Search results for: sustained release pellets
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1786

Search results for: sustained release pellets

1726 Resveratrol-Phospholipid Complex for Sustained Delivery of Resveratrol via the Skin for the Treatment of Inflammatory Diseases

Authors: Malay K. Das, Bhupen Kalita

Abstract:

The poor oral bioavailability of resveratrol (RSV) due to presystemic metabolism can be avoided via dermal route of administration. The hydrophilic-lipophilic nature of resveratrol-phospholipid complex (RSVPs) favors the delivery of resveratrol via the skin. The RSVPs embedded polymeric patch with moderate adhesiveness was developed for dermal application for sustained anti-inflammatory effect. The prepared patches were evaluated for various physicochemical properties, surface morphology by SEM, TEM, and compatibility of patch components by FT-IR and DSC studies. The dermal flux of the optimized patch formulation was found to be at 4.28 ± 0.48 mg/cm2/24 h. The analysis of skin extract after permeation study revealed the presence of resveratrol, which confirmed the localization of RSVPs in the skin. The stability of RSVPs in the polymeric patch and the physiologic environment was confirmed by FE-SEM studies on the patches after drug release and skin permeation studies. The RSVPs particles released from the polymer matrix maintaining the structural integrity and permeate the keratinized horney layer of skin. The optimized patch formulation showed sustained anti-inflammatory effect (84.10% inhibition of inflammation at 24 h) in carrageenan-induced rat paw edema model compared to marketed diclofenac sodium gel (39.58% inhibition of inflammation at 24 h). The CLSM study confirmed the localization of RSVPs for a longer period, thus enabling drug targeting to the dermis for sustained anti-inflammatory effect. Histological studies with phase contrast trinocular microscope suggested no alteration of skin integrity and no evidence of the presence of inflammatory cells after exposure to the permeants. The patch was found to be safe for skin application as evaluated by Draize method for skin irritation scoring in a rabbit model. These results suggest the therapeutic efficacy of the developed patch in both acute and chronic inflammatory diseases.

Keywords: resveratrol-phospholipid complex, skin delivery, sustained anti-inflammatory effect, inflammatory diseases, dermal patch

Procedia PDF Downloads 230
1725 Comparative Analysis of in vitro Release profile for Escitalopram and Escitalopram Loaded Nanoparticles

Authors: Rashi Rajput, Manisha Singh

Abstract:

Escitalopram oxalate (ETP), an FDA approved antidepressant drug from the category of SSRI (selective serotonin reuptake inhibitor) and is used in treatment of general anxiety disorder (GAD), major depressive disorder (MDD).When taken orally, it is metabolized to S-demethylcitalopram (S-DCT) and S-didemethylcitalopram (S-DDCT) in the liver with the help of enzymes CYP2C19, CYP3A4 and CYP2D6. Hence, causing side effects such as dizziness, fast or irregular heartbeat, headache, nausea etc. Therefore, targeted and sustained drug delivery will be a helpful tool for increasing its efficacy and reducing side effects. The present study is designed for formulating mucoadhesive nanoparticle formulation for the same Escitalopram loaded polymeric nanoparticles were prepared by ionic gelation method and characterization of the optimised formulation was done by zeta average particle size (93.63nm), zeta potential (-1.89mV), TEM (range of 60nm to 115nm) analysis also confirms nanometric size range of the drug loaded nanoparticles along with polydispersibility index of 0.117. In this research, we have studied the in vitro drug release profile for ETP nanoparticles, through a semi permeable dialysis membrane. The three important characteristics affecting the drug release behaviour were – particle size, ionic strength and morphology of the optimised nanoparticles. The data showed that on increasing the particle size of the drug loaded nanoparticles, the initial burst was reduced which was comparatively higher in drug. Whereas, the formulation with 1mg/ml chitosan in 1.5mg/ml tripolyphosphate solution showed steady release over the entire period of drug release. Then this data was further validated through mathematical modelling to establish the mechanism of drug release kinetics, which showed a typical linear diffusion profile in optimised ETP loaded nanoparticles.

Keywords: ionic gelation, mucoadhesive nanoparticle, semi-permeable dialysis membrane, zeta potential

Procedia PDF Downloads 294
1724 Experimental Investigation on Activated Carbon Based Cryosorption Pump

Authors: K. B. Vinay, K. G. Vismay, S. Kasturirengan, G. A. Vivek

Abstract:

Cryosorption pumps are considered to be safe, quiet and ultra-high vacuum production pumps which have their application from Semiconductor industries to ITER [International Thermonuclear Experimental Reactor] units. The principle of physisorption of gases over highly porous materials like activated charcoal at cryogenic temperatures (below -1500°C) is involved in determining the pumping speed of gases like Helium, Hydrogen, Argon and Nitrogen. This paper aims at providing detailed overview of development of Cryosorption pump which is the modern ultra-high vacuum pump and characterization of different activated charcoal materials that optimizes the performance of the pump. Different grades of charcoal were tested in order to determine the pumping speed of the pump and were compared with commercially available Varian cryopanel. The results for bare panel, bare panel with adhesive, cryopanel with pellets, and cryopanel with granules were obtained and compared. The comparison showed that cryopanel adhered with small granules gave better pumping speeds than large sized pellets.

Keywords: adhesive, cryopanel, granules, pellets

Procedia PDF Downloads 425
1723 Release of Calcein from Liposomes Using Low and High Frequency Ultrasound

Authors: Ghaleb A. Husseini, Salma E. Ahmed, Hesham G. Moussa, Ana M. Martins, Mohammad Al-Sayah, Nasser Qaddoumi

Abstract:

This abstract aims to investigate the use of targeted liposomes as anticancer drug carriers in vitro in combination with ultrasound applied as drug trigger; in order to reduce the side effects caused by traditional chemotherapy. Pegylated liposomes were used to encapsulate calcein and then release this model drug when 20-kHz, 40-kHz, 1-MHz and 3-MHz ultrasound were applied at different acoustic power densities. Fluorescence techniques were then used to measure the percent drug release of calcein from these targeted liposomes. Results showed that as the power density increases, at the four frequencies studied, the release of calcein also increased. Based on these results, we believe that ultrasound can be used to increase the rate and amount of chemotherapeutics release from liposomes.

