Search results for: expressive facial animation synthesis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2576

Search results for: expressive facial animation synthesis

1706 Text Emotion Recognition by Multi-Head Attention based Bidirectional LSTM Utilizing Multi-Level Classification

Authors: Vishwanath Pethri Kamath, Jayantha Gowda Sarapanahalli, Vishal Mishra, Siddhesh Balwant Bandgar

Abstract:

Recognition of emotional information is essential in any form of communication. Growing HCI (Human-Computer Interaction) in recent times indicates the importance of understanding of emotions expressed and becomes crucial for improving the system or the interaction itself. In this research work, textual data for emotion recognition is used. The text being the least expressive amongst the multimodal resources poses various challenges such as contextual information and also sequential nature of the language construction. In this research work, the proposal is made for a neural architecture to resolve not less than 8 emotions from textual data sources derived from multiple datasets using google pre-trained word2vec word embeddings and a Multi-head attention-based bidirectional LSTM model with a one-vs-all Multi-Level Classification. The emotions targeted in this research are Anger, Disgust, Fear, Guilt, Joy, Sadness, Shame, and Surprise. Textual data from multiple datasets were used for this research work such as ISEAR, Go Emotions, Affect datasets for creating the emotions’ dataset. Data samples overlap or conflicts were considered with careful preprocessing. Our results show a significant improvement with the modeling architecture and as good as 10 points improvement in recognizing some emotions.

Keywords: text emotion recognition, bidirectional LSTM, multi-head attention, multi-level classification, google word2vec word embeddings

Procedia PDF Downloads 160
1705 Green Synthesis and Characterisation of Gold Nanoparticles from the Stem Bark and Leaves of Khaya Senegalensis and Its Cytotoxicity on MCF7 Cell Lines

Authors: Stephen Daniel Iduh, Evans Chidi Egwin, Oluwatosin Kudirat Shittu

Abstract:

The process for the development of reliable and eco-friendly metallic Nanoparticles is an important step in the field of Nanotechnology for biomedical application. To achieve this, use of natural sources like biological systems becomes essential. In the present work, extracellular biosynthesis of gold Nanoparticles using aqueous leave and stembark extracts of K. senegalensis has been attempted. The gold Nanoparticles produced were characterized using High Resolution scanning electron microscopy, Ultra Violet–Visible spectroscopy, zeta-sizer Nano, Energy-Dispersive X-ray (EDAX) Spectroscopy and Fourier Transmission Infrared (FTIR) Spectroscopy. The cytotoxicity of the synthesized gold nanoparticles on MCF-7 cell line was evaluated using MTT assay. The result showed a rapid development of Nano size and shaped particles within 5 minutes of reaction with Surface Plasmon Resonance at 520 and 525nm respectively. An average particle size of 20-90nm was confirmed. The amount of the extracts determines the core size of the AuNPs. The core size of the AuNPs decreases as the amount of extract increases and it causes the shift of Surface Plasmon Resonance band. The FTIR confirms the presence of biomolecules serving as reducing and capping agents on the synthesised gold nanoparticles. The MTT assay shows a significant effect of gold nanoparticles which is concentration dependent. This environment-friendly method of biological gold Nanoparticle synthesis has the potential and can be directly applied in cancer therapy.

Keywords: biosynthesis, gold nanoparticles, characterization, calotropis procera, cytotoxicity

Procedia PDF Downloads 468
1704 Face Recognition Using Eigen Faces Algorithm

Authors: Shweta Pinjarkar, Shrutika Yawale, Mayuri Patil, Reshma Adagale

Abstract:

Face recognition is the technique which can be applied to the wide variety of problems like image and film processing, human computer interaction, criminal identification etc. This has motivated researchers to develop computational models to identify the faces, which are easy and simple to implement. In this, demonstrates the face recognition system in android device using eigenface. The system can be used as the base for the development of the recognition of human identity. Test images and training images are taken directly with the camera in android device.The test results showed that the system produces high accuracy. The goal is to implement model for particular face and distinguish it with large number of stored faces. face recognition system detects the faces in picture taken by web camera or digital camera and these images then checked with training images dataset based on descriptive features. Further this algorithm can be extended to recognize the facial expressions of a person.recognition could be carried out under widely varying conditions like frontal view,scaled frontal view subjects with spectacles. The algorithm models the real time varying lightning conditions. The implemented system is able to perform real-time face detection, face recognition and can give feedback giving a window with the subject's info from database and sending an e-mail notification to interested institutions using android application. Face recognition is the technique which can be applied to the wide variety of problems like image and film processing, human computer interaction, criminal identification etc. This has motivated researchers to develop computational models to identify the faces, which are easy and simple to implement. In this , demonstrates the face recognition system in android device using eigenface. The system can be used as the base for the development of the recognition of human identity. Test images and training images are taken directly with the camera in android device.The test results showed that the system produces high accuracy. The goal is to implement model for particular face and distinguish it with large number of stored faces. face recognition system detects the faces in picture taken by web camera or digital camera and these images then checked with training images dataset based on descriptive features. Further this algorithm can be extended to recognize the facial expressions of a person.recognition could be carried out under widely varying conditions like frontal view,scaled frontal view subjects with spectacles. The algorithm models the real time varying lightning conditions. The implemented system is able to perform real-time face detection, face recognition and can give feedback giving a window with the subject's info from database and sending an e-mail notification to interested institutions using android application.

Keywords: face detection, face recognition, eigen faces, algorithm

Procedia PDF Downloads 340
1703 Development and Pre-clinical Evaluation of New ⁶⁴Cu-NOTA-Folate Conjugates for PET Imaging of Folate Receptor-Positive Tumors

Authors: Norah Al Hokbany, Ibrahim Al Jammaz, Basem Al Otaibi, Yousif Al Malki, Subhani M. Okarvi

Abstract:

Objective: The folate receptor is over-expressed in a wide variety of human tumors. Conjugates of folate have been shown to be selectively taken up by tumor cells via the folate receptor. In an attempt to develop new folate radiotracers with favorable biochemical properties for detecting folate receptor-positive cancers. Methods: we synthesized ⁶⁴Cu-NOTA- and ⁶⁴Cu-NOTAM-folate conjugates using a straightforward and simple one-step reaction. Radiochemical yields were greater than 95% (decay-corrected) with a total synthesis time of less than 20 min. Results: Radiochemical purities were always greater than 98% without high-performance liquid chromatography (HPLC) purification. These synthetic approaches hold considerable promise as a rapid and simple method for ⁶⁴Cu-folate conjugate preparation with high radiochemical yield in a short synthesis time. In vitro tests on the KB cell line showed that significant amounts of the radio conjugates were associated with cell fractions. Bio-distribution studies in nude mice bearing human KB xenografts demonstrated a significant tumor uptake and favorable bio-distribution profile for ⁶⁴Cu-NOTA- and ⁶⁴Cu-NOTAM-folate conjugate. The uptake in the tumors was blocked by the excess injection of folic acid, suggesting a receptor-mediated process. Conclusion: These results demonstrate that the ⁶⁴Cu-NOTAM-folate conjugate may be useful as a molecular probe for the detection and staging of folate receptor-positive cancers, such as ovarian cancer and their metastasis, as well as monitoring tumor response to treatment.

