Search results for: heart rate index
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11836

Search results for: heart rate index

11776 Chest Pain as a Predictor for Heart Issues in Geriatrics

Authors: Leila Kargar, Homa Abri, Golsa Safai

Abstract:

The occurrence of chest pain among geriatrics could be considered as a predictor of heart issues. There is a need for attention to this pain among this population. This review paper has tried to collect the recent data with attention to the chest pain among geriatrics. This review paper has focused on specific keywords, including chest pain, heart issues, and geriatrics, among published papers from 2015 till 2020. To collect data for this purpose, Scopus, Web of Sciences, and PubMed were used. After inserting related papers to the Endnote, an independent researcher checked the abstract, and papers with unclear methods or non-English language were excluded. Finally, 7-papers were included in this review paper. The findings of those papers showed that chest pain could be a predictor for heart issues, and also, there is a direct relationship between chest pain and heart issues among geriatrics. So, early detection and an accurate decision could be helpful to prevent heart issues in this population.

Keywords: pain, heart issue, geriatrics, health

Procedia PDF Downloads 218
11775 Assisted Prediction of Hypertension Based on Heart Rate Variability and Improved Residual Networks

Authors: Yong Zhao, Jian He, Cheng Zhang

Abstract:

Cardiovascular diseases caused by hypertension are extremely threatening to human health, and early diagnosis of hypertension can save a large number of lives. Traditional hypertension detection methods require special equipment and are difficult to detect continuous blood pressure changes. In this regard, this paper first analyzes the principle of heart rate variability (HRV) and introduces sliding window and power spectral density (PSD) to analyze the time domain features and frequency domain features of HRV, and secondly, designs an HRV-based hypertension prediction network by combining Resnet, attention mechanism, and multilayer perceptron, which extracts the frequency domain through the improved ResNet18 features through a modified ResNet18, its fusion with time-domain features through an attention mechanism, and the auxiliary prediction of hypertension through a multilayer perceptron. Finally, the network was trained and tested using the publicly available SHAREE dataset on PhysioNet, and the test results showed that this network achieved 92.06% prediction accuracy for hypertension and outperformed K Near Neighbor(KNN), Bayes, Logistic, and traditional Convolutional Neural Network(CNN) models in prediction performance.

Keywords: feature extraction, heart rate variability, hypertension, residual networks

Procedia PDF Downloads 105
11774 The Survey of Relationship between Health Literacy and Knowledge of Heart Failure with Rehospitalization in Patients with Heart Failure Admitted to Heart Failure Clinic

Authors: Jaleh Mohammad Aliha, Rezvan Razazi, Nasim Naderi

Abstract:

Introduction: Despite the progress in new effective drugs in the treatment of heart failure, the disease still accompanied with frequent hospitalization, impaired quality of life, early mortality and significant economic burden. Patients with chronic disease and consequently patients with heart failure need the knowledge and optimal health literacy to improve the quality of life and minimize the rate of rehopitalizatio. So, considering to importance of knowledge and health literacy in this patients as well as contradictory literature, this study conducted to investigate the relationship between health literacy and Knowledge of heart failure with rehospitalization in patients with heart failure admitted to heart failure clinic in Rajai Heart center in 1394. Methods: The cross-sectional method with convenience sampling method was used in this study. After obtaining the necessary permissions from the ethics committee and the Shahid Rajai Heart center, 238 patients who were older than 18 years and had ejection fraction 35% or less with the ability to read and write and lack of psychiatric, neurological and cognitive disorders and signed the informed consent were recruited. Data collection were perfomed through demographic data questionnaire, short standard health literacy questionnaire 'Short-TOFHLA-16' and Vanderwall (2005) knowledge of heart failure questionnaire. Reliability was assessed by internal consistency method and Cronbach's alpha for both questionnaires was more than 0.7. Then data were analysed by SPSS-20 with descriptive statistic and analytical statistic such as T-test, Chi-square and ANOVA. Results: The majority of patients were male (66%), married (80%) and had age between 50 to 70 years old (42%). The majority of studied men and women have good health literacy and About half of them have adequate knowledge about heart failure. Fisher's exact test showed that there was a significant statistical correlation between health literacy and knowlegh about heart failure. In other words, higher health literacy associated with more knowledge about their condition. Also findings showed that there was no significant statistical correlation between health literacy and knowledge about heart failure and frequency of CCU and emergency admissions. Conclusion: The study results showed that the higher health literacy, associated with the greater knowledge about heart failure and patients' perception about caring recommendations and disease outcomes. Therefore, the knowledge about heart failure and factors which related to severity of the disease, is the important issue to problem identification and treatment and reduction of rehospitalization.

Keywords: health literacy, heart failure, knowlegde, rehospitalization

Procedia PDF Downloads 401
11773 Slovenia in the Heart of Europe

Authors: M. Žibert, T. Špindler, S. Uhan, A. Lisec

Abstract:

We can find Slovenia in the heart of Europe and has really good geographical location. With same slogan are promoted Switzerland, Montenegro, Greece and probably many others. However, from anatomic point of view, injustice is being made to someone because the heart is placed only in left part of chest cavity and there we can`t find place for the entire territory from Switzerland to the south of Balkan.