Keywords: liposomes, calcein release, high frequency ultrasound, low frequency ultrasound, fluorescence techniques

Procedia PDF Downloads 424
1722 Increase of the Nanofiber Degradation Rate Using PCL-PEO and PCL-PVP as a Shell in the Electrospun Core-Shell Nanofibers Using the Needleless Blades

Authors: Matej Buzgo, Erico Himawan, Ksenija JašIna, Aiva Simaite

Abstract:

Electrospinning is a versatile and efficient technology for producing nanofibers for biomedical applications. One of the most common polymers used for the preparation of nanofibers for regenerative medicine and drug delivery applications is polycaprolactone (PCL). PCL is a biocompatible and bioabsorbable material that can be used to stimulate the regeneration of various tissues. It is also a common material used for the development of drug delivery systems by blending the polymer with small active molecules. However, for many drug delivery applications, e.g. cancer immunotherapy, PCL biodegradation rate that may exceed 9 months is too long, and faster nanofiber dissolution is needed. In this paper, we investigate the dissolution and small molecule release rates of PCL blends with two hydrophilic polymers: polyethylene oxide (PEO) or polyvinylpyrrolidone (PVP). We show that adding hydrophilic polymer to the PCL reduces the water contact angle, increases the dissolution rate, and strengthens the interactions between the hydrophilic drug and polymer matrix that further sustain its release. Finally using this method, we were also able to increase the nanofiber degradation rate when PCL-PEO and PCL-PVP were used as a shell in the electrospun core-shell nanofibers and spread up the release of active proteins from their core. Electrospinning can be used for the preparation of the core-shell nanofibers, where active ingredients are encapsulated in the core and their release rate is regulated by the shell. However, such fibers are usually prepared by coaxial electrospinning that is an extremely low-throughput technique. An alternative is emulsion electrospinning that could be upscaled using needleless blades. In this work, we investigate the possibility of using emulsion electrospinning for encapsulation and sustained release of the growth factors for the development of the organotypic skin models. The core-shell nanofibers were prepared using the optimized formulation and the release rate of proteins from the fibers was investigated for 2 weeks – typical cell culture conditions.

Keywords: electrospinning, polycaprolactone (PCL), polyethylene oxide (PEO), polyvinylpyrrolidone (PVP)

Procedia PDF Downloads 273
1721 Semen Characteristics of Ram Semen Frozen in Straw and Pellet in Three Type of Cold Plates

Authors: Abdurzag Kerban

Abstract:

Preservation of semen had a major impact on sheep genetic breeding. The aim of this study was to evaluate the viability of ram spermatozoa after freezing pellet using cold surfaces made from cattle fat and paraffin wax. A pool of three to four ejaculates were pooled from six rams within a period of ten weeks. Semen was diluted in egg yolk-Tris diluent and processed in 0.25 ml straw and 0.1 ml pellets. Motility was evaluated after dilution, before freezing and post-thawing at 0, 1, 2 and 3 hour incubation. Viability index, acrosome integrity and leakage of intracellular enzymes (aspartat aminotransferase and alkline phosphatase) were also evaluated. Spermatozoa exhibited highly significant percentages of motility at 0, 1, 2 and 3 hours incubation after thawing and viability index in 0.25 ml straw and 0.1 ml pellets on cattle fat plate as compared to ram spermatozoa frozen on paraffin wax. In conclusion, cattle fat plate could be used as the cold surface of choice for freezing ram semen in form of pellets. Such form of frozen semen could be used as efficiently as semen frozen in straws. This simple method is economical with little expensive equipment or supplies, and may provide an efficient technique to cryopreserve ram spermatozoa in developing countries.

Keywords: ram semen, freezing, straw, pellet

Procedia PDF Downloads 592
1720 Ph-Triggered Cationic Solid Lipid Nanoparticles Mitigated Colitis in Mice

Authors: Muhammad Naeem, Juho Lee, Jin-Wook Yoo

Abstract:

In this study, we hypothesized that prolonged gastrointestinal transit at the inflamed colon conferred by a pH-triggered mucoadhesive smart nanoparticulate drug delivery system aids in achieving selective and sustained levels of the drug within the inflamed colon for the treatment of ulcerative colitis. We developed budesonide-loaded pH-sensitive charge-reversal solid lipid nanoparticles (SLNs) using a hot homogenization method. Polyetylenimine (PEI) was used to render SLNs cationic (PEI-SLNs). Eudragit S100 (ES) was coated on PEI-SLNs for pH-trigger charge-reversal SLNs (ES-PEI-SLNs). Therapeutic potential of the prepared SNLs formulation was evaluated in ulcerative colitis in mice. The transmission electron microscopy, zeta size and zeta potential data showed the successful formation of SLNs formulations. SLNs and PEI-SLNs showed burst drug release in acidic pH condition mimicking stomach and early small intestine environment which limiting their application as oral delivery systems. However, ES-PEI-SLNs prevented a burst drug release in acidic pH conditions and showed sustained release at a colonic pH. Most importantly, the surface charge of ES-PEI-SLNs switched from negative to positive in colonic conditions by pH-triggered removal of ES coating and accumulated selectively in inflamed colon. Furthermore, a charge reversal ES-PEI-SLNs showed a superior mitigation of dextran sulfate sodium (DSS)-induced acute colitis in mice as compared to SLNs and PEI-SLNs treated groups. Moreover, histopathological analysis of distal colon sections stained with hematoxylin/eosin and E-cadherin immunostaining revealed attenuated inflammation in an ES-PEI-SLNs-treated group. We also found that ES-PEI-SLNs markedly reduced the myeloperoxidase level and expression of TNF-alpha in colon tissue. Our results suggest that the pH-triggered charge reversal SLNs presented in this study would be a promising approach for ulcerative colitis therapy.