Keywords: folate, receptor, tumor imaging, ⁶⁴Cu-NOTA-folate, PET

Procedia PDF Downloads 91
1702 “SockGEL/PLUG” Injectable Smart/Intelligent and Bio-Inspired Sol-Gel Nanomaterials for Simple and Complex Oro-Dental and Cranio-Maxillo-Facial Interventional Applications

Authors: Ziyad S. Haidar

Abstract:

Millions of teeth are removed annually, and dental extraction is one of the most commonly performed surgical procedures globally. Whether due to caries, periodontal disease or trauma, exodontia and the ensuing wound healing and bone remodeling processes of the resultant socket (hole in the jaw bone) usually result in serious deformities of the residual alveolar osseous ridge and surrounding soft tissues (reduced height/width). Such voluminous changes render the placement of a proper conventional bridge, denture or even an implant-supported prosthesis extremely challenging. Further, most extractions continue to be performed with no regard for preventing the onset of alveolar osteitis (also known as dry socket, a painful and difficult-to-treat/-manage condition post-exodontia). Hence, such serious resorptive morphological changes often result in significant facial deformities and a negative impact on the overall Quality of Life (QoL) of patients (and oral health-related QoL), alarming, particularly for the geriatric with compromised healing and in light of the thriving longevity statistics. Opportunity: Despite advances in tissue/wound grafting, serious limitations continue to exist, including efficacy and clinical outcome predictability, cost, treatment time, expertise and risk of immune reactions. For cases of dry sockets, specifically, the commercially-available and often-prescribed home remedies are highly lacking. Indeed, most are not recommended for use anymore. Alveogyl is a fine example. Hence, there is a great market demand and need for alternative solutions. Solution: Herein, SockGEL/PLUG (patent pending), an all-natural, drug-free and injectable stimuli-responsive hydrogel, was designed, formulated, characterized and evaluated as an osteogenic, angiogenic, anti-microbial and pain-soothing suture-free intra-alveolar dressing, safe and efficacious for use in several oro-dental and cranio-maxillo-facial interventional applications; for example: in fresh dental extraction sockets, immediately post-exodontia. It is composed of FDA-approved, biocompatible and biodegradable polymers, self-assembled electro-statically to formulate a scaffolding matrix to (a) prevent the onset of alveolar osteitis via securing the fibrin-clot in situ and protecting/sealing the socket from contamination/infection; and (b) endogenously promote/accelerate wound healing and bone remodeling to preserve the volume of the alveolus. Findings: The intrinsic properties of the SockGEL/PLUG hydrogel were evaluated physico-chemico-mechanically for safety (cell viability), viscosity, rheology, bio-distribution and essentially, capacity to induce wound healing and osteogenesis (small defect, in vivo) without any signaling cues from exogenous cells, growth factors or drugs. The performed animal model of cranial critical-sized and non-vascularized bone defects shall provide vitally critical insights into the role and mechanism of the employed natural bio-polymer blend and gel product in endogenous reparative regeneration of soft tissues and bone morphogenesis. Alongside, the fine-tuning of our modified formulation method will further tackle appropriateness, reproducibility, scalability, ease and speed in producing stable, biodegradable and sterilizable stimuli (thermo-sensitive and photo-responsive) matrices (3-dimensional interpenetrating yet porous polymeric network) suitable for an intra-socket application, and beyond. Conclusions and Perspective: Findings are anticipated to provide sufficient evidence to translate into pilot clinical trials and validate the bionanomaterial before engaging the market for feasibility, acceptance and cost-effectiveness studies. The SockGEL/PLUG platform is patent pending: SockGEL is a bio-inspired drug-free hydrogel; SockPLUG is a drug-loaded hydrogel designed for complex indications.

Keywords: hydrogel, injectable, dentistry, craniomaxillofacial complex, bioinspired, nanobiotechnology, biopolymer, sol-gel, stimuli-responsive, matrix, tissue engineering, regenerative medicine

Procedia PDF Downloads 53
1701 Syntheses of Biobased Hybrid Poly(epoxy-hydroxyurethane) Polymers

Authors: Adrien Cornille, Sylvain Caillol, Bernard Boutevon

Abstract:

The development of polyurethanes began in 1937 at I. G. Farbenindustrie where Bayer with coworkers discovered the addition polymerization reaction between diisocyanates and diols. Since their discovery, the demand in PU has continued to increase and it will attain in 2016 a production of 18 million tons. However, isocyanates compounds are harmful to human and environment. Methylene diphenyl 4,4’-diisocyanate (MDI) and toluene diisocyanate (TDI), the most widely used isocyanates in PU industry, are classified as CMR (Carcinogen, Mutagen, and Reprotoxic). In order to design isocyanate-free materials, an interesting alternative is the use of Polyhydroxyurethanes (PHUs) by reaction between cyclic carbonate and polyfunctional amines. The main problem concerning PHUs synthesis relates to the low reactivity of carbonate/amine reaction. To solve this issue, many studies in the literature have been conducted to design PHU from more reactive cyclic-carbonates, bearing electro-withdrawing substituent or by using six-membered, seven-membered or thio-cyclic carbonate. The main drawback of all these systems remains the low molar masses obtained for the synthesized PHUs, which hinders their use for material applications. Therefore, we developed another strategy to afford new hybrid PHU with high conversion. This very innovative two-step approach consists in the first step in the synthesis of aminotelechelic PHU oligomers with different chain length from bis-cyclic carbonate with different excess of primary amine functions. In the second step, these aminotelechelic PHU oligomers were used in formulation with biobased epoxy monomers (from cashew nut shell liquid and tannins) to synthesize hybrid polyepoxyurethane polymers. These materials were then characterized by thermal and mechanical analyses.

Keywords: polyurethane, polyhydroxyurethane, aminotelechelic NIPU oligomers, carbonates, epoxy, amine, epoxyurethane polymers, hybrid polymers

Procedia PDF Downloads 196
1700 Immersive and Interactive Storytelling: Exploring Narratives and Online Multisensory Experience for Cultural Memory and Collective Awareness through Graphic Novel

Authors: Cristina Greco

Abstract:

The spread of the digital and we-based technologies has led to a transformation process, which has coincided with an increase in the number of cases who are beyond the mainstream storytelling and its codes on the interaction with the user. On the base of a previous research on i-docs and virtual museums, this study analyses interactive and immersive online Graphic Novel – one-page, animated, illustrated, and hybrid – to reflect on the transformational implications of this expressive form on the user perception, remembrance, and awareness. The way in which the user experiences a certain level of interaction with the story and immersion in the semantic and figurative universe would bring user’s attention, activating introspection and self-reflection processes, perception, imagination, and creativity. This would have to do with the involvement of different senses – visual, proprioceptive, tactile, auditory, and vestibular – and the activation of a phenomenon of synaesthesia (involuntary cross-modal sensory association) – where, for example, the aural reconnect the user to another sense, providing a multisensory experience. The case studies show specific forms of interactive and immersive graphic novel and reflect on application that has sought to engage innovative ways to communicate different messages and stimulate cultural memory and collective awareness. The visual semiotic and narrative analysis of the distinctive traits of such a complex textuality, along with a study of the user’s experience through observation in naturalistic settings and interviews, allows us to question the functioning of these configurations, with regard to the relationships between the figurative dimension, the perceptive activity, and their impact on the user’s engagement.

