Search results for: butterfly motion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1350

Search results for: butterfly motion

1290 Learning the Dynamics of Articulated Tracked Vehicles

Authors: Mario Gianni, Manuel A. Ruiz Garcia, Fiora Pirri

Abstract:

In this work, we present a Bayesian non-parametric approach to model the motion control of ATVs. The motion control model is based on a Dirichlet Process-Gaussian Process (DP-GP) mixture model. The DP-GP mixture model provides a flexible representation of patterns of control manoeuvres along trajectories of different lengths and discretizations. The model also estimates the number of patterns, sufficient for modeling the dynamics of the ATV.

Keywords: Dirichlet processes, gaussian mixture models, learning motion patterns, tracked robots for urban search and rescue

Procedia PDF Downloads 449
1289 Flicker Detection with Motion Tolerance for Embedded Camera

Authors: Jianrong Wu, Xuan Fu, Akihiro Higashi, Zhiming Tan

Abstract:

CMOS image sensors with a rolling shutter are used broadly in the digital cameras embedded in mobile devices. The rolling shutter suffers the flicker artifacts from the fluorescent lamp, and it could be observed easily. In this paper, the characteristics of illumination flicker in motion case were analyzed, and two efficient detection methods based on matching fragment selection were proposed. According to the experimental results, our methods could achieve as high as 100% accuracy in static scene, and at least 97% in motion scene.

Keywords: illumination flicker, embedded camera, rolling shutter, detection

Procedia PDF Downloads 420
1288 Flow and Heat Transfer of a Nanofluid over a Shrinking Sheet

Authors: N. Bachok, N. L. Aleng, N. M. Arifin, A. Ishak, N. Senu

Abstract:

The problem of laminar fluid flow which results from the shrinking of a permeable surface in a nanofluid has been investigated numerically. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. A similarity solution is presented which depends on the mass suction parameter S, Prandtl number Pr, Lewis number Le, Brownian motion number Nb and thermophoresis number Nt. It was found that the reduced Nusselt number is decreasing function of each dimensionless number.

Keywords: Boundary layer, nanofluid, shrinking sheet, Brownian motion, thermophoresis, similarity solution

Procedia PDF Downloads 415
1287 Investigating the Form of the Generalised Equations of Motion of the N-Bob Pendulum and Computing Their Solution Using MATLAB

Authors: Divij Gupta

Abstract:

Pendular systems have a range of both mathematical and engineering applications, ranging from modelling the behaviour of a continuous mass-density rope to utilisation as Tuned Mass Dampers (TMD). Thus, it is of interest to study the differential equations governing the motion of such systems. Here we attempt to generalise these equations of motion for the plane compound pendulum with a finite number of N point masses. A Lagrangian approach is taken, and we attempt to find the generalised form for the Euler-Lagrange equations of motion for the i-th bob of the N -bob pendulum. The co-ordinates are parameterized as angular quantities to reduce the number of degrees of freedom from 2N to N to simplify the form of the equations. We analyse the form of these equations up to N = 4 to determine the general form of the equation. We also develop a MATLAB program to compute a solution to the system for a given input value of N and a given set of initial conditions.

Keywords: classical mechanics, differential equation, lagrangian analysis, pendulum

Procedia PDF Downloads 208
1286 Extended Constraint Mask Based One-Bit Transform for Low-Complexity Fast Motion Estimation

Authors: Oğuzhan Urhan

Abstract:

In this paper, an improved motion estimation (ME) approach based on weighted constrained one-bit transform is proposed for block-based ME employed in video encoders. Binary ME approaches utilize low bit-depth representation of the original image frames with a Boolean exclusive-OR based hardware efficient matching criterion to decrease computational burden of the ME stage. Weighted constrained one-bit transform (WC‑1BT) based approach improves the performance of conventional C-1BT based ME employing 2-bit depth constraint mask instead of a 1-bit depth mask. In this work, the range of constraint mask is further extended to increase ME performance of WC-1BT approach. Experiments reveal that the proposed method provides better ME accuracy compared existing similar ME methods in the literature.

Keywords: fast motion estimation; low-complexity motion estimation, video coding

Procedia PDF Downloads 316
1285 Effects of Ground Motion Characteristics on Damage of RC Buildings: A Detailed Investiagation

Authors: Mohamed Elassaly

Abstract:

The damage status of RC buildings is greatly influenced by the characteristics of the imposed ground motion. Peak Ground Acceleration and frequency contents are considered the main two factors that affect ground motion characteristics; hence, affecting the seismic response of RC structures and consequently their damage state. A detailed investigation on the combined effects of these two factors on damage assessment of RC buildings, is carried out. Twenty one earthquake records are analyzed and arranged into three groups, according to their frequency contents. These records are used in an investigation to define the expected damage state that would be attained by RC buildings, if subjected to varying ground motion characteristics. The damage assessment is conducted through examining drift ratios and damage indices of the overall structure and the significant structural components of RC building. Base and story shear of RC building model, are also investigated, for cases when the model is subjected to the chosen twenty one earthquake records. Nonlinear dynamic analyses are performed on a 2-dimensional model of a 12-story R.C. building.