Keywords: solid lipid nanoparticles, stimuli-triggered charge-reversal, ulcerative colitis, methacrylate copolymer, budesonide

Procedia PDF Downloads 248
1719 Design and Characterization of Aromatase Inhibitor Loaded Nanoparticles for the Treatment of Breast Cancer

Authors: Harish K. Chandrawanshi, Mithun S. Rajput, Neelima Choure, Purnima Dey Sarkar, Shailesh Jain

Abstract:

The present research study aimed to fabricate and evaluate biodegradable nanoparticles of aromatase inhibitor letrozole, intended for breast cancer therapy. Letrozole loaded poly(D,L-lactide-co-glycolide acid) nanoparticles were prepared by solvent evaporation method using dichlorometane as solvent (oil phase) and polyvinyl alcohol (PVA) as aqueous phase. Prepared nanoparticles were characterized by particle size, infrared spectra, drug loading efficiency, drug entrapment efficiency and in vitro release and also evaluated for in vivo anticancer activity. The high speed homogenizer was used to produce stable nanoparticles of mean size range 198.35 ± 0.04 nm with high entrapment efficiency (69.86 ± 2.78%). Percentage of drug and homogenization speed significantly influenced the particle size, entrapment efficiency and release (p<0.05). The nanoparticles show significant in vivo anticancer activity against Ehrlich ascites carcinoma in mice. The significant system sustained the release of letrozole drug effectively and further investigation could exhibit its potential usefulness in breast cancer therapy.

Keywords: breast cancer/therapy, letrozole, nanoparticles, PLGA

Procedia PDF Downloads 580
1718 Microencapsulation of Phenobarbital by Ethyl Cellulose Matrix

Authors: S. Bouameur, S. Chirani

Abstract:

The aim of this study was to evaluate the potential use of EthylCellulose in the preparation of microspheres as a Drug Delivery System for sustained release of phenobarbital. The microspheres were prepared by solvent evaporation technique using ethylcellulose as polymer matrix with a ratio 1:2, dichloromethane as solvent and Polyvinyl alcohol 1% as processing medium to solidify the microspheres. Size, shape, drug loading capacity and entrapement efficiency were studied.

Keywords: phenobarbital, microspheres, ethylcellulose, polyvinylacohol

Procedia PDF Downloads 361
1717 Production of a Sustainable Slow-Release Urea Fertilizer Using Starch and Poly-Vinyl Alcohol

Authors: A. M. H. Shokry, N. S. M. El-Tayeb

Abstract:

The environmental impacts caused by fertilizers call for the adaptation of more sustainable technologies in order to increase agricultural production and reduce pollution due to high nutrient emissions. One particular technique has been to coat urea fertilizer granules with less-soluble chemicals that permit the gradual release of nutrients in a slow and controlled manner. The aim of this research is to develop a biodegradable slow-release fertilizer (SRF) with materials that come from sustainable sources; starch and polyvinyl alcohol (PVA). The slow-release behavior and water retention capacity of the coated granules were determined. In addition, the aqueous release and absorbency rates were also tested. Results confirmed that the release rate from coated granules was slower than through plain membranes; and that the water absorption capacity of the coated urea decreased as PVA content increased. The SRF was also tested and gave positive results that confirmed the integrity of the product.

Keywords: biodegradability, nitrogen-use efficiency, poly-vinyl alcohol, slow-release fertilizer, sustainability

Procedia PDF Downloads 214
1716 Characterization of Calcium-Signalling Mediated by Human GPR55 Expressed in HEK293 Cells

Authors: Yousuf M. Al Suleimani, Robin Hiley

Abstract:

The endogenous phospholipid lysophosphatidylinositol (LPI) was recently identified as a novel ligand for the G protein-coupled receptor 55 (GPR55) and an inducer of intracellular Ca2+ [Ca2+]i release. This study attempts to characterize Ca2+ signals provoked by LPI in HEK293 cells engineered to stably express human GPR55 and to test cannabinoid ligand activity at GPR55. The study shows that treatment with LPI stimulates a sustained, oscillatory Ca2+ release. The response is characterized by an initial rapid rise, which is mediated by the Gαq-PLC-IP3 pathway, and this is followed by prolonged oscillations that require RhoA activation. Ca2+ oscillations are initiated by intracellular mechanisms and extracellular Ca2+ is only required to replenish Ca2+ lost from the cytoplasm. Analysis of cannabinoid ligand activity at GPR55 revealed no clear effect of the endocannabinoid anandamide, however, rimonabant and the CB1 receptor antagonist AM251 evoked GPR55-mediated [Ca2+]i. Thus, LPI is likely to be a key plasma membrane mediator of signaling events and changes in gene expression through GPR55 activation.

Keywords: lysophosphatidylinositol, calcium, GPR55, cannabinoid

Procedia PDF Downloads 358
1715 Development of Drug Delivery Systems for Endoplasmic Reticulum Amino Peptidases Modulators Using Electrospinning

Authors: Filipa Vasconcelos

Abstract:

The administration of endoplasmic reticulum amino peptidases (ERAP1 or ERAP2) inhibitors can be used for therapeutic approaches against cancer and auto-immune diseases. However, one of the main shortcomings of drug delivery systems (DDS) is associated with the drug off-target distribution, which can lead to an increase in its side effects on the patient’s body. To overcome such limitations, the encapsulation of four representative compounds of ERAP inhibitors into Polycaprolactone (PCL), Polyvinyl-alcohol (PVA), crosslinked PVA, and PVA with nanoparticles (liposomes) electrospun fibrous meshes is proposed as a safe and controlled drug release system. The use of electrospun fibrous meshes as a DDS allows efficient solvent evaporation giving limited time to the encapsulated drug to recrystallize, continuous delivery of the drug while the fibers degrade, prevention of initial burst release (sustained release), tunable dosages, and the encapsulation of other agents. This is possible due to the fibers' small diameters and resemblance to the extracellular matrix (confirmed by scanning electron microscopy results), high specific surface area, and good mechanical strength/stability. Furthermore, release studies conducted on PCL, PVA, crosslinked PVA, and PVA with nanoparticles (liposomes) electrospun fibrous meshes with each of the ERAP compounds encapsulated demonstrated that they were capable of releasing >60%, 50%, 40%, and 45% of the total ERAP concentration, respectively. Fibrous meshes with ERAP_E compound encapsulated achieved higher released concentrations (75.65%, 62.41%, 56.05%, and 65.39%, respectively). Toxicity studies of fibrous meshes with encapsulated compounds are currently being accessed in vitro, as well as pharmacokinetics and dynamics studies. The last step includes the implantation of the drug-loaded fibrous meshes in vivo.

