Search results for: fastener recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1688

Search results for: fastener recognition

818 A Comparative Analysis of Green Buildings Rating Systems

Authors: Shadi Motamedighazvini, Roohollah Taherkhani, Mahdi Mahdikhani, Najme Hashempour

Abstract:

Nowadays, green building rating systems are an inevitable necessity for managing environmental considerations to achieve green buildings. The aim of this paper is to deliver a detailed recognition of what has been the focus of green building policymakers around the world; It is important to conduct this study in a way that can provide a context for researchers who intend to establish or upgrade existing rating systems. In this paper, fifteen rating systems including four worldwide well-known plus eleven local rating systems which have been selected based on the answers to the questionnaires were examined. Their similarities and differences in mandatory and prerequisite clauses, highest and lowest scores for each criterion, the most frequent criteria, and most frequent sub-criteria are determined. The research findings indicated that although the criteria of energy, water, indoor quality (except Homestar), site and materials (except GRIHA) were common core criteria for all rating systems, their sub-criteria were different. This research, as a roadmap, eliminates the lack of a comprehensive reference that encompasses the key criteria of different rating systems. It shows the local systems need to be revised to be more comprehensive and adaptable to their own country’s conditions such as climate.

Keywords: environmental assessment, green buildings, green building criteria, green building rating systems, sustainability, rating tools

Procedia PDF Downloads 242
817 SEM Image Classification Using CNN Architectures

Authors: Güzi̇n Ti̇rkeş, Özge Teki̇n, Kerem Kurtuluş, Y. Yekta Yurtseven, Murat Baran

Abstract:

A scanning electron microscope (SEM) is a type of electron microscope mainly used in nanoscience and nanotechnology areas. Automatic image recognition and classification are among the general areas of application concerning SEM. In line with these usages, the present paper proposes a deep learning algorithm that classifies SEM images into nine categories by means of an online application to simplify the process. The NFFA-EUROPE - 100% SEM data set, containing approximately 21,000 images, was used to train and test the algorithm at 80% and 20%, respectively. Validation was carried out using a separate data set obtained from the Middle East Technical University (METU) in Turkey. To increase the accuracy in the results, the Inception ResNet-V2 model was used in view of the Fine-Tuning approach. By using a confusion matrix, it was observed that the coated-surface category has a negative effect on the accuracy of the results since it contains other categories in the data set, thereby confusing the model when detecting category-specific patterns. For this reason, the coated-surface category was removed from the train data set, hence increasing accuracy by up to 96.5%.

Keywords: convolutional neural networks, deep learning, image classification, scanning electron microscope

Procedia PDF Downloads 125
816 Improved Performance in Content-Based Image Retrieval Using Machine Learning Approach

Authors: B. Ramesh Naik, T. Venugopal

Abstract:

This paper presents a novel approach which improves the high-level semantics of images based on machine learning approach. The contemporary approaches for image retrieval and object recognition includes Fourier transforms, Wavelets, SIFT and HoG. Though these descriptors helpful in a wide range of applications, they exploit zero order statistics, and this lacks high descriptiveness of image features. These descriptors usually take benefit of primitive visual features such as shape, color, texture and spatial locations to describe images. These features do not adequate to describe high-level semantics of the images. This leads to a gap in semantic content caused to unacceptable performance in image retrieval system. A novel method has been proposed referred as discriminative learning which is derived from machine learning approach that efficiently discriminates image features. The analysis and results of proposed approach were validated thoroughly on WANG and Caltech-101 Databases. The results proved that this approach is very competitive in content-based image retrieval.

Keywords: CBIR, discriminative learning, region weight learning, scale invariant feature transforms

Procedia PDF Downloads 181
815 Redox-labeled Electrochemical Aptasensor Array for Single-cell Detection

Authors: Shuo Li, Yannick Coffinier, Chann Lagadec, Fabrizio Cleri, Katsuhiko Nishiguchi, Akira Fujiwara, Soo Hyeon Kim, Nicolas Clément

Abstract:

The need for single cell detection and analysis techniques has increased in the past decades because of the heterogeneity of individual living cells, which increases the complexity of the pathogenesis of malignant tumors. In the search for early cancer detection, high-precision medicine and therapy, the technologies most used today for sensitive detection of target analytes and monitoring the variation of these species are mainly including two types. One is based on the identification of molecular differences at the single-cell level, such as flow cytometry, fluorescence-activated cell sorting, next generation proteomics, lipidomic studies, another is based on capturing or detecting single tumor cells from fresh or fixed primary tumors and metastatic tissues, and rare circulating tumors cells (CTCs) from blood or bone marrow, for example, dielectrophoresis technique, microfluidic based microposts chip, electrochemical (EC) approach. Compared to other methods, EC sensors have the merits of easy operation, high sensitivity, and portability. However, despite various demonstrations of low limits of detection (LOD), including aptamer sensors, arrayed EC sensors for detecting single-cell have not been demonstrated. In this work, a new technique based on 20-nm-thick nanopillars array to support cells and keep them at ideal recognition distance for redox-labeled aptamers grafted on the surface. The key advantages of this technology are not only to suppress the false positive signal arising from the pressure exerted by all (including non-target) cells pushing on the aptamers by downward force but also to stabilize the aptamer at the ideal hairpin configuration thanks to a confinement effect. With the first implementation of this technique, a LOD of 13 cells (with5.4 μL of cell suspension) was estimated. In further, the nanosupported cell technology using redox-labeled aptasensors has been pushed forward and fully integrated into a single-cell electrochemical aptasensor array. To reach this goal, the LOD has been reduced by more than one order of magnitude by suppressing parasitic capacitive electrochemical signals by minimizing the sensor area and localizing the cells. Statistical analysis at the single-cell level is demonstrated for the recognition of cancer cells. The future of this technology is discussed, and the potential for scaling over millions of electrodes, thus pushing further integration at sub-cellular level, is highlighted. Despite several demonstrations of electrochemical devices with LOD of 1 cell/mL, the implementation of single-cell bioelectrochemical sensor arrays has remained elusive due to their challenging implementation at a large scale. Here, the introduced nanopillar array technology combined with redox-labeled aptamers targeting epithelial cell adhesion molecule (EpCAM) is perfectly suited for such implementation. Combining nanopillar arrays with microwells determined for single cell trapping directly on the sensor surface, single target cells are successfully detected and analyzed. This first implementation of a single-cell electrochemical aptasensor array based on Brownian-fluctuating redox species opens new opportunities for large-scale implementation and statistical analysis of early cancer diagnosis and cancer therapy in clinical settings.

Keywords: bioelectrochemistry, aptasensors, single-cell, nanopillars

Procedia PDF Downloads 117
814 Developing Rice Disease Analysis System on Mobile via iOS Operating System

Authors: Rujijan Vichivanives, Kittiya Poonsilp, Canasanan Wanavijit

Abstract:

This research aims to create mobile tools to analyze rice disease quickly and easily. The principle of object-oriented software engineering and objective-C language were used for software development methodology and the principle of decision tree technique was used for analysis method. Application users can select the features of rice disease or the color appears on the rice leaves for recognition analysis results on iOS mobile screen. After completing the software development, unit testing and integrating testing method were used to check for program validity. In addition, three plant experts and forty farmers have been assessed for usability and benefit of this system. The overall of users’ satisfaction was found in a good level, 57%. The plant experts give a comment on the addition of various disease symptoms in the database for more precise results of the analysis. For further research, it is suggested that image processing system should be developed as a tool that allows users search and analyze for rice diseases more convenient with great accuracy.

Keywords: rice disease, data analysis system, mobile application, iOS operating system

Procedia PDF Downloads 287
813 Adversarial Disentanglement Using Latent Classifier for Pose-Independent Representation

Authors: Hamed Alqahtani, Manolya Kavakli-Thorne

Abstract:

The large pose discrepancy is one of the critical challenges in face recognition during video surveillance. Due to the entanglement of pose attributes with identity information, the conventional approaches for pose-independent representation lack in providing quality results in recognizing largely posed faces. In this paper, we propose a practical approach to disentangle the pose attribute from the identity information followed by synthesis of a face using a classifier network in latent space. The proposed approach employs a modified generative adversarial network framework consisting of an encoder-decoder structure embedded with a classifier in manifold space for carrying out factorization on the latent encoding. It can be further generalized to other face and non-face attributes for real-life video frames containing faces with significant attribute variations. Experimental results and comparison with state of the art in the field prove that the learned representation of the proposed approach synthesizes more compelling perceptual images through a combination of adversarial and classification losses.

Keywords: disentanglement, face detection, generative adversarial networks, video surveillance

Procedia PDF Downloads 129
812 Managing Linguistic Diversity in Teaching and in Learning in Higher Education Institutions: The Case of the University of Luxembourg

Authors: Argyro-Maria Skourmalla

Abstract:

Today’s reality is characterized by diversity in different levels and aspects of everyday life. Focusing on the aspect of language and communication in Higher Education (HE), the present paper draws on the example of the University of Luxembourg as a multilingual and international setting. The University of Luxembourg, which is located between France, Germany, and Belgium, adopted its new multilingualism policy in 2020, establishing English, French, German, and Luxembourgish as the official languages of the Institution. In addition, with around 10.000 students and staff coming from various countries around the world, linguistic diversity in this university is seen as both a resource and a challenge that calls for an inclusive and multilingual approach. The present paper includes data derived from semi-structured interviews with lecturing staff from different disciplines and an online survey with undergraduate students at the University of Luxembourg. Participants shared their experiences and point of view regarding linguistic diversity in this context. Findings show that linguistic diversity in this university is seen as an asset but comes with challenges, and even though there is progress in the use of multilingual practices, a lot needs to be done towards the recognition of staff and students’ linguistic repertoires for inclusion and education equity.

