Search results for: biogas upgrading energetic cost
6478 Improvement Anaerobic Digestion Performance of Sewage Sludge by Co-Digestion with Cattle Manure
Authors: Raouf Hassan
Abstract:
Biogas energy production from sewage sludge is an economically feasible and eco-friendly in nature. Sewage sludge is considered nutrient-rich substrates, but had lower values of carbone which consider an energy source for anaerobic bacteria. The lack or lower values of carbone-to-nitrogen ratio (C/N) reduced biogas yield and fermentation rate. Anaerobic co-digestion of sewage sludge offers several benefits over mono-digestion such as optimize nutrient balance, increased cost-efficiency and increased degradation rate. The high produced amounts of animal manures, which reach up to 90% of the total collected organic wastes, are recommended for the co-digestion with sewage sludge, especially with the limitations of industrial substrates. Moreover, cattle manures had high methane production potential (500 m3/t vsadded). When mixed with sewage sludge the potential methane production increased with increasing cattle manure content. In this paper, the effect of cattle manure (CM) addition as co-substrates on the sewage sludge (SS) anaerobic digestion performance was investigated under mesophilic conditions (35°C) using anaerobic batch reactors. The batch reactors were operated with a working volume 0.8 liter, and a hydraulic retention time of 30 days. The research work focus on studying two main parameters; the biogas yield (expressed as VSS) and pH values inside the reactors.Keywords: anaerobic digestion, sewage sludge, cattle manure, mesophilic, biogas yield, pH
Procedia PDF Downloads 3156477 Mathematical Modelling of Biogas Dehumidification by Using of Counterflow Heat Exchanger
Authors: Staņislavs Gendelis, Andris Jakovičs, Jānis Ratnieks, Aigars Laizāns, Dāvids Vardanjans
Abstract:
Dehumidification of biogas at the biomass plants is very important to provide the energy efficient burning of biomethane at the outlet. A few methods are widely used to reduce the water content in biogas, e.g. chiller/heat exchanger based cooling, usage of different adsorbents like PSA, or the combination of such approaches. A quite different method of biogas dehumidification is offered and analyzed in this paper. The main idea is to direct the flow of biogas from the plant around it downwards; thus, creating additional insulation layer. As the temperature in gas shell layer around the plant will decrease from ~ 38°C to 20°C in the summer or even to 0°C in the winter, condensation of water vapor occurs. The water from the bottom of the gas shell can be collected and drain away. In addition, another upward shell layer is created after the condensate drainage place on the outer side to further reducing heat losses. Thus, counterflow biogas heat exchanger is created around the biogas plant. This research work deals with the numerical modelling of biogas flow, taking into account heat exchange and condensation on cold surfaces. Different kinds of boundary conditions (air and ground temperatures in summer/winter) and various physical properties of constructions (insulation between layers, wall thickness) are included in the model to make it more general and useful for different biogas flow conditions. The complexity of this problem is fact, that the temperatures in both channels are conjugated in case of low thermal resistance between layers. MATLAB programming language is used for multiphysical model development, numerical calculations and result visualization. Experimental installation of a biogas plant’s vertical wall with an additional 2 layers of polycarbonate sheets with the controlled gas flow was set up to verify the modelling results. Gas flow at inlet/outlet, temperatures between the layers and humidity were controlled and measured during a number of experiments. Good correlation with modelling results for vertical wall section allows using of developed numerical model for an estimation of parameters for the whole biogas dehumidification system. Numerical modelling of biogas counterflow heat exchanger system placed on the plant’s wall for various cases allows optimizing of thickness for gas layers and insulation layer to ensure necessary dehumidification of the gas under different climatic conditions. Modelling of system’s defined configuration with known conditions helps to predict the temperature and humidity content of the biogas at the outlet.Keywords: biogas dehumidification, numerical modelling, condensation, biogas plant experimental model
Procedia PDF Downloads 5496476 The Effect of Microwave Radiation on Biogas Production Efficiency Using Different Plant Substrates
Authors: Marcin Zieliński, Marcin Dębowski, Mirosław Krzemieniewski
Abstract:
The purpose of the present work was to assess the impact of using electromagnetic microwave radiation as a means of stimulating the thermal conditions in anaerobic reactors on biomethanation efficiency of different plant substrates, as measured by the quantity and quality of the resultant biogas. Using electromagnetic microwave radiation to maintain optimal thermal conditions during biomethanation allows for achievement of much higher technological effects in comparison with a conventional heating system. After subjecting different plant substrates to fermentation in the model fermentation chambers, the largest improvements in regard to biogas production efficiency and biogas quality were recorded in the series with corn silage and grass silage. In the first case, the quantity of methane produced in the microwave-stimulated technological system exceeded by 15.26% the quantities produced in reactors heated conventionally. When grass silage was utilized as the organic substrate in the process of biomethanation, anaerobic reactors treated with microwave radiation produced 12.62% more methane.Keywords: microwave radiation, biogas, methane fermentation, biomass
Procedia PDF Downloads 5326475 Modelling and Optimisation of Floating Drum Biogas Reactor
Authors: L. Rakesh, T. Y. Heblekar
Abstract:
This study entails the development and optimization of a mathematical model for a floating drum biogas reactor from first principles using thermal and empirical considerations. The model was derived on the basis of mass conservation, lumped mass heat transfer formulations and empirical biogas formation laws. The treatment leads to a system of coupled nonlinear ordinary differential equations whose solution mapped four-time independent controllable parameters to five output variables which adequately serve to describe the reactor performance. These equations were solved numerically using fourth order Runge-Kutta method for a range of input parameter values. Using the data so obtained an Artificial Neural Network with a single hidden layer was trained using Levenberg-Marquardt Damped Least Squares (DLS) algorithm. This network was then fine-tuned for optimal mapping by varying hidden layer size. This fast forward model was then employed as a health score generator in the Bacterial Foraging Optimization code. The optimal operating state of the simplified Biogas reactor was thus obtained.Keywords: biogas, floating drum reactor, neural network model, optimization
Procedia PDF Downloads 1436474 Co-Hydrothermal Gasification of Microalgae Biomass and Solid Biofuel for Biogas Production
Authors: Daniel Fozer
Abstract:
Limiting global warming to 1.5°C to the pre-industrial levels urges the application of efficient and sustainable carbon dioxide removal (CDR) technologies. Microalgae based biorefineries offer scalable solutions for the biofixation of CO2, where the produced biomass can be transformed into value added products by applying thermochemical processes. In this paper we report on the utilization of hydrochar as a blending component in hydrothermal gasification (HTG) process. The effects of blending ratio and hydrochar quality were investigated on the biogas yield and and composition. It is found that co-gasifying the hydrochar and the algae biomass can increase significantly the total gas yield and influence the biogas (H2, CH4, CO2, CO, C2H4, C2H6) composition. It is determined that the carbon conversion ratio, hydrogen and methane selectivity can be increased by influencing the fuel ratio of hydrochar via hydrothermal carbonization. In conclusion, it is found that increasing the synergy between hydrothermal technologies result in elevated conversion efficiency.Keywords: biogas, CDR, Co-HTG, hydrochar, microalgae
Procedia PDF Downloads 1496473 Iranian Refinery Vacuum Residue Upgrading Using Microwave Irradiation: Effects of Catalyst Type and Amount
Authors: Zarrin Nasri
Abstract:
Microwave irradiation is an innovative technology in the petroleum industry. This kind of energy has been considered to convert vacuum residue of oil refineries into useful products. The advantages of microwaves energy are short time, fast heating, high energy efficiency, and precise process control. In this paper, the effects of catalyst type and amount have been investigated on upgrading of vacuum residue using microwave irradiation. The vacuum residue used in this research is from Tehran oil refinery, Iran. Additives include different catalysts, active carbon as sensitizer, and sodium borohydride as a solid hydrogen donor. Various catalysts contain iron, nickel, molybdenum disulfide, iron oxide and copper. The amount of catalysts in two cases of presence and absence of sodium borohydride have been evaluated. The objective parameters include temperature, asphaltene, viscosity, and API. The specifications of vacuum residue are API, 8.79, viscosity, 16391 cSt (60°C), asphaltene, 13.3 wt %. The results show that there is a significant difference between the effects of catalysts. Among the used catalysts, Fe powder is the best catalyst for upgrading vacuum residue using microwave irradiation and resulted in asphaltene reduction, 31.3 %; viscosity reduction, 76.43 %; and 23.43 % in API increase.Keywords: asphaltene, microwave, upgrading, vacuum residue, viscosity
Procedia PDF Downloads 2556472 The Effect of System Parameters on the Biogas Production from Poultry Rendering Plant Anaerobic Digesters
Authors: N. Lovanh, J. Loughrin, G. Ruiz-Aguilar
Abstract:
Animal wastes can serve as the feedstock for biogas production (mainly methane) that could be used as alternative energy source. The green energy derived from animal wastes is considered to be carbon neutral and offsetting those generated from fossil fuels. In this study, an evaluation of system parameters on methane production from anaerobic digesters utilizing poultry rendering plant wastewater was carried out. Anaerobic batch reactors and continuous flow system subjected to different operation conditions (i.e., flow rate, temperature, and etc.) containing poultry rendering wastewater were set up to evaluate methane potential from each scenario. Biogas productions were sampled and monitored by gas chromatography and photoacoustic gas analyzer over six months of operation. The results showed that methane productions increased as the temperature increased. However, there is an upper limit to the increase in the temperature on the methane production. Flow rates and type of systems (batch vs. plug-flow regime) also had a major effect on methane production. Constant biogas production was observed in plug-flow system whereas batch system produced biogas quicker and tapering off toward the end of the six-month study. Based on these results, it is paramount to consider operating conditions and system setup in optimizing biogas production from agricultural wastewater.Keywords: anaerobic digestion, methane, poultry rendering wastewater, biotechnology
Procedia PDF Downloads 3926471 How to Capitalize on BioCNG at a Wastewater Plant
Authors: William G. "Gus" Simmons
Abstract:
Municipal and industrial wastewater plants across our country utilize anaerobic digestion as either primary treatment or as a means of waste sludge treatment and reduction. The emphasis on renewable energy and clean energy over the past several years, coupled with increasing electricity costs and increasing consumer demands for efficient utility operations has led to closer examination of the potential for harvesting the energy value of the biogas produced by anaerobic digestion. Although some facilities may have already come to the belief that harvesting this energy value is not practical or a top priority as compared to other capital needs and initiatives at the wastewater plant, we see that many are seeing biogas, and an opportunity for additional revenues, go up in flames as they continue to flare. Conversely, few wastewater plants under progressive and visionary leadership have demonstrated that harvesting the energy value from anaerobic digestion is more than “smoke and hot air”. From providing thermal energy to adjacent or on-campus operations to generating electricity and/or transportation fuels, these facilities are proving that energy harvesting can not only be profitable, but sustainable. This paper explores ways in which wastewater treatment plants can increase their value and import to the communities they serve through the generation of clean, renewable energy; also presented the processes in which these facilities moved from energy and cost sinks to sparks of innovation and pride in the communities in which they operate.Keywords: anaerobic digestion, harvesting energy, biogas, renewable energy, sustainability
Procedia PDF Downloads 3166470 Biomass and Biogas Yield of Maize as Affected by Nitrogen Rates with Varying Harvesting under Semi-Arid Condition of Pakistan
Authors: Athar Mahmood, Asad Ali
Abstract:
Management considerations including harvesting time and nitrogen application considerably influence the biomass yield, quality and biogas production. Therefore, a field study was conducted to determine the effect of various harvesting times and nitrogen rates on the biomass yield, quality and biogas yield of maize crop. This experiment was consisted of various harvesting times i.e., harvesting after 45, 55 and 65 days of sowing (DAS) and nitrogen rates i.e., 0, 100, 150 and 200 kg ha-1 respectively. The data indicated that maximum plant height, leaf area, dry matter (DM) yield, protein, acid detergent fiber, neutral detergent fiber, crude fiber contents and biogas yield were recorded 65 days after sowing while lowest was recorded 45 days after sowing. In contrary to that significantly higher chlorophyll contents were observed at 45 DAS. In case of nitrogen rates maximum plant height, leaf area, and DM yield, protein contents, ash contents, acid detergent fiber, neutral detergent fiber, crude fiber contents and chlorophyll contents were determined with nitrogen at the rate of 200 kg ha-1, while minimum was observed when no N was applied. Therefore, harvesting 65 DAS and N application @ 200 kg ha-1 can be suitable for getting the higher biomass and biogas production.Keywords: chemical composition, fiber contents, biogas, nitrogen, harvesting time
Procedia PDF Downloads 1606469 Analysis of a Lignocellulose Degrading Microbial Consortium to Enhance the Anaerobic Digestion of Rice Straws
Authors: Supanun Kangrang, Kraipat Cheenkachorn, Kittiphong Rattanaporn, Malinee Sriariyanun
Abstract:
Rice straw is lignocellulosic biomass which can be utilized as substrate for the biogas production. However, due to the property and composition of rice straw, it is difficult to be degraded by hydrolysis enzymes. One of the pretreatment method that modifies such properties of lignocellulosic biomass is the application of lignocellulose-degrading microbial consortia. The aim of this study is to investigate the effect of microbial consortia to enhance biogas production. To select the high efficient consortium, cellulase enzymes were extracted and their activities were analyzed. The results suggested that microbial consortium culture obtained from cattle manure is the best candidate compared to decomposed wood and horse manure. A microbial consortium isolated from cattle manure was then mixed with anaerobic sludge and used as inoculum for biogas production. The optimal conditions for biogas production were investigated using response surface methodology (RSM). The tested parameters were the ratio of amount of microbial consortium isolated and amount of anaerobic sludge (MI:AS), substrate to inoculum ratio (S:I) and temperature. Here, the value of the regression coefficient R2 = 0.7661 could be explained by the model which is high to advocate the significance of the model. The highest cumulative biogas yield was 104.6 ml/g-rice straw at optimum ratio of MI:AS, ratio of S:I, and temperature of 2.5:1, 15:1 and 44°C respectively.Keywords: lignocellulolytic biomass, microbial consortium, cellulase, biogas, Response Surface Methodology (RSM)
Procedia PDF Downloads 3986468 Exergetic Optimization on Solid Oxide Fuel Cell Systems
Authors: George N. Prodromidis, Frank A. Coutelieris
Abstract:
Biogas can be currently considered as an alternative option for electricity production, mainly due to its high energy content (hydrocarbon-rich source), its renewable status and its relatively low utilization cost. Solid Oxide Fuel Cell (SOFC) stacks convert fuel’s chemical energy to electricity with high efficiencies and reveal significant advantages on fuel flexibility combined with lower emissions rate, especially when utilize biogas. Electricity production by biogas constitutes a composite problem which incorporates an extensive parametric analysis on numerous dynamic variables. The main scope of the presented study is to propose a detailed thermodynamic model on the optimization of SOFC-based power plants’ operation based on fundamental thermodynamics, energy and exergy balances. This model named THERMAS (THERmodynamic MAthematical Simulation model) incorporates each individual process, during electricity production, mathematically simulated for different case studies that represent real life operational conditions. Also, THERMAS offers the opportunity to choose a great variety of different values for each operational parameter individually, thus allowing for studies within unexplored and experimentally impossible operational ranges. Finally, THERMAS innovatively incorporates a specific criterion concluded by the extensive energy analysis to identify the most optimal scenario per simulated system in exergy terms. Therefore, several dynamical parameters as well as several biogas mixture compositions have been taken into account, to cover all the possible incidents. Towards the optimization process in terms of an innovative OPF (OPtimization Factor), presented here, this research study reveals that systems supplied by low methane fuels can be comparable to these supplied by pure methane. To conclude, such an innovative simulation model indicates a perspective on the optimal design of a SOFC stack based system, in the direction of the commercialization of systems utilizing biogas.Keywords: biogas, exergy, efficiency, optimization
Procedia PDF Downloads 3706467 Quality of Life of Poor Residential Neighborhoods in Oshogbo, Nigeria
Authors: Funmilayo L. Amao
Abstract:
As a result of the high cost of housing, the increasing population is forced to live in substandard housing and unhealthy conditions giving rise to poor residential neighborhoods. The paper examines the causes and characteristics of poor residential neighborhood. The paper finds the problems that have influence poor neighborhoods to; poverty, growth of informal sector and housing shortage. The paper asserts that poor residential neighborhoods have adverse effects on the people. The secondary data was obtained from books, journals and seminar papers while primary data relating to building and environmental quality from structured questionnaire administered on sample of 500 household heads, from sampling frame of 5000 housing units. The study reveals that majority of the respondents are poor and employed in informal sector. The paper suggests urban renewal and slum upgrading programs as methods in dealing with the situation and an improvement in the socio-economic circumstances of the inhabitants.Keywords: environmental degeneration, housing, poverty, quality of life, urban upgrading
Procedia PDF Downloads 3926466 Conceptualization and Strategies of Biogas Technology for Rural Development in Nigeria
Authors: Okorowo Cyril Agochi
Abstract:
The main challenge of present world is to harness the energy source which is environment friendly and ecologically balanced. This need has forced to search for other alternate source of energy. But unfortunately the new alternative energy sources like the solar, hydro, wind etc. require huge economical value and technical power to operate, which seem to be very difficult for the developing countries like Nigeria. In the present moment biogas energy can be one and only reliable, easily available and economically feasible source of alternative and renewable source which can be managed by locally available sources and simple technology for secondary schools, tertiary institution and rural villages. This paper is aimed at boosting the energy generation for developing of rural Nigeria, through Biogas.Keywords: bio-gas, energy, environment, nigeria, technology