Keywords: damage, frequency content, ground motion, PGA, RC building, seismic

Procedia PDF Downloads 409
1284 Development and Evaluation of Virtual Basketball Game Using Motion Capture Technology

Authors: Shunsuke Aoki, Taku Ri, Tatsuya Yamazaki

Abstract:

These days, along with the development of e-sports, video games as a competitive sport is attracting attention. But, in many cases, action in the screen does not match the real motion of operation. Inclusiveness of player motion is needed to increase reality and excitement for sports games. Therefore, in this study, the authors propose a method to recognize player motion by using the motion capture technology and develop a virtual basketball game. The virtual basketball game consists of a screen with nine targets, players, depth sensors, and no ball. The players pretend a two-handed basketball shot without a ball aiming at one of the nine targets on the screen. Time-series data of three-dimensional coordinates of player joints are captured by the depth sensor. 20 joints data are measured for each player to estimate the shooting motion in real-time. The trajectory of the thrown virtual ball is calculated based on the time-series data and hitting on the target is judged as success or failure. The virtual basketball game can be played by 2 to 4 players as a competitive game among the players. The developed game was exhibited to the public for evaluation on the authors' university open campus days. 339 visitors participated in the exhibition and enjoyed the virtual basketball game over the two days. A questionnaire survey on the developed game was conducted for the visitors who experienced the game. As a result of the survey, about 97.3% of the players found the game interesting regardless of whether they had experienced actual basketball before or not. In addition, it is found that women are easy to comfort for shooting motion. The virtual game with motion capture technology has the potential to become a universal entertainment between e-sports and actual sports.

Keywords: basketball, motion capture, questionnaire survey, video ga

Procedia PDF Downloads 126
1283 Hearing Aids Maintenance Training for Hearing-Impaired Preschool Children with the Help of Motion Graphic Tools

Authors: M. Mokhtarzadeh, M. Taheri Qomi, M. Nikafrooz, A. Atashafrooz

Abstract:

The purpose of the present study was to investigate the effectiveness of using motion graphics as a learning medium on training hearing aids maintenance skills to hearing-impaired children. The statistical population of this study consisted of all children with hearing loss in Ahvaz city, at age 4 to 7 years old. As the sample, 60, whom were selected by multistage random sampling, were randomly assigned to two groups; experimental (30 children) and control (30 children) groups. The research method was experimental and the design was pretest-posttest with the control group. The intervention consisted of a 2-minute motion graphics clip to train hearing aids maintenance skills. Data were collected using a 9-question researcher-made questionnaire. The data were analyzed by using one-way analysis of covariance. Results showed that the training of hearing aids maintenance skills with motion graphics was significantly effective for those children. The results of this study can be used by educators, teachers, professionals, and parents to train children with disabilities or normal students.

Keywords: hearing aids, hearing aids maintenance skill, hearing impaired children, motion graphics

Procedia PDF Downloads 158
1282 Development of Scratching Monitoring System Based on Mathematical Model of Unconstrained Bed Sensing Method

Authors: Takuya Sumi, Syoko Nukaya, Takashi Kaburagi, Hiroshi Tanaka, Kajiro Watanabe, Yosuke Kurihara

Abstract:

We propose an unconstrained measurement system for scratching motion based on mathematical model of unconstrained bed sensing method which could measure the bed vibrations due to the motion of the person on the bed. In this paper, we construct mathematical model of the unconstrained bed monitoring system, and we apply the unconstrained bed sensing method to the system for detecting scratching motion. The proposed sensors are placed under the three bed feet. When the person is lying on the bed, the output signals from the sensors are proportional to the magnitude of the vibration due to the scratching motion. Hence, we could detect the subject’s scratching motion from the output signals from ceramic sensors. We evaluated two scratching motions using the proposed system in the validity experiment as follows: First experiment is the subject’s scratching the right side cheek with his right hand, and; second experiment is the subject’s scratching the shin with another foot. As the results of the experiment, we recognized the scratching signals that enable the determination when the scratching occurred. Furthermore, the difference among the amplitudes of the output signals enabled us to estimate where the subject scratched.

