Search results for: data breach
25098 Imputation Technique for Feature Selection in Microarray Data Set
Authors: Younies Saeed Hassan Mahmoud, Mai Mabrouk, Elsayed Sallam
Abstract:
Analysing DNA microarray data sets is a great challenge, which faces the bioinformaticians due to the complication of using statistical and machine learning techniques. The challenge will be doubled if the microarray data sets contain missing data, which happens regularly because these techniques cannot deal with missing data. One of the most important data analysis process on the microarray data set is feature selection. This process finds the most important genes that affect certain disease. In this paper, we introduce a technique for imputing the missing data in microarray data sets while performing feature selection.Keywords: DNA microarray, feature selection, missing data, bioinformatics
Procedia PDF Downloads 57325097 PDDA: Priority-Based, Dynamic Data Aggregation Approach for Sensor-Based Big Data Framework
Authors: Lutful Karim, Mohammed S. Al-kahtani
Abstract:
Sensors are being used in various applications such as agriculture, health monitoring, air and water pollution monitoring, traffic monitoring and control and hence, play the vital role in the growth of big data. However, sensors collect redundant data. Thus, aggregating and filtering sensors data are significantly important to design an efficient big data framework. Current researches do not focus on aggregating and filtering data at multiple layers of sensor-based big data framework. Thus, this paper introduces (i) three layers data aggregation and framework for big data and (ii) a priority-based, dynamic data aggregation scheme (PDDA) for the lowest layer at sensors. Simulation results show that the PDDA outperforms existing tree and cluster-based data aggregation scheme in terms of overall network energy consumptions and end-to-end data transmission delay.Keywords: big data, clustering, tree topology, data aggregation, sensor networks
Procedia PDF Downloads 34325096 Future Projection of Glacial Lake Outburst Floods Hazard: A Hydrodynamic Study of the Highest Lake in the Dhauliganga Basin, Uttarakhand
Authors: Ashim Sattar, Ajanta Goswami, Anil V. Kulkarni
Abstract:
Glacial lake outburst floods (GLOF) highly contributes to mountain hazards in the Himalaya. Over the past decade, high altitude lakes in the Himalaya has been showing notable growth in their size and number. The key reason is rapid retreat of its glacier front. Hydrodynamic modeling GLOF using shallow water equations (SWE) would result in understanding its impact in the downstream region. The present study incorporates remote sensing based ice thickness modeling to determine the future extent of the Dhauliganga Lake to map the over deepening extent around the highest lake in the Dhauliganga basin. The maximum future volume of the lake calculated using area-volume scaling is used to model a GLOF event. The GLOF hydrograph is routed along the channel using one dimensional and two dimensional model to understand the flood wave propagation till it reaches the 1st hydropower station located 72 km downstream of the lake. The present extent of the lake calculated using SENTINEL 2 images is 0.13 km². The maximum future extent of the lake, mapped by investigating the glacier bed has a calculated scaled volume of 3.48 x 106 m³. The GLOF modeling releasing the future volume of the lake resulted in a breach hydrograph with a peak flood of 4995 m³/s at just downstream of the lake. Hydraulic routingKeywords: GLOF, glacial lake outburst floods, mountain hazard, Central Himalaya, future projection
Procedia PDF Downloads 16125095 Control the Flow of Big Data
Authors: Shizra Waris, Saleem Akhtar
Abstract:
Big data is a research area receiving attention from academia and IT communities. In the digital world, the amounts of data produced and stored have within a short period of time. Consequently this fast increasing rate of data has created many challenges. In this paper, we use functionalism and structuralism paradigms to analyze the genesis of big data applications and its current trends. This paper presents a complete discussion on state-of-the-art big data technologies based on group and stream data processing. Moreover, strengths and weaknesses of these technologies are analyzed. This study also covers big data analytics techniques, processing methods, some reported case studies from different vendor, several open research challenges and the chances brought about by big data. The similarities and differences of these techniques and technologies based on important limitations are also investigated. Emerging technologies are suggested as a solution for big data problems.Keywords: computer, it community, industry, big data
Procedia PDF Downloads 19325094 A Method and System for Secure Authentication Using One Time QR Code
Authors: Divyans Mahansaria
Abstract:
User authentication is an important security measure for protecting confidential data and systems. However, the vulnerability while authenticating into a system has significantly increased. Thus, necessary mechanisms must be deployed during the process of authenticating a user to safeguard him/her from the vulnerable attacks. The proposed solution implements a novel authentication mechanism to counter various forms of security breach attacks including phishing, Trojan horse, replay, key logging, Asterisk logging, shoulder surfing, brute force search and others. QR code (Quick Response Code) is a type of matrix barcode or two-dimensional barcode that can be used for storing URLs, text, images and other information. In the proposed solution, during each new authentication request, a QR code is dynamically generated and presented to the user. A piece of generic information is mapped to plurality of elements and stored within the QR code. The mapping of generic information with plurality of elements, randomizes in each new login, and thus the QR code generated for each new authentication request is for one-time use only. In order to authenticate into the system, the user needs to decode the QR code using any QR code decoding software. The QR code decoding software needs to be installed on handheld mobile devices such as smartphones, personal digital assistant (PDA), etc. On decoding the QR code, the user will be presented a mapping between the generic piece of information and plurality of elements using which the user needs to derive cipher secret information corresponding to his/her actual password. Now, in place of the actual password, the user will use this cipher secret information to authenticate into the system. The authentication terminal will receive the cipher secret information and use a validation engine that will decipher the cipher secret information. If the entered secret information is correct, the user will be provided access to the system. Usability study has been carried out on the proposed solution, and the new authentication mechanism was found to be easy to learn and adapt. Mathematical analysis of the time taken to carry out brute force attack on the proposed solution has been carried out. The result of mathematical analysis showed that the solution is almost completely resistant to brute force attack. Today’s standard methods for authentication are subject to a wide variety of software, hardware, and human attacks. The proposed scheme can be very useful in controlling the various types of authentication related attacks especially in a networked computer environment where the use of username and password for authentication is common.Keywords: authentication, QR code, cipher / decipher text, one time password, secret information
Procedia PDF Downloads 26725093 High Performance Computing and Big Data Analytics
Authors: Branci Sarra, Branci Saadia
Abstract:
Because of the multiplied data growth, many computer science tools have been developed to process and analyze these Big Data. High-performance computing architectures have been designed to meet the treatment needs of Big Data (view transaction processing standpoint, strategic, and tactical analytics). The purpose of this article is to provide a historical and global perspective on the recent trend of high-performance computing architectures especially what has a relation with Analytics and Data Mining.Keywords: high performance computing, HPC, big data, data analysis
Procedia PDF Downloads 51925092 A Landscape of Research Data Repositories in Re3data.org Registry: A Case Study of Indian Repositories
Authors: Prashant Shrivastava
Abstract:
The purpose of this study is to explore re3dat.org registry to identify research data repositories registration workflow process. Further objective is to depict a graph for present development of research data repositories in India. Preliminarily with an approach to understand re3data.org registry framework and schema design then further proceed to explore the status of research data repositories of India in re3data.org registry. Research data repositories are getting wider relevance due to e-research concepts. Now available registry re3data.org is a good tool for users and researchers to identify appropriate research data repositories as per their research requirements. In Indian environment, a compatible National Research Data Policy is the need of the time to boost the management of research data. Registry for Research Data Repositories is a crucial tool to discover specific information in specific domain. Also, Research Data Repositories in India have not been studied. Re3data.org registry and status of Indian research data repositories both discussed in this study.Keywords: research data, research data repositories, research data registry, re3data.org
Procedia PDF Downloads 32325091 A Study of Cloud Computing Solution for Transportation Big Data Processing
Authors: Ilgin Gökaşar, Saman Ghaffarian
Abstract:
The need for fast processed big data of transportation ridership (eg., smartcard data) and traffic operation (e.g., traffic detectors data) which requires a lot of computational power is incontrovertible in Intelligent Transportation Systems. Nowadays cloud computing is one of the important subjects and popular information technology solution for data processing. It enables users to process enormous measure of data without having their own particular computing power. Thus, it can also be a good selection for transportation big data processing as well. This paper intends to examine how the cloud computing can enhance transportation big data process with contrasting its advantages and disadvantages, and discussing cloud computing features.Keywords: big data, cloud computing, Intelligent Transportation Systems, ITS, traffic data processing
