Search results for: disease control honeybees
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13636

Search results for: disease control honeybees

12766 H∞ Fuzzy Integral Power Control for DFIG Wind Energy System

Authors: N. Chayaopas, W. Assawinchaichote

Abstract:

In order to maximize energy capturing from wind energy, controlling the doubly fed induction generator to have optimal power from the wind, generator speed and output electrical power control in wind energy system have a great importance due to the nonlinear behavior of wind velocities. In this paper purposes the design of a control scheme is developed for power control of wind energy system via H∞ fuzzy integral controller. Firstly, the nonlinear system is represented in term of a TS fuzzy control design via linear matrix inequality approach to find the optimal controller to have an H∞ performance are derived. The proposed control method extract the maximum energy from the wind and overcome the nonlinearity and disturbances problems of wind energy system which give good tracking performance and high efficiency power output of the DFIG.

Keywords: doubly fed induction generator, H-infinity fuzzy integral control, linear matrix inequality, wind energy system

Procedia PDF Downloads 347
12765 Bilateral Thalamic Hypodense Lesions in Computing Tomography

Authors: Angelis P. Barlampas

Abstract:

Purpose of Learning Objective: This case depicts the need for cooperation between the emergency department and the radiologist to achieve the best diagnostic result for the patient. The clinical picture must correlate well with the radiology report and when it does not, this is not necessarily someone’s fault. Careful interpretation and good knowledge of the limitations, advantages and disadvantages of each imaging procedure are essential for the final diagnostic goal. Methods or Background: A patient was brought to the emergency department by their relatives. He was suddenly confused and his mental status was altered. He hadn't any history of mental illness and was otherwise healthy. A computing tomography scan without contrast was done, but it was unremarkable. Because of high clinical suspicion of probable neurologic disease, he was admitted to the hospital. Results or Findings: Another T was done after 48 hours. It showed a hypodense region in both thalamic areas. Taking into account that the first CT was normal, but the initial clinical picture of the patient was alerting of something wrong, the repetitive CT exam is highly suggestive of a probable diagnosis of bilateral thalamic infractions. Differential diagnosis: Primary bilateral thalamic glioma, Wernicke encephalopathy, osmotic myelinolysis, Fabry disease, Wilson disease, Leigh disease, West Nile encephalitis, Greutzfeldt Jacob disease, top of the basilar syndrome, deep venous thrombosis, mild to moderate cerebral hypotension, posterior reversible encephalopathy syndrome, Neurofibromatosis type 1. Conclusion: As is the case of limitations for any imaging procedure, the same applies to CT. The acute ischemic attack can not depict on CT. A period of 24 to 48 hours has to elapse before any abnormality can be seen. So, despite the fact that there are no obvious findings of an ischemic episode, like paresis or imiparesis, one must be careful not to attribute the patient’s clinical signs to other conditions, such as toxic effects, metabolic disorders, psychiatric symptoms, etc. Further investigation with MRI or at least a repeated CT must be done.

Keywords: CNS, CT, thalamus, emergency department

Procedia PDF Downloads 121
12764 Field Evaluation of Fusarium Head Blight in Durum Wheat Caused by Fusarium culmorum in Algeria

Authors: Salah Hadjout, Mohamed Zouidi

Abstract:

In Algeria, several works carried out in recent years have shown the importance of fusarium head blight in durum wheat. Indeed, this disease is caused by a complex of Fusarium genus pathogens. The research carried out reports that F. culmorum is the main species infecting cereals. These informations motivated our interest in the field evaluation of the behavior of some durum wheat genotypes (parental varieties and lines) with regard to fusarium head blight, mainly caused by four F. culmorum isolates. Our research work focused on following the evolution of symptom development throughout the grain filling, after artificial inoculation of ears by Fusarium isolates in order to establish a first image on the differences in genotype behavior to fusarium haed blight. Field disease assessment criteria are: disease assessment using a grading scale, thousand grain weight measurement and AUDPC. The results obtained revealed that the varieties and lines resulting from crosses had a quite different level of sensitivity to F. culmorum species and no genotype showed complete resistance in our culture conditions. Among the material tested, some lines showed higher resistance than their parents. The results also show a slight behavioral variability also linked to the aggressiveness of the Fusarium species studied in this work. Our results open very important research perspectives on fusarium head blight, in particular the search for toxins produced by Fusarium species.

Keywords: fusarium head blight, durum wheat, Fusarium culmorum, field disease assessment criteria, Algeria

Procedia PDF Downloads 100
12763 Lyapunov-Based Tracking Control for Nonholonomic Wheeled Mobile Robot

Authors: Raouf Fareh, Maarouf Saad, Sofiane Khadraoui, Tamer Rabie

Abstract:

This paper presents a tracking control strategy based on Lyapunov approach for nonholonomic wheeled mobile robot. This control strategy consists of two levels. First, a kinematic controller is developed to adjust the right and left wheel velocities. Using this velocity control law, the stability of the tracking error is guaranteed using Lyapunov approach. This kinematic controller cannot be generated directly by the motors. To overcome this problem, the second level of the controllers, dynamic control, is designed. This dynamic control law is developed based on Lyapunov theory in order to track the desired trajectories of the mobile robot. The stability of the tracking error is proved using Lupunov and Barbalat approaches. Simulation results on a nonholonomic wheeled mobile robot are given to demonstrate the feasibility and effectiveness of the presented approach.