Keywords: unconstrained bed sensing method, scratching, body movement, itchy, piezoceramics

Procedia PDF Downloads 410
1281 Integrating Ergonomics at Design Stage in Development of Continuous Passive Motion Machine

Authors: Mahesh S. Harne, Sunil V. Deshmukh

Abstract:

A continuous passive motion machine improves and helps the patient to restore range of motion in various physiotherapy activities. The paper presents a concept for portable CPM. The device is used for various joint for upper and lower body extremities. The device is designed so that the active and passive motion is incorporated. During development, the physiotherapist and patient need is integrated with designer aspects. Various tools such as Analytical Higher Hierarchy process (AHP) and Quality Function Deployment (QFD) is used to integrate the need at the design stage. With market survey of various commercial CPM the gaps are identified, and efforts are made to fill the gaps with ergonomic need. Indian anthropomorphic dimension is referred. The device is modular to best suit for all the anthropomorphic need of different human. Experimentation is carried under the observation of physiotherapist and doctor on volunteer patient. We reported better results are compare to conventional CPM with comfort and less pain. We concluded that the concept will be helpful to reduces therapy cost and wide utility of device for various joint and physiotherapy exercise.

Keywords: continuous passive motion machine, ergonomics, physiotherapy, quality function deployment

Procedia PDF Downloads 185
1280 Impacts of Commercial Honeybees on Native Butterflies in High-Elevation Meadows in Utah, USA

Authors: Jacqueline Kunzelman, Val Anderson, Robert Johnson, Nicholas Anderson, Rebecca Bates

Abstract:

In an effort to protect honeybees from colony collapse disorder, beekeepers are filing for government permits to use natural lands as summer pasture for honeybees under the multiple-use management regime in the United States. Utilizing natural landscapes in high mountain ranges may help strengthen honeybee colonies, as this natural setting is generally void of chemical pollutants and pesticides that are found in agricultural and urban settings. However, the introduction of a competitive species could greatly impact the native species occupying these natural landscapes. While honeybees and butterflies have different life histories, behavior, and foraging strategies, they compete for the same nectar resources. Few, if any, studies have focused on the potential population effects of commercial honeybees on native butterfly abundance and diversity. This study attempts to observe this impact using a paired before-after control-impact (BACI) design. Over the course of two years, malaise trap samples were collected every week during the months of the flowering season in two similar areas separated by 11 kilometers. Each area contained nine malaise trap sites for replication. In the first year, samples were taken to analyze and establish trends within the pollinating communities. In the second year, honeybees were introduced to only one of the two areas, and a change in trends between the two areas was assessed. Contrary to the original hypothesis, the resulting observation was an overall significant increase in the mean butterfly abundance in the impact areas after honeybees were introduced, while control areas remained relatively stable. This overall increase in abundance over the season can be attributed to an increase in butterflies during the first and second periods of the data collection when populations were near their peak. Several potential theories are 1) Honeybees are deterring a natural predator/competitor of butterflies that previously limited population growth. 2) Honeybees are consuming resources regularly used by butterflies, which may extend the foraging time and consequent capture rates of butterflies. 3) Environmental factors such as number of rainy days were inconsistent between control and impact areas, biasing capture rates. This ongoing research will help determine the suitability of high mountain ranges for the summer pasturing of honeybees and the population impacts on many different pollinators.

Keywords: butterfly, competition, honeybee, pollinator

Procedia PDF Downloads 146
1279 Estimation and Restoration of Ill-Posed Parameters for Underwater Motion Blurred Images

Authors: M. Vimal Raj, S. Sakthivel Murugan

Abstract:

Underwater images degrade their quality due to atmospheric conditions. One of the major problems in an underwater image is motion blur caused by the imaging device or the movement of the object. In order to rectify that in post-imaging, parameters of the blurred image are to be estimated. So, the point spread function is estimated by the properties, using the spectrum of the image. To improve the estimation accuracy of the parameters, Optimized Polynomial Lagrange Interpolation (OPLI) method is implemented after the angle and length measurement of motion-blurred images. Initially, the data were collected from real-time environments in Chennai and processed. The proposed OPLI method shows better accuracy than the existing classical Cepstral, Hough, and Radon transform estimation methods for underwater images.

