Search results for: automatic speech recognition
2201 A Smartphone-Based Real-Time Activity Recognition and Fall Detection System
Authors: Manutchanok Jongprasithporn, Rawiphorn Srivilai, Paweena Pongsopha
Abstract:
Fall is the most serious accident leading to increased unintentional injuries and mortality. Falls are not only the cause of suffering and functional impairments to the individuals, but also the cause of increasing medical cost and days away from work. The early detection of falls could be an advantage to reduce fall-related injuries and consequences of falls. Smartphones, embedded accelerometer, have become a common device in everyday life due to decreasing technology cost. This paper explores a physical activity monitoring and fall detection application in smartphones which is a non-invasive biomedical device to determine physical activities and fall event. The combination of application and sensors could perform as a biomedical sensor to monitor physical activities and recognize a fall. We have chosen Android-based smartphone in this study since android operating system is an open-source and no cost. Moreover, android phone users become a majority of Thai’s smartphone users. We developed Thai 3 Axis (TH3AX) as a physical activities and fall detection application which included command, manual, results in Thai language. The smartphone was attached to right hip of 10 young, healthy adult subjects (5 males, 5 females; aged< 35y) to collect accelerometer and gyroscope data during performing physical activities (e.g., walking, running, sitting, and lying down) and falling to determine threshold for each activity. Dependent variables are including accelerometer data (acceleration, peak acceleration, average resultant acceleration, and time between peak acceleration). A repeated measures ANOVA was performed to test whether there are any differences between DVs’ means. Statistical analyses were considered significant at p<0.05. After finding threshold, the results were used as training data for a predictive model of activity recognition. In the future, accuracies of activity recognition will be performed to assess the overall performance of the classifier. Moreover, to help improve the quality of life, our system will be implemented with patients and elderly people who need intensive care in hospitals and nursing homes in Thailand.Keywords: activity recognition, accelerometer, fall, gyroscope, smartphone
Procedia PDF Downloads 6922200 Evaluation of Robust Feature Descriptors for Texture Classification
Authors: Jia-Hong Lee, Mei-Yi Wu, Hsien-Tsung Kuo
Abstract:
Texture is an important characteristic in real and synthetic scenes. Texture analysis plays a critical role in inspecting surfaces and provides important techniques in a variety of applications. Although several descriptors have been presented to extract texture features, the development of object recognition is still a difficult task due to the complex aspects of texture. Recently, many robust and scaling-invariant image features such as SIFT, SURF and ORB have been successfully used in image retrieval and object recognition. In this paper, we have tried to compare the performance for texture classification using these feature descriptors with k-means clustering. Different classifiers including K-NN, Naive Bayes, Back Propagation Neural Network , Decision Tree and Kstar were applied in three texture image sets - UIUCTex, KTH-TIPS and Brodatz, respectively. Experimental results reveal SIFTS as the best average accuracy rate holder in UIUCTex, KTH-TIPS and SURF is advantaged in Brodatz texture set. BP neuro network works best in the test set classification among all used classifiers.Keywords: texture classification, texture descriptor, SIFT, SURF, ORB
Procedia PDF Downloads 3692199 Duration of Isolated Vowels in Infants with Cochlear Implants
Authors: Paris Binos
Abstract:
The present work investigates developmental aspects of the duration of isolated vowels in infants with normal hearing compared to those who received cochlear implants (CIs) before two years of age. Infants with normal hearing produced shorter vowel duration since this find related with more mature production abilities. First isolated vowels are transparent during the protophonic stage as evidence of an increased motor and linguistic control. Vowel duration is a crucial factor for the transition of prelexical speech to normal adult speech. Despite current knowledge of data for infants with normal hearing more research is needed to unravel productions skills in early implanted children. Thus, isolated vowel productions by two congenitally hearing-impaired Greek infants (implantation ages 1:4-1:11; post-implant ages 0:6-1:3) were recorded and sampled for six months after implantation with a Nucleus-24. The results compared with the productions of three normal hearing infants (chronological ages 0:8-1:1). Vegetative data and vocalizations masked by external noise or sounds were excluded. Participants had no other disabilities and had unknown deafness etiology. Prior to implantation the infants had an average unaided hearing loss of 95-110 dB HL while the post-implantation PTA decreased to 10-38 dB HL. The current research offers a methodology for the processing of the prelinguistic productions based on a combination of acoustical and auditory analyses. Based on the current methodological framework, duration measured through spectrograms based on wideband analysis, from the voicing onset to the end of the vowel. The end marked by two co-occurring events: 1) The onset of aperiodicity with a rapid change in amplitude in the waveform and 2) a loss in formant’s energy. Cut-off levels of significance were set at 0.05 for all tests. Bonferroni post hoc tests indicated that difference was significant between the mean duration of vowels of infants wearing CIs and their normal hearing peers. Thus, the mean vowel duration of CIs measured longer compared to the normal hearing peers (0.000). The current longitudinal findings contribute to the existing data for the performance of children wearing CIs at a very young age and enrich also the data of the Greek language. The above described weakness for CI’s performance is a challenge for future work in speech processing and CI’s processing strategies.Keywords: cochlear implant, duration, spectrogram, vowel
Procedia PDF Downloads 2612198 Visual Template Detection and Compositional Automatic Regular Expression Generation for Business Invoice Extraction
Authors: Anthony Proschka, Deepak Mishra, Merlyn Ramanan, Zurab Baratashvili
Abstract:
Small and medium-sized businesses receive over 160 billion invoices every year. Since these documents exhibit many subtle differences in layout and text, extracting structured fields such as sender name, amount, and VAT rate from them automatically is an open research question. In this paper, existing work in template-based document extraction is extended, and a system is devised that is able to reliably extract all required fields for up to 70% of all documents in the data set, more than any other previously reported method. The approaches are described for 1) detecting through visual features which template a given document belongs to, 2) automatically generating extraction rules for a given new template by composing regular expressions from multiple components, and 3) computing confidence scores that indicate the accuracy of the automatic extractions. The system can generate templates with as little as one training sample and only requires the ground truth field values instead of detailed annotations such as bounding boxes that are hard to obtain. The system is deployed and used inside a commercial accounting software.Keywords: data mining, information retrieval, business, feature extraction, layout, business data processing, document handling, end-user trained information extraction, document archiving, scanned business documents, automated document processing, F1-measure, commercial accounting software