Procedia PDF Downloads 46625090 Harmonic Data Preparation for Clustering and Classification
Authors: Ali Asheibi
Abstract:
The rapid increase in the size of databases required to store power quality monitoring data has demanded new techniques for analysing and understanding the data. One suggested technique to assist in analysis is data mining. Preparing raw data to be ready for data mining exploration take up most of the effort and time spent in the whole data mining process. Clustering is an important technique in data mining and machine learning in which underlying and meaningful groups of data are discovered. Large amounts of harmonic data have been collected from an actual harmonic monitoring system in a distribution system in Australia for three years. This amount of acquired data makes it difficult to identify operational events that significantly impact the harmonics generated on the system. In this paper, harmonic data preparation processes to better understanding of the data have been presented. Underlying classes in this data has then been identified using clustering technique based on the Minimum Message Length (MML) method. The underlying operational information contained within the clusters can be rapidly visualised by the engineers. The C5.0 algorithm was used for classification and interpretation of the generated clusters.Keywords: data mining, harmonic data, clustering, classification
Procedia PDF Downloads 24625089 Linguistic Summarization of Structured Patent Data
Authors: E. Y. Igde, S. Aydogan, F. E. Boran, D. Akay
Abstract:
Patent data have an increasingly important role in economic growth, innovation, technical advantages and business strategies and even in countries competitions. Analyzing of patent data is crucial since patents cover large part of all technological information of the world. In this paper, we have used the linguistic summarization technique to prove the validity of the hypotheses related to patent data stated in the literature.Keywords: data mining, fuzzy sets, linguistic summarization, patent data
Procedia PDF Downloads 27125088 Proposal of Data Collection from Probes
Authors: M. Kebisek, L. Spendla, M. Kopcek, T. Skulavik
Abstract:
In our paper we describe the security capabilities of data collection. Data are collected with probes located in the near and distant surroundings of the company. Considering the numerous obstacles e.g. forests, hills, urban areas, the data collection is realized in several ways. The collection of data uses connection via wireless communication, LAN network, GSM network and in certain areas data are collected by using vehicles. In order to ensure the connection to the server most of the probes have ability to communicate in several ways. Collected data are archived and subsequently used in supervisory applications. To ensure the collection of the required data, it is necessary to propose algorithms that will allow the probes to select suitable communication channel.Keywords: communication, computer network, data collection, probe
Procedia PDF Downloads 35925087 Psychological Contract and Job Embeddedness Perspectives to Understand Cynicism as a Behavioural Response to Pressures in the Workplace
Authors: Merkouche Wassila, Marchand Alain, Renaud Stéphane
Abstract:
Organizations are facing competitive pressures constraining them to modify their practices and change initial work conditions of employees, however, these modifications have to sustain initial quality of work and engagements toward the workforce. We focus on the importance of promises in the perspective of psychological contract. According to this perspective, employees perceiving a breach of the expected obligations from the employer may become unsatisfied at work and develop organizational withdrawal behaviors. These are negative counterproductive behaviours aiming to damage the organisation according to the principle of reciprocity and social exchange. We present an integrative model of the determinants and manifestations of organizational withdrawal (OW), a set of behaviors allowing the employee to leave his job or avoid his assigned work. OW contains two main components often studied in silos: work withdrawal (delays, absenteeism and other adverse behaviors) and job withdrawal (turnover). We use the systemic micro, meso and macro sociological approach designing the individual at the heart of a system containing individual, organizational, and environmental determinants. Under the influence of these different factors, the individual assesses the type of behavior to adopt. We provide better lighting for understanding OW using both psychological contract approach through the perception of its respect by the organization and job embeddedness approach which explains why the employee does not leave the organization and then remains in his post while practicing negative and counterproductive behaviors such as OW. We study specifically cynicism as a type of OW as it is a dimension of burnout. We focus on the antecedents of cynicism to try to prevent it in the workplace.Keywords: burnout, cynicism, job embeddedness, organizational withdrawal, psychological contract