Keywords: Ljubljana, logistics, Slovenia, tourism

Procedia PDF Downloads 374
11772 Automated Classification of Hypoxia from Fetal Heart Rate Using Advanced Data Models of Intrapartum Cardiotocography

Authors: Malarvizhi Selvaraj, Paul Fergus, Andy Shaw

Abstract:

Uterine contractions produced during labour have the potential to damage the foetus by diminishing the maternal blood flow to the placenta. In order to observe this phenomenon labour and delivery are routinely monitored using cardiotocography monitors. An obstetrician usually makes the diagnosis of foetus hypoxia by interpreting cardiotocography recordings. However, cardiotocography capture and interpretation is time-consuming and subjective, often lead to misclassification that causes damage to the foetus and unnecessary caesarean section. Both of these have a high impact on the foetus and the cost to the national healthcare services. Automatic detection of foetal heart rate may be an objective solution to help to reduce unnecessary medical interventions, as reported in several studies. This paper aim is to provide a system for better identification and interpretation of abnormalities of the fetal heart rate using RStudio. An open dataset of 552 Intrapartum recordings has been filtered with 0.034 Hz filters in an attempt to remove noise while keeping as much of the discriminative data as possible. Features were chosen following an extensive literature review, which concluded with FIGO features such as acceleration, deceleration, mean, variance and standard derivation. The five features were extracted from 552 recordings. Using these features, recordings will be classified either normal or abnormal. If the recording is abnormal, it has got more chances of hypoxia.

Keywords: cardiotocography, foetus, intrapartum, hypoxia

Procedia PDF Downloads 216
11771 Coconut Shells as the Alternative Equipment for Foot Reflexology

Authors: Nichanant Sermsri, Chananchida Yuktirat

Abstract:

This research was the experimental research. Its purpose was to find out how coconut shells can be adapted to be equipment for foot and calf reflexology. The sample group was 58 female street vendors in Thewet Market, Dusit District, Bangkok, selected by selection criteria and voluntary. The data collecting tool in this research was the Visual Analogue Scale. The massaging tool made from coconut shells (designed and produced by the research team) was the key equipment for this research. The duration of the research was 1 month. The research team assessed the level of exhaustion and heart rate among sample group before and after the massage, then analyzed the data by mean, standard deviation and paired sample t-test. We found out from the research that 1) The level of exhaustion decreased 4.529 levels after the massage. The standard deviation was 1.6195. The heart rates went down 11.67 times/minute. The standard deviation was 6.742. 2) The level of exhaustion and heart rate after the massage decreased with the statistically significance at 0.01.

Keywords: foot reflexology, massaging plate, coconut shells, ecological sciences

Procedia PDF Downloads 186
11770 The Role of Clinical Pharmacist Intervention in Collaborative Drug Therapy Management to Improve Outcomes and Decrease Hospitalization in Heart Failure Clinic

Authors: Sanaa Mekdad, Leenah Alsayed

Abstract:

Pharmacists play an important role in the CDTM in the care of patients with heart failure (HF). CDTM allows specialized, dedicated clinical pharmacists in a formal agreement in collaborative practice with physicians. Thus, the aim of this study is to investigate the role of cardiology clinical pharmacists in CDTM in decreasing hospitalization and cost. We studied patients with left ventricular systolic dysfunction in a cluster-randomized selection in a tertiary care center. We allocated 296 patients to pharmacist intervention from 1480 patients. Results: With an acceptance rate of 86%, we documented 696 interventions carried out by clinical pharmacists in cardiology. The average intervention was 2.4 patients, and the admission after interventions decreased from 0.79 to. 0.24 (p value = 0.001). Conclusions: In HF CDTM, clinical pharmacists play a crucial role in enhancing medication management, patient education, and lifestyle modification of patients with chronic heart failure. These efforts improve patients' outcomes and lower costs by reducing hospitalization and other associated expenses.

Keywords: cardiology, medication management, heart failure, outpatient therapy, pharmacist-based services, chronic heart failure, heart failure recommendations, CDTM, Middle East, pharmacist-based services, quality of life, pharmacist

Procedia PDF Downloads 69
11769 Determination of Myocardial Function Using Heart Accumulated Radiopharmaceuticals

Authors: C. C .D. Kulathilake, M. Jayatilake, T. Takahashi

Abstract:

The myocardium is composed of specialized muscle which relies mainly on fatty acid and sugar metabolism and it is widely contribute to the heart functioning. The changes of the cardiac energy-producing system during heart failure have been proved using autoradiography techniques. This study focused on evaluating sugar and fatty acid metabolism in myocardium as cardiac energy getting system using heart-accumulated radiopharmaceuticals. Two sets of autoradiographs of heart cross sections of Lewis male rats were analyzed and the time- accumulation curve obtained with use of the MATLAB image processing software to evaluate fatty acid and sugar metabolic functions.

Keywords: autoradiographs, fatty acid, radiopharmaceuticals, sugar

Procedia PDF Downloads 450
11768 The Use of Biofeedback to Increase Resilience and Mental Health of Supersonic Pilots

Authors: G. Kloudova, S. Kozlova, M. Stehlik

Abstract:

Pilots are operating in a high-risk environment rich in potential stressors, which negatively affect aviation safety and the mental health of pilots. In the research conducted, the pilots were offered mental training biofeedback therapy. Biofeedback is an objective tool to measure physiological responses to stress. After only six sessions, all of the pilots tested showed significant differences between their initial condition and their condition after therapy. The biggest improvement was found in decreased heart rate (in 83.3% of tested pilots) and respiration rate (66.7%), which are the best indicators of anxiety states and panic attacks. To incorporate all of the variables, we correlated the measured physiological state of the pilots with their personality traits. Surprisingly, we found a high correlation with peripheral temperature and confidence (0.98) and with heart rate and aggressiveness (0.97). A retest made after a one-year interval showed that in majority of the subjects tested their acquired self-regulation ability had been internalized.