Procedia PDF Downloads 1302197 Investigating the Influences of Long-Term, as Compared to Short-Term, Phonological Memory on the Word Recognition Abilities of Arabic Readers vs. Arabic Native Speakers: A Word-Recognition Study
Authors: Insiya Bhalloo
Abstract:
It is quite common in the Muslim faith for non-Arabic speakers to be able to convert written Arabic, especially Quranic Arabic, into a phonological code without significant semantic or syntactic knowledge. This is due to prior experience learning to read the Quran (a religious text written in Classical Arabic), from a very young age such as via enrolment in Quranic Arabic classes. As compared to native speakers of Arabic, these Arabic readers do not have a comprehensive morpho-syntactic knowledge of the Arabic language, nor can understand, or engage in Arabic conversation. The study seeks to investigate whether mere phonological experience (as indicated by the Arabic readers’ experience with Arabic phonology and the sound-system) is sufficient to cause phonological-interference during word recognition of previously-heard words, despite the participants’ non-native status. Both native speakers of Arabic and non-native speakers of Arabic, i.e., those individuals that learned to read the Quran from a young age, will be recruited. Each experimental session will include two phases: An exposure phase and a test phase. During the exposure phase, participants will be presented with Arabic words (n=40) on a computer screen. Half of these words will be common words found in the Quran while the other half will be words commonly found in Modern Standard Arabic (MSA) but either non-existent or prevalent at a significantly lower frequency within the Quran. During the test phase, participants will then be presented with both familiar (n = 20; i.e., those words presented during the exposure phase) and novel Arabic words (n = 20; i.e., words not presented during the exposure phase. ½ of these presented words will be common Quranic Arabic words and the other ½ will be common MSA words but not Quranic words. Moreover, ½ the Quranic Arabic and MSA words presented will be comprised of nouns, while ½ the Quranic Arabic and MSA will be comprised of verbs, thereby eliminating word-processing issues affected by lexical category. Participants will then determine if they had seen that word during the exposure phase. This study seeks to investigate whether long-term phonological memory, such as via childhood exposure to Quranic Arabic orthography, has a differential effect on the word-recognition capacities of native Arabic speakers and Arabic readers; we seek to compare the effects of long-term phonological memory in comparison to short-term phonological exposure (as indicated by the presentation of familiar words from the exposure phase). The researcher’s hypothesis is that, despite the lack of lexical knowledge, early experience with converting written Quranic Arabic text into a phonological code will help participants recall the familiar Quranic words that appeared during the exposure phase more accurately than those that were not presented during the exposure phase. Moreover, it is anticipated that the non-native Arabic readers will also report more false alarms to the unfamiliar Quranic words, due to early childhood phonological exposure to Quranic Arabic script - thereby causing false phonological facilitatory effects.Keywords: modern standard arabic, phonological facilitation, phonological memory, Quranic arabic, word recognition
Procedia PDF Downloads 3582196 Automatic Fluid-Structure Interaction Modeling and Analysis of Butterfly Valve Using Python Script
Authors: N. Guru Prasath, Sangjin Ma, Chang-Wan Kim
Abstract:
A butterfly valve is a quarter turn valve which is used to control the flow of a fluid through a section of pipe. Generally, butterfly valve is used in wide range of applications such as water distribution, sewage, oil and gas plants. In particular, butterfly valve with larger diameter finds its immense applications in hydro power plants to control the fluid flow. In-lieu with the constraints in cost and size to run laboratory setup, analysis of large diameter values will be mostly studied by computational method which is the best and inexpensive solution. For fluid and structural analysis, CFD and FEM software is used to perform large scale valve analyses, respectively. In order to perform above analysis in butterfly valve, the CAD model has to recreate and perform mesh in conventional software’s for various dimensions of valve. Therefore, its limitation is time consuming process. In-order to overcome that issue, python code was created to outcome complete pre-processing setup automatically in Salome software. Applying dimensions of the model clearly in the python code makes the running time comparatively lower and easier way to perform analysis of the valve. Hence, in this paper, an attempt was made to study the fluid-structure interaction (FSI) of butterfly valves by varying the valve angles and dimensions using python code in pre-processing software, and results are produced.Keywords: butterfly valve, flow coefficient, automatic CFD analysis, FSI analysis
Procedia PDF Downloads 2412195 Traffic Light Detection Using Image Segmentation
Authors: Vaishnavi Shivde, Shrishti Sinha, Trapti Mishra
Abstract:
Traffic light detection from a moving vehicle is an important technology both for driver safety assistance functions as well as for autonomous driving in the city. This paper proposed a deep-learning-based traffic light recognition method that consists of a pixel-wise image segmentation technique and a fully convolutional network i.e., UNET architecture. This paper has used a method for detecting the position and recognizing the state of the traffic lights in video sequences is presented and evaluated using Traffic Light Dataset which contains masked traffic light image data. The first stage is the detection, which is accomplished through image processing (image segmentation) techniques such as image cropping, color transformation, segmentation of possible traffic lights. The second stage is the recognition, which means identifying the color of the traffic light or knowing the state of traffic light which is achieved by using a Convolutional Neural Network (UNET architecture).Keywords: traffic light detection, image segmentation, machine learning, classification, convolutional neural networks
Procedia PDF Downloads 1742194 Enhance Engineering Learning Using Cognitive Simulator
Authors: Lior Davidovitch
Abstract:
Traditional training based on static models and case studies is the backbone of most teaching and training programs of engineering education. However, project management learning is characterized by dynamics models that requires new and enhanced learning method. The results of empirical experiments evaluating the effectiveness and efficiency of using cognitive simulator as a new training technique are reported. The empirical findings are focused on the impact of keeping and reviewing learning history in a dynamic and interactive simulation environment of engineering education. The cognitive simulator for engineering project management learning had two learning history keeping modes: manual (student-controlled), automatic (simulator-controlled) and a version with no history keeping. A group of industrial engineering students performed four simulation-runs divided into three identical simple scenarios and one complicated scenario. The performances of participants running the simulation with the manual history mode were significantly better than users running the simulation with the automatic history mode. Moreover, the effects of using the undo enhanced further the learning process. The findings indicate an enhancement of engineering students’ learning and decision making when they use the record functionality of the history during their engineering training process. Furthermore, the cognitive simulator as educational innovation improves students learning and training. The practical implications of using simulators in the field of engineering education are discussed.Keywords: cognitive simulator, decision making, engineering learning, project management
Procedia PDF Downloads 2492193 Uniqueness of Fingerprint Biometrics to Human Dynasty: A Review
Authors: Siddharatha Sharma
Abstract:
With the advent of technology and machines, the role of biometrics in society is taking an important place for secured living. Security issues are the major concern in today’s world and continue to grow in intensity and complexity. Biometrics based recognition, which involves precise measurement of the characteristics of living beings, is not a new method. Fingerprints are being used for several years by law enforcement and forensic agencies to identify the culprits and apprehend them. Biometrics is based on four basic principles i.e. (i) uniqueness, (ii) accuracy, (iii) permanency and (iv) peculiarity. In today’s world fingerprints are the most popular and unique biometrics method claiming a social benefit in the government sponsored programs. A remarkable example of the same is UIDAI (Unique Identification Authority of India) in India. In case of fingerprint biometrics the matching accuracy is very high. It has been observed empirically that even the identical twins also do not have similar prints. With the passage of time there has been an immense progress in the techniques of sensing computational speed, operating environment and the storage capabilities and it has become more user convenient. Only a small fraction of the population may be unsuitable for automatic identification because of genetic factors, aging, environmental or occupational reasons for example workers who have cuts and bruises on their hands which keep fingerprints changing. Fingerprints are limited to human beings only because of the presence of volar skin with corrugated ridges which are unique to this species. Fingerprint biometrics has proved to be a high level authentication system for identification of the human beings. Though it has limitations, for example it may be inefficient and ineffective if ridges of finger(s) or palm are moist authentication becomes difficult. This paper would focus on uniqueness of fingerprints to the human beings in comparison to other living beings and review the advancement in emerging technologies and their limitations.Keywords: fingerprinting, biometrics, human beings, authentication
Procedia PDF Downloads 3252192 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata
Authors: Pavan K. Rallabandi, Kailash C. Patidar
Abstract:
In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence or pattern recognition/ classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.Keywords: hybrid systems, hidden markov models, recurrent neural networks, deterministic finite state automata
Procedia PDF Downloads 3882191 Information and Cooperativity in Fiction: The Pragmatics of David Baboulene’s “Knowledge Gaps”
Authors: Cara DiGirolamo
Abstract:
In his 2017 Ph.D. thesis, script doctor David Baboulene presented a theory of fiction in which differences in the knowledge states between participants in a literary experience, including reader, author, and characters, create many story elements, among them suspense, expectations, subtext, theme, metaphor, and allegory. This theory can be adjusted and modeled by incorporating a formal pragmatic approach that understands narrative as a speech act with a conversational function. This approach requires both the Speaker and the Listener to be understood as participants in the discourse. It also uses theories of cooperativity and the QUD to identify the existence of implicit questions. This approach predicts that what an effective literary narrative must do: provide a conversational context early in the story so the reader can engage with the text as a conversational participant. In addition, this model incorporates schema theory. Schema theory is a cognitive model for learning and processing information about the world and transforming it into functional knowledge. Using this approach can extend the QUD model. Instead of describing conversation as a form of information gathering restricted to question-answer sets, the QUD can include knowledge modeling and understanding as a possible outcome of a conversation. With this model, Baboulene’s “Knowledge Gaps” can provide real insight into storytelling as a conversational move, and extend the QUD to be able to simply and effectively apply to a more diverse set of conversational interactions and also to narrative texts.Keywords: literature, speech acts, QUD, literary theory
Procedia PDF Downloads 92190 Auditory and Visual Perceptual Category Learning in Adults with ADHD: Implications for Learning Systems and Domain-General Factors
Authors: Yafit Gabay
Abstract:
Attention deficit hyperactivity disorder (ADHD) has been associated with both suboptimal functioning in the striatum and prefrontal cortex. Such abnormalities may impede the acquisition of perceptual categories, which are important for fundamental abilities such as object recognition and speech perception. Indeed, prior research has supported this possibility, demonstrating that children with ADHD have similar visual category learning performance as their neurotypical peers but use suboptimal learning strategies. However, much less is known about category learning processes in the auditory domain or among adults with ADHD in which prefrontal functions are more mature compared to children. Here, we investigated auditory and visual perceptual category learning in adults with ADHD and neurotypical individuals. Specifically, we examined learning of rule-based categories – presumed to be optimally learned by a frontal cortex-mediated hypothesis testing – and information-integration categories – hypothesized to be optimally learned by a striatally-mediated reinforcement learning system. Consistent with striatal and prefrontal cortical impairments observed in ADHD, our results show that across sensory modalities, both rule-based and information-integration category learning is impaired in adults with ADHD. Computational modeling analyses revealed that individuals with ADHD were slower to shift to optimal strategies than neurotypicals, regardless of category type or modality. Taken together, these results suggest that both explicit, frontally mediated and implicit, striatally mediated category learning are impaired in ADHD. These results suggest impairments across multiple learning systems in young adults with ADHD that extend across sensory modalities and likely arise from domain-general mechanisms.Keywords: ADHD, category learning, modality, computational modeling