Keywords: collective awareness, cultural memory, graphic novel, interactive and immersive storytelling

Procedia PDF Downloads 129
1699 Synthesis and Characterisation of New Heteropolyanion Substitute by CO2+

Authors: Ouahiba Bechiri, Mostefa Abbessi

Abstract:

In recent year, polyoxometallates are intensely being explored because of their applications as new materiels, structural aesthetics, catalysts, and biologically active compounds. heteropolyanions of general formulae [X2M18O62] n- (X= heteroatom, e.g. P, Si) and (M=W, Mo), known as Dawson-type anions, constitue a special class of polyoxometallate compounds. In this present work, cobalt substituted heteropolyanion Dawson-type [HP2W15Mo3CoO61] were synthesized and characterized by IR spectroscopy, 31 P NMR, cyclic voltammetry.

Keywords: heteropolyanions, nanomaterials, Dawson-type, characterization

Procedia PDF Downloads 234
1698 Sonodynamic Activity of Porphyrins-SWCNT

Authors: F. Bosca, F. Foglietta, F. Turci, E. Calcio Gaudino, S. Mana, F. Dosio, R. Canaparo, L. Serpe, A. Barge

Abstract:

In recent years, medical science has improved chemotherapy, radiation therapy and adjuvant therapy and has developed newer targeted therapies as well as refining surgical techniques for removing cancer. However, the chances of surviving the disease depend greatly on the type and location of the cancer and the extent of the disease at the start of treatment. Moreover, mainstream forms of cancer treatment have side effects which range from the unpleasant to the fatal. Therefore, the continuation of progress in anti-cancer therapy may depend on placing emphasis on other existing but less thoroughly investigated therapeutic approaches such as Sonodynamic Therapy (SDT). SDT is based on the local activation of a so called 'sonosensitizer', a molecule able to be excited by ultrasound, the radical production as a consequence of its relaxation processes and cell death due to different mechanisms induced by radical production. The present work deals with synthesis, characterization and preliminary in vitro test of Single Walled Carbon Nanotubes (SWCNT) decorated with porphyrins and biological vectors. The SWCNT’s surface was modified exploiting 1, 3-dipolar cycloaddition or Dies Alder reactions. For this purpose, different porphyrins scaffolds were ad-hoc synthesized using also non-conventional techniques. To increase cellular specificity of porphyrin-conjugated SWCNTs and to improve their ability to be suspended in aqueous solution, the modified nano-tubes were grafted with suitable glutamine or hyaluronic acid derivatives. These nano-sized sonosensitizers were characterized by several methodologies and tested in vitro on different cancer cell lines.

Keywords: sonodynamic therapy, porphyrins synthesis and modification, SWNCT grafting, hyaluronic acid, anti-cancer treatment

Procedia PDF Downloads 374
1697 Facile Synthesis and Characterization of Heterostructure Core-Shell Silver-Silica Nanocomposite for Humidity Sensing

Authors: Fatai O. Oladoyinbo, Felix O. Sanni, Akinwunmi Fatai, Kamoli A. Amusa, Saheed A. Ganiyu, Wasiu B. Ayinde, Tajudeen A. Afolabi, Enock O. Dare

Abstract:

Silver (Ag) and silica (SiO2) nanoparticles were synthesized using the chemical reduction method from silver nitrate and sodium silicate, respectively. X-ray Diffraction (XRD), High-Resolution Transmission Electron Microscopy (HRTEM), Scanning Electron Microscopy (SEM), Uv-Visible spectroscopy, Energy Dispersive X-ray (EDX) spectroscopy and N2 adsorption-desorption techniques were utilized to characterize the composition and structure of the samples. The crystallinity pattern of Ag nanoparticles was indexed as (111), (200), (220) and (311), which allowed reflections from face-centered cubic silver. XRD of SiO2 showed good porosity with a broad-spectrum band at Bragg’s angle 2θ of 22° while that of Ag-SiO2 showed distinct peaks at 2θ values of 39°, 43°, 66° and 79°. The XRD result agreed perfectly with the SEM and HRTEM images which showed Ag-SiO2 isotropic and anisotropic under the varying concentration of reactants. The elemental composition of Ag-SiO2, as displayed by EDX, confirmed Ag enrichment in the Ag-SiO2 heterostructure. The Uv-Visible peak at 421 nm confirmed the Surface Plasmon Resonance absorption peak of silver nanoparticles. N2 adsorption-desorption result showed a broad band of Ag-SiO2 from 3 to 8 nm, which indicated relatively narrow pore size distributions. Humidity sensing measurements performed in a controlled humidity chamber showed very high sensitivity with a sensitivity factor (SF) of 4.63 and high linearity with a steady decrease in resistance to humidity from 880 Ω at 10% RH to 190 Ω at 100% RH, indicating that Ag-SiO2 nanocomposite is a good sensing material with high sensitivity and linearity.

Keywords: silver, silica, nanocomposite, synthesis, heterostructure, core shell

Procedia PDF Downloads 59
1696 A Rare Case of Atypical Guillian-Barre Syndrome Following Antecedent Dengue Infection

Authors: Amlan Datta

Abstract:

Dengue is an arboviral, vector borne infection, quite prevalent in tropical countries such as India. Approximately, 1 to 25% of cases may give rise to neurological complication, such as, seizure, delirium, Guillian-Barre syndrome (GBS), multiple cranial nerve palsies, intracranial thrombosis, stroke-like presentations, to name a few. Dengue fever, as an antecedent to GBS is uncommon, especially in adults.Here, we report a case about a middle aged lady who presented with an acute onset areflexic ascending type of polyradiculoneuropathy along with bilateral lower motor neuron type of facial nerve palsy, as well as abducens and motor component of trigeminal (V3) weakness. Her respiratory and neck muscles were spared. She had an established episode of dengue fever (NS1 and dengue IgM positive) 7 days prior to the weakness. Nerve conduction study revealed a demyelinating polyradiculopathy of both lower limbs and cerebrospinal fluid examination showed albuminocytological dissociation. She was treated with 5 days of intravenous immunoglobulin (IVIg), following which her limb weakness improved considerably. This case highlights GBS as a potential complication following dengue fever.

