Search results for: architectural materials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7514

Search results for: architectural materials

6644 Effects of Thermal Properties of Aggregate Materials on Energy Consumption and Ghg Emissions of Transportation Infrastructure Assets Construction: Case Study for Japan

Authors: Ali Jamshidi, Kiyofumi Kurumisawa, Toyoharu Nawa

Abstract:

Transportation infrastructure assets can be considered as backbone of transportation system. They are routinely developed and or maintained which can be used effectively for movement of passengers, commodities and providing vital services. However, the infrastructure assets construction, maintenance and rehabilitation significantly depend on non-renewable natural resources, such as carbon-based energy carriers and aggregate materials. In this study, effects of thermal properties of aggregate materials were characterized for production of hot-mix asphalt in Japan, as a case study. The results indicated that incorporation of the aggregate with lower required heat energy significantly reduces fuel consumption greenhouse gas emission, irrespective of physical property of aggregate. The results also clearly showed that as 75% high-energy limestone is replaced with low-energy limestone in producing an asphalt mixture at 180 °C, 97,879 Japanese households would be energized per annum using the saved energy without any modification in the current asphalt mixing plants.

Keywords: zero energy infrastructure, sustainable development, greenhouse gas emission, asphalt pavement

Procedia PDF Downloads 243
6643 Environmental Assessment of Roll-to-Roll Printed Smart Label

Authors: M. Torres, A. Moulay, M. Zhuldybina, M. Rozel, N. D. Trinh, C. Bois

Abstract:

Printed electronics are a fast-growing market as their applications cover a large range of industrial needs, their production cost is low, and the additive printing techniques consume less materials than subtractive manufacturing methods used in traditional electronics. With the growing demand for printed electronics, there are concerns about their harmful and irreversible contribution to the environment. Indeed, it is estimated that 80% of the environmental load of a product is determined by the choices made at the conception stage. Therefore, examination through a life cycle approach at the developing stage of a novel product is the best way to identify potential environmental issues and make proactive decisions. Life cycle analysis (LCA) is a comprehensive scientific method to assess the environmental impacts of a product in its different stages of life: extraction of raw materials, manufacture and distribution, use, and end-of-life. Impacts and major hotspots are identified and evaluated through a broad range of environmental impact categories of the ReCiPe (H) middle point method. At the conception stage, the LCA is a tool that provides an environmental point of view on the choice of materials and processes and weights-in on the balance between performance materials and eco-friendly materials. Using the life cycle approach, the current work aims to provide a cradle-to-grave life cycle assessment of a roll-to-roll hybrid printed smart label designed for the food cold chain. Furthermore, this presentation will present the environmental impact of metallic conductive inks, a comparison with promising conductive polymers, evaluation of energy vs. performance of industrial printing processes, a full assessment of the impact from the smart label applied on a cellulosic-based substrate during the recycling process and the possible recovery of precious metals and rare earth elements.

Keywords: Eco-design, label, life cycle assessment, printed electronics

Procedia PDF Downloads 163
6642 3D Modeling Approach for Cultural Heritage Structures: The Case of Virgin of Loreto Chapel in Cusco, Peru

Authors: Rony Reátegui, Cesar Chácara, Benjamin Castañeda, Rafael Aguilar

Abstract:

Nowadays, heritage building information modeling (HBIM) is considered an efficient tool to represent and manage information of cultural heritage (CH). The basis of this tool relies on a 3D model generally obtained from a cloud-to-BIM procedure. There are different methods to create an HBIM model that goes from manual modeling based on the point cloud to the automatic detection of shapes and the creation of objects. The selection of these methods depends on the desired level of development (LOD), level of information (LOI), grade of generation (GOG), as well as on the availability of commercial software. This paper presents the 3D modeling of a stone masonry chapel using Recap Pro, Revit, and Dynamo interface following a three-step methodology. The first step consists of the manual modeling of simple structural (e.g., regular walls, columns, floors, wall openings, etc.) and architectural (e.g., cornices, moldings, and other minor details) elements using the point cloud as reference. Then, Dynamo is used for generative modeling of complex structural elements such as vaults, infills, and domes. Finally, semantic information (e.g., materials, typology, state of conservation, etc.) and pathologies are added within the HBIM model as text parameters and generic models families, respectively. The application of this methodology allows the documentation of CH following a relatively simple to apply process that ensures adequate LOD, LOI, and GOG levels. In addition, the easy implementation of the method as well as the fact of using only one BIM software with its respective plugin for the scan-to-BIM modeling process means that this methodology can be adopted by a larger number of users with intermediate knowledge and limited resources since the BIM software used has a free student license.

Keywords: cloud-to-BIM, cultural heritage, generative modeling, HBIM, parametric modeling, Revit

Procedia PDF Downloads 143
6641 Liquid Crystal Elastomers as Light-Driven Star-Shaped Microgripper

Authors: Indraj Singh, Xuan Lee, Yu-Chieh Cheng

Abstract:

Scientists are very keen on biomimetic research that mimics biological species to micro-robotic devices with the novel functionalities and accessibility. The source of inspiration is the complexity, sophistication, and intelligence of the biological systems. In this work, we design a light-driven star-shaped microgripper, an autonomous soft device which can change the shape under the external stimulus such as light. The design is based on light-responsive Liquid Crystal Elastomers which fabricated onto the polymer coated aligned substrate. The change in shape, controlled by the anisotropicity and the molecular orientation of the Liquid Crystal Elastomer, based on the external stimulus. This artificial star-shaped microgripper is capable of autonomous closure and capable to grab the objects in response to an external stimulus. This external stimulus-responsive materials design, based on soft active smart materials, provides a new approach to autonomous, self-regulating optical systems.