Procedia PDF Downloads 472189 Literary Words of Foreign Origin as Social Markers in Jeffrey Archer's Novels Speech Portrayals
Authors: Tatiana Ivushkina
Abstract:
The paper is aimed at studying the use of literary words of foreign origin in modern fiction from a sociolinguistic point of view, which presupposes establishing correlation between this category of words in a speech portrayal or narrative and a social status of the speaker, verifying that it bears social implications and serves as a social marker or index of socially privileged identity in the British literature of the 21-st century. To this end, there were selected literary words of foreign origin in context (60 contexts) and subjected to careful examination. The study is carried out on two novels by Jeffrey Archer – Not a Penny More, Not a Penny Less and A Prisoner of Birth – who, being a graduate from Oxford, represents socially privileged classes himself and gives a wide depiction of characters with different social backgrounds and statuses. The analysis of the novels enabled us to categorize the selected words into four relevant groups. The first represented by terms (commodity, debenture, recuperation, syringe, luminescence, umpire, etc.) serves to unambiguously indicate education, occupation, a field of knowledge in which a character is involved or a situation of communication. The second group is formed of words used in conjunction with their Germanic counterparts (perspiration – sweat, padre – priest, convivial – friendly) to contrast social position of the characters: literary words serving as social indices of upper class speakers whereas their synonyms of Germanic origin characterize middle or lower class speech portrayals. The third class of words comprises socially marked words (verbs, nouns, and adjectives), or U-words (the term first coined by Allan Ross and Nancy Mitford), the status acquired in the course of social history development (elegant, excellent, sophistication, authoritative, preposterous, etc.). The fourth includes words used in a humorous or ironic meaning to convey the narrator’s attitude to the characters or situation itself (ministrations, histrionic, etc.). Words of this group are perceived as 'alien', stylistically distant as they create incongruity between style and subject matter. Social implication of the selected words is enhanced by French words and phrases often accompanying them.Keywords: British literature of the XXI century, literary words of foreign origin, social context, social meaning
Procedia PDF Downloads 1342188 Video Object Segmentation for Automatic Image Annotation of Ethernet Connectors with Environment Mapping and 3D Projection
Authors: Marrone Silverio Melo Dantas Pedro Henrique Dreyer, Gabriel Fonseca Reis de Souza, Daniel Bezerra, Ricardo Souza, Silvia Lins, Judith Kelner, Djamel Fawzi Hadj Sadok
Abstract:
The creation of a dataset is time-consuming and often discourages researchers from pursuing their goals. To overcome this problem, we present and discuss two solutions adopted for the automation of this process. Both optimize valuable user time and resources and support video object segmentation with object tracking and 3D projection. In our scenario, we acquire images from a moving robotic arm and, for each approach, generate distinct annotated datasets. We evaluated the precision of the annotations by comparing these with a manually annotated dataset, as well as the efficiency in the context of detection and classification problems. For detection support, we used YOLO and obtained for the projection dataset an F1-Score, accuracy, and mAP values of 0.846, 0.924, and 0.875, respectively. Concerning the tracking dataset, we achieved an F1-Score of 0.861, an accuracy of 0.932, whereas mAP reached 0.894. In order to evaluate the quality of the annotated images used for classification problems, we employed deep learning architectures. We adopted metrics accuracy and F1-Score, for VGG, DenseNet, MobileNet, Inception, and ResNet. The VGG architecture outperformed the others for both projection and tracking datasets. It reached an accuracy and F1-score of 0.997 and 0.993, respectively. Similarly, for the tracking dataset, it achieved an accuracy of 0.991 and an F1-Score of 0.981.Keywords: RJ45, automatic annotation, object tracking, 3D projection
Procedia PDF Downloads 1672187 A Similar Image Retrieval System for Auroral All-Sky Images Based on Local Features and Color Filtering
Authors: Takanori Tanaka, Daisuke Kitao, Daisuke Ikeda
Abstract:
The aurora is an attractive phenomenon but it is difficult to understand the whole mechanism of it. An approach of data-intensive science might be an effective approach to elucidate such a difficult phenomenon. To do that we need labeled data, which shows when and what types of auroras, have appeared. In this paper, we propose an image retrieval system for auroral all-sky images, some of which include discrete and diffuse aurora, and the other do not any aurora. The proposed system retrieves images which are similar to the query image by using a popular image recognition method. Using 300 all-sky images obtained at Tromso Norway, we evaluate two methods of image recognition methods with or without our original color filtering method. The best performance is achieved when SIFT with the color filtering is used and its accuracy is 81.7% for discrete auroras and 86.7% for diffuse auroras.Keywords: data-intensive science, image classification, content-based image retrieval, aurora
Procedia PDF Downloads 4492186 Trends of Code-Mixing in a Bilingual Nigerian Child: An Investigation of a Three-Year-Old Child
Authors: Salamatu Sani
Abstract:
This study is an investigation of how code-mixing manifests in the language development of a Nigerian child, especially in the Hausa speaking environment. It is hinged on the fact that the environment influences the first language acquired by a child regardless of the cultural and/or linguistic background of the parents. The child under investigation has been subjected to close monitoring on her speech hitherto. It is a longitudinal study covering a period of twelve months (January 2018 to December 2018); that was when the subject was between twenty-four and thirty months of age. The speeches have been recorded by means of a tape recorder, video, and a diary. The study employs as a theoretical framework, emergentism, which is an eclectic of the behaviourist and the mentalist theories to the study of language development, for analysis. This is in agreement with the positions of Skinner and Watson. Sequel to this investigation, it was discovered the environment is a major factor that influences the exposure of a child to a language more than the other factors and that, if a child is exposed to more than one language, there is a great tendency for such a child to code-mix and code-switch in her speech production. The child under investigation, in spite of the linguistic background of her parents, speaks the Hausa Language much better than the other languages around her though with remarkable code-mixing with other languages around her such as English and Ebira languages. The study concludes that although a child is born with the innate ability to acquire a particular language, the environment plays a key role to trigger the innate ability and consequently, the child is exposed to the acquisition of the dominant language around her at a particular given time.Keywords: bilingual, code-mixing, emergentism, environment, Hausa
