Search results for: nature- inspired computation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5242

Search results for: nature- inspired computation

5182 Development of Antibacterial Surface Based on Bio-Inspired Hierarchical Surface

Authors: M.Ayazi, N. Golshan Ebrahimi

Abstract:

The development of antibacterial surface has devoted extensive researches and important field due to the growing antimicrobial resistance strains. The superhydrophobic surface has raised attention because of reducing bacteria adhesion in the absence of antibiotic agents. Evaluating the current development antibacterial surface has to be investigating to consider the potential of applying superhydrophobic surface to reduce bacterial adhesion or role of patterned surfaces on it. In this study, we present different samples with bio-inspired hierarchical and microstructures to consider their ability in reducing bacterial adhesion. The structures have inspired from rice-like pattern and lotus-leaf that developed on the polydimethylsiloxane (PDMS) and polypropylene (PP). The results of the attachment behaviors have considered on two bacteria strains of gram-negative Escherichia coli (E. coli) bacteria and gram-positive Staphylococcus aureus (S. aureus). The reduction of bacteria adhesion on these roughness surfaces demonstrated the effectiveness of rinsing ability on removing bacterial cells on structured plastic surfaces. Results have also offered the important role of bacterial species, material chemistry and hierarchical structure to prevent bacterial adhesion.

Keywords: hierarchical structure, self-cleaning, lotus-effect, bactericidal

Procedia PDF Downloads 136
5181 A New Paradigm to Make Cloud Computing Greener

Authors: Apurva Saxena, Sunita Gond

Abstract:

Demand of computation, data storage in large amount are rapidly increases day by day. Cloud computing technology fulfill the demand of today’s computation but this will lead to high power consumption in cloud data centers. Initiative for Green IT try to reduce power consumption and its adverse environmental impacts. Paper also focus on various green computing techniques, proposed models and efficient way to make cloud greener.

Keywords: virtualization, cloud computing, green computing, data center

Procedia PDF Downloads 554
5180 Women's Contemporary Dystopias: Feminist Protagonists Taking Back Control

Authors: Natalia Fontes De Oliveira

Abstract:

The Canadian author Margaret Atwood deconstructs the tainted dichotomies between women and men by embracing the disorder throughout her dystopias. In Atwood’s The Testaments, nature can be seen as a background to the story as well as a metaphorical expression of the characters’ state of mind, nevertheless, the protagonists’ nature writing portrays conveys a curiosity to the pre-established sanctions of a docile garden, viewing nature as an autonomous entity, especially when they are away from the confinements of Gilead’s regime. The three narrating protagonists, Agnes, Aunt Lydia, and Nicole, use nature writing subversively as a form of rebellion. This paper investigates how the three protagonists narrate nature through an intimist point of view, with sensibility to observe the multiple relationships among humanity, nature, and the impositions of a theocratic ultra conservative patriarchal society.

Keywords: contemporary literature, dystopias, feminism, women’s writing

Procedia PDF Downloads 169
5179 Aerodynamic Investigation of Baseline-IV Bird-Inspired BWB Aircraft Design: Improvements over Baseline-III BWB

Authors: C. M. Nur Syazwani, M. K. Ahmad Imran, Rizal E. M. Nasir

Abstract:

The study on BWB UV begins in UiTM since 2005 and three designs have been studied and published. The latest designs are Baseline-III and inspired by birds that have features and aerodynamics behaviour of cruising birds without flapping capability. The aircraft featuring planform and configuration are similar to the bird. Baseline-III has major flaws particularly in its low lift-to-drag ratio, stability and issues regarding limited controllability. New design known as Baseline-IV replaces straight, swept wing to delta wing and have a broader tail compares to the Baseline-III’s. The objective of the study is to investigate aerodynamics of Baseline-IV bird-inspired BWB aircraft. This will be achieved by theoretical calculation and wind tunnel experiments. The result shows that both theoretical and wind tunnel experiments of Baseline-IV graph of CL and CD versus alpha are quite similar to each other in term of pattern of graph slopes and values. Baseline-IV has higher lift coefficient values at wide range of angle of attack compares to Baseline-III. Baseline-IV also has higher maximum lift coefficient, higher maximum lift-to-drag and lower parasite drag. It has stable pitch moment versus lift slope but negative moment at zero lift for zero angle-of-attack tail setting. At high angle of attack, Baseline-IV does not have stability reversal as shown in Baseline-III. Baseline-IV is proven to have improvements over Baseline-III in terms of lift, lift-to-drag ratio and pitch moment stability at high angle-of-attack.