Keywords: image restoration, motion blur, parameter estimation, radon transform, underwater

Procedia PDF Downloads 176
1278 Stereo Motion Tracking

Authors: Yudhajit Datta, Hamsi Iyer, Jonathan Bandi, Ankit Sethia

Abstract:

Motion Tracking and Stereo Vision are complicated, albeit well-understood problems in computer vision. Existing softwares that combine the two approaches to perform stereo motion tracking typically employ complicated and computationally expensive procedures. The purpose of this study is to create a simple and effective solution capable of combining the two approaches. The study aims to explore a strategy to combine the two techniques of two-dimensional motion tracking using Kalman Filter; and depth detection of object using Stereo Vision. In conventional approaches objects in the scene of interest are observed using a single camera. However for Stereo Motion Tracking; the scene of interest is observed using video feeds from two calibrated cameras. Using two simultaneous measurements from the two cameras a calculation for the depth of the object from the plane containing the cameras is made. The approach attempts to capture the entire three-dimensional spatial information of each object at the scene and represent it through a software estimator object. In discrete intervals, the estimator tracks object motion in the plane parallel to plane containing cameras and updates the perpendicular distance value of the object from the plane containing the cameras as depth. The ability to efficiently track the motion of objects in three-dimensional space using a simplified approach could prove to be an indispensable tool in a variety of surveillance scenarios. The approach may find application from high security surveillance scenes such as premises of bank vaults, prisons or other detention facilities; to low cost applications in supermarkets and car parking lots.

Keywords: kalman filter, stereo vision, motion tracking, matlab, object tracking, camera calibration, computer vision system toolbox

Procedia PDF Downloads 327
1277 Effects of Various Wavelet Transforms in Dynamic Analysis of Structures

Authors: Seyed Sadegh Naseralavi, Sadegh Balaghi, Ehsan Khojastehfar

Abstract:

Time history dynamic analysis of structures is considered as an exact method while being computationally intensive. Filtration of earthquake strong ground motions applying wavelet transform is an approach towards reduction of computational efforts, particularly in optimization of structures against seismic effects. Wavelet transforms are categorized into continuum and discrete transforms. Since earthquake strong ground motion is a discrete function, the discrete wavelet transform is applied in the present paper. Wavelet transform reduces analysis time by filtration of non-effective frequencies of strong ground motion. Filtration process may be repeated several times while the approximation induces more errors. In this paper, strong ground motion of earthquake has been filtered once applying each wavelet. Strong ground motion of Northridge earthquake is filtered applying various wavelets and dynamic analysis of sampled shear and moment frames is implemented. The error, regarding application of each wavelet, is computed based on comparison of dynamic response of sampled structures with exact responses. Exact responses are computed by dynamic analysis of structures applying non-filtered strong ground motion.

Keywords: wavelet transform, computational error, computational duration, strong ground motion data

Procedia PDF Downloads 378
1276 Object Trajectory Extraction by Using Mean of Motion Vectors Form Compressed Video Bitstream

Authors: Ching-Ting Hsu, Wei-Hua Ho, Yi-Chun Chang

Abstract:

Video object tracking is one of the popular research topics in computer graphics area. The trajectory can be applied in security, traffic control, even the sports training. The trajectory for sports training can be utilized to analyze the athlete’s performance without traditional sensors. There are many relevant works which utilize mean shift algorithm with background subtraction. This kind of the schemes should select a kernel function which may affect the accuracy and performance. In this paper, we consider the motion information in the pre-coded bitstream. The proposed algorithm extracts the trajectory by composing the motion vectors from the pre-coded bitstream. We gather the motion vectors from the overlap area of the object and calculate mean of the overlapped motion vectors. We implement and simulate our proposed algorithm in H.264 video codec. The performance is better than relevant works and keeps the accuracy of the object trajectory. The experimental results show that the proposed trajectory extraction can extract trajectory form the pre-coded bitstream in high accuracy and achieve higher performance other relevant works.

Keywords: H.264, video bitstream, video object tracking, sports training

Procedia PDF Downloads 428
1275 Diversity and Distribution of Butterflies (Lepidoptera-Rhopalocera) along with Altitudinal Gradient and Vegetation Types at Lahoul Valley, Trans-Himalaya Region, India

Authors: Saveena Bogtapa, Jagbir Singh Kirti

Abstract:

Himalaya is one of the most fascinating ranges in the world. In India, it comprises 18 percent of the land area. Lahoul valley which is a part of Trans-Himalaya region is well known for its unique, diverse flora and fauna. It lies in the North-Eastern corner of the state Himachal Pradesh where its altitude ranges between 2500m to 5000m. Vegetation of this region is dry-temperate to alpine type. The diversity of the area is very less, rare, unique and highly endemic. But today, as a lot of environmental degradation has taken place in this hot spot of biodiversity because of frequent developmental and commercial activities which lead to the diversity of this area comes under a real threat. Therefore, as part of the research, butterflies which are known for their attractiveness as well as usefulness to the ecosystem, are used for the study. The diversity of butterflies of a particular area not only provides a healthy environment but also serves as the first step of conservation to the biodiversity. Their distribution in different habitats and altitude type helps us to understand the species richness and abundance in an area. Moreover, different environmental parameters which affect the butterfly community has also recorded. Hence, the present study documents the butterfly diversity in an unexplored habitat and altitude types at Lahoul valley. The valley has been surveyed along with altitudinal gradients (from 2500m to 4500m) and in various habitats like agriculture land, grassland, scrubland, riverine and in different types of forests. Very rare species of butterflies have been explored, and these will be discussed along with different parameters during the presentation.