Procedia PDF Downloads 1612185 Difficulties in the Emotional Processing of Intimate Partner Violence Perpetrators
Authors: Javier Comes Fayos, Isabel RodríGuez Moreno, Sara Bressanutti, Marisol Lila, Angel Romero MartíNez, Luis Moya Albiol
Abstract:
Given the great impact produced by gender-based violence, its comprehensive approach seems essential. Consequently, research has focused on risk factors for violent behaviour, linking various psychosocial variables, as well as cognitive and neuropsychological deficits with the aggressors. However, studies on affective processing are scarce, so the present study investigates possible emotional alterations in men convicted of gender violence. The participants were 51 aggressors, who attended the CONTEXTO program with sentences of less than two years, and 47 men with no history of violence. The sample did not differ in age, socioeconomic level, education, or alcohol and other substances consumption. Anger, alexithymia and facial recognition of other people´s emotions were assessed through the State-Trait Anger Expression Inventory (STAXI-2), the Toronto Alexithymia Scale (TAS-20) and Reading the mind in the eyes (REM), respectively. Men convicted of gender-based violence showed higher scores on the anger trait and temperament dimensions, as well as on the anger expression index. They also scored higher on alexithymia and in the identification and emotional expression subscales. In addition, they showed greater difficulties in the facial recognition of emotions by having a lower score in the REM. These results seem to show difficulties in different affective areas in men condemned for gender violence. The deficits are reflected in greater difficulty in identifying and expressing emotions, in processing anger and in recognizing the emotions of others. All these difficulties have been related to the use of violent behavior. Consequently, it is essential and necessary to include emotional regulation in intervention programs for men who have been convicted of gender-based violence.Keywords: alexithymia, anger, emotional processing, emotional recognition, empathy, intimate partner violence
Procedia PDF Downloads 2002184 Deep Learning-Based Automated Structure Deterioration Detection for Building Structures: A Technological Advancement for Ensuring Structural Integrity
Authors: Kavita Bodke
Abstract:
Structural health monitoring (SHM) is experiencing growth, necessitating the development of distinct methodologies to address its expanding scope effectively. In this study, we developed automatic structure damage identification, which incorporates three unique types of a building’s structural integrity. The first pertains to the presence of fractures within the structure, the second relates to the issue of dampness within the structure, and the third involves corrosion inside the structure. This study employs image classification techniques to discern between intact and impaired structures within structural data. The aim of this research is to find automatic damage detection with the probability of each damage class being present in one image. Based on this probability, we know which class has a higher probability or is more affected than the other classes. Utilizing photographs captured by a mobile camera serves as the input for an image classification system. Image classification was employed in our study to perform multi-class and multi-label classification. The objective was to categorize structural data based on the presence of cracks, moisture, and corrosion. In the context of multi-class image classification, our study employed three distinct methodologies: Random Forest, Multilayer Perceptron, and CNN. For the task of multi-label image classification, the models employed were Rasnet, Xceptionet, and Inception.Keywords: SHM, CNN, deep learning, multi-class classification, multi-label classification
Procedia PDF Downloads 362183 Cortical and Subcortical Dementias: A Psychoneurolinguistic Perspective
Authors: Sadeq Al Yaari, Fayza Alhammadi, Ayman Al Yaari, Montaha Al Yaari, Aayah Al Yaari, Adham Al Yaari, Sajedah Al Yaari, Saleh Al Yami
Abstract:
Background: A rapidly increasing number of studies that focus on the relationship between language and cortical (CD) and subcortical dementias (SCD) have recently shown that such correlation is existent. Mounting evidence suggests that cognitive impairments should be investigated against language disorders. Aims: This study aims at investigating how language is associated with dementia diseases namely CD &SCD in light of psychoneurolinguistic approach. Method: Data from multiple sources (e.g., theses, dissertations, articles, research, medical records, direct testing, staff reports, and client observations) have been integrated to provide a detailed analysis of the relationship between language and CD&SCD. The researchers identified over 20 most of dementia types, and described them. Having collected and described data, the researchers then analyzed these data independently to see to what extent CD&SCD are involved in matters concerning language. Results: Results of the present study demonstrate that language and CD&SCD are undoubtedly correlated with each other. The loss of the ability of some organs to perform certain functions (due to any of the dementia diseases) results in no way to the loss of some language aspects and /or speech skills. In clearer terms, it is rare to find a patient with dementia who is not suffering from partial or complete linguistic difficulties. Many deficits run through the current interpretation of linguistic disorders: language disorders, speech disorders, articulation disorders, or voice disorders.Keywords: cortical dementia, subcortical dementia, diseases, psychoneurolinguistics, language, impairments, relationship
Procedia PDF Downloads 492182 Morphosyntactic Abilities in Speakers with Broca’s Aphasia: A Preliminary Examination
Authors: Mile Vuković, Lana Jerkić Rajić
Abstract:
Introduction: Broca's aphasia is a non-fluent type of aphasic syndrome, which is primarily manifested by impairment of language production. In connected speech, patients with this type of aphasia produce short sentences in which they often omit function words and morphemes or choose inadequate forms. Aim: This research was conducted to examine the morphosyntactic abilities of people with Broca's aphasia, comparing them with neurologically healthy subjects without a language disorder. Method: The sample included 15 patients with Broca's post-stroke aphasia, who had the relatively intact ability of auditory comprehension. The diagnosis of aphasia was based on the Boston Diagnostic Aphasia Examination. The control group comprised 16 neurologically healthy subjects without data on the presence of disorders in speech and language development. The patients' mother tongue was Serbian. The new Serbian Morphosyntactic Abilities Test (SMAT) was used. Descriptive (frequency, percentage, mean, SD, min, max) and inferential (Mann-Whitney U-test) statistics were used in data processing. Results: We noticed statistically significant differences between people with Broca's aphasia and neurotypical subjects on the SMAT (U = 1.500, z = -4.982, p = 0.000). The results showed that people with Broca's aphasia had achieved low scores on the SMAT, regardless of age (ρ = -0.045, p = 0.873) and time post onset (ρ = 0.330, p = 0.229). Conclusion: Preliminary results show that the SMAT has the potential to detect morphosyntactic deficits in Serbian speakers with Broca's aphasia.Keywords: Broca’s aphasia, morphosyntactic abilities, agrammatism, Serbian language