Keywords: drug delivery, electrospinning, ERAP inhibitors, liposomes

Procedia PDF Downloads 104
1714 Performance Evaluation of Extruded-type Heat sinks Used in Inverter for Solar Power Generation

Authors: Jung Hyun Kim, Gyo Woo Lee

Abstract:

In this study, heat release performances of the three extruded-type heat sinks can be used in the inverter for solar power generation were evaluated. Numbers of fins in the heat sinks (namely E-38, E-47 and E-76) were 38, 47 and 76, respectively. Heat transfer areas of them were 1.8, 1.9 and 2.8 m2. The heat release performances of E-38, E-47, and E-76 heat sinks were measured as 79.6, 81.6, and 83.2%, respectively. The results of heat release performance show that the larger amount of heat transfer area the higher heat release rate. While on the other, in this experiment, variations of the mass flow rates caused by different cross-sectional areas of the three heat sinks may not be the major parameter of the heat release. Despite the 47.4% increment of heat transfer area of E-76 heat sink than that of E-47 one, its heat release rate was higher by only 2.0%; this suggests that its heat transfer area need to be optimized.

Keywords: solar Inverter, heat sink, forced convection, heat transfer, performance evaluation

Procedia PDF Downloads 467
1713 Release Management with Continuous Delivery: A Case Study

Authors: A. Maruf Aytekin

Abstract:

We present our approach on using continuous delivery pattern for release management. One of the key practices of agile and lean teams is the continuous delivery of new features to stakeholders. The main benefits of this approach lie in the ability to release new applications rapidly which has real strategic impact on the competitive advantage of an organization. Organizations that successfully implement Continuous Delivery have the ability to evolve rapidly to support innovation, provide stable and reliable software in more efficient ways, decrease the amount of resources need for maintenance, and lower the software delivery time and costs. One of the objectives of this paper is to elaborate a case study where IT division of Central Securities Depository Institution (MKK) of Turkey apply Continuous Delivery pattern to improve release management process.

Keywords: automation, continuous delivery, deployment, release management

Procedia PDF Downloads 256
1712 Anticancer Effect of Resveratrol-Loaded Gelatin Nanoparticles in NCI-H460 Non-Small Cell Lung Carcinoma Cell Lines

Authors: N. Rajendra Prasad

Abstract:

Resveratrol (RSV), a grape phytochemical, has drawn greater attention because of its beneficial ef-fects against cancer. However, RSV has some draw-backs such as unstabilization, poor water solubility and short biological half time, which limit the utili-zation of RSV in medicine, food and pharmaceutical industries. In this study, we have encapsulated RSV in gelatin nanoparticles (GNPs) and studied its anti-cancer efficacy in NCI-H460 lung cancer cells. SEM and DLS studies have revealed that the prepared RSV-GNPs possess spherical shape with a mean diameter of 294 nm. The successful encapsulation of RSV in GNPs has been achieved by the cross-linker glutaraldehyde probably through Schiff base reaction and hydrogen bond interaction. Spectrophotometric analysis revealed that the max-imum of 93.6% of RSV has been entrapped in GNPs. In vitro drug release kinetics indicated that there was an initial burst release followed by a slow and sustained release of RSV from GNPs. The prepared RSV-GNPs exhibited very rapid and more efficient cellular uptake than free RSV. Further, RSV-GNPs treatment showed greater antiproliferative efficacy than free RSV treatment in NCI-H460 cells. It has been found that greater ROS generation, DNA damage and apoptotic incidence in RSV-GNPs treated cells than free RSV treatment. Erythrocyte aggregation assay showed that the prepared RSV-GNPs formulation elicit no toxic response. HPLC analysis revealed that RSV-GNPs was more bioavailable and had a longer half-life than free RSV. Hence, GNPs carrier system might be a promising mode for controlled delivery and for improved therapeutic index of poorly water soluble RSV.

Keywords: resveratrol, coacervation, anticancer gelatin nanoparticles, lung cancer, controlled release

Procedia PDF Downloads 447
1711 The Environmental and Economic Analysis of Extended Input-Output Table for Thailand’s Biomass Pellet Industry

Authors: Prangvalai Buasan, Boonrod Sajjakulnukit, Thongchart Bowonthumrongchai

Abstract:

The demand for biomass pellets in the industrial sector has significantly increased since 2020. The revised version of Thailand’s power development plan as well as the Alternative Energy Development Plan, aims to promote biomass fuel consumption by around 485 MW by 2030. The replacement of solid fossil fuel with biomass pellets will affect medium-term and long-term national benefits for all industries throughout the supply chain. Therefore, the evaluation of environmental and economic impacts throughout the biomass pellet supply chain needs to be performed to provide better insight into the goods and financial flow of this activity. This study extended the national input-output table for the biomass pellet industry and applied the input-output analysis (IOA) method, a sort of macroeconomic analysis, to interpret the result of transactions between industries in the monetary unit when the revised national power development plan was adopted and enforced. Greenhouse gas emissions from consuming energy and raw material through the supply chain are also evaluated. The total intermediate transactions of all economic sectors, which included the biomass pellets sector (CASE 2), increased by 0.02% when compared with the conservative case (CASE 1). The control total, which is the sum of total intermediate transactions and value-added, the control total of CASE 2 is increased by 0.07% when compared with CASE 1. The pellet production process emitted 432.26 MtCO2e per year. The major sharing of the GHG is from the plantation process of raw biomass.