Procedia PDF Downloads 4796465 Small Scale Batch Anaerobic Digestion of Rice Straw
Authors: V. H. Nguyen, A. Castalone, C. Jamieson, M. Gummert
Abstract:
Rice straw is an abundant biomass resource in Asian countries that can be used for bioenergy. In continuously flooded rice fields, it can be removed without reducing the levels of soil organic matter. One suitable bioenergy technology is anaerobic digestion (AD), but it needs to be further verified using rice straw as a feedstock. For this study, a batch AD system was developed using rice straw and cow dung. It is low cost, farm scale, with the batch capacity ranging from 5 kg to 200 kg of straw mixed with 10% of cow dung. The net energy balance obtained was from 3000 to 4000 MJ per ton of straw input at 15-18% moisture content. Net output energy obtained from biogas and digestate ranged from 4000 to 5000 MJ per ton of straw. This indicates AD as a potential solution for converting rice straw from a waste to a clean fuel, reducing the environmental footprint caused by current disposal practices.Keywords: rice straw, anaerobic digestion, biogas, bioenergy
Procedia PDF Downloads 3526464 Kinetics of Hydrogen Sulfide Removal from Biogas Using Biofilm on Packed Bed of Salak Fruit Seeds
Authors: Retno A. S. Lestari, Wahyudi B. Sediawan, Siti Syamsiah, Sarto
Abstract:
Sulfur-oxidizing bacteria were isolated and then grown on salak fruit seeds forming a biofilm on the surface. Their performances in sulfide removal were experimentally observed. In doing so, the salak fruit seeds containing biofilm were then used as packing material in a cylinder. Biogas obtained from biological treatment, which contains 27.95 ppm of hydrogen sulfide was flown through the packed bed. The hydrogen sulfide from the biogas was absorbed in the biofilm and then degraded by the microbes in the biofilm. The hydrogen sulfide concentrations at a various axial position and various times were analyzed. A set of simple kinetics model for the rate of the sulfide removal and the bacterial growth was proposed. Since the biofilm is very thin, the sulfide concentration in the Biofilm at a certain axial position is assumed to be uniform. The simultaneous ordinary differential equations obtained were then solved numerically using Runge-Kutta method. The values of the parameters were also obtained by curve-fitting. The accuracy of the model proposed was tested by comparing the calculation results using the model with the experimental data obtained. It turned out that the model proposed can describe the removal of sulfide liquid using bio-filter in the packed bed. The biofilter could remove 89,83 % of the hydrogen sulfide in the feed at 2.5 hr of operation and biogas flow rate of 30 L/hr.Keywords: sulfur-oxidizing bacteria, salak fruit seeds, biofilm, packing material, biogas
Procedia PDF Downloads 2226463 Biogas Production from Zebra Manure and Winery Waste Co-Digestion
Authors: Wicleffe Musingarimi
Abstract:
Currently, the rising energy demand as a result of an increase in the world’s population and the sustainable use of abundant natural resources are key issues facing many developed and developing countries including South Africa. Most of the energy to meet this growing demand comes from fossil fuel. Use of fossil fuels has led to environmental problems such air pollution, climate change, and acid rain. In addition, fossil fuels are facing continual depletion, which has led to the rise in oil prices, leading to the global economies melt down. Hence development of alternative clean and renewable energy source is a global priority. Renewable biomass from forest products, agricultural crops, and residues, as well as animal and municipal waste are promising alternatives. South Africa is one of the leading wine producers in the world; leading to a lot of winery waste (ww) being produced which can be used in anaerobic digestion (AD) to produce biogas. Biogas was produced from batch anaerobic digestion of zebra manure (zm) and batch anaerobic co-digestion of winery waste (ww) and zebra manure through water displacement. The batch digester with slurry of winery waste and zebra manure in the weight ratio of 1:2 was operated in a 1L container at 37°C for 30days. Co-digestion of winery waste and zebra manure produced higher amount of biogas as compared to zebra manure alone and winery waste alone. No biogas was produced by batch anaerobic digestion of winery waste alone. Chemical analysis of C/N ratio and total solids (TS) of zebra manure was 21.89 and 25.2 respectively. These values of C/N ratio and TS were quite high compared to values of other studied manures. Zebra manure also revealed unusually high concentration of Fe reaching 3600pm compared to other studies of manure. PCR with communal DNA of the digestate gave a positive hit for the presence of archaea species using standard archea primers; suggesting the presence of methanogens. Methanogens are key microbes in the production of biogas. Therefore, this study demonstrated the potential of zebra manure as an inoculum in the production of biogas.Keywords: anaerobic digestion, biogas, co-digestion, methanogens
Procedia PDF Downloads 2266462 Dissemination of Knowledge on Quality Control for Upgrading Product Standards for Small and Micro Community Enterprises