Keywords: butterflies, diversity, Lahoul valley, altitude, vegetation

Procedia PDF Downloads 246
1274 Coupled Analysis with Fluid and Flexible Multibody Dynamics of 6-DOF Platform with Liquid Sloshing Tank

Authors: Sung-Pill Kim, Dae-Gyu Sung, Hee-Sung Shin, Jong-Chun Park

Abstract:

When a sloshing tank filled partially with liquid is excited with the motion of platform, it can be observed that the center of mass inside the tank is changed and impact loads is instantaneously applied to the wall, which causes dynamic loads additionally to the supporting links of platform. In this case, therefore, the dynamic behavior of platform associated with fluid motion should be considered in the early stage of design for safety and economics of the system. In this paper, the dynamic loads due to liquid sloshing motion in a rectangular tank which is loaded up on the upper deck of a Stewart platform are simulated using a coupled analysis of Moving Particle Simulation (MPS) and Flexible Multi-Body Dynamics (FMBD). The co-simulation is performed using two commercial softwares, Recurdyn for solving FMBD and Particleworks for analyzing fluid motion based on MPS method. For validating the present coupled system, a rectangular sloshing tank being enforced with inline sway motion by 1-DOF motion platform is assumed, and time-varied free-surface elevation and reaction force at a fixed joint are compared with experiments.

Keywords: dynamic loads, liquid sloshing tank, Stewart platform, moving particle semi-implicit (MPS) method, flexible multi-body dynamics (FMBD)

Procedia PDF Downloads 705
1273 Modeling of Strong Motion Generation Areas of the 2011 Tohoku, Japan Earthquake Using Modified Semi-Empirical Technique Incorporating Frequency Dependent Radiation Pattern Model

Authors: Sandeep, A. Joshi, Kamal, Piu Dhibar, Parveen Kumar

Abstract:

In the present work strong ground motion has been simulated using a modified semi-empirical technique (MSET), with frequency dependent radiation pattern model. Joshi et al. (2014) have modified the semi-empirical technique to incorporate the modeling of strong motion generation areas (SMGAs). A frequency dependent radiation pattern model is applied to simulate high frequency ground motion more precisely. Identified SMGAs (Kurahashi and Irikura 2012) of the 2011 Tohoku earthquake (Mw 9.0) were modeled using this modified technique. Records are simulated for both frequency dependent and constant radiation pattern function. Simulated records for both cases are compared with observed records in terms of peak ground acceleration and pseudo acceleration response spectra at different stations. Comparison of simulated and observed records in terms of root mean square error suggests that the method is capable of simulating record which matches in a wide frequency range for this earthquake and bears realistic appearance in terms of shape and strong motion parameters. The results confirm the efficacy and suitability of rupture model defined by five SMGAs for the developed modified technique.

Keywords: strong ground motion, semi-empirical, strong motion generation area, frequency dependent radiation pattern, 2011 Tohoku Earthquake

Procedia PDF Downloads 537
1272 Stroke Rehabilitation via Electroencephalogram Sensors and an Articulated Robot

Authors: Winncy Du, Jeremy Nguyen, Harpinder Dhillon, Reinardus Justin Halim, Clayton Haske, Trent Hughes, Marissa Ortiz, Rozy Saini

Abstract:

Stroke often causes death or cerebro-vascular (CV) brain damage. Most patients with CV brain damage lost their motor control on their limbs. This paper focuses on developing a reliable, safe, and non-invasive EEG-based robot-assistant stroke rehabilitation system to help stroke survivors to rapidly restore their motor control functions for their limbs. An electroencephalogram (EEG) recording device (EPOC Headset) and was used to detect a patient’s brain activities. The EEG signals were then processed, classified, and interpreted to the motion intentions, and then converted to a series of robot motion commands. A six-axis articulated robot (AdeptSix 300) was employed to provide the intended motions based on these commends. To ensure the EEG device, the computer, and the robot can communicate to each other, an Arduino microcontroller is used to physically execute the programming codes to a series output pins’ status (HIGH or LOW). Then these “hardware” commends were sent to a 24 V relay to trigger the robot’s motion. A lookup table for various motion intensions and the associated EEG signal patterns were created (through training) and installed in the microcontroller. Thus, the motion intention can be direct determined by comparing the EEG patterns obtaibed from the patient with the look-up table’s EEG patterns; and the corresponding motion commends are sent to the robot to provide the intended motion without going through feature extraction and interpretation each time (a time-consuming process). For safety sake, an extender was designed and attached to the robot’s end effector to ensure the patient is beyond the robot’s workspace. The gripper is also designed to hold the patient’s limb. The test results of this rehabilitation system show that it can accurately interpret the patient’s motion intension and move the patient’s arm to the intended position.