Keywords: liquid crystal elastomers, microgripper, smart materials, robotics

Procedia PDF Downloads 140
6640 Evaluating Textbooks for Brazilian Air Traffic Controllers’ English Language Training: A Checklist Proposal

Authors: Elida M. R. Bonifacio

Abstract:

English language proficiency has become an essential issue in aviation communication after aviation incidents, and accidents happened. Lack of proficiency or inappropriate use of the English language has been found as one of the factors that cause most of those incidents or accidents. Therefore, the International Civil Aviation Organization (ICAO) established the requirements for minimum English language proficiency of aviation personnel, especially pilots and air traffic controllers in the 192 member states. In Brazil, the discussions about this topic became patent after an accident that occurred in 2006, which was a mid-air collision and costed the life of 154 passengers and crew members. Thus, the number of schools and private practitioners willing to teach English for aviation purposes started to increase. Although the number of teaching materials internationally used for general purposes is relatively large, it would be inappropriate to adopt the same materials in classes that focus on communication in aviation contexts. On the contrary, the options of aviation English materials are scarce; moreover, they are internationally used and may not fulfill the linguistic needs of all their users around the world. In order to diminish the problems that Brazilian practitioners may encounter in the adoption of materials that demand a great level of adaptation to meet their students’ needs, a checklist was thought to evaluate textbooks. The aim of this paper is to propose a checklist that evaluates textbooks used in English language training of Brazilian air traffic controllers. The criteria used to compound the checklist are based on materials development literature, as well as on linguistic requirements established by ICAO on its publications, on English for Specific Purposes (ESP) principles, and on Brazilian aviation English language proficiency test format. The checklist has as main indicators the language learning tenets under which the book was written, graphical features, lexical, grammatical and functional competencies required for minimum proficiency, similarities to official testing format, and support materials, totaling 117 items marked as YES, NO or PARTIALLY. In order to verify if the use of the checklist is effective, an aviation English textbook was evaluated. From this evaluation, it is possible to measure quantitatively how much the material meets the students’ needs and to offer a tool to help professionals engaged in aviation English teaching around the world to choose the most appropriate textbook according to their audience. From the results, practitioners are able to verify which items the material does not fulfill and to make proper adaptations since the perfect material will be difficult to find.

Keywords: aviation English, ICAO, materials development, English language proficiency

Procedia PDF Downloads 136
6639 Grain Growth in Nanocrystalline and Ultra-Fine Grained Materials

Authors: Haiming Wen

Abstract:

Grain growth is an important and consequential phenomenon that generally occurs in the presence of thermal and/or stress/strain fields. Thermally activated grain growth has been extensively studied and similarly, there are numerous experimental and theoretical studies published describing stress-induced grain growth in single-phase materials. However, studies on grain growth during the simultaneous presence of an elevated temperature and an external stress are very limited, and moreover, grain growth phenomena in materials containing second-phase particles and solute segregation at GBs have received limited attention. This lecture reports on a study of grain growth in the presence of second-phase particles and solute/impurity segregation at grain boundaries (GBs) during high-temperature deformation of an ultra-fine grained (UFG) Al alloy synthesized via consolidation of mechanically milled powders. The mechanisms underlying the grain growth were identified as GB migration and grain rotation, which were accompanied by dynamic recovery and geometric dynamic recrystallization, while discontinuous dynamic recrystallization was not operative. A theoretical framework that incorporates the influence of second-phase particles and solute/impurity segregation at GBs on grain growth in presence of both elevated temperature and external stress is formulated and discussed. The effect of second-phase particles and solute/impurity segregation at GBs on GB migration and grain rotation was quantified using the proposed theoretical framework, indicating that both second-phase particles and solutes/impurities segregated GBs reduce the velocities of GB migration and grain rotation as compared to those in commercially pure Al. Our results suggest that grain growth predicted by the proposed theoretical framework is in agreement with experimental results. Hence, the developed theoretical framework can be applied to quantify grain growth in simultaneous presence of external stress, elevated temperature, GB segregation and second-phase particles, or in presence of one or more of the aforementioned factors.

Keywords: nanocrystalline materials, ultra-fine grained materials, grain growth, grain boundary migration, grain rotation

Procedia PDF Downloads 325
6638 Development of Metal-Organic Frameworks-Type Hybrid Functionalized Materials for Selective Uranium Extraction

Authors: Damien Rinsant, Eugen Andreiadis, Michael Carboni, Daniel Meyer

Abstract:

Different types of materials have been developed for the solid/liquid uranium extraction processes, such as functionalized organic polymers, hybrid silica or inorganic adsorbents. In general, these materials exhibit a moderate affinity for uranyl ions and poor selectivity against impurities like iron, vanadium or molybdenum. Moreover, the structural organization deficiency of these materials generates ion diffusion issues inside the material. Therefore, the aim of our study is to developed efficient and organized materials, stable in the acid media encountered in uranium extraction processes. Metal organic frameworks (MOFs) are hybrid crystalline materials consisting of an inorganic part (cluster or metal ions) and tailored organic linkers connected via coordination bonds. These hierarchical materials have exceptional surface area, thermal stability and a large variety of tunable structures. However, due to the reversibility of constitutive coordination bonds, MOFs have moderate stability in strongly complexing or acidic media. Only few of them are known to be stable in aqueous media and only one example is described in strong acidic media. However, these conditions are very often encountered in the environmental pollution remediation of mine wastewaters. To tackle the challenge of developing MOFs adapted for uranium extraction from acid mine waters, we have investigated the stability of several materials. To ensure a good stability we have synthetized and characterized different materials based on highly coordinated metal clusters, such as LnOFs and Zirconium based materials. Among the latter, the UiO family shows a great stability in sulfuric acid media even in the presence of 1.4 M sodium sulfate at pH 2. However, the stability in phosphoric media is reduced due to the high affinity between zirconium and phosphate ligand. Based on these results, we have developed a tertiary amine functionalized MOF denoted UiO-68-NMe2 particularly adapted for the extraction of anionic uranyl (VI) sulfate complexes mainly present in the acid mine solutions. The adsorption capacity of the material has been determined upon varying total sulfate concentration, contact time and uranium concentration. The extraction tests put in evidence different phenomena due to the complexity of the extraction media and the interaction between the MOF and sulfate anion. Finally, the extraction mechanisms and the interaction between uranyl and the MOF structure have been investigated. The functionalized material UiO-68-NMe2 has been characterized in the presence and absence of uranium by FT-IR, UV and Raman techniques. Moreover, the stability of the protonated amino functionalized MOF has been evaluated. The synthesis, characterization and evaluation of this type of hybrid material, particularly adapted for uranium extraction in sulfuric acid media by an anionic exchange mechanism, paved the way for the development of metal organic frameworks functionalized by different other chelating motifs, such as bifunctional ligands showing an enhanced affinity and selectivity for uranium in acid and complexing media. Work in this direction is currently in progress.