Keywords: input-output analysis, environmental extended input-output analysis, macroeconomic planning, biomass pellets, renewable energy

Procedia PDF Downloads 101
1710 Optimization of Microencapsulation of β-Carotene by Complex Coacervation Technique Using Casein and Gum Tragacanth

Authors: Gargi Ghoshal, Ashay Jain

Abstract:

Microencapsulation of β-carotene was optimized by complex coacervation technique using casein/gum tragacanth (CAS/GT) coating as a function of pH, initial protein to polysaccharide mixing ratio (Pr:Ps), total biopolymer concentration, core material load, zeta potential, and ionic strength. This study was aimed to understand the influence of experimental parameters on the coacervation kinetics, the coacervate yield, and entrapment efficiency. At a Pr:Ps = 2:1, an optimum pH of complex coacervation was found 4.35, at which the intensity of electrostatic interaction was maximum. At these ratios of coating, the phase separation occurred the fastest and the final coacervate yield and entrapment efficiency was the highest. Varying the Pr: Ps shifted the value of optimum pH. This incident was due to the level of charge compensation of the CAS/GT complexes. Finally, electrostatic interaction and formation of coacervates between CAS and GT were confirmed by Fourier transform infra-red (FTIR) spectra. The size and surface properties of coacervates were studied using scanning electron microscopy (SEM). The resultant formulation (β-carotene loaded microcapsules) was evaluated for in vitro release study and antioxidant activity. Stability of encapsulated β-carotene was also evaluated under three levels of temperature (5, 25 and 40 °C) for 3 months. Encapsulation strongly increased the stability of micronutrients. Our results advocate potential of microcapsules as a novel carrier for the safeguard and sustained release of micronutrient.

Keywords: β-carotene, casein, complex coacervation, controlled release, gum tragacanth, microcapsules

Procedia PDF Downloads 267
1709 Locally Produced Solid Biofuels – Carbon Dioxide Emissions and Competitiveness with Conventional Ways of Individual Space Heating

Authors: Jiri Beranovsky, Jaroslav Knapek, Tomas Kralik, Kamila Vavrova

Abstract:

The paper deals with the results of research focused on the complex aspects of the use of intentionally grown biomass on agricultural land for the production of solid biofuels as an alternative for individual household heating. . The study primarily deals with the analysis of CO2 emissions of the logistics cycle of biomass for the production of energy pellets. Growing, harvesting, transport and storage are evaluated in the pellet production cycle. The aim is also to take into account the consumption profile during the year in terms of heating of common family houses, which are typical end-market segment for these fuels. It is assumed that in family houses, bio-pellets are able to substitute typical fossil fuels, such as brown coal and old wood burning heating devices and also electric boilers. One of the competing technology with the pellets are heat pumps. The results show the CO2 emissions related with considered fuels and technologies for their utilization. Comparative analysis is aimed biopellets from intentionally grown biomass, brown coal, natural gas and electricity used in electric boilers and heat pumps. Analysis combines CO2 emissions related with individual fuels utilization with costs of these fuels utilization. Cost of biopellets from intentionally grown biomass is derived from the economic models of individual energy crop plantations. At the same time, the restrictions imposed by EU legislation on Ecodesign's fuel and combustion equipment requirements and NOx emissions are discussed. Preliminary results of analyzes show that to achieve the competitiveness of pellets produced from specifically grown biomass, it would be necessary to either significantly ecological tax on coal (from about 0.3 to 3-3.5 EUR/GJ), or to multiply the agricultural subsidy per area. In addition to the Czech Republic, the results are also relevant for other countries, such as Bulgaria and Poland, which also have a high proportion of solid fuels for household heating.

Keywords: CO2 emissions, heating costs, energy crop, pellets, brown coal, heat pumps, economical evaluation

Procedia PDF Downloads 113
1708 Controlled Release of Glucosamine from Pluronic-Based Hydrogels for the Treatment of Osteoarthritis

Authors: Papon Thamvasupong, Kwanchanok Viravaidya-Pasuwat

Abstract:

Osteoarthritis affects a lot of people worldwide. Local injection of glucosamine is one of the alternative treatment methods to replenish the natural lubrication of cartilage. However, multiple injections can potentially lead to possible bacterial infection. Therefore, a drug delivery system is desired to reduce the frequencies of injections. A hydrogel is one of the delivery systems that can control the release of drugs. Thermo-reversible hydrogels can be beneficial to the drug delivery system especially in the local injection route because this formulation can change from liquid to gel after getting into human body. Once the gel is in the body, it will slowly release the drug in a controlled manner. In this study, various formulations of Pluronic-based hydrogels were synthesized for the controlled release of glucosamine. One of the challenges of the Pluronic controlled release system is its fast dissolution rate. To overcome this problem, alginate and calcium sulfate (CaSO4) were added to the polymer solution. The characteristics of the hydrogels were investigated including the gelation temperature, gelation time, hydrogel dissolution and glucosamine release mechanism. Finally, a mathematical model of glucosamine release from Pluronic-alginate-hyaluronic acid hydrogel was developed. Our results have shown that crosslinking Pluronic gel with alginate did not significantly extend the dissolution rate of the gel. Moreover, the gel dissolution profiles and the glucosamine release mechanisms were best described using the zeroth-order kinetic model, indicating that the release of glucosamine was primarily governed by the gel dissolution.

Keywords: controlled release, drug delivery system, glucosamine, pluronic, thermoreversible hydrogel

Procedia PDF Downloads 270
1707 Development of pH Responsive Nanoparticles for Colon Targeted Drug Delivery System

Authors: V. Balamuralidhara

Abstract:

The aim of the present work was to develop Paclitaxel loaded polyacrylamide grafted guar gum nanoparticles as pH responsive nanoparticle systems for targeting colon. The pH sensitive nanoparticles were prepared by modified ionotropic gelation technique. The prepared nanoparticles showed mean diameters in the range of 264±0.676 nm to 726±0.671nm, and a negative net charge 10.8 mV to 35.4mV. Fourier Transformed Infrared Spectroscopy (FT-IR) and Differential Scanning Calorimetry (DSC) studies suggested that there was no chemical interaction between drug and polymers. The encapsulation efficiency of the drug was found to be 40.92% to 48.14%. The suitability of the polyacrylamide grafted guar gum ERN’s for the release of Paclitaxel was studied by in vitro release at pH 1.2 and 7.4. It was observed that, there was no significant amount of drug release at gastric pH and 97.63% of drug release at pH 7.4 was obtained for optimized formulation F3 at the end of 12 hrs. In vivo drug targeting performance for the prepared optimized formulation (F3) and pure drug Paclitaxel was evaluated by HPLC. It was observed that the polyacrylamide grafted guar gum can be used to prepare nanoparticles for targeting the drug to the colon. The release performance was greatly affected by the materials used in ERN’s preparation, which allows maximum release at colon’s pH. It may be concluded that polyacrylamide grafted guar gum nanoparticles loaded with paclitaxel have desirable release responsive to specific pH. Hence it is a unique approach for colonic delivery of drug having appropriate site specificity and feasibility and controlled release of drug.