Keywords: brain waves, EEG sensor, motion control, robot-assistant stroke rehabilitation

Procedia PDF Downloads 383
1271 Exploring Wheel-Motion Energy Sources for Energy Harvesting Based on Electromagnetic Effect: Experimental and Numerical Investigation

Authors: Mohammed Alaa Alwafaie, Bela Kovacs

Abstract:

With the rapid emergence and evolution of renewable energy sources like wind and solar power, there is an increasing demand for effective energy harvester architectures. This paper focuses on investigating the concept of energy harvesting using a wheel-motion energy source. The proposed method involves the placement of magnets and copper coils inside the hubcap rod of a wheel. When the wheel is set in motion, following Faraday's Law, the movement of the magnet within the coil induces an electric current. The paper includes an experiment to measure the output voltage of electromagnetics, as well as a numerical simulation to further explore the potential of this energy harvesting approach. By harnessing the rotational motion of wheels, this research aims to contribute to the development of innovative techniques for generating electrical power in a sustainable and efficient manner.

Keywords: harvesting energy, electromagnetic, hubcap rod wheel, magnet movement inside coil, faraday law

Procedia PDF Downloads 76
1270 Effects of Pore-Water Pressure on the Motion of Debris Flow

Authors: Meng-Yu Lin, Wan-Ju Lee

Abstract:

Pore-water pressure, which mediates effective stress and shear strength at grain contacts, has a great influence on the motion of debris flow. The factors that control the diffusion of excess pore-water pressure play very important roles in the debris-flow motion. This research investigates these effects by solving the distribution of pore-water pressure numerically in an unsteady, surging motion of debris flow. The governing equations are the depth-averaged equations for the motion of debris-flow surges coupled with the one-dimensional diffusion equation for excess pore-water pressures. The pore-pressure diffusion equation is solved using a Fourier series, which may improve the accuracy of the solution. The motion of debris-flow surge is modelled using a Lagrangian particle method. From the computational results, the effects of pore-pressure diffusivities and the initial excess pore pressure on the formations of debris-flow surges are investigated. Computational results show that the presence of pore water can increase surge velocities and then changes the profiles of depth distribution. Due to the linear distribution of the vertical component of pore-water velocity, pore pressure dissipates rapidly near the bottom and forms a parabolic distribution in the vertical direction. Increases in the diffusivity of pore-water pressure cause the pore pressures decay more rapidly and then decrease the mobility of the surge.

Keywords: debris flow, diffusion, Lagrangian particle method, pore-pressure diffusivity, pore-water pressure

Procedia PDF Downloads 143
1269 The Effect of Scapular Stabilization Exercises on Chronic Neck Pain

Authors: Amany Mohamed, Alaa Balbaa, Magdoline Mishel

Abstract:

Background: Pain in the neck or scapular region is one of the most frequent symptoms in cervical radiculopathy, which is commonly caused by degenerative process in the spine. Purpose: To determine the effect of scapular stabilization exercises in the treatment of chronic neck pain regarding pain and disability and limitation in the range of motion. Patients and Methods: Thirty male and female patients with chronic neck pain were involved. Aged between 30-50 years old. They were randomly assigned into two groups. In group (A), patients received physical therapy program in the form of infrared, transcutaneous electrical nerve stimulation (TENS), Stretching and cervical stabilization exercises. In group (B), patients received scapular stabilization exercises in addition to the same physical therapy program. Treatment was given 3 times a week for 4 weeks. Range of motion of the cervical spine, range of motion of the scapula, neck pain and disability were assessed before and after treatment. Results: There was significant improvement in both groups (A and B) in cervical range of motion, pain and disability. Group (B) showed more significant improvement than group (A) in cervical range of motion and pain and disability. There was no significant improvement in both groups in scapular range of motion. Conclusion: Scapular stabilization exercises should be used as an integral part in the rehabilitation program

Keywords: Neck pain, neck stabilization exercise, scapular stabilization exercise, chronic neck pain

Procedia PDF Downloads 301
1268 Covariance of the Queue Process Fed by Isonormal Gaussian Input Process

Authors: Samaneh Rahimirshnani, Hossein Jafari

Abstract:

In this paper, we consider fluid queueing processes fed by an isonormal Gaussian process. We study the correlation structure of the queueing process and the rate of convergence of the running supremum in the queueing process. The Malliavin calculus techniques are applied to obtain relations that show the workload process inherits the dependence properties of the input process. As examples, we consider two isonormal Gaussian processes, the sub-fractional Brownian motion (SFBM) and the fractional Brownian motion (FBM). For these examples, we obtain upper bounds for the covariance function of the queueing process and its rate of convergence to zero. We also discover that the rate of convergence of the queueing process is related to the structure of the covariance function of the input process.