Keywords: linguistic diversity, higher education, Luxembourg, multilingual practices, teaching, learning

Procedia PDF Downloads 76
811 Using A Corpus Approach To Investigate Positive University Images: A Comparison Between Chinese And ESC Universities

Authors: Han Hongmei

Abstract:

University image is receiving attention because of its key role in influencing student choice, faculty loyalty, and social recognition. Therefore, all universities strive to promote their positive images. However, for most people, the positive image of a university is often from fragmented perceptual understanding. Since universities’ official websites are important channels for image promotion, a corpus approach to university profiles in their official websites can reveal holistic positive images of universities. This study aims to compare positive images of high-level universities in China and English-speaking countries based on a profile corpus of theseuniversities. It is found that the positive images revealed in these university profiles are similar, with some minor differences. The similarities are reflected in the campus environment, historical achievements, comprehensive characteristics, scientific research institutions, and diversified faculty; while the differences are reflected in their unique characteristics. Furthermore, the findings also reveal a gap between Chinese universities and high-level universities in the English-speaking countries.

Keywords: university image, positive image, corpus of university profiles, comparative analysis, high-frequency words

Procedia PDF Downloads 107
810 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features

Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan

Abstract:

Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.

Keywords: pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction

Procedia PDF Downloads 263
809 Several Aspects of the Conceptual Framework of Financial Reporting

Authors: Nadezhda Kvatashidze

Abstract:

The conceptual framework of International Financial Reporting Standards determines the basic principles of accounting. The said principles have multiple applications, with professional judgments being one of those. Recognition and assessment of the information contained in financial reporting, especially so the somewhat uncertain events and transactions and/or the ones regarding which there is no standard or interpretation are based on professional judgments. Professional judgments aim at the formulation of expert assumptions regarding the specifics of the circumstances and events to be entered into the report based on the conceptual framework terms and principles. Experts have to make a choice in favor of one of the aforesaid and simulate the situations applying multi-variant accounting estimates and judgment. In making the choice, one should consider all the factors, which may help represent the information in the best way possible. Professional judgment determines the relevance and faithful representation of the presented information, which makes it more useful for the existing and potential investors. In order to assess the prospected net cash flows, the information must be predictable and reliable. The publication contains critical analysis of the aforementioned problems. The fact that the International Financial Reporting Standards are developed continuously makes the issue all the more important and that is another point discussed in the study.

Keywords: conceptual framework, faithful representation, professional judgement, relevance

Procedia PDF Downloads 215
808 Impact of Culture and Religion on Disability and the Health Care Seeking Practices of the Shona People

Authors: Mafunda Esther

Abstract:

The paper seeks to find out and document the impact of culture and religion on disability, specifically language impairment and health care seeking practices of the Shona people. Its main objectives are to explore the cultural and religious beliefs that affect the utilization of rehabilitation services in a rural community in Zimbabwe. The other objective of the paper is to describe how language impairment is presented and understood by people living in a Zimbabwean rural area. The research is qualitative interpretive phenomenological research, and it utilizes the case study approach using semi structured interviews and focus group discussions. Results from the research established that religious and cultural beliefs determine how the Shona people view disability, and this guides their health care seeking practices. The research is important since communication disorders occur in populations worldwide though they are not always recognized as such. The lack of recognition of and the attitudes toward speech and languages disorders, as well as the beliefs about the causes of such disorders, affect people's attitudes toward the treatment of the disorders.

Keywords: culture, religion, disability, language impairment

Procedia PDF Downloads 98
807 Bioproduction of Indirubin from Fermentation and Renewable Sugars Through Genomic and Metabolomic Engineering of a Bacterial Strain

Authors: Vijay H. Ingole, Efthimia Lioliou

Abstract:

Indirubin, a key bioactive component of traditional Chinese medicine, has gained increasing recognition for its potential in modern biomedical applications, particularly in pharmacology and therapeutics. The present work aimed to harness the potential by engineering an Escherichia coli strain capable of high-yield indirubin production. Through meticulous genetic engineering, we optimized the metabolic pathways in E. coli to enhance indirubin synthesis. Further, to explored the optimization of culture media and indirubin yield via batch and fed-batch fermentation techniques. By fine-tuning upstream process (USP) parameters, including nutrient composition, pH, temperature, and aeration, we established conditions that maximized both cell growth and indirubin production. Additionally, significant efforts were dedicated to refining downstream process (DSP) conditions for the extraction, purification, and quantification of indirubin. Utilizing advanced biochemical methods and analytical techniques such as UHPLC, we ensured the production of high purity indirubin. This approach not only improved the economic viability of indirubin bioproduction but also aligned with the principles of green production and sustainability.