Keywords: extraction, MOF, ligand, uranium

Procedia PDF Downloads 160
6637 Soybean Oil Based Phase Change Material for Thermal Energy Storage

Authors: Emre Basturk, Memet Vezir Kahraman

Abstract:

In many developing countries, with the rapid economic improvements, energy shortage and environmental issues have become a serious problem. Therefore, it has become a very critical issue to improve energy usage efficiency and also protect the environment. Thermal energy storage system is an essential approach to match the thermal energy claim and supply. Thermal energy can be stored by heating, cooling or melting a material with the energy and then enhancing accessible when the procedure is reversed. The overall thermal energy storage techniques are sorted as; latent heat or sensible heat thermal energy storage technology segments. Among these methods, latent heat storage is the most effective method of collecting thermal energy. Latent heat thermal energy storage depend on the storage material, emitting or discharging heat as it undergoes a solid to liquid, solid to solid or liquid to gas phase change or vice versa. Phase change materials (PCMs) are promising materials for latent heat storage applications due to their capacities to accumulate high latent heat storage per unit volume by phase change at an almost constant temperature. Phase change materials (PCMs) are being utilized to absorb, collect and discharge thermal energy during the cycle of melting and freezing, converting from one phase to another. Phase Change Materials (PCMs) can generally be arranged into three classes: organic materials, salt hydrates and eutectics. Many kinds of organic and inorganic PCMs and their blends have been examined as latent heat storage materials. Organic PCMs are rather expensive and they have average latent heat storage per unit volume and also have low density. Most organic PCMs are combustible in nature and also have a wide range of melting point. Organic PCMs can be categorized into two major categories: non-paraffinic and paraffin materials. Paraffin materials have been extensively used, due to their high latent heat and right thermal characteristics, such as minimal super cooling, varying phase change temperature, low vapor pressure while melting, good chemical and thermal stability, and self-nucleating behavior. Ultraviolet (UV)-curing technology has been generally used because it has many advantages, such as low energy consumption , high speed, high chemical stability, room-temperature operation, low processing costs and environmental friendly. For many years, PCMs have been used for heating and cooling industrial applications including textiles, refrigerators, construction, transportation packaging for temperature-sensitive products, a few solar energy based systems, biomedical and electronic materials. In this study, UV-curable, fatty alcohol containing soybean oil based phase change materials (PCMs) were obtained and characterized. The phase transition behaviors and thermal stability of the prepared UV-cured biobased PCMs were analyzed by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The heating process phase change enthalpy is measured between 30 and 68 J/g, and the freezing process phase change enthalpy is found between 18 and 70 J/g. The decomposition of UVcured PCMs started at 260 ºC and reached a maximum of 430 ºC.

Keywords: fatty alcohol, phase change material, thermal energy storage, UV curing

Procedia PDF Downloads 382
6636 Revealing of the Wave-Like Process in Kinetics of the Structural Steel Radiation Degradation

Authors: E. A. Krasikov

Abstract:

Dependence of the materials properties on neutron irradiation intensity (flux) is a key problem while usage data of the accelerated materials irradiation in test reactors for forecasting of their capacity for work in realistic (practical) circumstances of operation. Investigations of the reactor pressure vessel steel radiation degradation dependence on fast neutron fluence (embrittlement kinetics) at low flux reveal the instability in the form of the scatter of the experimental data and wave-like sections of embrittlement kinetics appearance. Disclosure of the steel degradation oscillating is a sign of the steel structure cyclic self-recovery transformation as it take place in self-organization processes. This assumption has received support through the discovery of the similar ‘anomalous’ data in scientific publications and by means of own additional experiments. Data obtained stimulate looking-for ways to management of the structural steel radiation stability (for example, by means of nano - structure modification for radiation defects annihilation intensification) for creation of the intelligent self-recovering material. Expected results: - radiation degradation theory and mechanisms development, - more adequate models of the radiation embrittlement elaboration, - surveillance specimen programs improvement, - methods and facility development for usage data of the accelerated materials irradiation for forecasting of their capacity for work in realistic (practical) circumstances of operation, - search of the ways for creating of the radiation stable self-recovery intelligent materials.

Keywords: degradation, radiation, steel, wave-like kinetics

Procedia PDF Downloads 304
6635 Aircraft Components, Manufacturing and Design: Opportunities, Bottlenecks, and Challenges

Authors: Ionel Botef

Abstract:

Aerospace products operate in very aggressive environments characterized by high temperature, high pressure, large stresses on individual components, the presence of oxidizing and corroding atmosphere, as well as internally created or externally ingested particulate materials that induce erosion and impact damage. Consequently, during operation, the materials of individual components degrade. In addition, the impact of maintenance costs for both civil and military aircraft was estimated at least two to three times greater than initial purchase values, and this trend is expected to increase. As a result, for viable product realisation and maintenance, a spectrum of issues regarding novel processing technologies, innovation of new materials, performance, costs, and environmental impact must constantly be addressed. One of these technologies, namely the cold-gas dynamic-spray process has enabled a broad range of coatings and applications, including many that have not been previously possible or commercially practical, hence its potential for new aerospace applications. Therefore, the purpose of this paper is to summarise the state of the art of this technology alongside its theoretical and experimental studies, and explore how the cold-gas dynamic-spray process could be integrated within a framework that finally could lead to more efficient aircraft maintenance. Based on the paper's qualitative findings supported by authorities, evidence, and logic essentially it is argued that the cold-gas dynamic-spray manufacturing process should not be viewed in isolation, but should be viewed as a component of a broad framework that finally leads to more efficient aerospace operations.