Keywords: aviation, biofeedback, mental workload, performance psychology

Procedia PDF Downloads 248
11767 Behavior of Iran Stock Exchange and Impacts of US Oil and Financial Markets

Authors: Erfan Memarian, Seyyed Fazayel Alizadeh

Abstract:

This study aims to evaluate the impacts of the oil and financial markets of the United States on Iran stock exchange and to develop an ARDL model to predict the short and long-term relationship between these markets. In this regard, all 713 weekly data between 28 July 1999 and 20 March 2013 were analyzed by using Microfit4.0 and Eviews7 econometric softwares. The independent variable of the study is the “Price and Yield Index (TEDPIX)” of Tehran Stock Exchange and the independent variables include S & P 500 Index, the US three-month treasury bill rate and West Texas Intermediate oil spot price index. The results show that the West Texas Intermediate oil spot price and the S&P 500 indices have significant positive relationships with Iran's TEDPIX. Also, there exists a significant negative relationship between Iran's TEDPIX and the US three-month Treasury bill rate.

Keywords: TEDPIX; Tehran Stock Exchange; S&P 500 index; USA three-month Treasury bill rate; West Texas Intermediate oil

Procedia PDF Downloads 324
11766 Gross Morphological Study on Heart of Yellow Bellied Sea Snake

Authors: Jonnalagadda Naveen, M. P. S. Tomar, Putluru Satish, Palanisamy Dharani

Abstract:

Present investigation was carried out on a single specimen of the heart of yellow-bellied sea snake, which accidentally came to the seashore with the fisherman’s net. After the death, these specimens was preserved in 10% neutral buffered formalin and observe for its morphology. The literature cited revealed that meager information was available on the anatomy of the heart of this species of snake thus present study was planned on the gross anatomy of the heart of yellow-bellied sea snake. The heart of yellow-bellied sea snake was located between 28-35th rib in an oblique direction in the pericardial sac. It was three chambered with the complete division of atria but the ventricular cavity was incompletely divided. The apex did not show any gubernaculum cordis. The sinus venosus was the common cavity for confluence of anterior and posterior vana cava and the jugular vein was opened with anterior vena cava. The opening of posterior vena cava was slit-like and it was guarded by membranous valves whereas no valve could be observed at the opening of anterior vana cava and the jugular vein. Both the caval veins ran along the right border of the heart. Pulmonary vein was single which later divided into two branches. The length-width index for the atria was 1.33 whereas it was 1.67 for the ventricle. The atrioventricular canal was situated slightly towards the left of the midline of the heart and was divided into a right cavum pulmonale and left cavum arteriosum of which the right one was slightly larger and longer than the left. The cavum venosum was present in between the cavum pulmonale and the cavum arteriosum. The Ventricle was elongated triangle muscular compartment with ventrally located apex. Internally the cavity of ventricle was divided into two partial chambers dorsally by a muscular ridge and ventrally by an incomplete inter ventricular septum.

Keywords: aorta, atrium, heart, sea snake, sinus venosus, ventricle

Procedia PDF Downloads 206
11765 Synthesis of New Analogs of IPS-339, and Study of Their Cardiovascular in Dogs

Authors: Elham Zarenezhad, Ali Zarenezhad, Mehdi Mardkhoshnood

Abstract:

We described the synthesis and biological study of O-oxime ethers having a-amino acid residues as new analogs of IPS-339. In this synthesis, the reaction of fluorene O-oxime with epichlorohydrin or epibromohydrin afforded the corresponding O-oxime ether adducts. The N-alkylation of valine amino acid with O-oxime ether adducts led to the synthesis of new analogs of IPS-339. The cardiovascular properties of the compound have been studied. In this regard, six clinically healthy same sex mongrel dogs were examined. The dogs were randomly divided into 3 groups of two members. 1 groups received 2 mg kg-1 body weight of compound (2-(3-(9H-fluoren-9-ylideneaminooxy)-2- hydroxypropylamino)-3-methylbutanoic acid) intravenously, whereas group 2 and 3 received only DMSO–water (distil.) and propranolol (Inderal) (2 mg kg-1), respectively. The electrocardiograph (ECG) was recorded with lead II. The recording was run successively by 5 min time interval on each dog before, simultaneously, and after compound infusion. Data after administration were taken from normal sinus beats that were closely related to the arrhythmias whenever they occurred. In general, no detectable arrhythmia was observed in all ECG records regardless of increasing the heart rate that likely caused by stress origin from invasive procedure just after infusion. Compound diminished the heart rate during study especially at 20th minute compared to propranolol as a reference drug. Compound (2-(3-(9H-fluoren-9-ylideneaminooxy)-2- hydroxypropylamino)-3-methylbutanoic acid) was the most effective compound with remarkable ability in declining of the heart rate.