Keywords: mobile robot, trajectory tracking, Lyapunov, stability

Procedia PDF Downloads 373
12762 Optimal Bayesian Control of the Proportion of Defectives in a Manufacturing Process

Authors: Viliam Makis, Farnoosh Naderkhani, Leila Jafari

Abstract:

In this paper, we present a model and an algorithm for the calculation of the optimal control limit, average cost, sample size, and the sampling interval for an optimal Bayesian chart to control the proportion of defective items produced using a semi-Markov decision process approach. Traditional p-chart has been widely used for controlling the proportion of defectives in various kinds of production processes for many years. It is well known that traditional non-Bayesian charts are not optimal, but very few optimal Bayesian control charts have been developed in the literature, mostly considering finite horizon. The objective of this paper is to develop a fast computational algorithm to obtain the optimal parameters of a Bayesian p-chart. The decision problem is formulated in the partially observable framework and the developed algorithm is illustrated by a numerical example.

Keywords: Bayesian control chart, semi-Markov decision process, quality control, partially observable process

Procedia PDF Downloads 319
12761 The Awareness of Cardiovascular Diseases among General Population in Western Regions of Saudi Arabia

Authors: Ali Saeed Alghamdi, Basel Mazen Alsolami, Basel Saeed Alghamdi, Muhanad Saleh Alzahrani Alamri, Salman Anwar Thabet, Abdulhalim J. Kinsara

Abstract:

Objectives: This study measures the knowledge of the cardiovascular disease among the general population in western regions of Saudi Arabia, and it aimed to increase the level of awareness about cardiovascular diseases among the general population by providing an awareness lecture that included information about the risk factors, major symptoms, and prevention of cardiovascular diseases. The lecture has been attached at the end of the questionnaire. Setting: This study was conducted through an online questionnaire that included our aim and main objectives that targeted the general population in the Western regions of Saudi Arabia (Makkah and Madinah regions). Participants: This study participants were 460 collected through an online questionnaire. Methods: All Saudi citizens and residents who live in the western region of Saudi Arabia aged 18 years and above will be invited to participate voluntarily. A pre-structured questionnaire was designed to collect data on age, gender, marital status, education level, occupation, lifestyle habits, and history of heart diseases, with cardiac symptoms and risk factors sections. Results: The majority of respondents were females (74.8%) and Saudis. The knowledge about cardiovascular disease risk factors was weak. Only (18.5%) scores an excellent response regarding risk factors awareness. Lack of exercise, stress, and obesity were the most known risk factors. Regarding cardiovascular disease symptoms, chest pain scores the highest symptom (87.6%) among other symptoms like dyspnea, syncope, and excessive sweating. Participants revealed a poor awareness regarding cardiovascular disease symptoms also (0.9%). However, preventable factors for cardiovascular diseases were more knowledgeable than others categories in this study (60% fall into excellent knowledge). Smoking cessation, normal cholesterol level, and normal blood pressure score the highest preventable methods (92.2%), (88.6%), and (78.7%) respectively. 83.7% of the participant have attended the awareness lecture, and 99 of the attendees reported that the lecture increased their knowledge about cardiovascular disease. Conclusion: This study discussed the level of community awareness of cardiovascular disease in terms of symptoms, risk factors, and protective factors. We found a huge lack of the participant's level of knowledge about the disease and how to prevent it. Moreover, we measure the prevalence of the comorbidities among our participants (diabetes, hypertension, hypercholesterolemia/ hypertriglyceridemia) and their extent of adherence to their medication. In conclusion, this study not only demonstrates awareness of cardiovascular disease risk factors, symptoms, management, and the association between each domain but also provides educational material. Further educational material and campaigns are required to increase awareness and knowledge about cardiovascular diseases.

Keywords: awareness, cardiovascular diseases, education, prevention, risk factors

Procedia PDF Downloads 131
12760 An Empirical Study to Predict Myocardial Infarction Using K-Means and Hierarchical Clustering

Authors: Md. Minhazul Islam, Shah Ashisul Abed Nipun, Majharul Islam, Md. Abdur Rakib Rahat, Jonayet Miah, Salsavil Kayyum, Anwar Shadaab, Faiz Al Faisal

Abstract:

The target of this research is to predict Myocardial Infarction using unsupervised Machine Learning algorithms. Myocardial Infarction Prediction related to heart disease is a challenging factor faced by doctors & hospitals. In this prediction, accuracy of the heart disease plays a vital role. From this concern, the authors have analyzed on a myocardial dataset to predict myocardial infarction using some popular Machine Learning algorithms K-Means and Hierarchical Clustering. This research includes a collection of data and the classification of data using Machine Learning Algorithms. The authors collected 345 instances along with 26 attributes from different hospitals in Bangladesh. This data have been collected from patients suffering from myocardial infarction along with other symptoms. This model would be able to find and mine hidden facts from historical Myocardial Infarction cases. The aim of this study is to analyze the accuracy level to predict Myocardial Infarction by using Machine Learning techniques.