Keywords: indirubin, bacterial strain, fermentation, HPLC

Procedia PDF Downloads 27
806 U11 Functionalised Luminescent Gold Nanoclusters for Pancreatic Tumor Cells Labelling

Authors: Regina M. Chiechio, Rémi Leguevél, Helene Solhi, Marie Madeleine Gueguen, Stephanie Dutertre, Xavier, Jean-Pierre Bazureau, Olivier Mignen, Pascale Even-Hernandez, Paolo Musumeci, Maria Jose Lo Faro, Valerie Marchi

Abstract:

Thanks to their ultra-small size, high electron density, and low toxicity, gold nanoclusters (Au NCs) have unique photoelectrochemical and luminescence properties that make them very interesting for diagnosis bio-imaging and theranostics. These applications require control of their delivery and interaction with cells; for this reason, the surface chemistry of Au NCs is essential to determine their interaction with the targeted biological objects. Here we demonstrate their ability as markers of pancreatic tumor cells. By functionalizing the surface of the NCs with a recognition peptite (U11), the nanostructures are able to preferentially bind to pancreatic cancer cells via a receptor (uPAR) overexpressed by these cells. Furthermore, the NCs can mark even the nucleus without the need of fixing the cells. These nanostructures can therefore be used as a non-toxic, multivalent luminescent platform, capable of selectively recognizing tumor cells for bioimaging, drug delivery, and radiosensitization.

Keywords: gold nanoclusters, luminescence, biomarkers, pancreatic cancer, biomedical applications, bioimaging, fluorescent probes, drug delivery

Procedia PDF Downloads 151
805 A Study of Intellectual Property Issues in the Indian Sports Industry

Authors: Ashaawari Datta Chaudhuri

Abstract:

India is a country that worships sports, especially cricket and football. This paper investigates the different intellectual property law issues that arise for sports. The paper will be a study of the legal precedents and landmark judgements in India for sports law. Some of the issues, such as brand abuse, misbranding, and infringement of IP, are very common and will be studied through case-based analysis. As a developing country, India is coping with new issues for theft of IP in different sectors. It has sportspersons of various kinds representing the country in many international events. This invites various problems in terms of recognition, credit, brand promotions, sponsorships, endorsements, and merchandising. Intellectual property is vital in many such endeavors for both brands and sportspersons. One of the major values associated with sport is ethics. Fairness, equality, and basic concern for credit are crucial in this industry. This paper will focus mostly on issues pertaining to design, trademarks, and copyrights. The contribution of this paper would be to study different problems and identify the gaps that require legislative intervention and policymaking. This is important to help boost businesses and brands associated with this industry to help occupy spaces in the market.

Keywords: copyright, design, intellectual property, Indian landscape for sports law, patents, trademark, licensing, infringement

Procedia PDF Downloads 52
804 LGBT+ Migrants: A Cultural and Legislative Comparison in Canada, Italy and Egypt

Authors: Andreas Aceranti, Simonetta Vernocchi, Federica Brondoni, Marco Colorato, Marta Primatesta

Abstract:

This study entitled “LGBT+ migrants: a cultural and legislative comparison in Canada, Italy and Egypt” suggests an analysis of the living conditions of migrants who are members of the LGBT+ community in Canada, Italy and Egypt. The acronym LGBT+ refers to lesbian, gay, bisexual, transgender and all other gender identities and sexual orientations that do not fit into the male and female binary. This study aims at reflecting on the living conditions of LGBT+ migrants and the relatable difficulties they may face due to the culture and laws of their countries. Migratory flows were examined by providing a definition of "migrant" and the choices that drive a person to migrate elsewhere explained, followed by a focus on the recognition of refugee status related to sexual orientation and gender identity. Furthermore, we will deal with Canada, Italy and Egypt respectively, by analyzing for each country the history and rise of the LGBT+ community, the different laws and especially the migrants’ rights. Finally, the services and associations designed to provide a response to the needs of these people will be analyzed, highlighting the branches which nowadays operate in those areas and the importance of the cultural mediator.

Keywords: LGBTQ+, migrants, international rights, discrimination

Procedia PDF Downloads 112
803 Analysis of the Sagittarius, Borje Ghos, the Symbol of the City of Isfahan

Authors: Shirin Manavi, Gorbanali Ebrahimi

Abstract:

Man is a symbolist. He experiences living, whether he lived in the Old World or he is living in today's world. The symbol is a kind of concise expression of wishes and in the meantime, it comprises all the demands and Dos and Don'ts of a group, a people, and a nation. Our land, Iran, is also the land of symbols, explicit and hidden ones. The astronomical symbols are among these symbols that were recruited in fortune telling of cities. One of the symbols is the astronomical symbol of sagittairc which is the astrology of some cities such as Isfahan. November 22 of each year has been selected by Isfahan experts as Isfahan's Glorification Day. They have also selected the historically painted picture on the entrance of Qeysariye Bazar which has been designed based on the arch constellation. This symbol was chosen because Isfahan has been found in arch constellation on the basis of historical documentation of astrology. This study aims at the recognition, description, and analysis of the arch constellation, the symbol of Isfahan where it has been displayed once upon a time over the Tabarak castle and it is for centuries on the vertex of Isfahan's Qeysariye Bazar. This research has been done on the basis of the analytical method, but due to the particular structure of this paper, it has also benefited from the historical and descriptive methods.