Keywords: aerospace, aging aircraft, cold spray, materials

Procedia PDF Downloads 121
6634 Elaboration of Sustainable Luminescence Material Based on Rare Earth Complexes for Solar Energy Conversion

Authors: Othmane Essahili, Mohamed Ilsouk, Carine Duhayon, Omar Moudam

Abstract:

Due to their excellent and promising properties, a great deal of attention has recently been devoted to luminescent materials, particularly those utilizing rare earth elements. These materials play an essential role in low-cost energy conversion technology applications, such as luminescent solar concentrators (LSCs). They also have potential applications in Agri-PV systems and smart building windows. Luminescent materials based on europium (III) complexes are known for their high luminescence efficiency, long fluorescence lifetimes, and sharp emission bands. However, they present certain drawbacks related to their limited absorption capacity due to the forbidden 4f-4f electronic transitions. To address these drawbacks, using β-diketonate ligands as sensitizers appears as a promising solution to enhance luminescence intensity through the antenna effect, where the ligand's excited energy is transferred to the europium ions. In this study, we synthesized β-diketonate-based europium complexes with phenanthroline derivatives, modified with various methyl groups, to examine their effects on the complexes' stability in poly(methyl methacrylate) (PMMA) films. Our findings reveal that these complexes exhibit remarkable red emission and high photoluminescence quantum yield. Stability tests under different conditions for 1200 hours showed that complexes with a higher number of methyl substitutions offer improved photoluminescent stability and resistance to degradation, particularly in outdoor settings. This research underscores the potential of chemically tuned phenanthroline ligands in developing stable, efficient luminescent materials for future optoelectronic devices, including efficient and durable LSCs.

Keywords: luminescent materials, photochemistry, luminescent solar concentrators, β-diketonate-based europium complexes

Procedia PDF Downloads 63
6633 The Development of Solar Cells to Maximize the Utilization of Solar Energy in Al-Baha Area

Authors: Mohammed Ahmed Alghamdi, Hazem Mahmoud Ali Darwish, Mostafa Mohamed Abdelraheem

Abstract:

Transparent conducting oxides (TCOs) possess low resistivity, exhibit good adherence to many substrates, and have good transmission characteristics from the visible to near-infrared wavelengths, which make it useful for various applications. Thin films of transparent conducting oxide (TCO’s) have received much attention because of their wide applications in the field of optoelectronic devices. Advancement of transparent conducting oxides TCO’s may not only lie within the improvement of existing materials in use, but also the development of novel materials. Solar cells are devices, which convert solar energy into electricity, either directly via the photovoltaic effect, or indirectly by first converting the solar energy to heat or chemical energy. Solar power has attracted attention of late as the most advanced of the alternative energy resources. The project aims to access the solar energy in Al-Baha region by search for materials (transparent-conductive oxides (TCO's)) to use in solar cells with highly transparent to the solar spectrum, have low electrical resistivity, be stable under H-plasma, and have a suitable structure in particular for a-Si solar cells. As the PV surface is exposed to the sunlight, the module temperature increases. High ambient temperatures along with long sunlight exposure time increases the temperature impact on PV cells efficiency. Since Al-Baha area is characterized by an atmosphere and pressure different from their counterparts in Saudi Arabia due to the height above sea level, hence it is appropriate to do studies to improve the efficiency of solar cells under these conditions. In this work, some ion change materials will be deposited using either sputtering/ or electron beam evaporation techniques. The optical properties of the synthesized materials will be studied in details for solar cell application. As we will study the effect of some dyes on the optical properties of the prepared films. The efficiency and other parameters of solar cell will be determined.

Keywords: thin films, solar cell, optical properties, electrical properties

Procedia PDF Downloads 469
6632 An Analysis of Packaging Materials for an Energy-Efficient Wrapping System

Authors: John Sweeney, Martin Leeming, Raj Thaker, Cristina L. Tuinea-Bobe

Abstract:

Shrink wrapping is widely used as a method for secondary packaging to assemble individual items, such as cans or other consumer products, into single packages. This method involves conveying the packages into heated tunnels and so has the disadvantages that it is energy-intensive, and, in the case of aerosol products, potentially hazardous. We are developing an automated packaging system that uses stretch wrapping to address both these problems, by using a mechanical rather than a thermal process. In this study, we present a comparative study of shrink wrapping and stretch wrapping materials to assess the relative capability of candidate stretch wrap polymer film in terms of mechanical response. The stretch wrap materials are of oriented polymer and therefore elastically anisotropic. We are developing material constitutive models that include both anisotropy and nonlinearity. These material models are to be incorporated into computer simulations of the automated stretch wrapping system. We present results showing the validity of these models and the feasibility of applying them in the simulations.

Keywords: constitutive model, polymer, mechanical testing, wrapping system

Procedia PDF Downloads 293
6631 Nanostructure and Adhesion of Cement/Polymer Fiber Interfaces

Authors: Faezeh Shalchy

Abstract:

Concrete is the most used materials in the world. It is also one of the most versatile while complex materials which human have used for construction. However, concrete is weak in tension, over the past thirty years many studies were accomplished to improve the tensile properties of concrete (cement-based materials) using a variety of methods. One of the most successful attempts is to use polymeric fibers in the structure of concrete to obtain a composite with high tensile strength and ductility. Understanding the mechanical behavior of fiber reinforced concrete requires the knowledge of the fiber/matrix interfaces at the small scale. In this study, a combination of numerical simulations and experimental techniques have been used to study the nano structure of fiber/matrix interfaces. A new model for calcium-silicate-hydrate (C-S-H)/fiber interfaces is proposed based on Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDX) analysis. The adhesion energy between the C-S-H gel and 2 different polymeric fibers (polyvinyl alcohol and polypropylene) was numerically studied at the atomistic level since adhesion is one of the key factors in the design of fiber reinforced composites. The mechanisms of adhesion as a function of the nano structure of fiber/matrix interfaces are also studied and discussed.