Keywords: areflexic, demyelinating, dengue, polyradiculoneuropathy

Procedia PDF Downloads 236
1695 Development of High-Efficiency Down-Conversion Fluoride Phosphors to Increase the Efficiency of Solar Panels

Authors: S. V. Kuznetsov, M. N. Mayakova, V. Yu. Proydakova, V. V. Pavlov, A. S. Nizamutdinov, O. A. Morozov, V. V. Voronov, P. P. Fedorov

Abstract:

Increase in the share of electricity received by conversion of solar energy results in the reduction of the industrial impact on the environment from the use of the hydrocarbon energy sources. One way to increase said share is to improve the efficiency of solar energy conversion in silicon-based solar panels. Such efficiency increase can be achieved by transferring energy from sunlight-insensitive areas of work of silicon solar panels to the area of their photoresistivity. To achieve this goal, a transition to new luminescent materials with the high quantum yield of luminescence is necessary. Improvement in the quantum yield can be achieved by quantum cutting, which allows obtaining a quantum yield of down conversion of more than 150% due to the splitting of high-energy photons of the UV spectral range into lower-energy photons of the visible and near infrared spectral ranges. The goal of present work is to test approach of excitation through sensibilization of 4f-4f fluorescence of Yb3+ by various RE ions absorbing in UV and Vis spectral ranges. One of promising materials for quantum cutting luminophores are fluorides. In our investigation we have developed synthesis of nano- and submicron powders of calcium fluoride and strontium doped with rare-earth elements (Yb: Ce, Yb: Pr, Yb: Eu) of controlled dimensions and shape by co-precipitation from water solution technique. We have used Ca(NO3)2*4H2O, Sr(NO3)2, HF, NH4F as precursors. After initial solutions of nitrates were prepared they have been mixed with fluorine containing solution by dropwise manner. According to XRD data, the synthesis resulted in single phase samples with fluorite structure. By means of SEM measurements, we have confirmed spherical morphology and have determined sizes of particles (50-100 nm after synthesis and 150-300 nm after calcination). Temperature of calcination appeared to be 600°C. We have investigated the spectral-kinetic characteristics of above mentioned compounds. Here the diffuse reflection and laser induced fluorescence spectra of Yb3+ ions excited at around 4f-4f and 4f-5d transitions of Pr3+, Eu3+ and Ce3+ ions in the synthesized powders are reported. The investigation of down conversion luminescence capability of synthesized compounds included measurements of fluorescence decays and quantum yield of 2F5/2-2F7/2 fluorescence of Yb3+ ions as function of Yb3+ and sensitizer contents. An optimal chemical composition of CaF2-YbF3- LnF3 (Ln=Ce, Eu, Pr), SrF2-YbF3-LnF3 (Ln=Ce, Eu, Pr) micro- and nano- powders according to criteria of maximal IR fluorescence yield is proposed. We suppose that investigated materials are prospective in solar panels improvement applications. Work was supported by Russian Science Foundation grant #17-73- 20352.

Keywords: solar cell, fluorides, down-conversion luminescence, maximum quantum yield

Procedia PDF Downloads 255
1694 Ultrasonic Irradiation Synthesis of High-Performance Pd@Copper Nanowires/MultiWalled Carbon Nanotubes-Chitosan Electrocatalyst by Galvanic Replacement toward Ethanol Oxidation in Alkaline Media

Authors: Majid Farsadrouh Rashti, Amir Shafiee Kisomi, Parisa Jahani

Abstract:

The direct ethanol fuel cells (DEFCs) are contemplated as a promising energy source because, In addition to being used in portable electronic devices, it is also used for electric vehicles. The synthesis of bimetallic nanostructures due to their novel optical, catalytic and electronic characteristic which is precisely in contrast to their monometallic counterparts is attracting extensive attention. Galvanic replacement (sometimes is named to as cementation or immersion plating) is an uncomplicated and effective technique for making nanostructures (such as core-shell) of different metals, semiconductors, and their application in DEFCs. The replacement of galvanic does not need any external power supply compared to electrodeposition. In addition, it is different from electroless deposition because there is no need for a reducing agent to replace galvanizing. In this paper, a fast method for the palladium (Pd) wire nanostructures synthesis with the great surface area through galvanic replacement reaction utilizing copper nanowires (CuNWS) as a template by the assistance of ultrasound under room temperature condition is proposed. To evaluate the morphology and composition of Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan, emission scanning electron microscopy, energy dispersive X-ray spectroscopy were applied. In order to measure the phase structure of the electrocatalysts were performed via room temperature X-ray powder diffraction (XRD) applying an X-ray diffractometer. Various electrochemical techniques including chronoamperometry and cyclic voltammetry were utilized for the electrocatalytic activity of ethanol electrooxidation and durability in basic solution. Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan catalyst demonstrated substantially enhanced performance and long-term stability for ethanol electrooxidation in the basic solution in comparison to commercial Pd/C that demonstrated the potential in utilizing Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan as efficient catalysts towards ethanol oxidation. Noticeably, the Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan presented excellent catalytic activities with a peak current density of 320.73 mAcm² which was 9.5 times more than in comparison to Pd/C (34.2133 mAcm²). Additionally, activation energy thermodynamic and kinetic evaluations revealed that the Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan catalyst has lower compared to Pd/C which leads to a lower energy barrier and an excellent charge transfer rate towards ethanol oxidation.

Keywords: core-shell structure, electrocatalyst, ethanol oxidation, galvanic replacement reaction

Procedia PDF Downloads 123
1693 Improvisation Transformation: An Exploration of Musical Influence between the Cuban Descarga and American Jazz Movements

Authors: Alissa Settembrino

Abstract:

Improvisation, one of the most expressive qualities of the performing arts, has allowed for entire compositions to be created through descargas. A topic relatively understudied, these combo-inspired jam sessions originated in Cuba and intrigued jazz musicians in the United States to experiment with their improvisation after the Cool Jazz era. Through the exploration of prominent improvisation-based Cuban dance styles, the crucial jazz musicians that contributed to the progression of the descarga movement and comparing such facets to that of jazz in the United States, this paper offers a critical comparative analysis to suggest how the descarga influenced American jazz. This paper specifically focuses on harmonic construction, form and rhythmic qualities, as well as how these recorded jam sessions started to change the way people listened to and enjoyed this style of music. Examining the harmonic intricacies of descargas offers the likelihood of having influenced the construction of the blues scale in American jazz. Since these recorded jam sessions originally stemmed from Cuban dance styles (the cumbia, guaracha, rumba, etc.), descarga compositions changed the way musicians structured their improvisation to meet recording guidelines as well as their audiences’ listening needs. The ways in which the descarga inspired harmonic and rhythmic change led to the movement’s influence on the jazz culture as it progressed from Cuba to New York during the 1950s. Exploring the descarga provides insight into a movement that is not commonly studied and encourages further discussion about how certain aspects of Latin American culture have influenced the United States socially and creatively.