Keywords: Isfahan's Qeysariye Bazar, semiotics, astrology of cities, constellation, sagittairc (Borje Ghos)

Procedia PDF Downloads 221
802 Methodology for Temporary Analysis of Production and Logistic Systems on the Basis of Distance Data

Authors: M. Mueller, M. Kuehn, M. Voelker

Abstract:

In small and medium-sized enterprises (SMEs), the challenge is to create a well-grounded and reliable basis for process analysis, optimization and planning due to a lack of data. SMEs have limited access to methods with which they can effectively and efficiently analyse processes and identify cause-and-effect relationships in order to generate the necessary database and derive optimization potential from it. The implementation of digitalization within the framework of Industry 4.0 thus becomes a particular necessity for SMEs. For these reasons, the abstract presents an analysis methodology that is subject to the objective of developing an SME-appropriate methodology for efficient, temporarily feasible data collection and evaluation in flexible production and logistics systems as a basis for process analysis and optimization. The overall methodology focuses on retrospective, event-based tracing and analysis of material flow objects. The technological basis consists of Bluetooth low energy (BLE)-based transmitters, so-called beacons, and smart mobile devices (SMD), e.g. smartphones as receivers, between which distance data can be measured and derived motion profiles. The distance is determined using the Received Signal Strength Indicator (RSSI), which is a measure of signal field strength between transmitter and receiver. The focus is the development of a software-based methodology for interpretation of relative movements of transmitters and receivers based on distance data. The main research is on selection and implementation of pattern recognition methods for automatic process recognition as well as methods for the visualization of relative distance data. Due to an existing categorization of the database regarding process types, classification methods (e.g. Support Vector Machine) from the field of supervised learning are used. The necessary data quality requires selection of suitable methods as well as filters for smoothing occurring signal variations of the RSSI, the integration of methods for determination of correction factors depending on possible signal interference sources (columns, pallets) as well as the configuration of the used technology. The parameter settings on which respective algorithms are based have a further significant influence on result quality of the classification methods, correction models and methods for visualizing the position profiles used. The accuracy of classification algorithms can be improved up to 30% by selected parameter variation; this has already been proven in studies. Similar potentials can be observed with parameter variation of methods and filters for signal smoothing. Thus, there is increased interest in obtaining detailed results on the influence of parameter and factor combinations on data quality in this area. The overall methodology is realized with a modular software architecture consisting of independently modules for data acquisition, data preparation and data storage. The demonstrator for initialization and data acquisition is available as mobile Java-based application. The data preparation, including methods for signal smoothing, are Python-based with the possibility to vary parameter settings and to store them in the database (SQLite). The evaluation is divided into two separate software modules with database connection: the achievement of an automated assignment of defined process classes to distance data using selected classification algorithms and the visualization as well as reporting in terms of a graphical user interface (GUI).

Keywords: event-based tracing, machine learning, process classification, parameter settings, RSSI, signal smoothing

Procedia PDF Downloads 131
801 Early Recognition and Grading of Cataract Using a Combined Log Gabor/Discrete Wavelet Transform with ANN and SVM

Authors: Hadeer R. M. Tawfik, Rania A. K. Birry, Amani A. Saad

Abstract:

Eyes are considered to be the most sensitive and important organ for human being. Thus, any eye disorder will affect the patient in all aspects of life. Cataract is one of those eye disorders that lead to blindness if not treated correctly and quickly. This paper demonstrates a model for automatic detection, classification, and grading of cataracts based on image processing techniques and artificial intelligence. The proposed system is developed to ease the cataract diagnosis process for both ophthalmologists and patients. The wavelet transform combined with 2D Log Gabor Wavelet transform was used as feature extraction techniques for a dataset of 120 eye images followed by a classification process that classified the image set into three classes; normal, early, and advanced stage. A comparison between the two used classifiers, the support vector machine SVM and the artificial neural network ANN were done for the same dataset of 120 eye images. It was concluded that SVM gave better results than ANN. SVM success rate result was 96.8% accuracy where ANN success rate result was 92.3% accuracy.