Keywords: fiber-reinforced concrete, adhesion, molecular modeling

Procedia PDF Downloads 328
6630 Soil Mixed Constructed Permeable Reactive Barrier for Groundwater Remediation: Field Observation

Authors: Ziyda Abunada

Abstract:

In-situ remediation of contaminated land with deep mixing can deliver a multi-technique remedial strategy. A field trail includes permeable reactive barrier (PRB) took place at a severely contaminated site in Yorkshire to the north of the UK through the SMiRT (Soil Mix Remediation Technology) project in May 2011. SMiRT involved the execution of the largest research field trials in the UK to provide field validation. Innovative modified bentonite materials in combination with zeolite and organoclay were used to construct six different walls of a hexagonal PRB. Field monitoring, testing and site cores were collected from the PRB twice: once 2 months after the construction and again in March 2014 (almost 34 months later).This paper presents an overview of the results of the PRB materials’ relative performance with some initial 3-year time-related assessment. Results from the monitoring program and the site cores are presented. Some good correlations are seen together with some clear difference among the materials’ efficiency. These preliminary observations represent a potential for further investigations and highlighted the main lessons learned in a filed scale.

Keywords: in-situ remediation, groundwater, permeable reactive barrier, site cores

Procedia PDF Downloads 203
6629 Verb Bias in Mandarin: The Corpus Based Study of Children

Authors: Jou-An Chung

Abstract:

The purpose of this study is to investigate the verb bias of the Mandarin verbs in children’s reading materials and provide the criteria for categorization. Verb bias varies cross-linguistically. As Mandarin and English are typological different, this study hopes to shed light on Mandarin verb bias with the use of corpus and provide thorough and detailed criteria for analysis. Moreover, this study focuses on children’s reading materials since it is a significant issue in understanding children’s sentence processing. Therefore, investigating verb bias of Mandarin verbs in children’s reading materials is also an important issue and can provide further insights into children’s sentence processing. The small corpus is built up for this study. The corpus consists of the collection of school textbooks and Mandarin Daily News for children. The files are then segmented and POS tagged by JiebaR (Chinese segmentation with R). For the ease of analysis, the one-word character verbs and intransitive verbs are excluded beforehand. The total of 20 high frequency verbs are hand-coded and are further categorized into one of the three types, namely DO type, SC type and other category. If the frequency of taking Other Type exceeds the threshold of 25%, the verb is excluded from the study. The results show that 10 verbs are direct object bias verbs, and six verbs are sentential complement bias verbs. The paired T-test was done to assure the statistical significance (p = 0.0001062 for DO bias verb, p=0.001149 for SC bias verb). The result has shown that in children’s reading materials, the DO biased verbs are used more than the SC bias verbs since the simplest structure of sentences is easier for children’s sentence comprehension or processing. In sum, this study not only discussed verb bias in child's reading materials but also provided basic coding criteria for verb bias analysis in Mandarin and underscored the role of context. Sentences are easier for children’s sentence comprehension or processing. In sum, this study not only discussed verb bias in child corpus, but also provided basic coding criteria for verb bias analysis in Mandarin and underscored the role of context.

Keywords: corpus linguistics, verb bias, child language, psycholinguistics

Procedia PDF Downloads 291
6628 Modeling, Analysis and Control of a Smart Composite Structure

Authors: Nader H. Ghareeb, Mohamed S. Gaith, Sayed M. Soleimani

Abstract:

In modern engineering, weight optimization has a priority during the design of structures. However, optimizing the weight can result in lower stiffness and less internal damping, causing the structure to become excessively prone to vibration. To overcome this problem, active or smart materials are implemented. The coupled electromechanical properties of smart materials, used in the form of piezoelectric ceramics in this work, make these materials well-suited for being implemented as distributed sensors and actuators to control the structural response. The smart structure proposed in this paper is composed of a cantilevered steel beam, an adhesive or bonding layer, and a piezoelectric actuator. The static deflection of the structure is derived as function of the piezoelectric voltage, and the outcome is compared to theoretical and experimental results from literature. The relation between the voltage and the piezoelectric moment at both ends of the actuator is also investigated and a reduced finite element model of the smart structure is created and verified. Finally, a linear controller is implemented and its ability to attenuate the vibration due to the first natural frequency is demonstrated.

Keywords: active linear control, lyapunov stability theorem, piezoelectricity, smart structure, static deflection

Procedia PDF Downloads 387
6627 Analytical and Numerical Results for Free Vibration of Laminated Composites Plates

Authors: Mohamed Amine Ben Henni, Taher Hassaine Daouadji, Boussad Abbes, Yu Ming Li, Fazilay Abbes

Abstract:

The reinforcement and repair of concrete structures by bonding composite materials have become relatively common operations. Different types of composite materials can be used: carbon fiber reinforced polymer (CFRP), glass fiber reinforced polymer (GFRP) as well as functionally graded material (FGM). The development of analytical and numerical models describing the mechanical behavior of structures in civil engineering reinforced by composite materials is necessary. These models will enable engineers to select, design, and size adequate reinforcements for the various types of damaged structures. This study focuses on the free vibration behavior of orthotropic laminated composite plates using a refined shear deformation theory. In these models, the distribution of transverse shear stresses is considered as parabolic satisfying the zero-shear stress condition on the top and bottom surfaces of the plates without using shear correction factors. In this analysis, the equation of motion for simply supported thick laminated rectangular plates is obtained by using the Hamilton’s principle. The accuracy of the developed model is demonstrated by comparing our results with solutions derived from other higher order models and with data found in the literature. Besides, a finite-element analysis is used to calculate the natural frequencies of laminated composite plates and is compared with those obtained by the analytical approach.