Keywords: Machine Learning, K-means, Hierarchical Clustering, Myocardial Infarction, Heart Disease

Procedia PDF Downloads 203
12759 Research on Measuring Operational Risk in Commercial Banks Based on Internal Control

Authors: Baobao Li

Abstract:

Operational risk covers all operations of commercial banks and has a close relationship with the bank’s internal control. But in the commercial banks' management practice, internal control is always separated from the operational risk measurement. With the increasing of operational risk events in recent years, operational risk is paid more and more attention by regulators and banks’ managements. The paper first discussed the relationship between internal control and operational risk management and used CVaR-POT model to measure operational risk, and then put forward a modified measurement method (to use operational risk assessment results to modify the measurement results of the CVaR-POT model). The paper also analyzed the necessity and rationality of this method. The method takes into consideration the influence of internal control, improves the accuracy and effectiveness of operational risk measurement and save the economic capital for commercial banks, avoiding the drawbacks of using some mainstream models one-sidedly.

Keywords: commercial banks, internal control, operational risk, risk measurement

Procedia PDF Downloads 398
12758 Harnessing Artificial Intelligence for Early Detection and Management of Infectious Disease Outbreaks

Authors: Amarachukwu B. Isiaka, Vivian N. Anakwenze, Chinyere C. Ezemba, Chiamaka R. Ilodinso, Chikodili G. Anaukwu, Chukwuebuka M. Ezeokoli, Ugonna H. Uzoka

Abstract:

Infectious diseases continue to pose significant threats to global public health, necessitating advanced and timely detection methods for effective outbreak management. This study explores the integration of artificial intelligence (AI) in the early detection and management of infectious disease outbreaks. Leveraging vast datasets from diverse sources, including electronic health records, social media, and environmental monitoring, AI-driven algorithms are employed to analyze patterns and anomalies indicative of potential outbreaks. Machine learning models, trained on historical data and continuously updated with real-time information, contribute to the identification of emerging threats. The implementation of AI extends beyond detection, encompassing predictive analytics for disease spread and severity assessment. Furthermore, the paper discusses the role of AI in predictive modeling, enabling public health officials to anticipate the spread of infectious diseases and allocate resources proactively. Machine learning algorithms can analyze historical data, climatic conditions, and human mobility patterns to predict potential hotspots and optimize intervention strategies. The study evaluates the current landscape of AI applications in infectious disease surveillance and proposes a comprehensive framework for their integration into existing public health infrastructures. The implementation of an AI-driven early detection system requires collaboration between public health agencies, healthcare providers, and technology experts. Ethical considerations, privacy protection, and data security are paramount in developing a framework that balances the benefits of AI with the protection of individual rights. The synergistic collaboration between AI technologies and traditional epidemiological methods is emphasized, highlighting the potential to enhance a nation's ability to detect, respond to, and manage infectious disease outbreaks in a proactive and data-driven manner. The findings of this research underscore the transformative impact of harnessing AI for early detection and management, offering a promising avenue for strengthening the resilience of public health systems in the face of evolving infectious disease challenges. This paper advocates for the integration of artificial intelligence into the existing public health infrastructure for early detection and management of infectious disease outbreaks. The proposed AI-driven system has the potential to revolutionize the way we approach infectious disease surveillance, providing a more proactive and effective response to safeguard public health.

Keywords: artificial intelligence, early detection, disease surveillance, infectious diseases, outbreak management

Procedia PDF Downloads 66
12757 History and Epidemiology of Foot and Mouth Disease in Afghanistan: A Retrospective Study

Authors: Arash Osmani, Ian Robertson, Ihab Habib, Ahmad Aslami

Abstract:

Foot and Mouth Disease (FMD) is endemic in Afghanistan. A retrospective study of data collected through passive surveillance of outbreaks of FMD from 1995 to 2016 was undertaken. A total of 1471 outbreaks were reported between 1995 and 2008. Of 7776 samples originating from 34 provinces tested between 2009 and 2016 4845 (62.3%) tested positive. The prevalence varied significantly between years (2009 and 2016) (P < 0.001); however, the number of outbreaks did not differ significantly (P = 0.24) between 1995 and 2008. During this period, there was a strong correlation between the number of outbreaks reported and the number of districts with infected animals (r = 0.74, P = 0.002). Serotype O was the predominant serotype detected, although serotypes A and Asia1 were also detected. Cattle were involved in all outbreaks reported. Herat province in the north-west (bordering Iran), Nangarhar province in the east (bordering Pakistan) and Kabul province in the centre of the country had infections detected in all years of the study. The findings from this study provide valuable direction for further research to understand the epidemiology of FMD in Afghanistan.

Keywords: foot and mouth disease, retrospective, epidemiology, Afghanistan

Procedia PDF Downloads 146
12756 Model Predictive Control with Unscented Kalman Filter for Nonlinear Implicit Systems

Authors: Takashi Shimizu, Tomoaki Hashimoto

Abstract:

A class of implicit systems is known as a more generalized class of systems than a class of explicit systems. To establish a control method for such a generalized class of systems, we adopt model predictive control method which is a kind of optimal feedback control with a performance index that has a moving initial time and terminal time. However, model predictive control method is inapplicable to systems whose all state variables are not exactly known. In other words, model predictive control method is inapplicable to systems with limited measurable states. In fact, it is usual that the state variables of systems are measured through outputs, hence, only limited parts of them can be used directly. It is also usual that output signals are disturbed by process and sensor noises. Hence, it is important to establish a state estimation method for nonlinear implicit systems with taking the process noise and sensor noise into consideration. To this purpose, we apply the model predictive control method and unscented Kalman filter for solving the optimization and estimation problems of nonlinear implicit systems, respectively. The objective of this study is to establish a model predictive control with unscented Kalman filter for nonlinear implicit systems.