Keywords: blended wing-body, bird-inspired blended wing-body, aerodynamic, stability

Procedia PDF Downloads 508
5178 GPU Based Real-Time Floating Object Detection System

Authors: Jie Yang, Jian-Min Meng

Abstract:

A GPU-based floating object detection scheme is presented in this paper which is designed for floating mine detection tasks. This system uses contrast and motion information to eliminate as many false positives as possible while avoiding false negatives. The GPU computation platform is deployed to allow detecting objects in real-time. From the experimental results, it is shown that with certain configuration, the GPU-based scheme can speed up the computation up to one thousand times compared to the CPU-based scheme.

Keywords: object detection, GPU, motion estimation, parallel processing

Procedia PDF Downloads 474
5177 Biomimetics and Additive Manufacturing for Industrial Design Innovation

Authors: Axel Thallemer, Martin Danzer, Dominik Diensthuber, Aleksandar Kostadinov, Bernhard Rogler

Abstract:

Nature has always inspired the creative mind, to a lesser or greater extent. Introduced around the 1950s, Biomimetics served as a systematic method to treat the natural world as a ‘pattern book’ for technical solutions with the aim to create innovative products. Unfortunately, this technique is prone to failure when performed as a mere reverse engineering of a natural system or appearance. Contrary to that, a solution which looks at the principles of a natural design, promises a better outcome. One such example is the here presented case study, which shows the design process of three distinctive grippers. The devices have biomimetic properties on two levels. Firstly, they use a kinematic chain found in beaks and secondly, they have a biomimetic structural geometry, which was realized using additive manufacturing. In a next step, the manufacturing method was evaluated to estimate its efficiency for commercial production. The results show that the fabrication procedure is still in its early stage and thus it is not able to guarantee satisfactory results. To summarize the study, we claim that a novel solution can be derived using principles from nature, however, for the solution to be actualized successfully, there are parameters which are beyond reach for designers. Nonetheless, industrial designers can contribute to product innovation using biomimetics.

Keywords: biomimetics, innovation, design process, additive manufacturing

Procedia PDF Downloads 191
5176 A Unique Multi-Class Support Vector Machine Algorithm Using MapReduce

Authors: Aditi Viswanathan, Shree Ranjani, Aruna Govada

Abstract:

With data sizes constantly expanding, and with classical machine learning algorithms that analyze such data requiring larger and larger amounts of computation time and storage space, the need to distribute computation and memory requirements among several computers has become apparent. Although substantial work has been done in developing distributed binary SVM algorithms and multi-class SVM algorithms individually, the field of multi-class distributed SVMs remains largely unexplored. This research seeks to develop an algorithm that implements the Support Vector Machine over a multi-class data set and is efficient in a distributed environment. For this, we recursively choose the best binary split of a set of classes using a greedy technique. Much like the divide and conquer approach. Our algorithm has shown better computation time during the testing phase than the traditional sequential SVM methods (One vs. One, One vs. Rest) and out-performs them as the size of the data set grows. This approach also classifies the data with higher accuracy than the traditional multi-class algorithms.

Keywords: distributed algorithm, MapReduce, multi-class, support vector machine

Procedia PDF Downloads 401
5175 Development of Optimized Eye Mascara Packages with Bioinspired Spiral Methodology

Authors: Daniela Brioschi, Rovilson Mafalda, Silvia Titotto

Abstract:

In the present days, packages are considered a fundamental element in the commercialization of products and services. A good package is capable of helping to attract new customers and also increasing a product’s purchase intent. In this scenario, packaging design emerges as an important tool, since products and design of their packaging are so interconnected that they are no longer seen as separate elements. Packaging design is, in fact, capable of generating desire for a product. The packaging market for cosmetics, especially makeup market, has also been experiencing an increasing level of sophistication and requirements. Considering packaging represents an important link of communication with the final user and plays a significant role on the sales process, it is of great importance that packages accomplish not only with functional requirements but also with the visual appeal. One of the possibilities for the design of packages and, in this context, packages for make-up, is the bioinspired design – or biomimicry. The bio-inspired design presents a promising paradigm for innovation in both design and sustainable design, by using biological system analogies to develop solutions. It has gained importance as a widely diffused movement in design for environmentally conscious development and is also responsible for several useful and innovative designs. As eye mascara packages are also part of the constant evolution on the design for cosmetics area and the traditional packages present the disadvantage of product drying along time, this project aims to develop a new and innovative package for this product, by using a selected bioinspired design methodology during the development process and also suitable computational tools. In order to guide the development process of the package, it was chosen the spiral methodology, conceived by The Biomimicry Institut, which consists of a reliable tool, since it was based on traditional design methodologies. The spiral design comprises identification, translation, discovery, abstraction, emulation and evaluation steps, that can work iteratively as the process develops as a spiral. As support tool for packaging, 3D modelling is being used by the software Inventor Autodesk Inventor 2018. Although this is an ongoing research, first results showed that spiral methodology design, together with Autodesk Inventor, consist of suitable instruments for the bio-inspired design process, and also nature proved itself to be an amazing and inexhaustible source of inspiration.

