords: geostatistics, GIS, nutrient management, soil mapping

Procedia PDF Downloads 375