Keywords: cataract, classification, detection, feature extraction, grading, log-gabor, neural networks, support vector machines, wavelet

Procedia PDF Downloads 332
800 A Biologically Inspired Approach to Automatic Classification of Textile Fabric Prints Based On Both Texture and Colour Information

Authors: Babar Khan, Wang Zhijie

Abstract:

Machine Vision has been playing a significant role in Industrial Automation, to imitate the wide variety of human functions, providing improved safety, reduced labour cost, the elimination of human error and/or subjective judgments, and the creation of timely statistical product data. Despite the intensive research, there have not been any attempts to classify fabric prints based on printed texture and colour, most of the researches so far encompasses only black and white or grey scale images. We proposed a biologically inspired processing architecture to classify fabrics w.r.t. the fabric print texture and colour. We created a texture descriptor based on the HMAX model for machine vision, and incorporated colour descriptor based on opponent colour channels simulating the single opponent and double opponent neuronal function of the brain. We found that our algorithm not only outperformed the original HMAX algorithm on classification of fabric print texture and colour, but we also achieved a recognition accuracy of 85-100% on different colour and different texture fabric.

Keywords: automatic classification, texture descriptor, colour descriptor, opponent colour channel

Procedia PDF Downloads 484
799 The Orthodox Church's Heritage in Syria and the Journey of Syriac Music between Originality and Renewal

Authors: Marilyn Maksoud

Abstract:

This article discusses the heritage of the Orthodox Church, additionally it describes the origins, composition, and characteristics of the Orthodox Christian cultural identity in Syria and the liturgical traditions of the Church in the literature. Also, the eight tunes and their original use, the historical and anthropological importance of the most important Orthodox churches in Syria, were discussed. Finally, the role and works of the composer Nuri Iskandar in reviving Christian music were mentioned. "Cultural dialogue" methodology based on the recognition of equal cultures, practical and bibliographic sources of books and articles in many languages German, French, Arabic, and English, in addition to my practical experience in chanting the Syriac Aramaic language in some churches in Syria and Russia. This study concluded that the roots of the characteristics of Orthodox Christian culture in Syria go back to the original eight Syriac melodies. Additionally, The originality of Major and Minor scales were tracked as an extension of Syriac Christian melodies originated thousands of years ago in Syrian land.

Keywords: church culture in Syria, Syriac orthodox music, Syriac orthodox church, Aramaic semitic language, Syriac, Syrian church melodies

Procedia PDF Downloads 187
798 Moving Images and Re-Articulations of Self-Identity: Young People's Experiences of Viewing Representations Disability in Films

Authors: Alison Wilde, Stephen Millett

Abstract:

The cultural value of disabled people has largely been overlooked within forms of media and cultural analysis until the 1980s, when disabled people and disability studies highlighted the cultural misrecognition of disabled people and called for improved forms of cultural recognition and representation. Despite an increase in cultural analysis of representations of disabled people, much has been assumed about how images are read, and little work has been done on the value attributed to disabled people by media audiences and the viewing interests and encounters of film audiences. In particular, there has been little work on film reception, or on the way that young people interpret images of disability. We set out to understand some of the ways that young people read disability imagery, by showing small groups of young people different types of film featuring impairments, chosen from three different eras in film. These were Freaks, Rear Window (remake), and Finding Nemo. The discussions after these films allowed them to explore their own experiences of disability alongside the evolution of cultural representations; in so doing they discussed significant themes of cultural value and reflected on their own identities, e.g. in/dependency, autonomy, and competency and the ways these intersected with self-identity, and attitudes to disabled people.

Keywords: film, audience, identity, disability

Procedia PDF Downloads 419
797 A Machine Learning Based Method to Detect System Failure in Resource Constrained Environment

Authors: Payel Datta, Abhishek Das, Abhishek Roychoudhury, Dhiman Chattopadhyay, Tanushyam Chattopadhyay

Abstract:

Machine learning (ML) and deep learning (DL) is most predominantly used in image/video processing, natural language processing (NLP), audio and speech recognition but not that much used in system performance evaluation. In this paper, authors are going to describe the architecture of an abstraction layer constructed using ML/DL to detect the system failure. This proposed system is used to detect the system failure by evaluating the performance metrics of an IoT service deployment under constrained infrastructure environment. This system has been tested on the manually annotated data set containing different metrics of the system, like number of threads, throughput, average response time, CPU usage, memory usage, network input/output captured in different hardware environments like edge (atom based gateway) and cloud (AWS EC2). The main challenge of developing such system is that the accuracy of classification should be 100% as the error in the system has an impact on the degradation of the service performance and thus consequently affect the reliability and high availability which is mandatory for an IoT system. Proposed ML/DL classifiers work with 100% accuracy for the data set of nearly 4,000 samples captured within the organization.