Keywords: colon targeting, polyacrylamide grafted guar gum nanoparticles, paclitaxel, nanoparticles

Procedia PDF Downloads 353
1706 Development of Oral Biphasic Drug Delivery System Using a Natural Resourced Polymer, Terminalia catappa

Authors: Venkata Srikanth Meka, Nur Arthirah Binti Ahmad Tarmizi Tan, Muhammad Syahmi Bin Md Nazir, Adinarayana Gorajana, Senthil Rajan Dharmalingam

Abstract:

Biphasic drug delivery systems are designed to release drug at two different rates, either fast/prolonged or prolonged/fast. A fast/prolonged release system provides a burst drug release at initial stage followed by a slow release over a prolonged period of time and in case of prolonged/fast release system, the release pattern is vice versa. Terminalia catappa gum (TCG) is a natural polymer and was successfully proven as a novel pharmaceutical excipient. The main objective of the present research is to investigate the applicability of natural polymer, Terminalia catappa gum in the design of oral biphasic drug delivery system in the form of mini tablets by using a model drug, buspirone HCl. This investigation aims to produce a biphasic release drug delivery system of buspirone by combining immediate release and prolonged release mini tablets into a capsule. For immediate release mini tablets, a dose of 4.5 mg buspirone was prepared by varying the concentration of superdisintegrant; crospovidone. On the other hand, prolonged release mini tablets were produced by using different concentrations of the natural polymer; TCG with a buspirone dose of 3mg. All mini tablets were characterized for weight variation, hardness, friability, disintegration, content uniformity and dissolution studies. The optimized formulations of immediate and prolonged release mini tablets were finally combined in a capsule and was evaluated for release studies. FTIR and DSC studies were conducted to study the drug-polymer interaction. All formulations of immediate release and prolonged release mini tablets were passed all the in-process quality control tests according to US Pharmacopoeia. The disintegration time of immediate release mini tablets of different formulations was varied from 2-6 min, and maximum drug release was achieved in lesser than 60 min. Whereas prolonged release mini tablets made with TCG have shown good drug retarding properties. Formulations were controlled for about 4-10 hrs with varying concentration of TCG. As the concentration of TCG increased, the drug release retarding property also increased. The optimised mini tablets were packed in capsules and were evaluated for the release mechanism. The capsule dosage form has clearly exhibited the biphasic release of buspirone, indicating that TCG is a suitable natural polymer for this study. FTIR and DSC studies proved that there was no interaction between the drug and polymer. Based on the above positive results, it can be concluded that TCG is a suitable polymer for the biphasic drug delivery systems.

Keywords: Terminalia catappa gum, biphasic release, mini tablets, tablet in capsule, natural polymers

Procedia PDF Downloads 393
1705 Reduce the Fire Hazards of Epoxy Resin by a Zinc Stannate and Graphene Hybrids

Authors: Haibo Sheng, Yuan Hu

Abstract:

Spinel structure Zinc stannate (Zn2SnO4, ZS)/Graphene was successfully synthesized by a simple in situ hydrothermal route. Morphological study and structure analysis confirmed the homogenously loading of ZS on the graphene sheets. Then, the resulted ZS/graphene hybrids were incorporated into epoxy resin to form EP/ZS/graphene composites by a solvent dispersion method. Improved thermal stability was investigated by Thermogravimetric Analysis (TGA). Cone calorimeter result showed low peak heat release rate (PHRR). Toxical gases release during combustion was evaluated by a facile device organized in our lab. The results showed that the release of NOx, HCN decrease of about 55%. Also, TG-IR technology was used to investigate the gas release during the EP decomposition process. The CO release had decreased about 80%.The EP/G/ZS showed lowest hazards during combustion (including flame retardancy, thermal stability, lower toxical gases release and so on) than pure EP.

Keywords: fire hazards, zinc stannate, epoxy resin, toxical gas hazards

Procedia PDF Downloads 182
1704 New Coating Materials Based on Mixtures of Shellac and Pectin for Pharmaceutical Products

Authors: M. Kumpugdee-Vollrath, M. Tabatabaeifar, M. Helmis

Abstract:

Shellac is a natural polyester resin secreted by insects. Pectins are natural, non-toxic and water-soluble polysaccharides extracted from the peels of citrus fruits or the leftovers of apples. Both polymers are allowed for the use in the pharmaceutical industry and as a food additive. SSB Aquagold® is the aqueous solution of shellac and can be used for a coating process as an enteric or controlled drug release polymer. In this study, tablets containing 10 mg methylene blue as a model drug were prepared with a rotary press. Those tablets were coated with mixtures of shellac and one of the pectin different types (i.e. CU 201, CU 501, CU 701 and CU 020) mostly in a 2:1 ratio or with pure shellac in a small scale fluidized bed apparatus. A stable, simple and reproducible three-stage coating process was successfully developed. The drug contents of the coated tablets were determined using UV-VIS spectrophotometer. The characterization of the surface and the film thickness were performed with the scanning electron microscopy (SEM) and the light microscopy. Release studies were performed in a dissolution apparatus with a basket. Most of the formulations were enteric coated. The dissolution profiles showed a delayed or sustained release with a lagtime of at least 4 h. Dissolution profiles of coated tablets with pure shellac had a very long lagtime ranging from 13 to 17.5 h and the slopes were quite high. The duration of the lagtime and the slope of the dissolution profiles could be adjusted by adding the proper type of pectin to the shellac formulation and by variation of the coating amount. In order to apply a coating formulation as a colon delivery system, the prepared film should be resistant against gastric fluid for at least 2 h and against intestinal fluid for 4-6 h. The required delay time was gained with most of the shellac-pectin polymer mixtures. The release profiles were fitted with the modified model of the Korsmeyer-Peppas equation and the Hixson-Crowell model. A correlation coefficient (R²) > 0.99 was obtained by Korsmeyer-Peppas equation.