Keywords: descarga, harmony, improvisation, jam session, jazz

Procedia PDF Downloads 147
1692 Protein Feeding Pattern, Casein Feeding, or Milk-Soluble Protein Feeding did not Change the Evolution of Body Composition during a Short-Term Weight Loss Program

Authors: Solange Adechian, Michèle Balage, Didier Remond, Carole Migné, Annie Quignard-Boulangé, Agnès Marset-Baglieri, Sylvie Rousset, Yves Boirie, Claire Gaudichon, Dominique Dardevet, Laurent Mosoni

Abstract:

Studies have shown that timing of protein intake, leucine content, and speed of digestion significantly affect postprandial protein utilization. Our aim was to determine if one can spare lean body mass during energy restriction by varying the quality and the timing of protein intake. Obese volunteers followed a 6-wk restricted energy diet. Four groups were compared: casein pulse, casein spread, milk-soluble protein (MSP, = whey) pulse, and MSP spread (n = 10-11 per group). In casein groups, caseins were the only protein source; it was MSP in MSP groups. Proteins were distributed in four meals per day in the proportion 8:80:4:8% in the pulse groups; it was 25:25:25:25% in the spread groups. We measured weight, body composition, nitrogen balance, 3-methylhistidine excretion, perception of hunger, plasma parameters, adipose tissue metabolism, and whole body protein metabolism. Volunteers lost 7.5 ± 0.4 kg of weight, 5.1 ± 0.2 kg of fat, and 2.2 ± 0.2 kg of lean mass, with no difference between groups. In adipose tissue, cell size and mRNA expression of various genes were reduced with no difference between groups. Hunger perception was also never different between groups. In the last week, due to a higher inhibition of protein degradation and despite a lower stimulation of protein synthesis, postprandial balance between whole body protein synthesis and degradation was better with caseins than with MSP. It seems likely that the positive effect of caseins on protein balance occurred only at the end of the experiment.

Keywords: lean body mass, fat mass, casein, whey, protein metabolism

Procedia PDF Downloads 53
1691 Synthesis of Nanoparticles and Thin Film of Cu₂ZnSnS₄ by Hydrothermal Method and Its Application as Congo Red Photocatalyst

Authors: Paula Salazar, Rodrigo Henríquez, Pablo Zerega

Abstract:

The textile, food and pharmaceutical industries are expanding daily worldwide, and they are located within the most polluting industries due to the fact that wastewater is discharged into watercourses with high concentrations of dyes and traces of drugs. Many of these compounds are stable to light and biodegradation, being considered as emerging organic contaminants. Advanced oxidation processes (AOPs) emerge as an effective alternative for the removal and elimination of this type of contaminants. Heterogeneous photocatalysis has been extensively studied as it is an efficient, low-cost and durable method. As the main photocatalyst, TiO₂ has been used for the degradation of a large number of dyes and drugs. The disadvantage of TiO₂ is its absorption in the UV region of the solar spectrum. On the other hand, quaternary chalcogenides based on Cu₂SnZnX₄ (X = S, Se) are a possible alternative due to their narrow bandgap (ca. between 0.8 to 1.5 eV depending on the phase considered), low cost, an abundance of its constituent elements in the earth's crust and its low toxicity. The objective of this research was to synthesize Cu₂SnZnS₄ (CZTS) through of a low-cost hydrothermal method and evaluate it as a potential photo-catalyst in the photo-degradation process of Congo Red. The synthesis of the nanoparticle in suspension and film onto fluorine-doped tin oxide coated glass (FTO) was carried out using a mixture of: 2 mmol CuCl₂, 1 mmol ZnCl₂, 1 mmol SnCl₂ and 4 mmol CH4N₂S in a Teflon reactor at 180⁰C for 72 h. Characterization was performed through scanning electron microscopy (SEM), X-ray diffraction (XRD) and UV VIS spectroscopy. Photo-degradation monitoring was carried out employing a UV VIS spectrophotometer. The results show that photodegradation of 55% of the dye can be obtained after 4h of exposure to polychromatic light, it should be noted that the Congo Red dye is being studied for the first time.

Keywords: CZTS, hydrothermal, photocatalysis, dye

Procedia PDF Downloads 102
1690 The Success Rate of Anterior Crowding Orthodontic Treatment Using Removable Appliances

Authors: Belly Yordan

Abstract:

Orthodontic treatment can be done by using the fix and removable orthodontic appliance. The success of treatment depends on the patient’s age, the type of malocclusion, treatment of space discrepancy, patient’s oral hygiene, operator skills, and patient cooperation. This case report was aimed to show the success of orthodontic treatment in patients with skeletal class I relationship, class I angle dental malocclusion with anterior crowding and rotation by using a removable appliance with modification. The removable appliance used is standard with removable plate components such as passive clasp (Adam’s hook clasp) accompanied with some active clasps (labial bow, some springs, etc.). A button is used as an additional tool or combined with other tools to correct tooth in rotated position. The results obtained by the success of treatments which is shown in pre and post-treatment photos, the overjet was reduced, the arch form became normal, the tooth malposition became normal, and rotation was corrected. Facial profile appearance of the patient is getting better, and the dental coordination also became better. This case report is to prove that treatment with the removable appliance is quite successful with the robust wearing of appropriate retainers.

Keywords: success rate, anterior crowding, orthodontic treatment, removable appliances

Procedia PDF Downloads 156
1689 Extraction, Synthesis, Characterization and Antioxidant Properties of Oxidized Starch from an Abundant Source in Nigeria

Authors: Okafor E. Ijeoma, Isimi C. Yetunde, Okoh E. Judith, Kunle O. Olobayo, Emeje O. Martins

Abstract:

Starch has gained interest as a renewable and environmentally compatible polymer due to the increase in its use. However, starch by itself could not be satisfactorily applied in industrial processes due to some inherent disadvantages such as its hydrophilic character, poor mechanical properties, its inability to withstand processing conditions such as extreme temperatures, diverse pH, high shear rate, freeze-thaw variation and dimensional stability. The range of physical properties of parent starch can be enlarged by chemical modification which invariably enhances their use in a number of applications found in industrial processes and food manufacture. In this study, Manihot esculentus starch was subjected to modification by oxidation. Fourier Transmittance Infra- Red (FTIR) and Raman spectroscopies were used to confirm the synthesis while Scanning Electron Microscopy (SEM) and X- Ray Diffraction (XRD) were used to characterize the new polymer. DPPH (2, 2-diphenyl-1-picryl-hydrazyl-hydrate) free radical assay was used to determine the antioxidant property of the oxidized starch. Our results show that the modification had no significant effect on the foaming capacity as well as on the emulsion capacity. Scanning electron microscopy revealed that oxidation did not alter the predominantly circular-shaped starch granules, while the X-ray pattern of both starch, native and modified were similar. FTIR results revealed a new band at 3007 and 3283cm-1. Differential scanning calorimetry returned two new endothermic peaks in the oxidized starch with an improved gelation capacity and increased enthalpy of gelatinization. The IC50 of oxidized starch was notably higher than that of the reference standard, ascorbic acid.