Procedia PDF Downloads 25225086 A Review on Big Data Movement with Different Approaches
Authors: Nay Myo Sandar
Abstract:
With the growth of technologies and applications, a large amount of data has been producing at increasing rate from various resources such as social media networks, sensor devices, and other information serving devices. This large collection of massive, complex and exponential growth of dataset is called big data. The traditional database systems cannot store and process such data due to large and complexity. Consequently, cloud computing is a potential solution for data storage and processing since it can provide a pool of resources for servers and storage. However, moving large amount of data to and from is a challenging issue since it can encounter a high latency due to large data size. With respect to big data movement problem, this paper reviews the literature of previous works, discusses about research issues, finds out approaches for dealing with big data movement problem.Keywords: Big Data, Cloud Computing, Big Data Movement, Network Techniques
Procedia PDF Downloads 8325085 Optimized Approach for Secure Data Sharing in Distributed Database
Authors: Ahmed Mateen, Zhu Qingsheng, Ahmad Bilal
Abstract:
In the current age of technology, information is the most precious asset of a company. Today, companies have a large amount of data. As the data become larger, access to data for some particular information is becoming slower day by day. Faster data processing to shape it in the form of information is the biggest issue. The major problems in distributed databases are the efficiency of data distribution and response time of data distribution. The security of data distribution is also a big issue. For these problems, we proposed a strategy that can maximize the efficiency of data distribution and also increase its response time. This technique gives better results for secure data distribution from multiple heterogeneous sources. The newly proposed technique facilitates the companies for secure data sharing efficiently and quickly.Keywords: ER-schema, electronic record, P2P framework, API, query formulation
Procedia PDF Downloads 33225084 The Test of Memory Malingering and Offence Severity
Authors: Kenji Gwee
Abstract:
In Singapore, the death penalty remains in active use for murder and drug trafficking of controlled drugs such as heroin. As such, the psychological assessment of defendants can often be of high stakes. The Test of Memory Malingering (TOMM) is employed by government psychologists to determine the degree of effort invested by defendants, which in turn inform on the veracity of overall psychological findings that can invariably determine the life and death of defendants. The purpose of this study was to find out if defendants facing the death penalty were more likely to invest less effort during psychological assessment (to fake bad in hopes of escaping the death sentence) compared to defendants facing lesser penalties. An archival search of all forensic cases assessed in 2012-2013 by Singapore’s designated forensic psychiatric facility yielded 186 defendants’ TOMM scores. Offence severity, coded into 6 rank-ordered categories, was analyzed in a one-way ANOVA with TOMM score as the dependent variable. There was a statistically significant difference (F(5,87) = 2.473, p = 0.038). A Tukey post-hoc test with Bonferroni correction revealed that defendants facing lower charges (Theft, shoplifting, criminal breach of trust) invested less test-taking effort (TOMM = 37.4±12.3, p = 0.033) compared to those facing the death penalty (TOMM = 46.2±8.1). The surprising finding that those facing death penalties actually invested more test taking effort than those facing relatively minor charges could be due to higher levels of cooperation when faced with death. Alternatively, other legal avenues to escape the death sentence may have been preferred over the mitigatory chance of a psychiatric defence.Keywords: capital sentencing, offence severity, Singapore, Test of Memory Malingering
Procedia PDF Downloads 43325083 Data Mining Algorithms Analysis: Case Study of Price Predictions of Lands
Authors: Julio Albuja, David Zaldumbide
Abstract:
Data analysis is an important step before taking a decision about money. The aim of this work is to analyze the factors that influence the final price of the houses through data mining algorithms. To our best knowledge, previous work was researched just to compare results. Furthermore, before using the data of the data set, the Z-Transformation were used to standardize the data in the same range. Hence, the data was classified into two groups to visualize them in a readability format. A decision tree was built, and graphical data is displayed where clearly is easy to see the results and the factors' influence in these graphics. The definitions of these methods are described, as well as the descriptions of the results. Finally, conclusions and recommendations are presented related to the released results that our research showed making it easier to apply these algorithms using a customized data set.Keywords: algorithms, data, decision tree, transformation