Keywords: electrocardiograph (ECG), cardiovascular, IPS-339, dogs

Procedia PDF Downloads 346
11764 Cardio Autonomic Response during Mental Stress in the Wards of Normal and Hypertensive Parents

Authors: Sheila R. Pai, Rekha D. Kini, Amrutha Mary

Abstract:

Objective: To assess and compare the cardiac autonomic activity after mental stress among the wards of normal and hypertensive parents. Methods: The study included 67 subjects, 30 of them had a parental history of hypertension and rest 37 had normotensive parents. Subjects were divided into control group (wards of normotensive parents) and Study group (wards of hypertensive parents). The height, weight were noted, and Body Mass Index (BMI) was also calculated. The mental stress test was carried out. Blood pressure (BP) and electro cardiogram (ECG) was recorded during normal breathing and after mental stress test. Heart rate variability (HRV) analysis was done by time domain method HRV was recorded and analyzed by the time-domain method. Analysis of HRV in the time-domain was done using the software version 1.1 AIIMS, New Delhi. The data obtained was analyzed using student’s t-test followed by Mann-Whitney U-test and P < 0.05 was considered significant. Results: There was no significant difference in systolic blood pressure and diastolic blood pressure (DBP) between study group and control group following mental stress. In the time domain analysis, the mean value of pNN50 and RMSSD of the study group was not significantly different from the control group after the mental stress test. Conclusion: The study thus concluded that there was no significant difference in HRV between study group and control group following mental stress.

Keywords: heart rate variability, time domain analysis, mental stress, hypertensive

Procedia PDF Downloads 273
11763 Comparison of Cognitive Load in Virtual Reality and Conventional Simulation-Based Training: A Randomized Controlled Trial

Authors: Michael Wagner, Philipp Steinbauer, Andrea Katharina Lietz, Alexander Hoffelner, Johannes Fessler

Abstract:

Background: Cardiopulmonary resuscitations are stressful situations in which vital decisions must be made within seconds. Lack of routine due to the infrequency of pediatric emergencies can lead to serious medical and communication errors. Virtual reality can fundamentally change the way simulation training is conducted in the future. It appears to be a useful learning tool for technical and non-technical skills. It is important to investigate the use of VR in providing a strong sense of presence within simulations. Methods: In this randomized study, we will enroll doctors and medical students from the Medical University of Vienna, who will receive learning material regarding the resuscitation of a one-year-old child. The study will be conducted in three phases. In the first phase, 20 physicians and 20 medical students from the Medical University of Vienna will be included. They will perform simulation-based training with a standardized scenario of a critically ill child with a hypovolemic shock. The main goal of this phase is to establish a baseline for the following two phases to generate comparative values regarding cognitive load and stress. In phase 2 and 3, the same participants will perform the same scenario in a VR setting. In both settings, on three set points of progression, one of three predefined events is triggered. For each event, three different stress levels (easy, medium, difficult) will be defined. Stress and cognitive load will be analyzed using the NASA Task Load Index, eye-tracking parameters, and heart rate. Subsequently, these values will be compared between VR training and traditional simulation-based training. Hypothesis: We hypothesize that the VR training and the traditional training groups will not differ in physiological response (cognitive load, heart rate, and heart rate variability). We further assume that virtual reality training can be used as cost-efficient additional training. Objectives: The aim of this study is to measure cognitive load and stress level during a real-life simulation training and compare it with VR training in order to show that VR training evokes the same physiological response and cognitive load as real-life simulation training.

Keywords: virtual reality, cognitive load, simulation, adaptive virtual reality training

Procedia PDF Downloads 114
11762 Topological Indices of Some Graph Operations

Authors: U. Mary

Abstract:

Let be a graph with a finite, nonempty set of objects called vertices together with a set of unordered pairs of distinct vertices of called edges. The vertex set is denoted by and the edge set by. Given two graphs and the wiener index of, wiener index for the splitting graph of a graph, the first Zagreb index of and its splitting graph, the 3-steiner wiener index of, the 3-steiner wiener index of a special graph are explored in this paper.

Keywords: complementary prism graph, first Zagreb index, neighborhood corona graph, steiner distance, splitting graph, steiner wiener index, wiener index

Procedia PDF Downloads 570
11761 Dissection of the Impact of Diabetes Type on Heart Failure across Age Groups: A Systematic Review of Publication Patterns on PubMed

Authors: Nazanin Ahmadi Daryakenari

Abstract:

Background: Diabetes significantly influences the risk of heart failure. The interplay between distinct types of diabetes, heart failure, and their distribution across various age groups remains an area of active exploration. This study endeavors to scrutinize the age group distribution in publications addressing Type 1 and Type 2 diabetes and heart failure on PubMed while also examining the evolving publication trends. Methods: We leveraged E-utilities and RegEx to search and extract publication data from PubMed using various mesh terms. Subsequently, we conducted descriptive statistics and t-tests to discern the differences between the two diabetes types and the distribution across age groups. Finally, we analyzed the temporal trends of publications concerning both types of diabetes and heart failure. Results: Our findings revealed a divergence in the age group distribution between Type 1 and Type 2 diabetes within heart failure publications. Publications discussing Type 2 diabetes and heart failure were more predominant among older age groups, whereas those addressing Type 1 diabetes and heart failure displayed a more balanced distribution across all age groups. The t-test revealed no significant difference in the means between the two diabetes types. However, the number of publications exploring the relationship between Type 2 diabetes and heart failure has seen a steady increase over time, suggesting an escalating interest in this area. Conclusion: The dissection of publication patterns on PubMed uncovers a pronounced association between Type 2 diabetes and heart failure within older age groups. This highlights the critical need to comprehend the distinct age group differences when examining diabetes and heart failure to inform and refine targeted prevention and treatment strategies.