Keywords: optimal control, nonlinear systems, state estimation, Kalman filter

Procedia PDF Downloads 202
12755 Assessing the Physiological, Psychological Stressors and Coping Strategies among Hemodialysis Patients in the Kingdom of Saudi Arabia

Authors: A. Seham A. Elgamal, Reham H. Saleh

Abstract:

Chronic kidney disease became a global health problem worldwide. Therefore, in order to maintain a patient’s life and improve the survival rate, hemodialysis is essential to replace the function of their kidneys. However, those patients may complain about multiple physical and psychological stressors due to the nature of the disease and the need for frequent hemodialysis sessions. So, those patients use various strategies to cope with the stressors related to their disease and the treatment procedures. Cross-sectional, descriptive study was carried out to achieve the aim of the study. A convenient sample including all adult patients was recruited for this study. Hemodialysis Stressors Scale (HSS) and Jalowiec Coping Scale (JCS) were used to investigate the stressors and coping strategies of 89 hemodialysis patients, at a governmental hospital (King Khalid Hospital-Jeddah). Results of the study revealed that 50.7% experienced physiological stressors and 38% experienced psychosocial stressors. Also, optimistic, fatalistic, and supportive coping strategies were the most common coping strategies used by the patients with mean scores (2.88 + 0.75, 2.87 + 0.75, and 1.82 + 0.71), respectively. In conclusion, being familiar with the types of stressors and the effective coping strategies of hemodialysis patients and their families are important in order to enhance their adaptation with chronic kidney diseases.

Keywords: copying strategies, hemodialysis, physiological stressors, psychological stressors

Procedia PDF Downloads 151
12754 Effectiveness of Cognitive and Supportive-Expressive Group Therapies on Self-Efficiency and Life Style in MS Patients

Authors: Kamran Yazdanbakhsh, Somayeh Mahmoudi

Abstract:

Multiple sclerosis is the most common chronic disease of the central nervous system associated with demyelination of neurons and several demyelinated parts of the disease encompasses throughout the white matter and affects the sensory and motor function. This study compared the effectiveness of two methods of cognitive therapy and supportive-expressive therapy on the efficacy and quality of life in MS patients. This is an experimental project which has used developed group pretest - posttest and follow-up with 3 groups. The study included all patients with multiple sclerosis in 2013 that were members of the MS Society of Iran in Tehran. The sample included 45 patients with MS that were selected volunteerily of members of the MS society of Iran and randomly divided into three groups and pretest, posttest, and follow-up (three months) for the three groups had been done.The dimensions of quality of life in patients with multiple sclerosis scale, and general self-efficiency scale of Schwarzer and Jerusalem was used for collecting data. The results showed that there was a significant difference between the mean of quality of life scores at pretest, posttest, and follow-up of the experimental groups. There was no significant difference between the mean of quality of life of the experimental groups which means that both groups were effective and had the same effect. There was no significant difference between the mean of self-efficiency scores in control and experimental group in pretest, posttest and follow-up. Thus, by using cognitive and supportive-expressive group therapy we can improve quality of life in MS patients and make great strides in their mental health.

Keywords: cognitive group therapy, life style, MS, self-efficiency, supportive-expressive group therapy

Procedia PDF Downloads 485
12753 Sliding Mode Control of the Power of Doubly Fed Induction Generator for Variable Speed Wind Energy Conversion System

Authors: Ahmed Abbou, Ali Mousmi, Rachid El Akhrif

Abstract:

This research paper aims to reduce the chattering phenomenon due to control by sliding mode control applied on a wind energy conversion system based on the doubly fed induction generator (DFIG). Our goal is to offset the effect of parametric uncertainties and come as close as possible to the dynamic response solicited by the control law in the ideal case and therefore force the active and reactive power generated by the DFIG to accurately follow the reference values which are provided to it. The simulation results using Matlab / Simulink demonstrate the efficiency and performance of the proposed technique while maintaining the simplicity of control by first order sliding mode.

Keywords: correction of the equivalent command, DFIG, induction machine, sliding mode controller

Procedia PDF Downloads 416
12752 Modeling and Control Design of a Centralized Adaptive Cruise Control System

Authors: Markus Mazzola, Gunther Schaaf

Abstract:

A vehicle driving with an Adaptive Cruise Control System (ACC) is usually controlled decentrally, based on the information of radar systems and in some publications based on C2X-Communication (CACC) to guarantee stable platoons. In this paper, we present a Model Predictive Control (MPC) design of a centralized, server-based ACC-System, whereby the vehicular platoon is modeled and controlled as a whole. It is then proven that the proposed MPC design guarantees asymptotic stability and hence string stability of the platoon. The Networked MPC design is chosen to be able to integrate system constraints optimally as well as to reduce the effects of communication delay and packet loss. The performance of the proposed controller is then simulated and analyzed in an LTE communication scenario using the LTE/EPC Network Simulator LENA, which is based on the ns-3 network simulator.