Keywords: antioxidant activity, DPPH, M. esculentus, oxidation, starch

Procedia PDF Downloads 276
1688 Identification of the Putative Interactome of Escherichia coli Glutaredoxin 2 by Affinity Chromatography

Authors: Eleni Poulou-Sidiropoulou, Charalampos N. Bompas, Martina Samiotaki, Alexios Vlamis-Gardikas

Abstract:

The glutaredoxin (Grx) and thioredoxin (Trx) systems keep the intracellular environment reduced in almost all organisms. In Escherichia coli (E. coli), the Grx system relies on NADPH+ to reduce GSH reductase (GR), the latter reducing oxidized diglutathione to glutathione (GSH) which in turn reduces cytosolic Grxs, the electron donors for different intracellular substrates. In the Trx system, GR and GSH are replaced by Trx reductase (TrxR). Three of the Grxs of E. coli (Grx1, 2, 3) are reduced by GSH, while Grx4 is likely reduced by TrxR. Trx1 and Grx1 from E. coli may reduce ribonucleotide reductase Ia to ensure a constant supply of deoxyribonucleotides for the synthesis of DNA. The role of the other three Grxs is relatively unknown, especially for Grx2 that may amount up to 1 % of total cellular protein in the stationary phase of growth. The protein is known as a potent antioxidant, but no specific functions have been attributed to it. Herein, affinity chromatography of cellular extracts on immobilized Grx2, followed by MS analysis of the resulting eluates, was employed to identify protein ligands that could provide insights into the biological role of Grx2. Ionic, strong non-covalent, and covalent (disulfide) interactions with relevant proteins were detected. As a means of verification, the identified ligands were subjected to in silico docking with monothiol Grx2. In other experiments, protein extracts from E. coli cells lacking the gene for Grx2 (grxB) were compared to those of wild type. Taken together, the two approaches suggest that Grx2 is involved in protein synthesis, nucleotide metabolism, DNA damage repair, stress responses, and various metabolic processes. Grx2 appears as a versatile protein that may participate in a wide range of biological pathways beyond its known general antioxidant function.

Keywords: Escherichia coli, glutaredoxin 2, interactome, thiol-disulfide oxidoreductase

Procedia PDF Downloads 34
1687 Selective Adsorption of Anionic Textile Dyes with Sustainable Composite Materials Based on Physically Activated Carbon and Basic Polyelectrolytes

Authors: Mari Carmen Reyes Angeles, Dalia Michel Reyes Villeda, Ana María Herrera González

Abstract:

This work reports the design and synthesis of two composite materials based on physically activated carbon and basic polyelectrolytes useful in the adsorption of textile dyes present in aqueous solutions and wastewater. The synthesis of basic polyelectrolytes poly(2-vinylpyridine) (P2VP) and poly(4-vinylpyridine) (P4VP) was made by means of free radical polymerization. The carbon made from prickly pear peel (CarTunaF) was thermally activated in the presence of combustion gases. Composite materials CarTunaF2VP and CarTunaF4VP were obtained from CarTunaF and polybasic polyelectrolytes P2VP and P4VP with a ratio of 67:33 wt. The structure of each polyelectrolyte, P2VP, and P4VP, was elucidated by means of the FTIR and 1H NMR spectrophotometric techniques. Their thermal stability was evaluated using TGA. The characterization of CarTunaF and composite materials CarTunaF2VP and CarTunaF4VP was made by means of FTIR, TGA, SEM, and N2 adsorption. The adsorptive capacities of the polyelectrolytes and the composite materials were evaluated by adsorption of direct dyes present in aqueous solutions. The polyelectrolytes removed between 90 and 100% of the dyes, and the composite materials removed between 68 and 93% of the dyes. Using the four adsorbents P2VP, P4VP, CarTuna2VP, and CarTuna4VP, it was observed that the dyes studied, Direct Blue 80, Direct Turquoise 86, and Direct Orange 26, were adsorbed in the range between 46.1 and 188.7mg∙g-1 by means of electrostatic interactions between the anionic groups in the dyes with the cationic groups in the adsorbents. By using adsorbent materials in the treatment of wastewater from the textile industry, an improvement in the quality of the water was observed by decreasing its pH, COD, conductivity, and color considerably

Keywords: adsorption, anionic dyes, composite, polyelectrolytes

Procedia PDF Downloads 85
1686 LAMOS - Layered Amorphous Metal Oxide Gas Sensors: New Interfaces for Gas Sensing Applications

Authors: Valentina Paolucci, Jessica De Santis, Vittorio Ricci, Giacomo Giorgi, Carlo Cantalini

Abstract:

Despite their potential in gas sensing applications, the major drawback of 2D exfoliated metal dichalcogenides (MDs) is that they suffer from spontaneous oxidation in air, showing poor chemical stability under dry/wet conditions even at room temperature, limiting their practical exploitation. The aim of this work is to validate a synthesis strategy allowing microstructural and electrical stabilization of the oxides that inevitably form on the surface of 2D dichalcogenides. Taking advantage of spontaneous oxidation of MDs in air, we report on liquid phase exfoliated 2D-SnSe2 flakes annealed in static air at a temperature below the crystallization temperature of the native a-SnO2 oxide. This process yields a new class of 2D Layered Amorphous Metal Oxides Sensors (LAMOS), specifically few-layered amorphous a-SnO2, showing excellent gas sensing properties. Sensing tests were carried out at low operating temperature (i.e. 100°C) by exposing a-SnO2 to both oxidizing and reducing gases (i.e. NO2, H2S and H2) and different relative humidities ranging from 40% to 80% RH. The formation of stable nanosheets of amorphous a-SnO2 guarantees excellent reproducibility and stability of the response over one year. These results pave the way to new interesting research perspectives out considering the opportunity to synthesize homogeneous amorphous textures with no grain boundaries, no grains, no crystalline planes with different orientations, etc., following gas sensing mechanisms that likely differ from that of traditional crystalline metal oxide sensors. Moreover, the controlled annealing process could likely be extended to a large variety of Transition Metal Dichalcogenides (TMDs) and Metal Chalcogenides (MCs), where sulfur, selenium, or tellurium atoms can be easily displaced by O2 atoms (ΔG < 0), enabling the synthesis of a new family of amorphous interfaces.