Keywords: Type 1 diabetes, Type 2 diabetes, heart failure, age groups, publication patterns, PubMed

Procedia PDF Downloads 95
11760 Heart Rate Variability Analysis for Early Stage Prediction of Sudden Cardiac Death

Authors: Reeta Devi, Hitender Kumar Tyagi, Dinesh Kumar

Abstract:

In present scenario, cardiovascular problems are growing challenge for researchers and physiologists. As heart disease have no geographic, gender or socioeconomic specific reasons; detecting cardiac irregularities at early stage followed by quick and correct treatment is very important. Electrocardiogram is the finest tool for continuous monitoring of heart activity. Heart rate variability (HRV) is used to measure naturally occurring oscillations between consecutive cardiac cycles. Analysis of this variability is carried out using time domain, frequency domain and non-linear parameters. This paper presents HRV analysis of the online dataset for normal sinus rhythm (taken as healthy subject) and sudden cardiac death (SCD subject) using all three methods computing values for parameters like standard deviation of node to node intervals (SDNN), square root of mean of the sequences of difference between adjacent RR intervals (RMSSD), mean of R to R intervals (mean RR) in time domain, very low-frequency (VLF), low-frequency (LF), high frequency (HF) and ratio of low to high frequency (LF/HF ratio) in frequency domain and Poincare plot for non linear analysis. To differentiate HRV of healthy subject from subject died with SCD, k –nearest neighbor (k-NN) classifier has been used because of its high accuracy. Results show highly reduced values for all stated parameters for SCD subjects as compared to healthy ones. As the dataset used for SCD patients is recording of their ECG signal one hour prior to their death, it is therefore, verified with an accuracy of 95% that proposed algorithm can identify mortality risk of a patient one hour before its death. The identification of a patient’s mortality risk at such an early stage may prevent him/her meeting sudden death if in-time and right treatment is given by the doctor.

Keywords: early stage prediction, heart rate variability, linear and non-linear analysis, sudden cardiac death

Procedia PDF Downloads 339
11759 Classification of ECG Signal Based on Mixture of Linear and Non-Linear Features

Authors: Mohammad Karimi Moridani, Mohammad Abdi Zadeh, Zahra Shahiazar Mazraeh

Abstract:

In recent years, the use of intelligent systems in biomedical engineering has increased dramatically, especially in the diagnosis of various diseases. Also, due to the relatively simple recording of the electrocardiogram signal (ECG), this signal is a good tool to show the function of the heart and diseases associated with it. The aim of this paper is to design an intelligent system for automatically detecting a normal electrocardiogram signal from abnormal one. Using this diagnostic system, it is possible to identify a person's heart condition in a very short time and with high accuracy. The data used in this article are from the Physionet database, available in 2016 for use by researchers to provide the best method for detecting normal signals from abnormalities. Data is of both genders and the data recording time varies between several seconds to several minutes. All data is also labeled normal or abnormal. Due to the low positional accuracy and ECG signal time limit and the similarity of the signal in some diseases with the normal signal, the heart rate variability (HRV) signal was used. Measuring and analyzing the heart rate variability with time to evaluate the activity of the heart and differentiating different types of heart failure from one another is of interest to the experts. In the preprocessing stage, after noise cancelation by the adaptive Kalman filter and extracting the R wave by the Pan and Tampkinz algorithm, R-R intervals were extracted and the HRV signal was generated. In the process of processing this paper, a new idea was presented that, in addition to using the statistical characteristics of the signal to create a return map and extraction of nonlinear characteristics of the HRV signal due to the nonlinear nature of the signal. Finally, the artificial neural networks widely used in the field of ECG signal processing as well as distinctive features were used to classify the normal signals from abnormal ones. To evaluate the efficiency of proposed classifiers in this paper, the area under curve ROC was used. The results of the simulation in the MATLAB environment showed that the AUC of the MLP and SVM neural network was 0.893 and 0.947, respectively. As well as, the results of the proposed algorithm in this paper indicated that the more use of nonlinear characteristics in normal signal classification of the patient showed better performance. Today, research is aimed at quantitatively analyzing the linear and non-linear or descriptive and random nature of the heart rate variability signal, because it has been shown that the amount of these properties can be used to indicate the health status of the individual's heart. The study of nonlinear behavior and dynamics of the heart's neural control system in the short and long-term provides new information on how the cardiovascular system functions, and has led to the development of research in this field. Given that the ECG signal contains important information and is one of the common tools used by physicians to diagnose heart disease, but due to the limited accuracy of time and the fact that some information about this signal is hidden from the viewpoint of physicians, the design of the intelligent system proposed in this paper can help physicians with greater speed and accuracy in the diagnosis of normal and patient individuals and can be used as a complementary system in the treatment centers.

Keywords: neart rate variability, signal processing, linear and non-linear features, classification methods, ROC Curve

Procedia PDF Downloads 262
11758 Development and Validation of a Coronary Heart Disease Risk Score in Indian Type 2 Diabetes Mellitus Patients

Authors: Faiz N. K. Yusufi, Aquil Ahmed, Jamal Ahmad

Abstract:

Diabetes in India is growing at an alarming rate and the complications caused by it need to be controlled. Coronary heart disease (CHD) is one of the complications that will be discussed for prediction in this study. India has the second most number of diabetes patients in the world. To the best of our knowledge, there is no CHD risk score for Indian type 2 diabetes patients. Any form of CHD has been taken as the event of interest. A sample of 750 was determined and randomly collected from the Rajiv Gandhi Centre for Diabetes and Endocrinology, J.N.M.C., A.M.U., Aligarh, India. Collected variables include patients data such as sex, age, height, weight, body mass index (BMI), blood sugar fasting (BSF), post prandial sugar (PP), glycosylated haemoglobin (HbA1c), diastolic blood pressure (DBP), systolic blood pressure (SBP), smoking, alcohol habits, total cholesterol (TC), triglycerides (TG), high density lipoprotein (HDL), low density lipoprotein (LDL), very low density lipoprotein (VLDL), physical activity, duration of diabetes, diet control, history of antihypertensive drug treatment, family history of diabetes, waist circumference, hip circumference, medications, central obesity and history of CHD. Predictive risk scores of CHD events are designed by cox proportional hazard regression. Model calibration and discrimination is assessed from Hosmer Lemeshow and area under receiver operating characteristic (ROC) curve. Overfitting and underfitting of the model is checked by applying regularization techniques and best method is selected between ridge, lasso and elastic net regression. Youden’s index is used to choose the optimal cut off point from the scores. Five year probability of CHD is predicted by both survival function and Markov chain two state model and the better technique is concluded. The risk scores for CHD developed can be calculated by doctors and patients for self-control of diabetes. Furthermore, the five-year probabilities can be implemented as well to forecast and maintain the condition of patients.

Keywords: coronary heart disease, cox proportional hazard regression, ROC curve, type 2 diabetes Mellitus

Procedia PDF Downloads 219
11757 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network

Authors: Jia Xin Low, Keng Wah Choo

Abstract:

This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.

Keywords: convolutional neural network, discrete wavelet transform, deep learning, heart sound classification

Procedia PDF Downloads 348
11756 An Experimental Study of the Parameters Affecting the Compression Index of Clay Soil

Authors: Rami Rami Mahmoud Bakr

Abstract:

The constant rate of strain (CRS) test is a rapid technique that effectively measures specific properties of cohesive soil, including the rate of consolidation, hydraulic conductivity, compressibility, and stress history. Its simple operation and frequent readings enable efficient definition, especially of the compression curve. However, its limitations include an inability to handle strain-rate-dependent soil behavior, initial transient conditions, and pore pressure evaluation errors. There are currently no effective techniques for interpreting CRS data. In this study, experiments were performed to evaluate the effects of different parameters on CRS results. Extensive tests were performed on two types of clay to analyze the soil behavior during strain consolidation at a constant rate. The results were used to evaluate the transient conditions and pore pressure system.

Keywords: constant rate of strain (CRS), resedimented boston blue clay (RBBC), resedimented vicksburg buckshot clay (RVBC), compression index

Procedia PDF Downloads 41
11755 Identifying Physiological Markers That Are Sensitive to Cognitive Load in Preschoolers

Authors: Priyashri Kamlesh Sridhar, Suranga Nanayakkara

Abstract:

Current frameworks in assessment follow lesson delivery and rely heavily on test performance or teacher’s observations. This, however, neglects the underlying cognitive load during the learning process. Identifying the pivotal points when the load occurs helps design effective pedagogies and tools that respond to learners’ cognitive state. There has been limited research on quantifying cognitive load in preschoolers, real-time. In this study, we recorded electrodermal activity and heart rate variability (HRV) from 10 kindergarteners performing executive function tasks and Johnson Woodcock test of cognitive abilities. Preliminary findings suggest that there are indeed sensitive task-dependent markers in skin conductance (number of SCRs and average amplitude of SCRs) and HRV (mean heart rate and low frequency component) captured during the learning process.

Keywords: early childhood, learning, methodologies, pedagogies

Procedia PDF Downloads 320
11754 Characteristics of Children Heart Rhythm Regulation with Acute Respiratory Diseases

Authors: D. F. Zeynalov, T. V. Kartseva, O. V. Sorokin

Abstract:

Currently, approaches to assess cardiointervalography are based on the calculation of data variance intervals RR. However, they do not allow the evaluation of features related to a period of the cardiac cycle, so how electromechanical phenomena during cardiac subphase are characterized by differently directed changes. Therefore, we have proposed a method of subphase analysis of the cardiac cycle, developed in the department of hominal physiology Novosibirsk State Medical University to identify the features of the dispersion subphase of the cardiac cycle. In the present paper we have examined the 5-minute intervals cardiointervalography (CIG) to isolate RR-, QT-, ST-ranges in healthy children and children with acute respiratory diseases (ARD) in comparison. It is known that primary school-aged children suffer at ARD 5-7 times per year. Consequently, it is one of the most relevant problems in pediatrics. It is known that the spectral indices and indices of temporal analysis of heart rate variability are highly sensitive to the degree of intoxication during immunological process. We believe that the use of subphase analysis of heart rate will allow more thoroughly evaluate responsiveness of the child organism during the course of ARD. The study involved 60 primary school-aged children (30 boys and 30 girls). In order to assess heart rhythm regulation, the record CIG was used on the "VNS-Micro" device of Neurosoft Company (Ivanovo) for 5 minutes in the supine position and 5 minutes during active orthostatic test. Subphase analysis of variance QT-interval and ST-segment was performed on the "KardioBOS" software Biokvant Company (Novosibirsk). In assessing the CIG in the supine position and in during orthostasis of children with acute respiratory diseases only RR-intervals are observed typical trend of general biological reactions through pressosensitive compensation mechanisms to lower blood pressure, but compared with healthy children the severity of the changes is different, of sick children are more pronounced indicators of heart rate regulation. But analysis CIG RR-intervals and analysis subphase ST-segment have yielded conflicting trends, which may be explained by the different nature of the intra- and extracardiac influences on regulatory mechanisms that implement the various phases of the cardiac cycle.