Procedia PDF Downloads 37225082 Application of Blockchain Technology in Geological Field
Authors: Mengdi Zhang, Zhenji Gao, Ning Kang, Rongmei Liu
Abstract:
Management and application of geological big data is an important part of China's national big data strategy. With the implementation of a national big data strategy, geological big data management becomes more and more critical. At present, there are still a lot of technology barriers as well as cognition chaos in many aspects of geological big data management and application, such as data sharing, intellectual property protection, and application technology. Therefore, it’s a key task to make better use of new technologies for deeper delving and wider application of geological big data. In this paper, we briefly introduce the basic principle of blockchain technology at the beginning and then make an analysis of the application dilemma of geological data. Based on the current analysis, we bring forward some feasible patterns and scenarios for the blockchain application in geological big data and put forward serval suggestions for future work in geological big data management.Keywords: blockchain, intellectual property protection, geological data, big data management
Procedia PDF Downloads 8725081 Frequent Item Set Mining for Big Data Using MapReduce Framework
Authors: Tamanna Jethava, Rahul Joshi
Abstract:
Frequent Item sets play an essential role in many data Mining tasks that try to find interesting patterns from the database. Typically it refers to a set of items that frequently appear together in transaction dataset. There are several mining algorithm being used for frequent item set mining, yet most do not scale to the type of data we presented with today, so called “BIG DATA”. Big Data is a collection of large data sets. Our approach is to work on the frequent item set mining over the large dataset with scalable and speedy way. Big Data basically works with Map Reduce along with HDFS is used to find out frequent item sets from Big Data on large cluster. This paper focuses on using pre-processing & mining algorithm as hybrid approach for big data over Hadoop platform.Keywords: frequent item set mining, big data, Hadoop, MapReduce
Procedia PDF Downloads 43325080 The Role Of Data Gathering In NGOs
Authors: Hussaini Garba Mohammed
Abstract:
Background/Significance: The lack of data gathering is affecting NGOs world-wide in general to have good data information about educational and health related issues among communities in any country and around the world. For example, HIV/AIDS smoking (Tuberculosis diseases) and COVID-19 virus carriers is becoming a serious public health problem, especially among old men and women. But there is no full details data survey assessment from communities, villages, and rural area in some countries to show the percentage of victims and patients, especial with this world COVID-19 virus among the people. These data are essential to inform programming targets, strategies, and priorities in getting good information about data gathering in any society.Keywords: reliable information, data assessment, data mining, data communication
Procedia PDF Downloads 17825079 The Application of Data Mining Technology in Building Energy Consumption Data Analysis
Authors: Liang Zhao, Jili Zhang, Chongquan Zhong
Abstract:
Energy consumption data, in particular those involving public buildings, are impacted by many factors: the building structure, climate/environmental parameters, construction, system operating condition, and user behavior patterns. Traditional methods for data analysis are insufficient. This paper delves into the data mining technology to determine its application in the analysis of building energy consumption data including energy consumption prediction, fault diagnosis, and optimal operation. Recent literature are reviewed and summarized, the problems faced by data mining technology in the area of energy consumption data analysis are enumerated, and research points for future studies are given.Keywords: data mining, data analysis, prediction, optimization, building operational performance
Procedia PDF Downloads 85125078 To Handle Data-Driven Software Development Projects Effectively
Authors: Shahnewaz Khan
Abstract:
Machine learning (ML) techniques are often used in projects for creating data-driven applications. These tasks typically demand additional research and analysis. The proper technique and strategy must be chosen to ensure the success of data-driven projects. Otherwise, even exerting a lot of effort, the necessary development might not always be possible. In this post, an effort to examine the workflow of data-driven software development projects and its implementation process in order to describe how to manage a project successfully. Which will assist in minimizing the added workload.Keywords: data, data-driven projects, data science, NLP, software project
Procedia PDF Downloads 8125077 Treating On-Demand Bonds as Cash-In-Hand: Analyzing the Use of “Unconscionability” as a Ground for Challenging Claims for Payment under On-Demand Bonds
Authors: Asanga Gunawansa, Shenella Fonseka
Abstract:
On-demand bonds, also known as unconditional bonds, are commonplace in the construction industry as a means of safeguarding the employer from any potential non-performance by a contractor. On-demand bonds may be obtained from commercial banks, and they serve as an undertaking by the issuing bank to honour payment on demand without questioning and/or considering any dispute between the employer and the contractor in relation to the underlying contract. Thus, whether or not a breach had occurred under the underlying contract, which triggers the demand for encashment by the employer, is not a question the bank needs to be concerned with. As a result, an unconditional bond allows the beneficiary to claim the money almost without any condition. Thus, an unconditional bond is as good as cash-in-hand. In the past, establishing fraud on the part of the employer, of which the bank had knowledge, was the only ground on which a bank could dishonour a claim made under an on-demand bond. However, recent jurisprudence in common law countries shows that courts are beginning to consider unconscionable conduct on the part of the employer in claiming under an on-demand bond as a ground that contractors could rely on the prevent the banks from honouring such claims. This has created uncertainty in connection with on-demand bonds and their liquidity. This paper analyzes recent judicial decisions in four common law jurisdictions, namely, England, Singapore, Hong Kong, and Sri Lanka, to identify the scope of using the concept of “unconscionability” as a ground for preventing unreasonable claims for encashment of on-demand bonds. The objective of this paper is to argue that on-demand bonds have lost their effectiveness as “cash-in-hand” and that this is, in fact, an advantage and not an impediment to international commerce, as the purpose of such bonds should not be to provide for illegal and unconscionable conduct by the beneficiaries.Keywords: fraud, performance guarantees, on-demand bonds, unconscionability
Procedia PDF Downloads 10425076 The Relationship Between Artificial Intelligence, Data Science, and Privacy
Authors: M. Naidoo
Abstract:
Artificial intelligence often requires large amounts of good quality data. Within important fields, such as healthcare, the training of AI systems predominately relies on health and personal data; however, the usage of this data is complicated by various layers of law and ethics that seek to protect individuals’ privacy rights. This research seeks to establish the challenges AI and data sciences pose to (i) informational rights, (ii) privacy rights, and (iii) data protection. To solve some of the issues presented, various methods are suggested, such as embedding values in technological development, proper balancing of rights and interests, and others.Keywords: artificial intelligence, data science, law, policy
Procedia PDF Downloads 10525075 Simulation Data Summarization Based on Spatial Histograms
Authors: Jing Zhao, Yoshiharu Ishikawa, Chuan Xiao, Kento Sugiura
Abstract:
In order to analyze large-scale scientific data, research on data exploration and visualization has gained popularity. In this paper, we focus on the exploration and visualization of scientific simulation data, and define a spatial V-Optimal histogram for data summarization. We propose histogram construction algorithms based on a general binary hierarchical partitioning as well as a more specific one, the l-grid partitioning. For effective data summarization and efficient data visualization in scientific data analysis, we propose an optimal algorithm as well as a heuristic algorithm for histogram construction. To verify the effectiveness and efficiency of the proposed methods, we conduct experiments on the massive evacuation simulation data.Keywords: simulation data, data summarization, spatial histograms, exploration, visualization
Procedia PDF Downloads 17525074 Algorithms used in Spatial Data Mining GIS
Authors: Vahid Bairami Rad
Abstract:
Extracting knowledge from spatial data like GIS data is important to reduce the data and extract information. Therefore, the development of new techniques and tools that support the human in transforming data into useful knowledge has been the focus of the relatively new and interdisciplinary research area ‘knowledge discovery in databases’. Thus, we introduce a set of database primitives or basic operations for spatial data mining which are sufficient to express most of the spatial data mining algorithms from the literature. This approach has several advantages. Similar to the relational standard language SQL, the use of standard primitives will speed-up the development of new data mining algorithms and will also make them more portable. We introduced a database-oriented framework for spatial data mining which is based on the concepts of neighborhood graphs and paths. A small set of basic operations on these graphs and paths were defined as database primitives for spatial data mining. Furthermore, techniques to efficiently support the database primitives by a commercial DBMS were presented.Keywords: spatial data base, knowledge discovery database, data mining, spatial relationship, predictive data mining