Keywords: shellac, pectin, coating, fluidized bed, release, colon delivery system, kinetic, SEM, methylene blue

Procedia PDF Downloads 407
1703 Development of Mucoadhesive Multiparticulate System for Nasal Drug Delivery

Authors: K. S. Hemant Yadav, H. G. Shivakumar

Abstract:

The present study investigation was to prepare and evaluate the mucoadhesive multi-particulate system for nasal drug delivery of anti-histaminic drug. Ebastine was chosen as the model drug. Drug loaded nanoparticles of Ebastine were prepared by ionic gelation method using chitosan as polymer using the drug-polymer weight ratios 1:1, 1:2, 1:3. Sodium tripolyphosphate (STPP) was used as the cross-linking agent in the range of 0.5 and 0.7% w/v. FTIR and DSC studies indicated that no chemical interaction occurred between the drug and polymers. Particle size ranged from 169 to 500 nm. The drug loading and entrapment efficiency was found to increase with increase in chitosan concentration and decreased with increase in poloxamer 407 concentration. The results of in vitro mucoadhesion carried out showed that all the prepared formulation had good mucoadhesive property and mucoadhesion increases with increase in the concentration of chitosan. The in vitro release pattern of all the formulations was observed to be in a biphasic manner characterized by slight burst effect followed by a slow release. By the end of 8 hrs, formulation F6 showed a release of only 86.9% which explains its sustained behaviour. The ex-vivo permeation of the pure drug ebastine was rapid than the optimized formulation(F6) indicating the capability of the chitosan polymer to control drug permeation rate through the sheep nasal mucosa. The results indicated that the mucoadhesive nanoparticulate system can be used for the nasal delivery of antihistaminic drugs in an effective manner.

Keywords: nasal, nanoparticles, ebastine, anti-histaminic drug, mucoadhesive multi-particulate system

Procedia PDF Downloads 419
1702 Improving Post Release Outcomes

Authors: Michael Airton

Abstract:

This case study examines the development of a new service delivery model for prisons that focuses on using NGO’s to provide more effective case management and post release support functions. The model includes the co-design of the service delivery model and innovative commercial agreements that encourage embedded service providers within the prison and continuity of services post release with outcomes based payment mechanisms. The collaboration of prison staff, probation and parole officers and NGO’s is critical to the success of the model and its ability to deliver value and positive outcomes in relation to desistance from offending.

Keywords: collaborative service delivery, desistance, non-government organisations, post release support services

Procedia PDF Downloads 389
1701 Layer-by-Layer Coated Dexamethasone Microcrystals for Experimental Inflammatory Bowel Disease Therapy

Authors: Murtada Ahmed Oshi, Jin-Wook Yoo

Abstract:

Layer-by-layer (LBL) coating has gained popularity for drug delivery of therapeutic drugs. Herein we described a novel approach for enhancing the therapeutic efficiency of the locally administered dexamethasone (Dex) for inflammatory bowel disease (IBD). We utilized a LBL-coating technique on Dex microcrystals (DexMCs) with multiple layers of polyelectrolytes composed of poly (allylamine hydrochloride) (PAH), poly (sodium 4-styrene sulfonate) (PSS) and Eudragit® S100 (ES). The successful deposition of the layers onto DexMCs surfaces were confirmed through zeta potential measurement and confocal laser scanning microscopy. The surface morphology was investigated through scanning electron microscopy. The drug encapsulation efficiency was 95% with a mean particle size of 2 µm and negative surface charge (-40 mV). Moreover, in vitro drug release study showed a minimum release of the drug ( 15%) at an acidic condition during initial first 5 h, followed by sustained-release at an alkaline condition. For in vivo study, LBL-DxMCs were administered orally to ICR mice suffering from dextran sulfate sodium-induced colitis. LBL-DxMCs substantially enhanced anti-IBD activities as compared to DxMCs. Macroscopic, histological and biochemical (tumor necrosis factor-α, interleukin-6 and myeloperoxidase) examinations revealed marked improvements of colitis signs in the mice treated with LBL-DxMCs compared with those treated with DxMCs. Overall, LBL-DxMCs could be a suitable candidate for the treatment of IBD.

Keywords: dexamethasone, inflammatory bowel disease, LBL-coating, polyelectrolytes

Procedia PDF Downloads 196
1700 Bacterial Cellulose: A New Generation Antimicrobial Wound Dressing Biomaterial

Authors: Bhavana V. Mohite, Satish V. Patil

Abstract:

Bacterial cellulose (BC) is an alternative for plant cellulose (PC) that prevents global warming leads to preservation of nature. Although PC and BC have the same chemical structure, BC is superior with its properties like its size, purity, porosity, degree of polymerization, crystallinity and water holding capacity, thermal stability etc. On this background the present study focus production and applications of BC as antimicrobial wound dressing material. BC was produced by Gluconoacetobacter hansenii (strain NCIM 2529) under shaking condition and statistically enhanced upto 7.2 g/l from 3.0 g/l. BC was analyzed for its physico mechanical, structural and thermal characteristics. BC produced at shaking condition exhibits more suitable properties in support to its high performance applications. The potential of nano silver impregnated BC was determined for sustained release modern antimicrobial wound dressing material by swelling ratio, mechanical properties and antimicrobial activity against Staphylococcus aureus. BC in nanocomposite form with other synthetic polymer like PVA shows improvement in its properties such as swelling ratio (757% to 979%) and sustainable release of antibacterial agent. The high drug loading and release potential of BC was evidenced in support to its nature as antimicrobial wound dressing material. The nontoxic biocompatible nature of BC was confirmed by MTT assay on human epidermal cells with 90% cell viability that allows its application as a regenerative biomaterial. Thus, BC as a promising new generation antimicrobial wound dressing material was projected.