Keywords: machine learning, system performance, performance metrics, IoT, edge

Procedia PDF Downloads 195
796 COVID-19’s Effect on Pre-Existing Hearing Loss

Authors: Jonathan A. Mikhail, Arsenio Paez

Abstract:

It is not uncommon for a viral infection to cause hearing loss. Many viral infections are associated with sudden-onset, often unilateral, idiopathic sensorineural hearing loss. We conducted an exploratory study with thirty patients with pre-existing hearing loss between 50 and 64 to evaluate if COVID-19 was associated with exacerbated hearing loss. We hypothesized that hearing loss would be exacerbated by COVID-19 infection in patients with pre-existing hearing loss. A statistically significant paired T-test between pure tone averages (PTAs) at the patient’s original diagnosis and a current, updated audiometric assessment indicated a regression in hearing (p-value < .001) sensitivity following the contraction of COVID-19. Speech reception thresholds (SRTs) and word recognition scores (WRSs) were also considered, as well as the participants' gender. SRTs between each ear exhibited a statistically significant change (p-value of .002 and p-value < .001). WRSs did not show statistically significant differences (p-value of .290 and p-value of .098). A non-statistically significant Two-Way ANOVA was performed to evaluate gender’s potential role in exacerbated hearing loss and proved to be statistically insignificant (p-value of .214). This study discusses practical implications for clinical and educational pursuits in understanding COVID-19's effect on the auditory system and the need to evaluate the deadly virus further.

Keywords: audiology, COVID-19, sensorineural hearing loss, otology, auditory research

Procedia PDF Downloads 79
795 Emotion Oriented Students' Opinioned Topic Detection for Course Reviews in Massive Open Online Course

Authors: Zhi Liu, Xian Peng, Monika Domanska, Lingyun Kang, Sannyuya Liu

Abstract:

Massive Open education has become increasingly popular among worldwide learners. An increasing number of course reviews are being generated in Massive Open Online Course (MOOC) platform, which offers an interactive feedback channel for learners to express opinions and feelings in learning. These reviews typically contain subjective emotion and topic information towards the courses. However, it is time-consuming to artificially detect these opinions. In this paper, we propose an emotion-oriented topic detection model to automatically detect the students’ opinioned aspects in course reviews. The known overall emotion orientation and emotional words in each review are used to guide the joint probabilistic modeling of emotion and aspects in reviews. Through the experiment on real-life review data, it is verified that the distribution of course-emotion-aspect can be calculated to capture the most significant opinioned topics in each course unit. This proposed technique helps in conducting intelligent learning analytics for teachers to improve pedagogies and for developers to promote user experiences.

Keywords: Massive Open Online Course (MOOC), course reviews, topic model, emotion recognition, topical aspects

Procedia PDF Downloads 262
794 Villar Settlement Farm School for the Aetas: Assimilation through American Colonial Education in Zambales, Philippines

Authors: Julian E. Abuso, Alberto T. Paala Jr.

Abstract:

The creation of settlement farm schools at the outset of American colonization of the Philippines was not a matter of accident; rather, their establishment was a major component of a grand plan on public education based on the benevolent assimilation policy of the United States. This argument is illustrated by the case of Villar Settlement Farm School, a school for the Aetas as a non-Christian tribal community in 1907. The study aims to: (1) identify and describe the antecedents for the establishment of Settlement Farm School, (2) explicate the cultural conflicts encountered by Aetas in school, (3) appraise the consequences of education as acculturation among Aeta population. The study made use of the following: historical data based on primary and secondary sources and life histories from primary informants. The Settlement Farm School for the Aetas was borne out of the American’s change in policy from military to civilian authority, recognition of education as a tool for benevolent assimilation. The narratives of informants manifested resistance to certain aspects of the educational process.

Keywords: settlement farm school Aetas, tribe, colonial education, Aeta, non-Christian tribal community

Procedia PDF Downloads 319
793 Classifying Facial Expressions Based on a Motion Local Appearance Approach

Authors: Fabiola M. Villalobos-Castaldi, Nicolás C. Kemper, Esther Rojas-Krugger, Laura G. Ramírez-Sánchez

Abstract:

This paper presents the classification results about exploring the combination of a motion based approach with a local appearance method to describe the facial motion caused by the muscle contractions and expansions that are presented in facial expressions. The proposed feature extraction method take advantage of the knowledge related to which parts of the face reflects the highest deformations, so we selected 4 specific facial regions at which the appearance descriptor were applied. The most common used approaches for feature extraction are the holistic and the local strategies. In this work we present the results of using a local appearance approach estimating the correlation coefficient to the 4 corresponding landmark-localized facial templates of the expression face related to the neutral face. The results let us to probe how the proposed motion estimation scheme based on the local appearance correlation computation can simply and intuitively measure the motion parameters for some of the most relevant facial regions and how these parameters can be used to recognize facial expressions automatically.