Keywords: queue length process, Malliavin calculus, covariance function, fractional Brownian motion, sub-fractional Brownian motion

Procedia PDF Downloads 62
1267 A Novel Combustion Engine, Design and Modeling

Authors: M. A. Effati, M. R. Hojjati, M. Razmdideh

Abstract:

Nowadays, engine developments have focused on internal combustion engine design call for increased engine power, reduced engine size and improved fuel economy, simultaneously. In this paper, a novel design for combustion engine is proposed. Two combustion chambers were designed in two sides of cylinder. Piston was designed in a way that two sides of piston would transfer heat energy due to combustion to linear motion. This motion would convert to rotary motion through the designed mechanism connected to connecting rod. Connecting rod operation was analyzed to evaluate applied stress in 3000, 4500 and 6000 rpm. Boundary conditions including generated pressure in each side of cylinder in these 3 situations was calculated.

Keywords: combustion engine, design, finite element method, modeling

Procedia PDF Downloads 512
1266 Object Tracking in Motion Blurred Images with Adaptive Mean Shift and Wavelet Feature

Authors: Iman Iraei, Mina Sharifi

Abstract:

A method for object tracking in motion blurred images is proposed in this article. This paper shows that object tracking could be improved with this approach. We use mean shift algorithm to track different objects as a main tracker. But, the problem is that mean shift could not track the selected object accurately in blurred scenes. So, for better tracking result, and increasing the accuracy of tracking, wavelet transform is used. We use a feature named as blur extent, which could help us to get better results in tracking. For calculating of this feature, we should use Harr wavelet. We can look at this matter from two different angles which lead to determine whether an image is blurred or not and to what extent an image is blur. In fact, this feature left an impact on the covariance matrix of mean shift algorithm and cause to better performance of tracking. This method has been concentrated mostly on motion blur parameter. transform. The results reveal the ability of our method in order to reach more accurately tracking.

Keywords: mean shift, object tracking, blur extent, wavelet transform, motion blur

Procedia PDF Downloads 210
1265 Are There Any Positive Effects of Motivational Interviewing on Motion Sickness?

Authors: Unal Demirtas, Mehmet Ergin Dipcin, Mehmet Cetin

Abstract:

Background: Applied to student candidates prior to entering the air force academy, under the name of Cadet selection flights and executed as 7-8 sorties under the surveillance of flight instructors, this training is mainly towards appraising students’ characteristics of flying ability. All pilot cadets are gone through physical examination before cadet selection flight in a military hospital. Some cadets may show motion sickness symptoms during this flights. The most common symptoms: Nausea, vomiting, vertigo, headache, anxiety, paresthaesia, asthenia, muscle contraction and excitement. These cadets are examined by flight surgeon, after this flight surgeon and psychologist have an motivational interviewing with these cadets. Method: In this study, we have applied a survey that we question the severity of the symptom to the candidates that have motion sickness after the first sortie. We have questioned the candidate who had a motivational interviewing by the psychologist after the treatment of the flight surgeon that whether the candidate relived the complaints that he has at the previous sortie after the second sortie and whether there is decrease or increase in the severity of the complaints compared to the previous flight. Findings: 15 candidates have applied for the flight surgeon with at least one of the motion sickness symptoms. 11 of the 15 candidates showing motion sickness symptoms after the first flight expressed that their complaints are decreased after the motivational interviewing and 4 of the candidates stated that there are no changes in their complaints. The frequently expressed complaints are nausea, vertigo, headache, exhaustion and vomiting respectively. 7 out of 15 candidates expressed that they have same kind of complains in bus, ship etc. Conclusion: It is observed in our study that only conducting motivational interviewing with the candidates without any organic disorders without giving any drugs has a positive effect on the candidates in terms of motion sickness.