Keywords: bio-inspired design, design methodology, packaging, cosmetics

Procedia PDF Downloads 188
5174 A Time-Reducible Approach to Compute Determinant |I-X|

Authors: Wang Xingbo

Abstract:

Computation of determinant in the form |I-X| is primary and fundamental because it can help to compute many other determinants. This article puts forward a time-reducible approach to compute determinant |I-X|. The approach is derived from the Newton’s identity and its time complexity is no more than that to compute the eigenvalues of the square matrix X. Mathematical deductions and numerical example are presented in detail for the approach. By comparison with classical approaches the new approach is proved to be superior to the classical ones and it can naturally reduce the computational time with the improvement of efficiency to compute eigenvalues of the square matrix.

Keywords: algorithm, determinant, computation, eigenvalue, time complexity

Procedia PDF Downloads 415
5173 Neuroevolution Based on Adaptive Ensembles of Biologically Inspired Optimization Algorithms Applied for Modeling a Chemical Engineering Process

Authors: Sabina-Adriana Floria, Marius Gavrilescu, Florin Leon, Silvia Curteanu, Costel Anton

Abstract:

Neuroevolution is a subfield of artificial intelligence used to solve various problems in different application areas. Specifically, neuroevolution is a technique that applies biologically inspired methods to generate neural network architectures and optimize their parameters automatically. In this paper, we use different biologically inspired optimization algorithms in an ensemble strategy with the aim of training multilayer perceptron neural networks, resulting in regression models used to simulate the industrial chemical process of obtaining bricks from silicone-based materials. Installations in the raw ceramics industry, i.e., bricks, are characterized by significant energy consumption and large quantities of emissions. In addition, the initial conditions that were taken into account during the design and commissioning of the installation can change over time, which leads to the need to add new mixes to adjust the operating conditions for the desired purpose, e.g., material properties and energy saving. The present approach follows the study by simulation of a process of obtaining bricks from silicone-based materials, i.e., the modeling and optimization of the process. Optimization aims to determine the working conditions that minimize the emissions represented by nitrogen monoxide. We first use a search procedure to find the best values for the parameters of various biologically inspired optimization algorithms. Then, we propose an adaptive ensemble strategy that uses only a subset of the best algorithms identified in the search stage. The adaptive ensemble strategy combines the results of selected algorithms and automatically assigns more processing capacity to the more efficient algorithms. Their efficiency may also vary at different stages of the optimization process. In a given ensemble iteration, the most efficient algorithms aim to maintain good convergence, while the less efficient algorithms can improve population diversity. The proposed adaptive ensemble strategy outperforms the individual optimizers and the non-adaptive ensemble strategy in convergence speed, and the obtained results provide lower error values.

Keywords: optimization, biologically inspired algorithm, neuroevolution, ensembles, bricks, emission minimization

Procedia PDF Downloads 116
5172 Algorithms Inspired from Human Behavior Applied to Optimization of a Complex Process

Authors: S. Curteanu, F. Leon, M. Gavrilescu, S. A. Floria

Abstract:

Optimization algorithms inspired from human behavior were applied in this approach, associated with neural networks models. The algorithms belong to human behaviors of learning and cooperation and human competitive behavior classes. For the first class, the main strategies include: random learning, individual learning, and social learning, and the selected algorithms are: simplified human learning optimization (SHLO), social learning optimization (SLO), and teaching-learning based optimization (TLBO). For the second class, the concept of learning is associated with competitiveness, and the selected algorithms are sports-inspired algorithms (with Football Game Algorithm, FGA and Volleyball Premier League, VPL) and Imperialist Competitive Algorithm (ICA). A real process, the synthesis of polyacrylamide-based multicomponent hydrogels, where some parameters are difficult to obtain experimentally, is considered as a case study. Reaction yield and swelling degree are predicted as a function of reaction conditions (acrylamide concentration, initiator concentration, crosslinking agent concentration, temperature, reaction time, and amount of inclusion polymer, which could be starch, poly(vinyl alcohol) or gelatin). The experimental results contain 175 data. Artificial neural networks are obtained in optimal form with biologically inspired algorithm; the optimization being perform at two level: structural and parametric. Feedforward neural networks with one or two hidden layers and no more than 25 neurons in intermediate layers were obtained with values of correlation coefficient in the validation phase over 0.90. The best results were obtained with TLBO algorithm, correlation coefficient being 0.94 for an MLP(6:9:20:2) – a feedforward neural network with two hidden layers and 9 and 20, respectively, intermediate neurons. Good results obtained prove the efficiency of the optimization algorithms. More than the good results, what is important in this approach is the simulation methodology, including neural networks and optimization biologically inspired algorithms, which provide satisfactory results. In addition, the methodology developed in this approach is general and has flexibility so that it can be easily adapted to other processes in association with different types of models.