Keywords: adaptive cruise control, centralized server, networked model predictive control, string stability

Procedia PDF Downloads 515
12751 Development of a Delivery System for Statin Targeted Spray is a Breakthrough Therapy in Alzheimer’s Prevention

Authors: Fakhr Eddin Alnaal, Angela Dahdal, Duaa Aladib, Sabeen Ibrahim, Ibrahim Ghoraibi, Bissan Ahmed

Abstract:

Dementia is one of the diseases which had several stages and Alzheimer’s term was selected in respect for the first doctor Alzheimer who defined the first symptoms of this diseases in a woman whom was well treated by him. The fact that this is a type of a silent disease on which you have a long-term process of neurological degradation and suddenly gives symptoms which are most often irreversible, on clinical level likely we can consider it as a malignancy, one in terms of that it is sudden shocking irreversible and on the level of behavior and some mortality beside the lack of early detection tools for diagnosis. Therefore, the goal of our project is to test the concept of the ability of Statin in prevention of such disease and we investigated that both on experimental level and most importantly on clinical one, the clinical part was performed in a recognized house of aged people who had accidently a high cholesterol and were for years given Statin to treat that elevation, however after the symptoms of Alzheimer’s appeared and when diagnosed, they were well treated and rapidly recovered compared to Alzheimer’s patients in the same house who did not receive Statin had a mild improvement in their symptoms after the therapy, on the other hand we confirmed such observation by a well-organized experimental work.

Keywords: Alzheimer's, dementia, silent disease, statin

Procedia PDF Downloads 133
12750 Development of a Spatial Data for Renal Registry in Nigeria Health Sector

Authors: Adekunle Kolawole Ojo, Idowu Peter Adebayo, Egwuche Sylvester O.

Abstract:

Chronic Kidney Disease (CKD) is a significant cause of morbidity and mortality across developed and developing nations and is associated with increased risk. There are no existing electronic means of capturing and monitoring CKD in Nigeria. The work is aimed at developing a spatial data model that can be used to implement renal registries required for tracking and monitoring the spatial distribution of renal diseases by public health officers and patients. In this study, we have developed a spatial data model for a functional renal registry.

Keywords: renal registry, health informatics, chronic kidney disease, interface

Procedia PDF Downloads 214
12749 Lyapunov Functions for Extended Ross Model

Authors: Rahele Mosleh

Abstract:

This paper gives a survey of results on global stability of extended Ross model for malaria by constructing some elegant Lyapunov functions for two cases of epidemic, including disease-free and endemic occasions. The model is a nonlinear seven-dimensional system of ordinary differential equations that simulates this phenomenon in a more realistic fashion. We discuss the existence of positive disease-free and endemic equilibrium points of the model. It is stated that extended Ross model possesses invariant solutions for human and mosquito in a specific domain of the system.

Keywords: global stability, invariant solutions, Lyapunov function, stationary points

Procedia PDF Downloads 165
12748 A Comparative Study of Optimization Techniques and Models to Forecasting Dengue Fever

Authors: Sudha T., Naveen C.

Abstract:

Dengue is a serious public health issue that causes significant annual economic and welfare burdens on nations. However, enhanced optimization techniques and quantitative modeling approaches can predict the incidence of dengue. By advocating for a data-driven approach, public health officials can make informed decisions, thereby improving the overall effectiveness of sudden disease outbreak control efforts. The National Oceanic and Atmospheric Administration and the Centers for Disease Control and Prevention are two of the U.S. Federal Government agencies from which this study uses environmental data. Based on environmental data that describe changes in temperature, precipitation, vegetation, and other factors known to affect dengue incidence, many predictive models are constructed that use different machine learning methods to estimate weekly dengue cases. The first step involves preparing the data, which includes handling outliers and missing values to make sure the data is prepared for subsequent processing and the creation of an accurate forecasting model. In the second phase, multiple feature selection procedures are applied using various machine learning models and optimization techniques. During the third phase of the research, machine learning models like the Huber Regressor, Support Vector Machine, Gradient Boosting Regressor (GBR), and Support Vector Regressor (SVR) are compared with several optimization techniques for feature selection, such as Harmony Search and Genetic Algorithm. In the fourth stage, the model's performance is evaluated using Mean Square Error (MSE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) as assistance. Selecting an optimization strategy with the least number of errors, lowest price, biggest productivity, or maximum potential results is the goal. In a variety of industries, including engineering, science, management, mathematics, finance, and medicine, optimization is widely employed. An effective optimization method based on harmony search and an integrated genetic algorithm is introduced for input feature selection, and it shows an important improvement in the model's predictive accuracy. The predictive models with Huber Regressor as the foundation perform the best for optimization and also prediction.

Keywords: deep learning model, dengue fever, prediction, optimization

Procedia PDF Downloads 65
12747 Comparison between Classical and New Direct Torque Control Strategies of Induction Machine

Authors: Mouna Essaadi, Mohamed Khafallah, Abdallah Saad, Hamid Chaikhy

Abstract:

This paper presents a comparative analysis between conventional direct torque control (C_DTC), Modified direct torque control (M_DTC) and twelve sectors direct torque control (12_DTC).Those different strategies are compared by simulation in term of torque, flux and stator current performances. Finally, a summary of the comparative analysis is presented.