Keywords: layered 2D materials, exfoliation, lamos, amorphous metal oxide sensors

Procedia PDF Downloads 100
1685 Characterization, Antibacterial and Cytotoxicity Evaluation of Silver Nanoparticles Synthesised Using Grewia lasiocarpa E. Mey. Ex Harv. Plant Extracts

Authors: Nneka Augustina Akwu, Yougasphree Naidoo

Abstract:

Molecular advancement in technology has created a means whereby the atoms and molecules (solid forms) of certain materials such as plants, can now be reduced to a range of 1-100 nanometres. Green synthesis of silver nanoparticles (AgNPs) was carried out at room temperature (RT) 25 ± 2°C and 80°C, using the metabolites in the aqueous extracts of the leaves and stem bark of Grewia lasiocarpa as reductants and stabilizing agents. The biosynthesized AgNPs were characterized by UV-Vis spectrophotometry, attenuated total reflectance - Fourier transforms infrared (ATR-FTIR) spectroscopy, nanoparticle tracking analysis (NTA), Energy Dispersive X-ray fluorescence scanning electron microscope (SEM-EDXRF) and high-resolution transmission electron microscopy (HRTEM). The AgNPs were biologically evaluated for antioxidant, antibacterial and cytotoxicity activities. The phytochemical and FTIR analyses revealed the presence of metabolites that act as reducing and capping agents, while the UV-Vis spectroscopy of the biosynthesized NPs showed absorption between 380-460 nm, confirming AgNP synthesis. The Zeta potential values were between -9.1 and -20.6 mV with a hydrodynamics diameter ranging from 38.3 to 46.7 nm. SEM and HRTEM analyses revealed that AgNPs were predominately spherical with an average particle size of 2- 31 nm for the leaves and 5-27 nm for the stem bark. The cytotoxicity IC50 values of the AgNPs against HeLa, Caco-2 and MCF-7 were >1 mg/mL. The AgNPs were sensitive to all strains of bacteria used, with methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus aureus (ATCC 25923) and Escherichia coli (ATCC 25922) being more sensitive to the AgNPs. Our findings propose that antibacterial and anticancer agents could be derived from these AgNPs of G. lasiocarpa, and warrant their further investigation.

Keywords: antioxidant, cytotoxicity, Grewia lasiocarpa, silver nanoparticles, Zeta potentials

Procedia PDF Downloads 119
1684 Synthesis of Flexible Mn1-x-y(CexLay)O2-δ Ultrathin-Film Device for Highly-Stable Pseudocapacitance from end-of-life Ni-MH batteries

Authors: Samane Maroufi, Rasoul Khayyam Nekouei, Sajjad Sefimofarah, Veena Sahajwalla

Abstract:

The present work details a three-stage strategy based on selective purification of rare earth oxide (REOs) isolated from end-of-life nickel-metal hydride (Ni-MH) batteries leading to high-yield fabrication of defect-rich Mn1-x-y(CeₓLaᵧ)O2-δ film. In step one, major impurities (Fe and Al) were removed from a REE-rich solution. In step two, the resulting solution with trace content of Mn was further purified through electrodeposition which resulted in the synthesis of a non-stoichiometric Mn₋₁₋ₓ₋ᵧ(CeₓLaₓᵧ)O2-δ ultra-thin film, with controllable thicknesses (5-650 nm) and transmittance (~29-100%)in which Ce4+/3+ and La3+ ions were dissolved in MnO2-x lattice. Due to percolation impacts on the optoelectronic properties of ultrathin films, a representative Mn1-x-y(CexLay)O2-δ film with 86% transmittance exhibited an outstanding areal capacitance of 3.4 mF•cm-2, mainly attributed to the intercalation/de-intercalation of anionic O2- charge carriers through the atomic tunnels of the stratified Mn1-x-y(CexLay)O2-δ crystallites. Furthermore, the Mn1-x-y(CexLay)O2-δ exhibited excellent capacitance retention of ~90% after 16,000 cycles. Such stability was shown to be associated with intervalence charge transfers occurring among interstitial Ce/La cations and Mn oxidation states within the Mn₋₁₋ₓ₋ᵧ(CexLay)O2-δ structure. The energy and power densities of the transparent flexible Mn₋₁₋ₓ₋ᵧ(CexLay)O2-δ full-cell pseudocapacitor device with a solid-state electrolyte was measured to be 0.088 µWh.cm-2 and 843 µW.cm-2, respectively. These values showed insignificant changes under vigorous twisting and bending to 45-180˚, confirming these materials are intriguing alternatives for size-sensitive energy storage devices. In step three, the remaining solution purified further, that led to the formation of REOs (La, Ce, and Nd) nanospheres with ~40-50 nm diameter.

Keywords: spent Ni-MH batteries, green energy, flexible pseudocapacitor, rare earth elements

Procedia PDF Downloads 119
1683 Engagement Analysis Using DAiSEE Dataset

Authors: Naman Solanki, Souraj Mondal

Abstract:

With the world moving towards online communication, the video datastore has exploded in the past few years. Consequently, it has become crucial to analyse participant’s engagement levels in online communication videos. Engagement prediction of people in videos can be useful in many domains, like education, client meetings, dating, etc. Video-level or frame-level prediction of engagement for a user involves the development of robust models that can capture facial micro-emotions efficiently. For the development of an engagement prediction model, it is necessary to have a widely-accepted standard dataset for engagement analysis. DAiSEE is one of the datasets which consist of in-the-wild data and has a gold standard annotation for engagement prediction. Earlier research done using the DAiSEE dataset involved training and testing standard models like CNN-based models, but the results were not satisfactory according to industry standards. In this paper, a multi-level classification approach has been introduced to create a more robust model for engagement analysis using the DAiSEE dataset. This approach has recorded testing accuracies of 0.638, 0.7728, 0.8195, and 0.866 for predicting boredom level, engagement level, confusion level, and frustration level, respectively.

Keywords: computer vision, engagement prediction, deep learning, multi-level classification

Procedia PDF Downloads 99
1682 Synthesis of Highly Sensitive Molecular Imprinted Sensor for Selective Determination of Doxycycline in Honey Samples

Authors: Nadia El Alami El Hassani, Soukaina Motia, Benachir Bouchikhi, Nezha El Bari

Abstract:

Doxycycline (DXy) is a cycline antibiotic, most frequently prescribed to treat bacterial infections in veterinary medicine. However, its broad antimicrobial activity and low cost, lead to an intensive use, which can seriously affect human health. Therefore, its spread in the food products has to be monitored. The scope of this work was to synthetize a sensitive and very selective molecularly imprinted polymer (MIP) for DXy detection in honey samples. Firstly, the synthesis of this biosensor was performed by casting a layer of carboxylate polyvinyl chloride (PVC-COOH) on the working surface of a gold screen-printed electrode (Au-SPE) in order to bind covalently the analyte under mild conditions. Secondly, DXy as a template molecule was bounded to the activated carboxylic groups, and the formation of MIP was performed by a biocompatible polymer by the mean of polyacrylamide matrix. Then, DXy was detected by measurements of differential pulse voltammetry (DPV). A non-imprinted polymer (NIP) prepared in the same conditions and without the use of template molecule was also performed. We have noticed that the elaborated biosensor exhibits a high sensitivity and a linear behavior between the regenerated current and the logarithmic concentrations of DXy from 0.1 pg.mL−1 to 1000 pg.mL−1. This technic was successfully applied to determine DXy residues in honey samples with a limit of detection (LOD) of 0.1 pg.mL−1 and an excellent selectivity when compared to the results of oxytetracycline (OXy) as analogous interfering compound. The proposed method is cheap, sensitive, selective, simple, and is applied successfully to detect DXy in honey with the recoveries of 87% and 95%. Considering these advantages, this system provides a further perspective for food quality control in industrial fields.