Keywords: artificial neural networks, human behaviors of learning and cooperation, human competitive behavior, optimization algorithms

Procedia PDF Downloads 108
5171 Biologically Inspired Small Infrared Target Detection Using Local Contrast Mechanisms

Authors: Tian Xia, Yuan Yan Tang

Abstract:

In order to obtain higher small target detection accuracy, this paper presents an effective algorithm inspired by the local contrast mechanism. The proposed method can enhance target signal and suppress background clutter simultaneously. In the first stage, a enhanced image is obtained using the proposed Weighted Laplacian of Gaussian. In the second stage, an adaptive threshold is adopted to segment the target. Experimental results on two changeling image sequences show that the proposed method can detect the bright and dark targets simultaneously, and is not sensitive to sea-sky line of the infrared image. So it is fit for IR small infrared target detection.

Keywords: small target detection, local contrast, human vision system, Laplacian of Gaussian

Procedia PDF Downloads 469
5170 Security Threats on Wireless Sensor Network Protocols

Authors: H. Gorine, M. Ramadan Elmezughi

Abstract:

In this paper, we investigate security issues and challenges facing researchers in wireless sensor networks and countermeasures to resolve them. The broadcast nature of wireless communication makes Wireless Sensor Networks prone to various attacks. Due to resources limitation constraint in terms of limited energy, computation power and memory, security in wireless sensor networks creates different challenges than wired network security. We will discuss several attempts at addressing the issues of security in wireless sensor networks in an attempt to encourage more research into this area.

Keywords: wireless sensor networks, network security, light weight encryption, threats

Procedia PDF Downloads 526
5169 Curve Fitting by Cubic Bezier Curves Using Migrating Birds Optimization Algorithm

Authors: Mitat Uysal

Abstract:

A new met heuristic optimization algorithm called as Migrating Birds Optimization is used for curve fitting by rational cubic Bezier Curves. This requires solving a complicated multivariate optimization problem. In this study, the solution of this optimization problem is achieved by Migrating Birds Optimization algorithm that is a powerful met heuristic nature-inspired algorithm well appropriate for optimization. The results of this study show that the proposed method performs very well and being able to fit the data points to cubic Bezier Curves with a high degree of accuracy.

Keywords: algorithms, Bezier curves, heuristic optimization, migrating birds optimization

Procedia PDF Downloads 337
5168 Into the Dreamweaver’s World of the Mandaya and the Tboli: From Folklore to the Woven Fabric

Authors: Genevieve Jorolan Quintero

Abstract:

In Mindanao, the southern island of the Philippines, two provinces, Davao Oriental and Tboli of South Cotabato, respectively, are homes to indigenous communities known for their dream weavers. Davao Oriental is home to the Mandaya, while Lake Sebu is home to the Tboli. The dream weavers are mostly women who have continued the tradition of weaving, a spiritual practice of handicraft embodying the beliefs of the community. It is believed that a weaver is guided by the Tagamaling, or the nature spirit in Mandaya mythology, and Fu Dalu, or the spirit of the abaca among the Tboli. In the dream, the Tagamaling or Fu Dalu reveals to the weaver the design or the pattern of the dagmay as the abaca woven cloth is called among the Mandaya and the tnalak among the Tboli. The weaver then undertakes the production of this nature-spirit-inspired fabric based on her memory of the dream. This interaction between the spirit world and the human world inspired the theme of the short story with the title Loom of Dreams, published in 2015 by Kritika Kultura, an international peer-reviewed journal of language and literary/cultural studies of the Ateneo de Manila University in the Philippines. In Lake Sebu, a collection of the legendary tnalak with various designs is preserved by the cultural advocate and tnalak collector Reden S. Ulo. About a hundred tnalak designs are housed in a mini museum. The paper discusses how the dagmay and the tnalak of the two Philippine indigenous communities, the Mandaya and the Tboli, embody their folklore and cultural heritage. The specific objectives are: 1. To describe the role of the dreamweavers among the Mandaya and Tboli communities in the Philippines; 2. To analyse how folklore influences the designs on the woven fabric, the dagmay, and the tnalak, and 3. To discuss how dream-weaving helps preserve culture legacy. Ethnography was used in the conduct of this research. Specifically, the following data collection methods were done: 1. a series of visits to the Mandaya and Tboli communities; 2. face-to-face interviews with the respondents from the communities, and 3. the recording of the interviews with the knowledge-bearers and material culture keepers from both communities, the narratives of which were used as a basis for the data analysis. The influence of folklore in the culture and the arts of the indigenous communities is significantly evident in the designs of the dagmay and the tnalak. As the dream weavers continue to weave the dagmay and the tnalak, this cultural legacy will continue to prosper and be preserved for posterity.