Procedia PDF Downloads 722181 Braille Lab: A New Design Approach for Social Entrepreneurship and Innovation in Assistive Tools for the Visually Impaired
Authors: Claudio Loconsole, Daniele Leonardis, Antonio Brunetti, Gianpaolo Francesco Trotta, Nicholas Caporusso, Vitoantonio Bevilacqua
Abstract:
Unfortunately, many people still do not have access to communication, with specific regard to reading and writing. Among them, people who are blind or visually impaired, have several difficulties in getting access to the world, compared to the sighted. Indeed, despite technology advancement and cost reduction, nowadays assistive devices are still expensive such as Braille-based input/output systems which enable reading and writing texts (e.g., personal notes, documents). As a consequence, assistive technology affordability is fundamental in supporting the visually impaired in communication, learning, and social inclusion. This, in turn, has serious consequences in terms of equal access to opportunities, freedom of expression, and actual and independent participation to a society designed for the sighted. Moreover, the visually impaired experience difficulties in recognizing objects and interacting with devices in any activities of daily living. It is not a case that Braille indications are commonly reported only on medicine boxes and elevator keypads. Several software applications for the automatic translation of written text into speech (e.g., Text-To-Speech - TTS) enable reading pieces of documents. However, apart from simple tasks, in many circumstances TTS software is not suitable for understanding very complicated pieces of text requiring to dwell more on specific portions (e.g., mathematical formulas or Greek text). In addition, the experience of reading\writing text is completely different both in terms of engagement, and from an educational perspective. Statistics on the employment rate of blind people show that learning to read and write provides the visually impaired with up to 80% more opportunities of finding a job. Especially in higher educational levels, where the ability to digest very complex text is key, accessibility and availability of Braille plays a fundamental role in reducing drop-out rate of the visually impaired, thus affecting the effectiveness of the constitutional right to get access to education. In this context, the Braille Lab project aims at overcoming these social needs by including affordability in designing and developing assistive tools for visually impaired people. In detail, our awarded project focuses on a technology innovation of the operation principle of existing assistive tools for the visually impaired leaving the Human-Machine Interface unchanged. This can result in a significant reduction of the production costs and consequently of tool selling prices, thus representing an important opportunity for social entrepreneurship. The first two assistive tools designed within the Braille Lab project following the proposed approach aims to provide the possibility to personally print documents and handouts and to read texts written in Braille using refreshable Braille display, respectively. The former, named ‘Braille Cartridge’, represents an alternative solution for printing in Braille and consists in the realization of an electronic-controlled dispenser printing (cartridge) which can be integrated within traditional ink-jet printers, in order to leverage the efficiency and cost of the device mechanical structure which are already being used. The latter, named ‘Braille Cursor’, is an innovative Braille display featuring a substantial technology innovation by means of a unique cursor virtualizing Braille cells, thus limiting the number of active pins needed for Braille characters.Keywords: Human rights, social challenges and technology innovations, visually impaired, affordability, assistive tools
Procedia PDF Downloads 2732180 In-Context Meta Learning for Automatic Designing Pretext Tasks for Self-Supervised Image Analysis
Authors: Toktam Khatibi
Abstract:
Self-supervised learning (SSL) includes machine learning models that are trained on one aspect and/or one part of the input to learn other aspects and/or part of it. SSL models are divided into two different categories, including pre-text task-based models and contrastive learning ones. Pre-text tasks are some auxiliary tasks learning pseudo-labels, and the trained models are further fine-tuned for downstream tasks. However, one important disadvantage of SSL using pre-text task solving is defining an appropriate pre-text task for each image dataset with a variety of image modalities. Therefore, it is required to design an appropriate pretext task automatically for each dataset and each downstream task. To the best of our knowledge, the automatic designing of pretext tasks for image analysis has not been considered yet. In this paper, we present a framework based on In-context learning that describes each task based on its input and output data using a pre-trained image transformer. Our proposed method combines the input image and its learned description for optimizing the pre-text task design and its hyper-parameters using Meta-learning models. The representations learned from the pre-text tasks are fine-tuned for solving the downstream tasks. We demonstrate that our proposed framework outperforms the compared ones on unseen tasks and image modalities in addition to its superior performance for previously known tasks and datasets.Keywords: in-context learning (ICL), meta learning, self-supervised learning (SSL), vision-language domain, transformers
Procedia PDF Downloads 802179 Interaction between Breathiness and Nasality: An Acoustic Analysis
Authors: Pamir Gogoi, Ratree Wayland
Abstract:
This study investigates the acoustic measures of breathiness when coarticulated with nasality. The acoustic correlates of breathiness and nasality that has already been well established after years of empirical research. Some of these acoustic parameters - like low frequency peaks and wider bandwidths- are common for both nasal and breathy voice. Therefore, it is likely that these parameters interact when a sound is coarticulated with breathiness and nasality. This leads to the hypothesis that the acoustic parameters, which usually act as robust cues in differentiating between breathy and modal voice, might not be reliable cues for differentiating between breathy and modal voice when breathiness is coarticulated with nasality. The effect of nasality on the perception of breathiness has been explored in earlier studies using synthesized speech. The results showed that perceptually, nasality and breathiness do interact. The current study investigates if a similar pattern is observed in natural speech. The study is conducted on Marathi, an Indo-Aryan language which has a three-way contrast between nasality and breathiness. That is, there is a phonemic distinction between nasals, breathy voice and breathy-nasals. Voice quality parameters like – H1-H2 (Difference between the amplitude of first and second harmonic), H1-A3 (Difference between the amplitude of first harmonic and third formant, CPP (Cepstral Peak Prominence), HNR (Harmonics to Noise ratio) and B1 (Bandwidth of first formant) were extracted. Statistical models like linear mixed effects regression and Random Forest classifiers show that measures that capture the noise component in the signal- like CPP and HNR- can classify breathy voice from modal voice better than spectral measures when breathy voice is coarticulated with nasality.Keywords: breathiness, marathi, nasality, voice quality