Keywords: doxycycline, electrochemical sensor, food control, gold nanoparticles, honey, molecular imprinted polymer

Procedia PDF Downloads 298
1681 The Role of the STAT3 Signaling for Melatonergic Synthetic Pathway in the Rat Pineal Gland

Authors: Simona Moravcova, Jiri Novotny, Zdenka Bendova

Abstract:

The pineal gland of the vertebrate brain is a circumventricular organ which serves as a major neuroendocrine gland with the primary function of rhythmic secretion of neurohormone melatonin under the control of the hypothalamic suprachiasmatic nucleus (SCN). Soon after the onset of the darkness, the activity of the key rate-limiting enzyme for melatonin synthesis, arylalkylamine N-acetyltransferase (AANAT), raises due to the increased release of norepinephrine from sympathetic neurons terminating on the parenchymal cells where it binds to β-adrenergic receptors. Melatonin codes the length of the night, and it is well recognized for its anti-inflammatory effects. However, to our knowledge, less is known about the effect of the immune system on the melatonin biosynthesis and the precise role of the STAT3 in the signaling pathway leading to the expression of AANAT. Lipopolysaccharide (LPS) is the essential component in the outer surface membrane of gram-negative bacteria and acts as a strong stimulator of natural and innate immunity. STAT3 acts as an important factor in immune response. Here we investigated the effect of LPS on the components of the melatonergic synthetic pathway in the pineal gland. The experiments were performed both in vivo and in vitro. The changes in AANAT activity were determined by radioenzymatic assay. PCR analyses were carried out to detect aa-nat, icer, spi-3 and stat3 gene expression. From our results, it is apparent that the high basal level of phosphorylated forms of STAT3 can be elevated after systemic as well as in vitro administration of LPS. Our experiments have shown that LPS reduces melatonin synthesis, nevertheless, the activity of AANAT was increased. Moreover, the basal level of phosphorylated STAT3 counteracts β-adrenergic receptor-mediated aa-nat gene expression and sustains its own and spi-3 gene expression. In conclusion, LPS can affect immunomodulators such as melatonin in the pineal gland.

Keywords: AANAT, lipopolysaccharide, pineal gland, rat, STAT3

Procedia PDF Downloads 151
1680 Local Spectrum Feature Extraction for Face Recognition

Authors: Muhammad Imran Ahmad, Ruzelita Ngadiran, Mohd Nazrin Md Isa, Nor Ashidi Mat Isa, Mohd ZaizuIlyas, Raja Abdullah Raja Ahmad, Said Amirul Anwar Ab Hamid, Muzammil Jusoh

Abstract:

This paper presents two technique, local feature extraction using image spectrum and low frequency spectrum modelling using GMM to capture the underlying statistical information to improve the performance of face recognition system. Local spectrum features are extracted using overlap sub block window that are mapping on the face image. For each of this block, spatial domain is transformed to frequency domain using DFT. A low frequency coefficient is preserved by discarding high frequency coefficients by applying rectangular mask on the spectrum of the facial image. Low frequency information is non Gaussian in the feature space and by using combination of several Gaussian function that has different statistical properties, the best feature representation can be model using probability density function. The recognition process is performed using maximum likelihood value computed using pre-calculate GMM components. The method is tested using FERET data sets and is able to achieved 92% recognition rates.

Keywords: local features modelling, face recognition system, Gaussian mixture models, Feret

Procedia PDF Downloads 642
1679 Electrophoretic Deposition of Ultrasonically Synthesized Nanostructured Conducting Poly(o-phenylenediamine)-Co-Poly(1-naphthylamine) Film for Detection of Glucose

Authors: Vaibhav Budhiraja, Chandra Mouli Pandey

Abstract:

The ultrasonic synthesis of nanostructured conducting copolymer is an effective technique to synthesize polymer with desired chemical properties. This tailored nanostructure, shows tremendous improvement in sensitivity and stability to detect a variety of analytes. The present work reports ultrasonically synthesized nanostructured conducting poly(o-phenylenediamine)-co-poly(1-naphthylamine) (POPD-co-PNA). The synthesized material has been characterized using Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy, transmission electron microscopy, X-ray diffraction and cyclic voltammetry. FTIR spectroscopy confirmed random copolymerization, while UV-visible studies reveal the variation in polaronic states upon copolymerization. High crystallinity was achieved via ultrasonic synthesis which was confirmed by X-ray diffraction, and the controlled morphology of the nanostructures was confirmed by transmission electron microscopy analysis. Cyclic voltammetry shows that POPD-co-PNA has rather high electrochemical activity. This behavior was explained on the basis of variable orientations adopted by the conducting polymer chains. The synthesized material was electrophoretically deposited at onto indium tin oxide coated glass substrate which is used as cathode and parallel platinum plate as the counter electrode. The fabricated bioelectrode was further used for detection of glucose by crosslinking of glucose oxidase in the PODP-co-PNA film. The bioelectrode shows a surface-controlled electrode reaction with the electron transfer coefficient (α) of 0.72, charge transfer rate constant (ks) of 21.77 s⁻¹ and diffusion coefficient 7.354 × 10⁻¹⁵ cm²s⁻¹.

Keywords: conducting, electrophoretic, glucose, poly (o-phenylenediamine), poly (1-naphthylamine), ultrasonic

Procedia PDF Downloads 131
1678 Fabrication of Silver Nanowire Based Low Temperature Conductive Ink

Authors: Merve Nur Güven Biçer

Abstract:

Conductive inks are used extensively in electronic devices like sensors, batteries, photovoltaic devices, antennae, and organic light-emitting diodes. These inks are typically made from silver. Wearable technology is another industry that requires inks to be flexible. The aim of this study is the fabrication of low-temperature silver paste by synthesis long silver nanowires.

Keywords: silver ink, conductive ink, low temperature conductive ink, silver nanowire

Procedia PDF Downloads 176
1677 Acetalization of Carbonyl Compounds by Using Al2 (HPO4)3 under Green Condition Mg HPO4

Authors: Fariba Jafari, Samaneh Heydarian

Abstract:

Al2(HPO4)3 was easily prepared and used as a solid acid in acetalization of carbonyl compounds at room temperature and under solvent-free conditions. The protection was done in short reaction times and in good to high isolated yields. The cheapness and availability of this reagent with easy procedure and work-up make this method attractive for the organic synthesis.

Keywords: acetalization, acid catalysis, carbonylcompounds, green condition, protection

Procedia PDF Downloads 303