Procedia PDF Downloads 45925073 Data Stream Association Rule Mining with Cloud Computing
Authors: B. Suraj Aravind, M. H. M. Krishna Prasad
Abstract:
There exist emerging applications of data streams that require association rule mining, such as network traffic monitoring, web click streams analysis, sensor data, data from satellites etc. Data streams typically arrive continuously in high speed with huge amount and changing data distribution. This raises new issues that need to be considered when developing association rule mining techniques for stream data. This paper proposes to introduce an improved data stream association rule mining algorithm by eliminating the limitation of resources. For this, the concept of cloud computing is used. Inclusion of this may lead to additional unknown problems which needs further research.Keywords: data stream, association rule mining, cloud computing, frequent itemsets
Procedia PDF Downloads 49925072 A Comprehensive Survey and Improvement to Existing Privacy Preserving Data Mining Techniques
Authors: Tosin Ige
Abstract:
Ethics must be a condition of the world, like logic. (Ludwig Wittgenstein, 1889-1951). As important as data mining is, it possess a significant threat to ethics, privacy, and legality, since data mining makes it difficult for an individual or consumer (in the case of a company) to control the accessibility and usage of his data. This research focuses on Current issues and the latest research and development on Privacy preserving data mining methods as at year 2022. It also discusses some advances in those techniques while at the same time highlighting and providing a new technique as a solution to an existing technique of privacy preserving data mining methods. This paper also bridges the wide gap between Data mining and the Web Application Programing Interface (web API), where research is urgently needed for an added layer of security in data mining while at the same time introducing a seamless and more efficient way of data mining.Keywords: data, privacy, data mining, association rule, privacy preserving, mining technique
Procedia PDF Downloads 17125071 Big Data: Concepts, Technologies and Applications in the Public Sector
Authors: A. Alexandru, C. A. Alexandru, D. Coardos, E. Tudora
Abstract:
Big Data (BD) is associated with a new generation of technologies and architectures which can harness the value of extremely large volumes of very varied data through real time processing and analysis. It involves changes in (1) data types, (2) accumulation speed, and (3) data volume. This paper presents the main concepts related to the BD paradigm, and introduces architectures and technologies for BD and BD sets. The integration of BD with the Hadoop Framework is also underlined. BD has attracted a lot of attention in the public sector due to the newly emerging technologies that allow the availability of network access. The volume of different types of data has exponentially increased. Some applications of BD in the public sector in Romania are briefly presented.Keywords: big data, big data analytics, Hadoop, cloud
Procedia PDF Downloads 30925070 Semantic Data Schema Recognition
Authors: Aïcha Ben Salem, Faouzi Boufares, Sebastiao Correia
Abstract:
The subject covered in this paper aims at assisting the user in its quality approach. The goal is to better extract, mix, interpret and reuse data. It deals with the semantic schema recognition of a data source. This enables the extraction of data semantics from all the available information, inculding the data and the metadata. Firstly, it consists of categorizing the data by assigning it to a category and possibly a sub-category, and secondly, of establishing relations between columns and possibly discovering the semantics of the manipulated data source. These links detected between columns offer a better understanding of the source and the alternatives for correcting data. This approach allows automatic detection of a large number of syntactic and semantic anomalies.Keywords: schema recognition, semantic data profiling, meta-categorisation, semantic dependencies inter columns
Procedia PDF Downloads 41725069 Access Control System for Big Data Application
Authors: Winfred Okoe Addy, Jean Jacques Dominique Beraud
Abstract:
Access control systems (ACs) are some of the most important components in safety areas. Inaccuracies of regulatory frameworks make personal policies and remedies more appropriate than standard models or protocols. This problem is exacerbated by the increasing complexity of software, such as integrated Big Data (BD) software for controlling large volumes of encrypted data and resources embedded in a dedicated BD production system. This paper proposes a general access control strategy system for the diffusion of Big Data domains since it is crucial to secure the data provided to data consumers (DC). We presented a general access control circulation strategy for the Big Data domain by describing the benefit of using designated access control for BD units and performance and taking into consideration the need for BD and AC system. We then presented a generic of Big Data access control system to improve the dissemination of Big Data.Keywords: access control, security, Big Data, domain
Procedia PDF Downloads 132