Procedia PDF Downloads 962178 Tool for Maxillary Sinus Quantification in Computed Tomography Exams
Authors: Guilherme Giacomini, Ana Luiza Menegatti Pavan, Allan Felipe Fattori Alves, Marcela de Oliveira, Fernando Antonio Bacchim Neto, José Ricardo de Arruda Miranda, Seizo Yamashita, Diana Rodrigues de Pina
Abstract:
The maxillary sinus (MS), part of the paranasal sinus complex, is one of the most enigmatic structures in modern humans. The literature has suggested that MSs function as olfaction accessories, to heat or humidify inspired air, for thermoregulation, to impart resonance to the voice and others. Thus, the real function of the MS is still uncertain. Furthermore, the MS anatomy is complex and varies from person to person. Many diseases may affect the development process of sinuses. The incidence of rhinosinusitis and other pathoses in the MS is comparatively high, so, volume analysis has clinical value. Providing volume values for MS could be helpful in evaluating the presence of any abnormality and could be used for treatment planning and evaluation of the outcome. The computed tomography (CT) has allowed a more exact assessment of this structure, which enables a quantitative analysis. However, this is not always possible in the clinical routine, and if possible, it involves much effort and/or time. Therefore, it is necessary to have a convenient, robust, and practical tool correlated with the MS volume, allowing clinical applicability. Nowadays, the available methods for MS segmentation are manual or semi-automatic. Additionally, manual methods present inter and intraindividual variability. Thus, the aim of this study was to develop an automatic tool to quantity the MS volume in CT scans of paranasal sinuses. This study was developed with ethical approval from the authors’ institutions and national review panels. The research involved 30 retrospective exams of University Hospital, Botucatu Medical School, São Paulo State University, Brazil. The tool for automatic MS quantification, developed in Matlab®, uses a hybrid method, combining different image processing techniques. For MS detection, the algorithm uses a Support Vector Machine (SVM), by features such as pixel value, spatial distribution, shape and others. The detected pixels are used as seed point for a region growing (RG) segmentation. Then, morphological operators are applied to reduce false-positive pixels, improving the segmentation accuracy. These steps are applied in all slices of CT exam, obtaining the MS volume. To evaluate the accuracy of the developed tool, the automatic method was compared with manual segmentation realized by an experienced radiologist. For comparison, we used Bland-Altman statistics, linear regression, and Jaccard similarity coefficient. From the statistical analyses for the comparison between both methods, the linear regression showed a strong association and low dispersion between variables. The Bland–Altman analyses showed no significant differences between the analyzed methods. The Jaccard similarity coefficient was > 0.90 in all exams. In conclusion, the developed tool to quantify MS volume proved to be robust, fast, and efficient, when compared with manual segmentation. Furthermore, it avoids the intra and inter-observer variations caused by manual and semi-automatic methods. As future work, the tool will be applied in clinical practice. Thus, it may be useful in the diagnosis and treatment determination of MS diseases. Providing volume values for MS could be helpful in evaluating the presence of any abnormality and could be used for treatment planning and evaluation of the outcome. The computed tomography (CT) has allowed a more exact assessment of this structure which enables a quantitative analysis. However, this is not always possible in the clinical routine, and if possible, it involves much effort and/or time. Therefore, it is necessary to have a convenient, robust and practical tool correlated with the MS volume, allowing clinical applicability. Nowadays, the available methods for MS segmentation are manual or semi-automatic. Additionally, manual methods present inter and intraindividual variability. Thus, the aim of this study was to develop an automatic tool to quantity the MS volume in CT scans of paranasal sinuses. This study was developed with ethical approval from the authors’ institutions and national review panels. The research involved 30 retrospective exams of University Hospital, Botucatu Medical School, São Paulo State University, Brazil. The tool for automatic MS quantification, developed in Matlab®, uses a hybrid method, combining different image processing techniques. For MS detection, the algorithm uses a Support Vector Machine (SVM), by features such as pixel value, spatial distribution, shape and others. The detected pixels are used as seed point for a region growing (RG) segmentation. Then, morphological operators are applied to reduce false-positive pixels, improving the segmentation accuracy. These steps are applied in all slices of CT exam, obtaining the MS volume. To evaluate the accuracy of the developed tool, the automatic method was compared with manual segmentation realized by an experienced radiologist. For comparison, we used Bland-Altman statistics, linear regression and Jaccard similarity coefficient. From the statistical analyses for the comparison between both methods, the linear regression showed a strong association and low dispersion between variables. The Bland–Altman analyses showed no significant differences between the analyzed methods. The Jaccard similarity coefficient was > 0.90 in all exams. In conclusion, the developed tool to automatically quantify MS volume proved to be robust, fast and efficient, when compared with manual segmentation. Furthermore, it avoids the intra and inter-observer variations caused by manual and semi-automatic methods. As future work, the tool will be applied in clinical practice. Thus, it may be useful in the diagnosis and treatment determination of MS diseases.Keywords: maxillary sinus, support vector machine, region growing, volume quantification
Procedia PDF Downloads 5042177 HPTLC Fingerprint Profiling of Protorhus longifolia Methanolic Leaf Extract and Qualitative Analysis of Common Biomarkers
Authors: P. S. Seboletswe, Z. Mkhize, L. M. Katata-Seru
Abstract:
Protorhus longifolia is known as a medicinal plant that has been used traditionally to treat various ailments such as hemiplegic paralysis, blood clotting related diseases, diarrhoea, heartburn, etc. The study reports a High-Performance Thin Layer Chromatography (HPTLC) fingerprint profile of Protorhus longifolia methanolic extract and its qualitative analysis of gallic acid, rutin, and quercetin. HPTLC analysis was achieved using CAMAG HPTLC system equipped with CAMAG automatic TLC sampler 4, CAMAG Automatic Developing Chamber 2 (ADC2), CAMAG visualizer 2, CAMAG Thin Layer Chromatography (TLC) scanner and visionCATS CAMAG HPTLC software. Mobile phase comprising toluene, ethyl acetate, formic acid (21:15:3) was used for qualitative analysis of gallic acid and revealed eight peaks while the mobile phase containing ethyl acetate, water, glacial acetic acid, formic acid (100:26:11:11) for qualitative analysis of rutin and quercetin revealed six peaks. HPTLC sillica gel 60 F254 glass plates (10 × 10) were used as the stationary phase. Gallic acid was detected at the Rf = 0.35; while rutin and quercetin were not evident in the extract. Further studies will be performed to quantify gallic acid in Protorhus longifolia leaves and also identify other biomarkers.Keywords: biomarkers, fingerprint profiling, gallic acid, HPTLC, Protorhus longifolia