Keywords: composites materials, laminated composite plate, finite-element analysis, free vibration

Procedia PDF Downloads 290
6626 Effect of Mineral Admixture on Self-Healing Performance in Concrete

Authors: Young-Cheol Choi, Sung-Won Yoo, Bong Chun Lee, Byoungsun Park, Sang-Hwa Jung

Abstract:

Cracks in concrete commonly provide the passages of ingresses of aggressive and harmful ions into concrete inside and thus reduce the durability of concrete members. In order to solve this problem, self-healing concrete based on mineral admixture has become a major issue. Self-healing materials are those which have the ability of autonomously repairing some damages or small cracks in concrete structures. Concrete has an inherent healing potential, called natural healing, which can take place in ordinary concrete elements but its power is limited and is not predictable. The main mechanism of self-healing in cracked concrete is the continued hydration of unreacted binder and the crystallization of calcium carbonate. Some mineral admixtures have been found to promote the self-healing of cementitious materials. The aim of this study is to investigate the effect of mineral admixture on the self-healing performances of high strength concrete. The potential capability of self-healing of cementitious materials was evaluated using isothermal conduction calorimeter. The self-healing efficiencies were studied by means of water flow tests on cracked concrete specimens. The results show a different healing behaviour depending on presence of the crystalline admixture.

Keywords: mineral admixture, self-healing, water flow test, crystallization

Procedia PDF Downloads 368
6625 Influence of Rotation on Rayleigh-Type Wave in Piezoelectric Plate

Authors: Soniya Chaudhary, Sanjeev Sahu

Abstract:

Propagation of Rayleigh-type waves in a rotating piezoelectric plate is investigated. The materials are assumed to be transversely isotropic crystals. The frequency equation have been derived for electrically open and short cases. Effect of rotation and piezoelectricity have been shown. It is also found that piezoelectric material properties have an important effect on Rayleigh wave propagation. The result is relevant to the analysis and design of various acoustic surface wave devices constructed from piezoelectric materials also in SAW devices.

Keywords: rotation, frequency equation, piezoelectricity, rayleigh-type wave

Procedia PDF Downloads 313
6624 Sustainability and Smart Cities Planning in Contrast with City Humanity. Human Scale and City Soul (Neighbourhood Scale)

Authors: Ghadir Hummeid

Abstract:

Undoubtedly, our world is leading all the purposes and efforts to achieve sustainable development in life in all respects. Sustainability has been regarded as a solution to many challenges of our world today, materiality and immateriality. With the new consequences and challenges our world today, such as global climate change, the use of non-renewable resources, environmental pollution, the decreasing of urban health, the urban areas’ aging, the highly increasing migrations into urban areas linked to many consequences such as highly infrastructure density, social segregation. All of that required new forms of governance, new urban policies, and more efficient efforts and urban applications. Based on the fact that cities are the core of life and it is a fundamental life axis, their development can increase or decrease the life quality of their inhabitants. Architects and planners see themselves today in the need to create new approaches and new sustainable policies to develop urban areas to correspond with the physical and non-physical transformations that cities are nowadays experiencing. To enhance people's lives and provide for their needs in this present without compromising the needs and lives of future generations. The application of sustainability has become an inescapable part of the development and projections of cities' planning. Yet its definition has been indefinable due to the plurality and difference of its applications. As the conceptualizations of technology are arising and have dominated all life aspects today, from smart citizens and smart life rhythms to smart production and smart structures to smart frameworks, it has influenced the sustainability applications as well in the planning and urbanization of cities. The term "smart city" emerged from this influence as one of the possible key solutions to sustainability. The term “smart city” has various perspectives of applications and definitions in the literature and in urban applications. However, after the observation of smart city applications in current cities, this paper defined the smart city as an urban environment that is controlled by technologies yet lacks the physical architectural representation of this smartness as the current smart applications are mostly obscured from the public as they are applied now on a diminutive scale and highly integrated into the built environment. Regardless of the importance of these technologies in improving the quality of people's lives and in facing cities' challenges, it is important not to neglect their architectural and urban presentations will affect the shaping and development of city neighborhoods. By investigating the concept of smart cities and exploring its potential applications on a neighbourhood scale, this paper aims to shed light on understanding the challenges faced by cities and exploring innovative solutions such as smart city applications in urban mobility and how they affect the different aspects of communities. The paper aims to shape better articulations of smart neighborhoods’ morphologies on the social, architectural, functional, and material levels. To understand how to create more sustainable and liveable future approaches to developing urban environments inside cities. The findings of this paper will contribute to ongoing discussions and efforts in achieving sustainable urban development.

Keywords: sustainability, urban development, smart city, resilience, sense of belonging

Procedia PDF Downloads 79
6623 Courtyard Evolution in Contemporary Sustainable Living

Authors: Yiorgos Hadjichristou

Abstract:

The paper will focus on the strategic development deriving from the evolution of the traditional courtyard spatial organization towards a new, contemporary sustainable way of living. New sustainable approaches that engulf the social issues, the notion of place, the understanding of weather architecture blended together with the bioclimatic behaviour will be seen through a series of experimental case studies in the island of Cyprus, inspired and originated from its traditional wisdom, ranging from small scale of living to urban interventions. Weather and nature will be seen as co-architectural authors with architects as intelligently claimed by Jonathan Hill in his Weather Architecture discourse. Furthermore, following Pallasmaa’s understanding, the building will be seen not as an end itself and the elements of an architectural experience as having a verb form rather than being nouns. This will further enhance the notion of merging the subject-human and the object-building as discussed by Julio Bermudez. This eventually will enable to generate the discussion of the understanding of the building constructed according to the specifics of place and inhabitants, shaped by its physical and human topography as referred by Adam Sharr in relation to Heidegger’s thinking. The specificities of the divided island and the dealing with sites that are in vicinity with the diving Green Line will further trigger explorations dealing with the regeneration issues and the social sustainability offering unprecedented opportunities for innovative sustainable ways of living. The above premises will lead us to develop innovative strategies for a profound, both technical and social sustainability, which fruitfully yields to innovative living built environments, responding to the ever changing environmental and social needs. As a starting point, a case study in Kaimakli in Nicosia a refurbishment with an extension of a traditional house, already engulfs all the traditional/ vernacular wisdom of the bioclimatic architecture. It aims at capturing not only its direct and quite obvious bioclimatic features, but rather to evolve them by adjusting the whole house in a contemporary living environment. In order to succeed this, evolutions of traditional architectural elements and spatial conditions are integrated in a way that does not only respond to some certain weather conditions, but they integrate and blend the weather within the built environment. A series of innovations aiming at maximum flexibility is proposed. The house can finally be transformed into a winter enclosure, while for the most part of the year it turns into a ‘camping’ living environment. Parallel to experimental interventions in existing traditional units, we will proceed examining the implementation of the same developed methodology in designing living units and complexes. Malleable courtyard organizations that attempt to blend the traditional wisdom with the contemporary needs for living, the weather and nature with the built environment will be seen tested in both horizontal and vertical developments. A new social identity of people, directly involved and interacting with the weather and climatic conditions will be seen as the result of balancing the social with the technological sustainability, the immaterial and the material aspects of the built environment.