Keywords: dreamweaver's, Mandaya, mindanao, Philippine folklore, Tboli

Procedia PDF Downloads 100
5167 Detection of Autistic Children's Voice Based on Artificial Neural Network

Authors: Royan Dawud Aldian, Endah Purwanti, Soegianto Soelistiono

Abstract:

In this research we have been developed an automatic investigation to classify normal children voice or autistic by using modern computation technology that is computation based on artificial neural network. The superiority of this computation technology is its capability on processing and saving data. In this research, digital voice features are gotten from the coefficient of linear-predictive coding with auto-correlation method and have been transformed in frequency domain using fast fourier transform, which used as input of artificial neural network in back-propagation method so that will make the difference between normal children and autistic automatically. The result of back-propagation method shows that successful classification capability for normal children voice experiment data is 100% whereas, for autistic children voice experiment data is 100%. The success rate using back-propagation classification system for the entire test data is 100%.

Keywords: autism, artificial neural network, backpropagation, linier predictive coding, fast fourier transform

Procedia PDF Downloads 461
5166 Mental Health Clinicians’ Perceptions of Nature-Based Interventions Within Community Mental Health Services: Evidence from Australia

Authors: Rachel Tambyah, Katarzyna Olcoń, Julaine Allan, Pete Destry, Thomas Astell-Burt

Abstract:

The rising social and financial burden of mental illness indicates an urgent need to explore interventions that can be used as well as or instead of traditional treatments. Although there is growing evidence of the positive mental health outcomes of spending time in nature, the implementation of nature-based interventions (NBIs) within mental health services remains minimal. Based on interviews with mental health clinicians in Australia, this study demonstrated that clinicians supported the use of NBIs and would promote them to their clients.

Keywords: nature, nature-based interventions, mental health, mental health services, mental health clinicians

Procedia PDF Downloads 149
5165 A Comparison of Methods for Neural Network Aggregation

Authors: John Pomerat, Aviv Segev

Abstract:

Recently, deep learning has had many theoretical breakthroughs. For deep learning to be successful in the industry, however, there need to be practical algorithms capable of handling many real-world hiccups preventing the immediate application of a learning algorithm. Although AI promises to revolutionize the healthcare industry, getting access to patient data in order to train learning algorithms has not been easy. One proposed solution to this is data- sharing. In this paper, we propose an alternative protocol, based on multi-party computation, to train deep learning models while maintaining both the privacy and security of training data. We examine three methods of training neural networks in this way: Transfer learning, average ensemble learning, and series network learning. We compare these methods to the equivalent model obtained through data-sharing across two different experiments. Additionally, we address the security concerns of this protocol. While the motivating example is healthcare, our findings regarding multi-party computation of neural network training are purely theoretical and have use-cases outside the domain of healthcare.

Keywords: neural network aggregation, multi-party computation, transfer learning, average ensemble learning

Procedia PDF Downloads 162
5164 Visual, Zoological Metaphors and 'Urtiin Duu' (Long Song) in Alshaa, Inner Mongolia

Authors: Oyuna Weina

Abstract:

This study examines how musicians use visual and zoological metaphors for singing technique and voice quality in a genre of traditional music called urtiin duu (‘long song’) in Alshaa, Inner Mongolia, China. Previous studies have discussed melodic contour in Mongol music, but little study of the intersection of singing technique, visual and zoological metaphors has yet been undertaken. The purpose of this study is to address this lack by analysing urtiin duu itself, traditional pedagogy and performances, all of which have been inspired and are assessed by reference to nature and mobile pastoral herding practices. This study investigates the visual and zoological metaphors related to urtiin duu especially colour, the shape of the circle and animals in the Mongol community. Urtiin duu singing is associated with certain colours in song texts, in selection of repertoire and in the status of singers. Musicians also use colour to describe timbre. These colours in turn reference worship of nature, religions, and daily practices of most Mongols in Alshaa. Moreover, voice quality and singing technique are often related to the animals not only in song text but also in the approach to breathing and to melodic contour. Additionally, the concept of boronhoi (‘the shape of circle’), not only is applied to the melodic contour but also to the voice quality and singing technique. These three factors illustrate the connections among nature, spiritual world and everyday herding life of Mongols. These different connections provide evidence of multi-layered meanings. In contemporary Alshaa, urtiin duu singers received Western musical training from the city and returned to their homelands to perform urtiin duu. In doing so, they are also trying to reconnect with the history, nature and spiritual world in order to achieve their ideal sound. Within a multicultural society, singers negotiate amongst themselves, and with ethnic groups, audiences and government officials. The power of the metaphor therefore assists and reconnects the strength of regional identity and ethnic identity in Alshaa.