Keywords: C_DTC, M_DTC, 12_DTC, torque dynamic, stator current, flux, performances

Procedia PDF Downloads 619
12746 Voice and Head Controlled Intelligent Wheelchair

Authors: Dechrit Maneetham

Abstract:

The aim of this paper was to design a void and head controlled electric power wheelchair (EPW). A novel activate the control system for quadriplegics with voice, head and neck mobility. Head movement has been used as a control interface for people with motor impairments in a range of applications. Acquiring measurements from the module is simplified through a synchronous a motor. Axis measures the two directions namely x and y. At the same time, patients can control the motorized wheelchair using voice signals (forward, backward, turn left, turn right, and stop) given by it self. The model of a dc motor is considered as a speed control by selection of a PID parameters using genetic algorithm. An experimental set-up constructed, which consists of micro controller as controller, a DC motor driven EPW and feedback elements. This paper is tuning methods of parameter for a pulse width modulation (PWM) control system. A speed controller has been designed successfully for closed loop of the dc motor so that the motor runs very closed to the reference speed and angle. Intelligent wheelchair can be used to ensure the person’s voice and head are attending the direction of travel asserted by a conventional, direction and speed control.

Keywords: wheelchair, quadriplegia, rehabilitation , medical devices, speed control

Procedia PDF Downloads 540
12745 Targeting Basic Leucine Zipper Transcription Factor ATF-Like Mediated Immune Cells Regulation to Reduce Crohn’s Disease Fistula Incidence

Authors: Mohammadjavad Sotoudeheian, Soroush Nematollahi

Abstract:

Crohn’s disease (CD) is a chronic gastrointestinal segment inflammation encompassing immune dysregulation in a genetically susceptible individual in response to the environmental triggers and interaction between the microbiome and immune system. Uncontrolled inflammation leads to long-term complications, including fibrotic strictures and enteric fistulae. Increased production of Th1 and Th17-cell cytokines and defects in T-regulatory cells have been associated with CD. Th17-cells are essential for protection against extracellular pathogens, but their atypical activity can cause autoimmunity. Intrinsic defects in the control of programmed cell death in the mucosal T-cell compartment are strongly implicated in the pathogenesis of CD. The apoptosis defect in mucosal T-cells in CD has been endorsed as an imbalance of the Bcl-2 and the Bax. The immune system encounters foreign antigens through microbial colonization of mucosal surfaces or infections. In addition, FOSL downregulated IL-26 expression, a cytokine that marks inflammatory Th17-populations in patients suffering from CD. Furthermore, the expression of IL-23 is associated with the transcription factor primary leucine zipper transcription factor ATF-like (Batf). Batf-deficiency demonstrated the crucial role of Batf in colitis development. Batf and IL-23 mediate their effects by inducing IL-6 production. Strong association of IL-23R, Stat3, and Stat4 with IBD susceptibility point to a critical involvement of T-cells. IL-23R levels in transfer fistula were dependent on the AP-1 transcription factor JunB that additionally controlled levels of RORγt by facilitating DNA binding of Batf. T lymphocytes lacking JunB failed to induce IL-23- and Th17-mediated experimental colitis highlighting the relevance of JunB for the IL-23/ Th17 pathway. The absence of T-bet causes unrestrained Th17-cell differentiation. T-cells are central parts of immune-mediated colon fistula. Especially Th17-cells were highly prevalent in inflamed IBD tissues, as RORγt is effective in preventing colitis. Intraepithelial lymphocytes (IEL) contain unique T-cell subsets, including cells expressing RORγt. Increased activated Th17 and decreased T-regulatory cells in inflamed intestinal tissues had been seen. T-cells differentiate in response to many cytokines, including IL-1β, IL-6, IL-23, and TGF-β, into Th17-cells, a process which is critically dependent on the Batf. IL-23 promotes Th17-cell in the colon. Batf manages the generation of IL-23 induced IL-23R+ Th17-cells. Batf is necessary for TGF-β/IL-6-induced Th17-polarization. Batf-expressing T-cells are the core of T-cell-mediated colitis. The human-specific parts of three AP-1 transcription factors, FOSL1, FOSL2, and BATF, are essential during the early stages of Th17 differentiation. BATF supports the Th17 lineage. FOSL1, FOSL2, and BATF make possession of regulatory loci of genes in the Th17 lineage cascade. The AP1 transcription factor Batf is identified to control intestinal inflammation and seems to regulate pathways within lymphocytes, which could theoretically control the expression of several genes. It shows central regulatory properties over Th17-cell development and is intensely upregulated within IBD-affected tissues. Here, we demonstrated that targeting Batf in IBD appears as a therapeutic approach that reduces colitogenic T-cell activities during fistula formation while aiming to affect inflammation in the gut epithelial cells.

Keywords: immune system, Crohn’s Disease, BATF, T helper cells, Bcl, interleukin, FOSL

Procedia PDF Downloads 145
12744 Trajectory Tracking of a 2-Link Mobile Manipulator Using Sliding Mode Control Method

Authors: Abolfazl Mohammadijoo

Abstract:

In this paper, we are investigating the sliding mode control approach for trajectory tracking of a two-link-manipulator with a wheeled mobile robot in its base. The main challenge of this work is the dynamic interaction between mobile base and manipulator, which makes trajectory tracking more difficult than n-link manipulators with a fixed base. Another challenging part of this work is to avoid from chattering phenomenon of sliding mode control that makes lots of damages for actuators in real industrial cases. The results show the effectiveness of the sliding mode control approach for the desired trajectory.