Keywords: agitated culture, biopolymer, gluconoacetobacter hansenii, nanocomposite

Procedia PDF Downloads 301
1699 Transdermal Therapeutic System of Lercanıdipine Hydrochloride: Fabrication and in Vivo Evaluation

Authors: Jiji Jose, R. Narayanacharyulu, Molly Mathew, Jisha Prems

Abstract:

Introduction: Lercanidipine hydrochloride (LD), an effective calcium channel blocker, widely used for the treatment of chronic stable angina and hypertension seems to be potential transdermal therapeutic system candidate, mainly due to its low oral bio availability, short half life and high first-pass metabolism. Objective: To develop transdermal therapeutic systems for LD and to evaluate its in vivo performance in rabbits. Methodology: Transdermal patches of LD were formulated using the polymer blend of eudragit RL100 (ERL) and polyvinyl pyrolidone (PVP) by casting method Propylene glycol (PG) and tween 80 were used as plasticizer and permeation enhancer respectively. The pharmaco kinetic parameters of LD after the administration of transdermal patches was compared with that of oral administration. The study was carried out in a two way crossover design in male New Zealand albino rabbits. Results: The formulation with ERL: PVP ratio 1:4 with 15% w/w PG as plasticizer and 4% w/w tween 80 as permeation enhancer showed the best drug release results. The pharmacokinetic parameters such as Cmax, tmax, mean residence time (MRT) and area under the curve (AUC 0-∞) were significantly different following transdermal administration compared to oral administration. The terminal half life of transdermally administered LD was found to similar that of oral administration. A sustained drug release over a period of 24 hrs was observed after transdermal administration. Conclusion: The fabricated transdermal delivery system have the potential to provide controlled and extended drug release, better bio availability and thus, this may improve the patient compliance.

Keywords: transdermal therapeutic system, lercanidipine hydrochloride, eudragit, skinpermeation

Procedia PDF Downloads 615
1698 Development and Characterization of Controlled Release Photo Cross-Linked Implants for Ocular Delivery of Triamcinolone Acetonide

Authors: Ravi Sheshala, Annie Lee, Ai Lin Ong, Ling Ling Cheu, Thiagarajan Madheswaran, Thankur R. R. Singh

Abstract:

The objectives of the present research work were to develop and characterize biodegradable controlled release photo cross-linked implants of Triamcinolone Acetonide (TA) for the treatment of chronic ocular diseases. The photo cross-linked implants were prepared using film casting technique by mixing TA (2.5%) polyethylene glycol diacrylate (PEGDA 700), pore formers (mannitol, maltose, and gelatin) and the photoinitiator (Irgacure 2959). The resulting mixture was injected into moulds using 21 G and subjected to photocrosslinking at 365 nm. Scanning electron microscopy results demonstrated that more pores were formed in the films with the increase in the concentration of pore formers from 2%-10%. The maximum force required to break the films containing 2-10% of pore formers were determined in both dry and wet conditions using texture analyzer and found that films in a dry condition required a higher force to break compared to wet condition and blank films. In vitro drug release from photo cross-linked films were determined by incubating samples in 50 ml PBS pH 7.4 at 37 C and the samples were analyzed for drug release by HPLC. The films demonstrated a biphasic release profile i.e. an initial burst release (<20%) on the first day followed by a constant and continuous drug release in a controlled manner for 42 days. The drug release from all formulations followed the first-order release pattern and the combination of diffusion and erosion release mechanism. In conclusion, the developed formulations were able to provide controlled drug delivery to treat the chronic ocular diseases.

Keywords: controlled release, ophthalmic, PEGDA, photocrosslinking, pore formers

Procedia PDF Downloads 404
1697 Charged Amphiphilic Polypeptide Based Micelle Hydrogel Composite for Dual Drug Release

Authors: Monika Patel, Kazuaki Matsumura

Abstract:

Synthetic hydrogels, with their unique properties such as porosity, strength, and swelling in aqueous environment, are being used in many fields from food additives to regenerative medicines, from diagnostic and pharmaceuticals to drug delivery systems (DDS). But, hydrogels also have some limitations in terms of homogeneity of drug distribution and quantity of loaded drugs. As an alternate, polymeric micelles are extensively used as DDS. With the ease of self-assembly, and distinct stability they remarkably improve the solubility of hydrophobic drugs. However, presently, combinational therapy is the need of time and so are systems which are capable of releasing more than one drug. And it is one of the major challenges towards DDS to control the release of each drug independently, which simple DDS cannot meet. In this work, we present an amphiphilic polypeptide based micelle hydrogel composite to study the dual drug release for wound healing purposes using Amphotericin B (AmpB) and Curcumin as model drugs. Firstly, two differently charged amphiphilic polypeptide chains were prepared namely, poly L-Lysine-b-poly phenyl alanine (PLL-PPA) and poly Glutamic acid-b-poly phenyl alanine (PGA-PPA) through ring opening polymerization of amino acid N-carboxyanhydride. These polymers readily self-assemble to form micelles with hydrophobic PPA block as core and hydrophilic PLL/PGA as shell with an average diameter of about 280nm. The thus formed micelles were loaded with the model drugs. The PLL-PPA micelle was loaded with curcumin and PGA-PPA was loaded with AmpB by dialysis method. Drug loaded micelles showed a slight increase in the mean diameter and were fairly stable in solution and lyophilized forms. For forming the micelles hydrogel composite, the drug loaded micelles were dissolved and were cross linked using genipin. Genipin uses the free –NH2 groups in the PLL-PPA micelles to form a hydrogel network with free PGA-PPA micelles trapped in between the 3D scaffold formed. Different composites were tested by changing the weight ratios of the both micelles and were seen to alter its resulting surface charge from positive to negative with increase in PGA-PPA ratio. The composites with high surface charge showed a burst release of drug in initial phase, were as the composites with relatively low net charge showed a sustained release. Thus the resultant surface charge of the composite can be tuned to tune its drug release profile. Also, while studying the degree of cross linking among the PLL-PPA particles for effect on dual drug release, it was seen that as the degree of crosslinking increases, an increase in the tendency to burst release the drug (AmpB) is seen in PGA-PPA particle, were as on the contrary the PLL-PPA particles showed a slower release of Curcumin with increasing the cross linking density. Thus, two different pharmacokinetic profile of drugs were seen by changing the cross linking degree. In conclusion, a unique charged amphiphilic polypeptide based micelle hydrogel composite for dual drug delivery. This composite can be finely tuned on the basis of need of drug release profiles by changing simple parameters such as composition, cross linking and pH.

Keywords: amphiphilic polypeptide, dual drug release, micelle hydrogel composite, tunable DDS

Procedia PDF Downloads 207