Keywords: aeromedicine, candidate, motion sickness, motivational interviewing, pilot

Procedia PDF Downloads 474
1264 Study of Effects of 3D Semi-Spheriacl Basin-Shape-Ratio on the Frequency Content and Spectral Amplitudes of the Basin-Generated Surface Waves

Authors: Kamal, J. P. Narayan

Abstract:

In the present wok the effects of basin-shape-ratio on the frequency content and spectral amplitudes of the basin-generated surface waves and the associated spatial variation of ground motion amplification and differential ground motion in a 3D semi-spherical basin has been studied. A recently developed 3D fourth-order spatial accurate time-domain finite-difference (FD) algorithm based on the parsimonious staggered-grid approximation of the 3D viscoelastic wave equations was used to estimate seismic responses. The simulated results demonstrated the increase of both the frequency content and the spectral amplitudes of the basin-generated surface waves and the duration of ground motion in the basin with the increase of shape-ratio of semi-spherical basin. An increase of the average spectral amplification (ASA), differential ground motion (DGM) and the average aggravation factor (AAF) towards the centre of the semi-spherical basin was obtained.

Keywords: 3D viscoelastic simulation, basin-generated surface waves, basin-shape-ratio effects, average spectral amplification, aggravation factors and differential ground motion

Procedia PDF Downloads 505
1263 Highly Accurate Target Motion Compensation Using Entropy Function Minimization

Authors: Amin Aghatabar Roodbary, Mohammad Hassan Bastani

Abstract:

One of the defects of stepped frequency radar systems is their sensitivity to target motion. In such systems, target motion causes range cell shift, false peaks, Signal to Noise Ratio (SNR) reduction and range profile spreading because of power spectrum interference of each range cell in adjacent range cells which induces distortion in High Resolution Range Profile (HRRP) and disrupt target recognition process. Thus Target Motion Parameters (TMPs) effects compensation should be employed. In this paper, such a method for estimating TMPs (velocity and acceleration) and consequently eliminating or suppressing the unwanted effects on HRRP based on entropy minimization has been proposed. This method is carried out in two major steps: in the first step, a discrete search method has been utilized over the whole acceleration-velocity lattice network, in a specific interval seeking to find a less-accurate minimum point of the entropy function. Then in the second step, a 1-D search over velocity is done in locus of the minimum for several constant acceleration lines, in order to enhance the accuracy of the minimum point found in the first step. The provided simulation results demonstrate the effectiveness of the proposed method.

Keywords: automatic target recognition (ATR), high resolution range profile (HRRP), motion compensation, stepped frequency waveform technique (SFW), target motion parameters (TMPs)

Procedia PDF Downloads 152
1262 Mental Imagery as an Auxiliary Tool to the Performance of Elite Competitive Swimmers of the University of the East Manila

Authors: Hillary Jo Muyalde

Abstract:

Introduction: Elite athletes train regularly to enhance their physical endurance, but sometimes, training sessions are not enough. When competition comes, these athletes struggle to find focus. Mental imagery is a psychological technique that helps condition the mind to focus and eventually help improve performance. This study aims to help elite competitive swimmers of the University of the East improve their performance with Mental Imagery as an auxiliary tool. Methodology: The study design used was quasi-experimental with a purposive sampling technique and a within-subject design. It was conducted with a total of 41 participants. The participants were given a Sport Imagery Ability Questionnaire (SIAQ) to measure imagery ability and the Mental Imagery Program. The study utilized a Paired T-test for data analysis where the participants underwent six weeks of no mental imagery training and were compared to six weeks with the Mental Imagery Program (MIP). The researcher recorded the personal best time of participants in their respective specialty stroke. Results: The results of the study showed a t-value of 17.804 for Butterfly stroke events, 9.922 for Backstroke events, 7.787 for Breaststroke events, and 17.440 in Freestyle. This indicated that MIP had a positive effect on participants’ performance. The SIAQ result also showed a big difference where -10.443 for Butterfly events, -5.363 for Backstroke, -7.244 for Breaststroke events, and -10.727 for Freestyle events, which meant the participants were able to image better than before MIP. Conclusion: In conclusion, the findings of this study showed that there is indeed an improvement in the performance of the participants after the application of the Mental Imagery Program. It is recommended from this study that the participants continue to use mental imagery as an auxiliary tool to their training regimen for continuous positive results.

Keywords: mental Imagery, personal best time, SIAQ, specialty stroke

Procedia PDF Downloads 79
1261 Contributions at the Define of the Vortex Plane Cyclic Motion

Authors: Petre Stan, Marinica Stan

Abstract:

In this paper, a new way to define the vortex plane cyclic motion is exposed, starting from the physical cause of reacting the vortex. The Navier-Stokes equations are used in cylindrical coordinates for viscous fluids in laminar motion, and are integrated in case of a infinite long revolving cylinder which rotates around a pintle in a viscous fluid that occupies the entire space up to infinite. In this way, a revolving field of velocities in fluid is obtained, having the shape of a vortex in which the intensity is obtained objectively, being given by the physical phenomenon that generates this vortex.

Keywords: cylindrical coordinates, Navier-Stokes equations, viscous fluid, vortex plane

Procedia PDF Downloads 131