Keywords: mobile manipulator, sliding mode control, dynamic interaction, mobile robotics

Procedia PDF Downloads 190
12743 Evaluation Of In Vitro Antioxidant Potential of Camellia Sinensis Leaves Extract

Authors: Jirathan Pongchababnapa

Abstract:

Polyphenols are the most common antioxidant found in plants and are efficient in capturing oxidative free radicals. Antioxidants are substances found in medicinal plants which may have a protective role to play in certain conditions such as heart disease, stroke and some cancers. By relying on these benefits, we have traced out the presence of antioxidant in Camellia sinensis leaves extract. This study aims to evaluate flavonoids content in C. sinensisextract and investigate antioxidant activities by using DPPH and ABTS radical scavenging capacity assay. The total flavonoid content of C. Sinensis extract was determined and expressed as quercetin equivalents (QE)/g measured by the aluminum chloride colorimetric method. The results showed that the IC₅₀ of C. Sinensis leaves extract were 40.90 μg/mL ± 0.755 and32.96 μg/mL ± 0.679 for DPPH and ABTS, respectively. C. Sinensis extract at increasing concentration showed antioxidant activities as a concentration dependent manner. In the DPPH assay, vitamin C was used as a positive control, whereas Trolox was used as a positive control in the ABTS assay. In conclusion, C. Sinensis extract consisted of a high amount of flavonoids content which possesses potent antioxidant activity. However, further investigation on the identification of pure compound of this plant and molecular antioxidant assays are still required.

Keywords: ABTS assay, antioxidant, camellia sinensis, DPPH assay, total flavonoid content

Procedia PDF Downloads 210
12742 Urinalysis by Surface-Enhanced Raman Spectroscopy on Gold Nanoparticles for Different Disease

Authors: Leonardo C. Pacheco-Londoño, Nataly J. Galan-Freyle, Lisandro Pacheco-Lugo, Antonio Acosta, Elkin Navarro, Gustavo Aroca-Martínez, Karin Rondón-Payares, Samuel P. Hernández-Rivera

Abstract:

In our Life Science Research Center of the University Simon Bolivar (LSRC), one of the focuses is the diagnosis and prognosis of different diseases; we have been implementing the use of gold nanoparticles (Au-NPs) for various biomedical applications. In this case, Au-NPs were used for Surface-Enhanced Raman Spectroscopy (SERS) in different diseases' diagnostics, such as Lupus Nephritis (LN), hypertension (H), preeclampsia (PC), and others. This methodology is proposed for the diagnosis of each disease. First, good signals of the different metabolites by SERS were obtained through a mixture of urine samples and Au-NPs. Second, PLS-DA models based on SERS spectra to discriminate each disease were able to differentiate between sick and healthy patients with different diseases. Finally, the sensibility and specificity for the different models were determined in the order of 0.9. On the other hand, a second methodology was developed using machine learning models from all data of the different diseases, and, as a result, a discriminant spectral map of the diseases was generated. These studies were possible thanks to joint research between two university research centers and two health sector entities, and the patient samples were treated with ethical rigor and their consent.

Keywords: SERS, Raman, PLS-DA, diseases

Procedia PDF Downloads 141
12741 Water Quality of Cengkareng Drain in Maritime Security Perspective

Authors: Febri Ramadhan, Sigid Hariyadi, Niken Tunjung Murti Pratiwi, Budiman Djoko Said

Abstract:

The scope about maritime security copes all of the problems emanating from maritime domain. Those problems can give such threats to national security of the state. One of threats taking place nowadays in maritime domain is about pollution. Pollution coming from many sources may increase water-borne disease risk that can cause the instability of national security. Pollution coming from many sources may increase water-borne disease risk. Hence the pollution makes an improper condition of environments for humans and others biota dwelling in the waters. One of the tools that can determine about pollution is by measuring about the water quality of its waters. In this case, what brings the waste and pollutants is there an activity of tidal waves introducing substances or energy into the natural environment. Cengkareng Drain is one of the water channels which is affected by tidal waves. Cengkareng Drain was become an observation area to examine the relation between water quality and tide waves. This research was conducted monthly from July to November 2015. Sampling of water was conducted every ebb and tide in every observation. Pollution index showed that the level of pollution on Cengkareng drain was moderately polluted, with the score about 7.7-8.6. Based on the results of t-test and analysis of similarity, the characteristic of water quality on rising tide does not significantly differ from the characteristic of water quality on ebbing tide. Therefore, we need a proper management as a means to control the pollutants in order to make good maritime security strategy.