Keywords: Alshaa, urtiin duu, visual, zoological metaphors

Procedia PDF Downloads 364
5163 A Posteriori Trading-Inspired Model-Free Time Series Segmentation

Authors: Plessen Mogens Graf

Abstract:

Within the context of multivariate time series segmentation, this paper proposes a method inspired by a posteriori optimal trading. After a normalization step, time series are treated channelwise as surrogate stock prices that can be traded optimally a posteriori in a virtual portfolio holding either stock or cash. Linear transaction costs are interpreted as hyperparameters for noise filtering. Trading signals, as well as trading signals obtained on the reversed time series, are used for unsupervised channelwise labeling before a consensus over all channels is reached that determines the final segmentation time instants. The method is model-free such that no model prescriptions for segments are made. Benefits of proposed approach include simplicity, computational efficiency, and adaptability to a wide range of different shapes of time series. Performance is demonstrated on synthetic and real-world data, including a large-scale dataset comprising a multivariate time series of dimension 1000 and length 2709. Proposed method is compared to a popular model-based bottom-up approach fitting piecewise affine models and to a recent model-based top-down approach fitting Gaussian models and found to be consistently faster while producing more intuitive results in the sense of segmenting time series at peaks and valleys.

Keywords: time series segmentation, model-free, trading-inspired, multivariate data

Procedia PDF Downloads 136
5162 Innovative Handloom Design Techniques- an Experimental Study Based on Primary Colour Gradation

Authors: Akanksha Pareek

Abstract:

The Indian Handloom clusters are known for its tradition and heritage of excellent craftsmanship. The design development of Indian handloom clusters are oriented on traditionally dobby and jacquard design. This comprehensive paper proposes practises on handloom woven design based on primary colour gradation with the help of basic weaved on four shaft. The innovative design ideas are inspired from Nature and transferred into the handloom samples to achieve colour gradation with primary colours. In this paper, design methodology where in woven samples are strategically designed in such way that traditional knowledge of the weavers will be oriented to leveraged their skills.

Keywords: handloom, weaving, colour gradation, shaft

Procedia PDF Downloads 617
5161 Optimal Tuning of a Fuzzy Immune PID Parameters to Control a Delayed System

Authors: S. Gherbi, F. Bouchareb

Abstract:

This paper deals with the novel intelligent bio-inspired control strategies, it presents a novel approach based on an optimal fuzzy immune PID parameters tuning, it is a combination of a PID controller, inspired by the human immune mechanism with fuzzy logic. Such controller offers more possibilities to deal with the delayed systems control difficulties due to the delay term. Indeed, we use an optimization approach to tune the four parameters of the controller in addition to the fuzzy function; the obtained controller is implemented in a modified Smith predictor structure, which is well known that it is the most efficient to the control of delayed systems. The application of the presented approach to control a three tank delay system shows good performances and proves the efficiency of the method.

Keywords: delayed systems, fuzzy immune PID, optimization, Smith predictor

Procedia PDF Downloads 433
5160 Using Personalized Spiking Neural Networks, Distinct Techniques for Self-Governing

Authors: Brwa Abdulrahman Abubaker

Abstract:

Recently, there has been a lot of interest in the difficult task of applying reinforcement learning to autonomous mobile robots. Conventional reinforcement learning (TRL) techniques have many drawbacks, such as lengthy computation times, intricate control frameworks, a great deal of trial and error searching, and sluggish convergence. In this paper, a modified Spiking Neural Network (SNN) is used to offer a distinct method for autonomous mobile robot learning and control in unexpected surroundings. As a learning algorithm, the suggested model combines dopamine modulation with spike-timing-dependent plasticity (STDP). In order to create more computationally efficient, biologically inspired control systems that are adaptable to changing settings, this work uses the effective and physiologically credible Izhikevich neuron model. This study is primarily focused on creating an algorithm for target tracking in the presence of obstacles. Results show that the SNN trained with three obstacles yielded an impressive 96% success rate for our proposal, with collisions happening in about 4% of the 214 simulated seconds.

Keywords: spiking neural network, spike-timing-dependent plasticity, dopamine modulation, reinforcement learning

Procedia PDF Downloads 21
5159 Graphic Procession Unit-Based Parallel Processing for Inverse Computation of Full-Field Material Properties Based on Quantitative Laser Ultrasound Visualization

Authors: Sheng-Po Tseng, Che-Hua Yang

Abstract:

Motivation and Objective: Ultrasonic guided waves become an important tool for nondestructive evaluation of structures and components. Guided waves are used for the purpose of identifying defects or evaluating material properties in a nondestructive way. While guided waves are applied for evaluating material properties, instead of knowing the properties directly, preliminary signals such as time domain signals or frequency domain spectra are first revealed. With the measured ultrasound data, inversion calculation can be further employed to obtain the desired mechanical properties. Methods: This research is development of high speed inversion calculation technique for obtaining full-field mechanical properties from the quantitative laser ultrasound visualization system (QLUVS). The quantitative laser ultrasound visualization system (QLUVS) employs a mirror-controlled scanning pulsed laser to generate guided acoustic waves traveling in a two-dimensional target. Guided waves are detected with a piezoelectric transducer located at a fixed location. With a gyro-scanning of the generation source, the QLUVS has the advantage of fast, full-field, and quantitative inspection. Results and Discussions: This research introduces two important tools to improve the computation efficiency. Firstly, graphic procession unit (GPU) with large amount of cores are introduced. Furthermore, combining the CPU and GPU cores, parallel procession scheme is developed for the inversion of full-field mechanical properties based on the QLUVS data. The newly developed inversion scheme is applied to investigate the computation efficiency for single-layered and double-layered plate-like samples. The computation efficiency is shown to be 80 times faster than unparalleled computation scheme. Conclusions: This research demonstrates a high-speed inversion technique for the characterization of full-field material properties based on quantitative laser ultrasound visualization system. Significant computation efficiency is shown, however not reaching the limit yet. Further improvement can be reached by improving the parallel computation. Utilizing the development of the full-field mechanical property inspection technology, full-field mechanical property measured by non-destructive, high-speed and high-precision measurements can be obtained in qualitative and quantitative results. The developed high speed computation scheme is ready for applications where full-field mechanical properties are needed in a nondestructive and nearly real-time way.

Keywords: guided waves, material characterization, nondestructive evaluation, parallel processing

Procedia PDF Downloads 202
5158 Speed up Vector Median Filtering by Quasi Euclidean Norm

Authors: Vinai K. Singh

Abstract:

For reducing impulsive noise without degrading image contours, median filtering is a powerful tool. In multiband images as for example colour images or vector fields obtained by optic flow computation, a vector median filter can be used. Vector median filters are defined on the basis of a suitable distance, the best performing distance being the Euclidean. Euclidean distance is evaluated by using the Euclidean norms which is quite demanding from the point of view of computation given that a square root is required. In this paper an optimal piece-wise linear approximation of the Euclidean norm is presented which is applied to vector median filtering.

Keywords: euclidean norm, quasi euclidean norm, vector median filtering, applied mathematics

Procedia PDF Downloads 474
5157 Cloud-Based Mobile-to-Mobile Computation Offloading

Authors: Ebrahim Alrashed, Yousef Rafique

Abstract:

Mobile devices have drastically changed the way we do things on the move. They are being extremely relied on to perform tasks that are analogous to desktop computer capability. There has been a rapid increase of computational power on these devices; however, battery technology is still the bottleneck of evolution. The primary modern approach day approach to tackle this issue is offloading computation to the cloud, proving to be latency expensive and requiring high network bandwidth. In this paper, we explore efforts to perform barter-based mobile-to-mobile offloading. We present define a protocol and present an architecture to facilitate the development of such a system. We further highlight the deployment and security challenges.

Keywords: computational offloading, power conservation, cloud, sandboxing

Procedia PDF Downloads 388
5156 Conceptualizing a Biomimetic Fablab Based on the Makerspace Concept and Biomimetics Design Research

Authors: Petra Gruber, Ariana Rupp, Peter Niewiarowski

Abstract:

This paper presents a concept for a biomimetic fablab as a physical space for education, research and development of innovation inspired by nature. Biomimetics as a discipline finds increasing recognition in academia and has started to be institutionalized at universities in programs and centers. The Biomimicry Research and Innovation Center was founded in 2012 at the University of Akron as an interdisciplinary venture for the advancement of innovation inspired by nature and is part of a larger community fostering the approach of bioimimicry in the Great Lakes region of the US. With 30 faculty members the center has representatives from Colleges of Arts and Sciences (e.g., biology, chemistry, geoscience, and philosophy) Engineering (e.g., mechanical, civil, and biomedical), Polymer Science, and Myers School of Arts. A platform for training PhDs in Biomimicry (17 students currently enrolled) is co-funded by educational institutions and industry partners. Research at the center touches on many areas but is also currently biased towards materials and structures, with highlights being materials based on principles found in spider silk and gecko attachment mechanisms. As biomimetics is also a novel scientific discipline, there is little standardisation in programming and the equipment of research facilities. As a field targeting innovation, design and prototyping processes are fundamental parts of the developments. For experimental design and prototyping, MIT's maker space concept seems to fit well to the requirements, but facilities need to be more specialised in terms of accessing biological systems and knowledge, specific research, production or conservation requirements. For the education and research facility BRIC we conceptualize the concept of a biomimicry fablab, that ties into the existing maker space concept and creates the setting for interdisciplinary research and development carried out in the program. The concept takes on the process of biomimetics as a guideline to define core activities that shall be enhanced by the allocation of specific spaces and tools. The limitations of such a facility and the intersections to further specialised labs housed in the classical departments are of special interest. As a preliminary proof of concept two biomimetic design courses carried out in 2016 are investigated in terms of needed tools and infrastructure. The spring course was a problem based biomimetic design challenge in collaboration with an innovation company interested in product design for assisted living and medical devices. The fall course was a solution based biomimetic design course focusing on order and hierarchy in nature with the goal of finding meaningful translations into art and technology. The paper describes the background of the BRIC center, identifies and discusses the process of biomimetics, evaluates the classical maker space concept and explores how these elements can shape the proposed research facility of a biomimetic fablab by examining two examples of design courses held in 2016.