Keywords: acute respiratory diseases, cardiointervalography, subphase analysis, cardiac cycle

Procedia PDF Downloads 275
11753 Vagal Nerve Stimulator as a Treatment Approach in CHARGE Syndrome: A Case Report

Authors: Roya Vakili, Lekaa Elhajjmoussa, Barzin Omidi-Shal, Kim Blake

Abstract:

Objective: The purpose of this case report is to highlight the successful treatment of a patient with Coloboma, Heart defect, Atresia choanae, Retarded growth and development, Genital hypoplasia, Ear anomalies/deafness, (CHARGE syndrome) using a vagal nerve stimulator (VNS). Background: This is the first documented case report, to the authors' best knowledge, for a patient with CHARGE syndrome, epilepsy, autism, and postural orthostatic tachycardia syndrome (POTS) that was successfully treated with an implanted VNS therapeutic device. Methodology: The study is a case report. Results: This is the case of a 24-year-old female patient with CHARGE syndrome (non-random association of anomalies Coloboma, Heart defect, Atresia choanae, Retarded growth and development, Genital hypoplasia, Ear anomalies/deafness) and several other comorbidities including refractory epilepsy, Patent Ductus Arteriosus (PDA) and POTS who had significant improvement of her symptoms after VNS implantation. She was a VNS candidate given her longstanding history of drug-resistant epilepsy and current disposition secondary to CHARGE syndrome. Prior to VNS implantation, she experienced three generalized seizures a year and daily POTS-related symptoms. She was having frequent lightheadedness and syncope spells due to a rapid heart rate and low blood pressure. The VNS device was set to detect a rapid heart rate and send appropriate stimulation anytime the heart rate exceeded 20% of the patient’s normal baseline. The VNS device demonstrated frequent elevated heart rates and concurrent VNS release every 8 minutes in addition to the programmed events. Following VNS installation, the patient became more active, alert, and communicative and was able to verbally communicate with words she was unable to say prior. Her GI symptoms also improved, as she was able to tolerate food better orally in addition to her G and J tube, likely another result of the vagal nerve stimulation. Additionally, the patient’s seizures and POTS-related cardiac events appeared to be well controlled. She had prolonged electroencephalogram (EEG) testing, showing no significant change in epileptiform activity. Improvements in the patient’s disposition are believed to be secondary to parasympathetic stimulation, adequate heart rate control, and GI stimulation, in addition to behavioral changes and other benefits via her implanted VNS. Conclusion: VNS showed promising results in improving the patient's quality of life and managing her diverse symptoms, including dysautonomia, POTs, gastrointestinal mobility, cognitive functioning as well seizure control.

Keywords: autism, POTs, CHARGE, VNS

Procedia PDF Downloads 85
11752 Heart Failure Identification and Progression by Classifying Cardiac Patients

Authors: Muhammad Saqlain, Nazar Abbas Saqib, Muazzam A. Khan

Abstract:

Heart Failure (HF) has become the major health problem in our society. The prevalence of HF has increased as the patient’s ages and it is the major cause of the high mortality rate in adults. A successful identification and progression of HF can be helpful to reduce the individual and social burden from this syndrome. In this study, we use a real data set of cardiac patients to propose a classification model for the identification and progression of HF. The data set has divided into three age groups, namely young, adult, and old and then each age group have further classified into four classes according to patient’s current physical condition. Contemporary Data Mining classification algorithms have been applied to each individual class of every age group to identify the HF. Decision Tree (DT) gives the highest accuracy of 90% and outperform all other algorithms. Our model accurately diagnoses different stages of HF for each age group and it can be very useful for the early prediction of HF.

Keywords: decision tree, heart failure, data mining, classification model

Procedia PDF Downloads 402
11751 Machine Learning Approach for Stress Detection Using Wireless Physical Activity Tracker

Authors: B. Padmaja, V. V. Rama Prasad, K. V. N. Sunitha, E. Krishna Rao Patro

Abstract:

Stress is a psychological condition that reduces the quality of sleep and affects every facet of life. Constant exposure to stress is detrimental not only for mind but also body. Nevertheless, to cope with stress, one should first identify it. This paper provides an effective method for the cognitive stress level detection by using data provided from a physical activity tracker device Fitbit. This device gathers people’s daily activities of food, weight, sleep, heart rate, and physical activities. In this paper, four major stressors like physical activities, sleep patterns, working hours and change in heart rate are used to assess the stress levels of individuals. The main motive of this system is to use machine learning approach in stress detection with the help of Smartphone sensor technology. Individually, the effect of each stressor is evaluated using logistic regression and then combined model is built and assessed using variants of ordinal logistic regression models like logit, probit and complementary log-log. Then the quality of each model is evaluated using Akaike Information Criterion (AIC) and probit is assessed as the more suitable model for our dataset. This system is experimented and evaluated in a real time environment by taking data from adults working in IT and other sectors in India. The novelty of this work lies in the fact that stress detection system should be less invasive as possible for the users.