Keywords: facial expression recognition system, feature extraction, local-appearance method, motion-based approach

Procedia PDF Downloads 413
792 Factors Influencing the Development and Implementation of Radiology Technologist Specialist Role in Image Interpretation in Sudan

Authors: Awad Elkhadir, Rajab M. Ben Yousef

Abstract:

Introduction: The production of high-quality medical images by radiology technologists is useful in diagnosing and treating various injuries and diseases. However, the factors affecting the role of radiology technologists in image interpretation in Sudan have not been investigated widely. Methods: Cross-sectional study has been employed by recruiting ten radiology college deans in Sudan. The questionnaire was distributed online, and obtained data were analyzed using Microsoft Excel and IBM-SPSS version 16.0 to generate descriptive statistics. Results: The study results have shown that half of the deans were doubtful about the readiness of Sudan to implement the role of radiology technologist specialist in image interpretation. The majority of them (60%) believed that this issue had been most strongly pushed by researchers over the past decade. The factors affecting the implementation of the radiology technologist specialist role in image interpretation included; education/training (100%), recognition (30%), technical issues (30%), people-related issues (20%), management changes (30%), government role (30%), costs (10%), and timings (20%). Conclusion: The study concluded that there is a need for a change in image interpretation by radiology technologists in Sudan.

Keywords: development, image interpretation, implementation, radiology technologist specialist, Sudan

Procedia PDF Downloads 88
791 The Expanding Role of Islamic Law in the Current Indonesian Legal Reform

Authors: Muhammad Ilham Agus Salim, Saufa Ata Taqiyya

Abstract:

In many Muslim countries, secularization has successfully reduced the role of Islamic law as a formal legal source during this last century. The most obvious fact was the reform of Daulah Utsmaniyah to be Secular Republic of Turkey. Religion is strictly separated from the state authorities in many countries today. But these last decades in Indonesia, a remarkable fact is apparent. Islamic law has expanded its role in Indonesian legal system, especially in districts regulations. In Aceh province, as a case in point, shariah has been the basic source of law in all regulations. There are more provinces in Indonesia which adopted Islamic law as a formal legal source by the end of 2014. Different from some other countries which clearly stipulates the status of Islam in formal ways, Indonesian constitution formally does not render any recognition for Islam to be the formal religion of the state. But in this Muslim majority country, Islamic law takes a place in democratic way, namely on the basis of the voice of majority. This paper will analyze how this reality increases significantly since what so called by Indonesian reformation era (end of nineties). Some causes will be identified regarding this tendency of expansion of role. Some lessons learned also will be recommended as the concluding remarks by the end of the paper.

Keywords: Islamic law, Indonesia, legal reform, Syariah local regulation

Procedia PDF Downloads 350
790 Human Action Retrieval System Using Features Weight Updating Based Relevance Feedback Approach

Authors: Munaf Rashid

Abstract:

For content-based human action retrieval systems, search accuracy is often inferior because of the following two reasons 1) global information pertaining to videos is totally ignored, only low level motion descriptors are considered as a significant feature to match the similarity between query and database videos, and 2) the semantic gap between the high level user concept and low level visual features. Hence, in this paper, we propose a method that will address these two issues and in doing so, this paper contributes in two ways. Firstly, we introduce a method that uses both global and local information in one framework for an action retrieval task. Secondly, to minimize the semantic gap, a user concept is involved by incorporating features weight updating (FWU) Relevance Feedback (RF) approach. We use statistical characteristics to dynamically update weights of the feature descriptors so that after every RF iteration feature space is modified accordingly. For testing and validation purpose two human action recognition datasets have been utilized, namely Weizmann and UCF. Results show that even with a number of visual challenges the proposed approach performs well.

Keywords: relevance feedback (RF), action retrieval, semantic gap, feature descriptor, codebook

Procedia PDF Downloads 473
789 Adopting Quality Assurance Cycles in Accreditation and Strategic Planning in Higher Education Institutions

Authors: Fouzia Shersad, Sabeena Salam

Abstract:

Introduction: Quality assurance cycles like RADAR, PDCA, ADRI are cycles of planning, implementation, assessment and improvement. These cycles are required when institutions apply for reaccreditation to accreditation bodies and for adoption of holistic models of institutional quality. Method of Study: The adoption of these cycles at the higher education institutions under the Dubai Medical University is studied to explore the feasibility and the benefits in institutions outcomes. After adequate faculty training, these steps were incorporated in all new activities and embedded in every new initiative and approach undertaken at unit and institutional levels. Conclusions: Improvement in student satisfaction rates and performance levels has been achieved. Wherever weaknesses or deficits have been identified, improvement strategies are implemented in a timely manner. The feedback has become an incentive for faculty members to implement new ideas. Implementation of these cycles for core processes at micro and macro levels have ensured that a systematic mechanism for corrective actions existed. This has led to increasing adoption of innovative initiatives. Another outcome was the recognition through national level awards for the overall institutions which have been certified by external reviewers.

Keywords: higher education, quality, accreditation, institutional improvement

Procedia PDF Downloads 378