Procedia PDF Downloads 1432176 Ideological Stance in Political Discourse: A Transitivity Analysis of Nawaz Sharif's Address at 71st UN Assembly
Authors: A. Nawaz
Abstract:
The present study uses Halliday’s transitivity model to analyze and interpret ideological stance in PM Nawaz Sharif’s political discourse. His famous speech at the 71st UN assembly was analyzed qualitatively using clausal analysis approach to investigate the communicative functions of the linguistic choices made in the address. The study discovers that among the six process types under the transitivity model, material, relational and mental processes appear most frequently in the speech, making up almost 86% of the whole. Verbal processes rank 4th, whereas existential and behavioral are the least occurring processes covering only 2 and 1 percent respectively. The dominant use of material processes suggests that Nawaz Sharif and his government are the main actors working on several concrete projects to produce a sense of developmental progression and continuity. Using relational and mental processes the PM, along with establishing proximity with masses and especially Kashmiri, gives guarantees and promises. The linguistic analysis concludes Kashmir dispute as being the central theme of the address, since it covers more than half of the discourse. The address calls for a strong action instead of formal assurances and wishful thoughts. The study establishes that language structures can yield certain connotations and ideologies which are not overt for readers. This is in affirmation to the supposition that language form performs a communicative function and is not merely fortuitous.Keywords: Hallidian perspective on language, implicit meanings, Nawaz Sharif, political ideologies, political speeches, transitivity, UN Assembly
Procedia PDF Downloads 2092175 Development of a Computer Vision System for the Blind and Visually Impaired Person
Authors: Rodrigo C. Belleza, Jr., Roselyn A. Maaño, Karl Patrick E. Camota, Darwin Kim Q. Bulawan
Abstract:
Eyes are an essential and conspicuous organ of the human body. Human eyes are outward and inward portals of the body that allows to see the outside world and provides glimpses into ones inner thoughts and feelings. Inevitable blindness and visual impairments may result from eye-related disease, trauma, or congenital or degenerative conditions that cannot be corrected by conventional means. The study emphasizes innovative tools that will serve as an aid to the blind and visually impaired (VI) individuals. The researchers fabricated a prototype that utilizes the Microsoft Kinect for Windows and Arduino microcontroller board. The prototype facilitates advanced gesture recognition, voice recognition, obstacle detection and indoor environment navigation. Open Computer Vision (OpenCV) performs image analysis, and gesture tracking to transform Kinect data to the desired output. A computer vision technology device provides greater accessibility for those with vision impairments.Keywords: algorithms, blind, computer vision, embedded systems, image analysis
Procedia PDF Downloads 3182174 Disaggregating and Forecasting the Total Energy Consumption of a Building: A Case Study of a High Cooling Demand Facility
Authors: Juliana Barcelos Cordeiro, Khashayar Mahani, Farbod Farzan, Mohsen A. Jafari
Abstract:
Energy disaggregation has been focused by many energy companies since energy efficiency can be achieved when the breakdown of energy consumption is known. Companies have been investing in technologies to come up with software and/or hardware solutions that can provide this type of information to the consumer. On the other hand, not all people can afford to have these technologies. Therefore, in this paper, we present a methodology for breaking down the aggregate consumption and identifying the highdemanding end-uses profiles. These energy profiles will be used to build the forecast model for optimal control purpose. A facility with high cooling load is used as an illustrative case study to demonstrate the results of proposed methodology. We apply a high level energy disaggregation through a pattern recognition approach in order to extract the consumption profile of its rooftop packaged units (RTUs) and present a forecast model for the energy consumption.Keywords: energy consumption forecasting, energy efficiency, load disaggregation, pattern recognition approach
Procedia PDF Downloads 2782173 Financial Reporting Quality and International Financial Reporting
Authors: Matthias Nnadi
Abstract:
Using samples of 250 large listed firms by market capitalization in China and Hong Kong, we conducted empirical test to determine the impact of regulatory environment on reporting quality following IFRS convergence using three financial reporting measures; earning management, timely loss recognition and value relevance. Our results indicate that accounting data are more value relevant for Hong Kong listed firms than the Chinese A-share firms. The empirical results for timely loss recognition further reveal that there is a larger coefficient estimate on bad news earnings, which suggests that Chines A-share firms are more likely to report losses in a timely manner. The results support the evidence that substantial convergence of IFRS can improve financial reporting quality in a regulated environment such as China. This further supports the expectation that IFRS are relevant to China and has positive effect on its accounting practice and quality.Keywords: reporting, quality, earning, loss, relevance, financial, China, Hong Kong
Procedia PDF Downloads 4652172 Awareness of Turkish Cypriots on Domestic Violence: Exploratory Study of Cultural Influence on Public Health
Authors: Nazif Fuat Turkmen
Abstract:
Domestic violence is the most common form of violence that risks the health and psychological well-being of victims and its witnesses. Psychology as a scientific field has made contributions in research, exploration, assessment, intervention, and prevention of domestic violence. The present study will be exploring the level of recognition of Turkish Cypriots on domestic violence and their understanding about it in general terms. While discussing the level of awareness of Turkish Cypriots on domestic violence and the effects of this level of awareness on the general well-being of the members of the society, the most common types of domestic violence as well as how Turkish Cypriots recognize and interpret these different types will be explored. The participants consisted of 224 Turkish Cypriots; 48.4% (n= 109) were female, 51.1% (n=115) were male. For the purpose of the study, a 28-item questionnaire was prepared and used for data collection. According to the results, there is a strong relationship between the education level of the respondents and their awareness on domestic violence. The study shows that cultural approaches on child rearing effect people’s recognition of violence in general and awareness on domestic violence in particular.Keywords: culture, domestic violence, health psychology, public health, Turkish Cypriots, violence
Procedia PDF Downloads 452