Keywords: physical activity tracker, sleep pattern, working hours, heart rate, smartphone sensor

Procedia PDF Downloads 256
11750 An Exploratory Research of Human Character Analysis Based on Smart Watch Data: Distinguish the Drinking State from Normal State

Authors: Lu Zhao, Yanrong Kang, Lili Guo, Yuan Long, Guidong Xing

Abstract:

Smart watches, as a handy device with rich functionality, has become one of the most popular wearable devices all over the world. Among the various function, the most basic is health monitoring. The monitoring data can be provided as an effective evidence or a clue for the detection of crime cases. For instance, the step counting data can help to determine whether the watch wearer was quiet or moving during the given time period. There is, however, still quite few research on the analysis of human character based on these data. The purpose of this research is to analyze the health monitoring data to distinguish the drinking state from normal state. The analysis result may play a role in cases involving drinking, such as drunk driving. The experiment mainly focused on finding the figures of smart watch health monitoring data that change with drinking and figuring up the change scope. The chosen subjects are mostly in their 20s, each of whom had been wearing the same smart watch for a week. Each subject drank for several times during the week, and noted down the begin and end time point of the drinking. The researcher, then, extracted and analyzed the health monitoring data from the watch. According to the descriptive statistics analysis, it can be found that the heart rate change when drinking. The average heart rate is about 10% higher than normal, the coefficient of variation is less than about 30% of the normal state. Though more research is needed to be carried out, this experiment and analysis provide a thought of the application of the data from smart watches.

Keywords: character analysis, descriptive statistics analysis, drink state, heart rate, smart watch

Procedia PDF Downloads 167
11749 The Associations between Self-Determined Motivation and Physical Activity in Patients with Coronary Heart Disease

Authors: I. Hua Chu, Hsiang-Chi Yu, Hsuan Su

Abstract:

Purpose: To examine the associations between self-determined motivation and physical activity in patients with coronary heart disease (CHD) in a longitudinal study. Methods: Patients with CHD were recruited for this study. Their motivations for exercise were measured by the Behavioral Regulation in Exercise Questionnaire-2 (BREQ-2). Physical activity was assessed using the 7-day physical activity recall questionnaire. Duration and energy expenditure of moderate to vigorous physical activity (MVPA) were used in data analysis. All outcome measures were assessed at baseline and 12 months follow up. Data were analyzed using Pearson correlation analysis and regression analysis. Results: The results of the 45 participants (mean age 60.24 yr; 90.2% male) revealed that there were significant negative correlations between amotivation at baseline and duration (r=-.295, p=.049) and energy expenditure (r=-.300, p=.045) of MVPA at 12 months. In contrast, there were significant positive correlations between calculated relative autonomy index (RAI) at baseline and duration (r=.377, p=.011) and energy expenditure (r=.382, p=.010) of MVPA at 12 months. There was no significant correlation between other subscales of the BREQ-2 and duration or energy expenditure of MVPA. Regression analyses revealed that RAI was a significant predictor of duration (p=.011) and energy expenditure (p=.010) of MVPA at 12 months follow-up. Conclusions: These results suggest that the relative degree of self-determined motivation could predict long-term MVPA behaviors in CHD patients. Physical activity interventions are recommended to target enhancing one’s identified and intrinsic motivation to increase the likelihood of physical activity participation in this population.

Keywords: self-determined motivation, physical activity, coronary heart disease, relative autonomy index (RAI)

Procedia PDF Downloads 428
11748 An Auxiliary Technique for Coronary Heart Disease Prediction by Analyzing Electrocardiogram Based on ResNet and Bi-Long Short-Term Memory

Authors: Yang Zhang, Jian He

Abstract:

Heart disease is one of the leading causes of death in the world, and coronary heart disease (CHD) is one of the major heart diseases. Electrocardiogram (ECG) is widely used in the detection of heart diseases, but the traditional manual method for CHD prediction by analyzing ECG requires lots of professional knowledge for doctors. This paper introduces sliding window and continuous wavelet transform (CWT) to transform ECG signals into images, and then ResNet and Bi-LSTM are introduced to build the ECG feature extraction network (namely ECGNet). At last, an auxiliary system for coronary heart disease prediction was developed based on modified ResNet18 and Bi-LSTM, and the public ECG dataset of CHD from MIMIC-3 was used to train and test the system. The experimental results show that the accuracy of the method is 83%, and the F1-score is 83%. Compared with the available methods for CHD prediction based on ECG, such as kNN, decision tree, VGGNet, etc., this method not only improves the prediction accuracy but also could avoid the degradation phenomenon of the deep learning network.

Keywords: Bi-LSTM, CHD, ECG, ResNet, sliding window

Procedia PDF Downloads 89
11747 Wavelet-Based Classification of Myocardial Ischemia, Arrhythmia, Congestive Heart Failure and Sleep Apnea

Authors: Santanu Chattopadhyay, Gautam Sarkar, Arabinda Das

Abstract:

This paper presents wavelet based classification of various heart diseases. Electrocardiogram signals of different heart patients have been studied. Statistical natures of electrocardiogram signals for different heart diseases have been compared with the statistical nature of electrocardiograms for normal persons. Under this study four different heart diseases have been considered as follows: Myocardial Ischemia (MI), Congestive Heart Failure (CHF), Arrhythmia and Sleep Apnea. Statistical nature of electrocardiograms for each case has been considered in terms of kurtosis values of two types of wavelet coefficients: approximate and detail. Nine wavelet decomposition levels have been considered in each case. Kurtosis corresponding to both approximate and detail coefficients has been considered for decomposition level one to decomposition level nine. Based on significant difference, few decomposition levels have been chosen and then used for classification.

Keywords: arrhythmia, congestive heart failure, discrete wavelet transform, electrocardiogram, myocardial ischemia, sleep apnea

Procedia PDF Downloads 134