Keywords: maritime security, Cengkareng drain, water quality, tidal waves

Procedia PDF Downloads 216
12740 Prediction Modeling of Alzheimer’s Disease and Its Prodromal Stages from Multimodal Data with Missing Values

Authors: M. Aghili, S. Tabarestani, C. Freytes, M. Shojaie, M. Cabrerizo, A. Barreto, N. Rishe, R. E. Curiel, D. Loewenstein, R. Duara, M. Adjouadi

Abstract:

A major challenge in medical studies, especially those that are longitudinal, is the problem of missing measurements which hinders the effective application of many machine learning algorithms. Furthermore, recent Alzheimer's Disease studies have focused on the delineation of Early Mild Cognitive Impairment (EMCI) and Late Mild Cognitive Impairment (LMCI) from cognitively normal controls (CN) which is essential for developing effective and early treatment methods. To address the aforementioned challenges, this paper explores the potential of using the eXtreme Gradient Boosting (XGBoost) algorithm in handling missing values in multiclass classification. We seek a generalized classification scheme where all prodromal stages of the disease are considered simultaneously in the classification and decision-making processes. Given the large number of subjects (1631) included in this study and in the presence of almost 28% missing values, we investigated the performance of XGBoost on the classification of the four classes of AD, NC, EMCI, and LMCI. Using 10-fold cross validation technique, XGBoost is shown to outperform other state-of-the-art classification algorithms by 3% in terms of accuracy and F-score. Our model achieved an accuracy of 80.52%, a precision of 80.62% and recall of 80.51%, supporting the more natural and promising multiclass classification.

Keywords: eXtreme gradient boosting, missing data, Alzheimer disease, early mild cognitive impairment, late mild cognitive impair, multiclass classification, ADNI, support vector machine, random forest

Procedia PDF Downloads 188
12739 Comparison of Conventional Control and Robust Control on Double-Pipe Heat Exchanger

Authors: Hanan Rizk

Abstract:

A heat exchanger is a device used to mix liquids having different temperatures. In this case, the temperature control becomes a critical objective. This research work presents the temperature control of the double-pipe heat exchanger (multi-input multi-output (MIMO) system), which is modeled as first-order coupled hyperbolic partial differential equations (PDEs), using conventional and advanced control techniques and develops appropriate robust control strategy to meet stability requirements and performance objectives. We designed a PID controller and H-infinity controller for a heat exchanger (HE) system. Frequency characteristics of sensitivity functions and open-loop and closed-loop time responses are simulated using MATLAB software, and the stability of the system is analyzed using Kalman's test. The simulation results have demonstrated that the H-infinity controller is more efficient than PID in terms of robustness and performance.

Keywords: heat exchanger, multi-input multi-output system, MATLAB simulation, partial differential equations, PID controller, robust control

Procedia PDF Downloads 220
12738 Targeting APP IRE mRNA to Combat Amyloid -β Protein Expression in Alzheimer’s Disease

Authors: Mateen A Khan, Taj Mohammad, Md. Imtaiyaz Hassan

Abstract:

Alzheimer’s disease is characterized by the accumulation of the processing products of the amyloid beta peptide cleaved by amyloid precursor protein (APP). Iron increases the synthesis of amyloid beta peptides, which is why iron is present in Alzheimer's disease patients' amyloid plaques. Iron misregulation in the brain is linked to the overexpression of APP protein, which is directly related to amyloid-β aggregation in Alzheimer’s disease. The APP 5'-UTR region encodes a functional iron-responsive element (IRE) stem-loop that represents a potential target for modulating amyloid production. Targeted regulation of APP gene expression through the modulation of 5’-UTR sequence function represents a novel approach for the potential treatment of AD because altering APP translation can be used to improve both the protective brain iron balance and provide anti-amyloid efficacy. The molecular docking analysis of APP IRE RNA with eukaryotic translation initiation factors yields several models exhibiting substantial binding affinity. The finding revealed that the interaction involved a set of functionally active residues within the binding sites of eIF4F. Notably, APP IRE RNA and eIF4F interaction were stabilized by multiple hydrogen bonds with residues of APP IRE RNA and eIF4F. It was evident that APP IRE RNA exhibited a structural complementarity that tightly fit within binding pockets of eIF4F. The simulation studies further revealed the stability of the complexes formed between RNA and eIF4F, which is crucial for assessing the strength of these interactions and subsequent roles in the pathophysiology of Alzheimer’s disease. In addition, MD simulations would capture conformational changes in the IRE RNA and protein molecules during their interactions, illustrating the mechanism of interaction, conformational change, and unbinding events and how it may affect aggregation propensity and subsequent therapeutic implications. Our binding studies correlated well with the translation efficiency of APP mRNA. Overall, the outcome of this study suggests that the genomic modification and/or inhibiting the expression of amyloid protein by targeting APP IRE RNA can be a viable strategy to identify potential therapeutic targets for AD and subsequently be exploited for developing novel therapeutic approaches.

Keywords: Alzheimer's disease, Protein-RNA interaction analysis, molecular docking simulations, conformational dynamics, binding stability, binding kinetics, protein synthesis.

Procedia PDF Downloads 64
12737 Clinicopathological Characteristics in Male Breast Cancer: A Case Series and Literature Review

Authors: Mohamed Shafi Mahboob Ali

Abstract:

Male breast cancer (MBC) is a rare entity with overall cases reported less than 1%. However, the incidence of MBC is regularly rising every year. Due to the lack of data on MBC, diagnosis and treatment are tailored to female breast cancer. MBC risk increases with age and is usually diagnosed ten years late as the disease progression is slow compared to female breast cancer (FBC). The most common feature of MBC is an intra-ductal variant, and often, upon diagnosis, the stage of the disease is already advanced. The Prognosis of MBC is often flawed, but new treatment modalities are emerging with the current knowledge and advancement. We presented a series of male breast cancer in our center, highlighting the clinicopathological, radiological and treatment options.

Keywords: male, breast, cancer, clinicopathology, ultrasound, CT scan

Procedia PDF Downloads 98