Keywords: biomimetics, biomimicry, design, biomimetic fablab

Procedia PDF Downloads 295
5155 Bio-Inspired Information Complexity Management: From Ant Colony to Construction Firm

Authors: Hamza Saeed, Khurram Iqbal Ahmad Khan

Abstract:

Effective information management is crucial for any construction project and its success. Primary areas of information generation are either the construction site or the design office. There are different types of information required at different stages of construction involving various stakeholders creating complexity. There is a need for effective management of information flows to reduce uncertainty creating complexity. Nature provides a unique perspective in terms of dealing with complexity, in particular, information complexity. System dynamics methodology provides tools and techniques to address complexity. It involves modeling and simulation techniques that help address complexity. Nature has been dealing with complex systems since its creation 4.5 billion years ago. It has perfected its system by evolution, resilience towards sudden changes, and extinction of unadaptable and outdated species that are no longer fit for the environment. Nature has been accommodating the changing factors and handling complexity forever. Humans have started to look at their natural counterparts for inspiration and solutions for their problems. This brings forth the possibility of using a biomimetics approach to improve the management practices used in the construction sector. Ants inhabit different habitats. Cataglyphis and Pogonomyrmex live in deserts, Leafcutter ants reside in rainforests, and Pharaoh ants are native to urban developments of tropical areas. Detailed studies have been done on fifty species out of fourteen thousand discovered. They provide the opportunity to study the interactions in diverse environments to generate collective behavior. Animals evolve to better adapt to their environment. The collective behavior of ants emerges from feedback through interactions among individuals, based on a combination of three basic factors: The patchiness of resources in time and space, operating cost, environmental stability, and the threat of rupture. If resources appear in patches through time and space, the response is accelerating and non-linear, and if resources are scattered, the response follows a linear pattern. If the acquisition of energy through food is faster than energy spent to get it, the default is to continue with an activity unless it is halted for some reason. If the energy spent is rather higher than getting it, the default changes to stay put unless activated. Finally, if the environment is stable and the threat of rupture is low, the activation and amplification rate is slow but steady. Otherwise, it is fast and sporadic. To further study the effects and to eliminate the environmental bias, the behavior of four different ant species were studied, namely Red Harvester ants (Pogonomyrmex Barbatus), Argentine ants (Linepithema Humile), Turtle ants (Cephalotes Goniodontus), Leafcutter ants (Genus: Atta). This study aims to improve the information system in the construction sector by providing a guideline inspired by nature with a systems-thinking approach, using system dynamics as a tool. Identified factors and their interdependencies were analyzed in the form of a causal loop diagram (CLD), and construction industry professionals were interviewed based on the developed CLD, which was validated with significance response. These factors and interdependencies in the natural system corresponds with the man-made systems, providing a guideline for effective use and flow of information.

Keywords: biomimetics, complex systems, construction management, information management, system dynamics

Procedia PDF Downloads 137
5154 Programming with Grammars

Authors: Peter M. Maurer Maurer

Abstract:

DGL is a context free grammar-based tool for generating random data. Many types of simulator input data require some computation to be placed in the proper format. For example, it might be necessary to generate ordered triples in which the third element is the sum of the first two elements, or it might be necessary to generate random numbers in some sorted order. Although DGL is universal in computational power, generating these types of data is extremely difficult. To overcome this problem, we have enhanced DGL to include features that permit direct computation within the structure of a context free grammar. The features have been implemented as special types of productions, preserving the context free flavor of DGL specifications.

Keywords: DGL, Enhanced Context Free Grammars, Programming Constructs, Random Data Generation

Procedia PDF Downloads 147
5153 Algorithms for Fast Computation of Pan Matrix Profiles of Time Series Under Unnormalized Euclidean Distances

Authors: Jing Zhang, Daniel Nikovski

Abstract:

We propose an approximation algorithm called LINKUMP to compute the Pan Matrix Profile (PMP) under the unnormalized l∞ distance (useful for value-based similarity search) using double-ended queue and linear interpolation. The algorithm has comparable time/space complexities as the state-of-the-art algorithm for typical PMP computation under the normalized l₂ distance (useful for shape-based similarity search). We validate its efficiency and effectiveness through extensive numerical experiments and a real-world anomaly detection application.

Keywords: pan matrix profile, unnormalized euclidean distance, double-ended queue, discord discovery, anomaly detection

Procedia PDF Downloads 247