Keywords: building as a verb, contemporary living, traditional bioclimatic wisdom, weather architecture

Procedia PDF Downloads 419
6622 Use of Logistics for Demand Control in a Commercial Establishment in Rio De Janeiro, Brazil

Authors: Carlos Fontanillas

Abstract:

Brazil is going through a real revolution in the logistics area. It is increasingly common to find articles and news in this context, as companies begin to become aware that a good management of the areas that make up the logistics can bring excellent results in reducing costs and increasing productivity. With this, companies are investing more emphasis on reduced spending on storage and transport of their products to ensure competitiveness. The scope of this work is the analysis of the logistics of a restaurant and materials will be presented the best way to serve the customer, avoiding the interruption of production due to lack of materials; for it will be analyzed the supply chain in terms of acquisition costs, maintenance and service demand.

Keywords: ABC curve, logistic, productivity, supply chain

Procedia PDF Downloads 313
6621 Heavy Metal Adsorption from Synthetic Wastewater Using Agro Waste-Based Nanoparticles: A Comparative Study

Authors: Nomthandazo Precious Sibiya, Thembisile Patience Mahlangu, Sudesh Rathilal

Abstract:

Heavy metal removal is critical in the wastewater treatment process due to its numerous harmful effects on human and aquatic life. There are several chemical and physical techniques for removing heavy metals from wastewater, including ion exchange, reverse osmosis, adsorption, electrodialysis, and ultrafiltration. However, adsorption technology has captivated researchers for years due to its low cost, high efficiency, and compatible with the environment. In this study, the adsorption effectiveness of three modified agro-waste materials was explored for the removal of lead from synthetic wastewater: banana peels (BP), orange peels (OP), and sugarcane bagasse (SB). The magnetite (Fe₃O₄) is incorporated with BP, OP, and SB at a ratio of 1:1 to create magnetic biosorbents. Characterization of biosorbents was carried out using and scanning electron microscopy (SEM) combined with energy-dispersive X-ray (EDX) to investigate surface morphology and elemental compositions, respectively. A series of batch experiments were carried out to investigate the effects of adsorbent mass, agitation time, and initial pH concentration on adsorption behaviour, as well as adsorption isotherms and kinetics. The removal efficiency of lead by the modified agro-waste materials proved to be superior to that of non-modified agro-waste materials. The proof of concept was achieved, and agro-waste materials can be paired with adsorption technology to effectively remove lead from aqueous media. The use of agricultural waste as biosorbents will aid in waste reduction and management.

Keywords: adsorption, isotherms, kinetics, agro waste, nanoparticles, batch

Procedia PDF Downloads 67
6620 Challenges in E-Government: Conceptual Views and Solutions

Authors: Rasim Alguliev, Farhad Yusifov

Abstract:

Considering the international experience, conceptual and architectural principles of forming of electron government are researched and some suggestions were made. The assessment of monitoring of forming processes of electron government, intellectual analysis of web-resources, provision of information security, electron democracy problems were researched, conceptual approaches were suggested. By taking into consideration main principles of electron government theory, important research directions were specified.

Keywords: electron government, public administration, information security, web-analytics, social networks, data mining

Procedia PDF Downloads 473
6619 Determination of Strain Rate Sensitivity (SRS) for Grain Size Variants on Nanocrystalline Materials Produced by ARB and ECAP

Authors: P. B. Sob, T. B. Tengen, A. A. Alugongo

Abstract:

Mechanical behavior of 6082T6 aluminum is investigated at different temperatures. The strain rate sensitivity is investigated at different temperatures on the grain size variants. The sensitivity of the measured grain size variants on 3-D grain is discussed. It is shown that the strain rate sensitivities are negative for the grain size variants during the deformation of nanostructured materials. It is also observed that the strain rate sensitivities vary in different ways with the equivalent radius, semi minor axis radius, semi major axis radius and major axis radius. From the obtained results, it is shown that the variation of strain rate sensitivity with temperature suggests that the strain rate sensitivity at the low and the high temperature ends of the 6082T6 aluminum range is different. The obtained results revealed transition at different temperature from negative strain rate sensitivity as temperature increased on the grain size variants.

Keywords: nanostructured materials, grain size variants, temperature, yield stress, strain rate sensitivity

Procedia PDF Downloads 287
6618 Exploring the Characteristics of Three Elements of the Mountainous Cultural Landscape in Yemen: Mountainous Cities, Mountainous Villages, and Cultivated Terraces

Authors: Abdulfattah A. Q. Alwah, Amal Al‑Attar, Sumyah M. Al-Fanini, Ellen Fetzer

Abstract:

Cultural landscapes enhance the spiritual relationship between people and their environment. They represent civilized evidence of peoples' interaction with nature and the exploitation of its resources to build their civilization. Yemeni urban and rural environments are rich in many cultural landscape elements that reflect the ingenuity of Yemeni people in interacting with nature. Yemen's mountain cities and villages appear in harmony with mountains, with vertical tower building patterns, local building materials, and unique architectural and urban elements and features. Such cities and villages are still full of life today, such as the cities of Taiz, Ibb, Lahj, and historical Jableh and hundreds of mountain villages in the provinces of the mountainous highlands. The cultivated mountain terraces reflect the ability of Yemenis to create arable areas in the tall mountains and to use successful means of irrigation and rainwater drainage. Unfortunately, there is a severe shortage of research studies that discuss the cultural landscapes in Yemen and the mechanisms for their preservation. Therefore, this study aimed to shed light on the types of mountain cultural landscapes in Yemen and discuss the means of their preservation. The study achieved its objectives through a theoretical review of available studies and field visits to some sites in Ibb, Jableh, and Taiz cities. The study highlighted the human contribution to these sites and elements and showed the Yemenis’ skills in adapting to nature and benefiting from it ideally. This study can guide the competent authorities to assess, develop, and protect cultural landscape sites in Yemen.

Keywords: civilization, urban environment, Yemeni mountain architecture, human heritage conservation, cultural identity

Procedia PDF Downloads 98
6617 Enhanced Properties of Plasma-Induced Two-Dimensional Ga₂O₃/GaS Heterostructures on Liquid Alloy Substrate

Authors: S. Zhuiykov, M. Karbalaei Akbari

Abstract:

Ultra-low-level incorporation of trace impurities and dopants into two-dimensional (2D) semiconductors is a challenging step towards the development of functional electronic instruments based on 2D materials. Herein, the incorporation of sulphur atoms into 2D Ga2O3 surface oxide film of eutectic gallium-indium alloy (EGaIn) is achieved through plasma-enhanced metal-catalyst dissociation of H2S gas on EGaIn substrate. This process led to the growth of GaS crystalline nanodomains inside amorphous 2D Ga2O3 sublayer films. Consequently, 2D lateral heterophase was developed between the amorphous Ga2O3 and crystalline GaS nanodomains. The materials characterization revealed the alteration of photoluminescence (PL) characteristics and change of valence band maximum (VBM) of functionalized 2D films. The comprehensive studies by conductive atomic force microscopy (c-AFM) showed considerable enhancement of conductivity of 2D Ga2O3/GaS materials (300 times improvement) compared with that of 2D Ga2O3 film. This technique has a great potential for the fabrication of 2D metal oxide devices with tuneable electronic characteristics similar to nano junction memristors and transistors.

Keywords: 2D semiconductors, Ga₂O₃, GaS, plasma-induced functionalization

Procedia PDF Downloads 91
6616 Improving School Design through Diverse Stakeholder Participation in the Programming Phase

Authors: Doris C. C. K. Kowaltowski, Marcella S. Deliberador

Abstract:

The architectural design process, in general, is becoming more complex, as new technical, social, environmental, and economical requirements are imposed. For school buildings, this scenario is also valid. The quality of a school building depends on known design criteria and professional knowledge, as well as feedback from building performance assessments. To attain high-performance school buildings, a design process should add a multidisciplinary team, through an integrated process, to ensure that the various specialists contribute at an early stage to design solutions. The participation of stakeholders is of special importance at the programming phase when the search for the most appropriate design solutions is underway. The composition of a multidisciplinary team should comprise specialists in education, design professionals, and consultants in various fields such as environmental comfort and psychology, sustainability, safety and security, as well as administrators, public officials and neighbourhood representatives. Users, or potential users (teachers, parents, students, school officials, and staff), should be involved. User expectations must be guided, however, toward a proper understanding of a response of design to needs to avoid disappointment. In this context, appropriate tools should be introduced to organize such diverse participants and ensure a rich and focused response to needs and a productive outcome of programming sessions. In this paper, different stakeholder in a school design process are discussed in relation to their specific contributions and a tool in the form of a card game is described to structure the design debates and ensure a comprehensive decision-making process. The game is based on design patterns for school architecture as found in the literature and is adapted to a specific reality: State-run public schools in São Paulo, Brazil. In this State, school buildings are managed by a foundation called Fundação para o Desenvolvimento da Educação (FDE). FDE supervises new designs and is responsible for the maintenance of ~ 5000 schools. The design process of this context was characterised with a recommendation to improve the programming phase. Card games can create a common environment, to which all participants can relate and, therefore, can contribute to briefing debates on an equal footing. The cards of the game described here represent essential school design themes as found in the literature. The tool was tested with stakeholder groups and with architecture students. In both situations, the game proved to be an efficient tool to stimulate school design discussions and to aid in the elaboration of a rich, focused and thoughtful architectural program for a given demand. The game organizes the debates and all participants are shown to spontaneously contribute each in his own field of expertise to the decision-making process. Although the game was specifically based on a local school design process it shows potential for other contexts because the content is based on known facts, needs and concepts of school design, which are global. A structured briefing phase with diverse stakeholder participation can enrich the design process and consequently improve the quality of school buildings.

Keywords: architectural program, design process, school building design, stakeholder

Procedia PDF Downloads 405
6615 Herbal Medicinal Materials for Health/Functional Foods in Korea

Authors: Chang-Hwan Oh, Young-Jong Lee

Abstract:

In April, 2015, the Ministry of Food and Drug Safety’s announcement that only 10 of the 207 products that list Cynanchum Wilfordii Radix among their ingredients were confirmed to actually contain “iyeobupiso” the counterfeit version of the “baeksuo” raised a fog to consumers who purchased health/functional foods supposedly containing the herbal medicinal material, “baeksuo” in Korean. Baeksuo is the main ingredient of the product “EstroG-100” that contain Phlomis umbrosa and Angelica gigas too (NaturalEndoTech, S.Korea). The hot water extract of the herbal medicinal materials (HMM) was approved as a product specific Health/Functional Food (HFF) having a helpful function to women reaching menopause by Korea Food & Drug Administration (Ministry of Food & Drug Safety at present). The origin of “baeksuo” is the root of Cynanchum wilfordii Hemsley in Korea (But “iyeobupiso, the root of Cynanchum auriculatum Royle ex Wight is considered as the origin of “baeksuo” in China). In Korea, about 116 HMMs are listed as the food materials in Korea Food Code among the total 187 HMMs could be used for food and medicine purpose simultaneously. But there are some chances of the HMMs (shared use for food and medicine purpose) could be misused by the part and HMMs not permitted for HFF such as the “baeksuo” case. In this study, some of HMMs (shared use for food and medicine purpose) are examined to alleviate the misuse chance of HMMs for HFFs in Korea. For the purpose of this study, the origin, shape, edible parts, efficacy and the side effects of the similar HMMs to be misused for HFF are investigated.

Keywords: herbal medicinal materials, healthy/functional foods, misuse, shared use

Procedia PDF Downloads 291