Authors: Niyom Suwandej
Abstract:
This research paper investigated the opinions of small and micro community enterprises from Jom Pluak Subdistrict, Bangkhontee District, Samut Songkram Province towards product quality control, and the findings are aimed to disseminate knowledge on quality control for upgrading product standards for small and micro community enterprises. The study employed both qualitative and quantitative methods, in which there were 23 samples in the study. The study was divided into 2 steps which were (1) studying the opinions of the respondents towards the community’s product quality control and upgrading product standards; (2) creating development guidance for product quality control and upgrading product standards for small and micro community enterprise. The demographic findings revealed female respondents as the majority, with most above 50 years of age and married. Most had more than 15 years of working experience. The education level reported by most respondents was primary school or lower followed by secondary school or lower with most respondents was vocational certificate level. Most respondents had the highest level of satisfaction with the existing condition of product quality control knowledge management. Pertaining to opinions on the guidance of knowledge creation for product quality control for small and micro community enterprise, the respondents were willing to apply the knowledge in upgrading their product standards. For the opinions of knowledge creation for product quality control and product standards, the respondents had the highest level of satisfaction. Guidance of knowledge creation for product quality control and product standards for small and micro community enterprises received the highest level of satisfaction from the respondents. Furthermore they had knowledge and comprehension in product quality control and product standards and could apply the knowledge in improving the quality of their production and product standards for small and micro community enterprises.Keywords: product quality control, product standards, community enterprise, marketing management
Procedia PDF Downloads 4696461 Analysis of Generated Biogas from Anaerobic Digestion of Piggery Dung
Authors: Babatope Alabadan, Adeyinka Adesanya, I. E. Afangideh
Abstract:
The use of energy is paramount to human existence. Every activity globally revolves round it. Over the years, different sources of energy (petroleum fuels predominantly) have been utilized. Animal waste treatment on the farm is a phenomenon that has called for rapt research attention. Generated wastes on farm pollute the environment in diverse ways. Waste-to-bioenergy treatments can provide livestock operators with multiple value-added, renewable energy products. The objective of this work is to generate methane (CH4) gas from the anaerobic digestion of piggery dung. A retention time of 15 and 30 days and a mesophilic temperature range were selected. The generated biogas composition was methane (CH4), carbondioxide (CO2), hydrogen sulphide (H2S) and ammonia (NH3) using gas chromatography method. At 15 days retention time, 60% of (CH4) was collected while CO2 and traces of H2S and NH3 accounted for 40%. At 30 days retention time, 75% of CH4, 20% of CO2 was collected while traces of H2S and NH3 amounted to 5%. For on and off farm uses, biogas can be upgraded to biomethane by removing the CO2, NH3 and H2S. This product (CH4) can meet heating and power needs or serve as transportation fuelsKeywords: anaerobic digestion, biogas, methane, piggery dung
Procedia PDF Downloads 3456460 The Effect of Porous Alkali Activated Material Composition on Buffer Capacity in Bioreactors
Authors: Girts Bumanis, Diana Bajare
Abstract:
With demand for primary energy continuously growing, search for renewable and efficient energy sources has been high on agenda of our society. One of the most promising energy sources is biogas technology. Residues coming from dairy industry and milk processing could be used in biogas production; however, low efficiency and high cost impede wide application of such technology. One of the main problems is management and conversion of organic residues through the anaerobic digestion process which is characterized by acidic environment due to the low whey pH (<6) whereas additional pH control system is required. Low buffering capacity of whey is responsible for the rapid acidification in biological treatments; therefore alkali activated material is a promising solution of this problem. Alkali activated material is formed using SiO2 and Al2O3 rich materials under highly alkaline solution. After material structure forming process is completed, free alkalis remain in the structure of materials which are available for leaching and could provide buffer capacity potential. In this research porous alkali activated material was investigated. Highly porous material structure ensures gradual leaching of alkalis during time which is important in biogas digestion process. Research of mixture composition and SiO2/Na2O and SiO2/Al2O ratio was studied to test the buffer capacity potential of alkali activated material. This research has proved that by changing molar ratio of components it is possible to obtain a material with different buffer capacity, and this novel material was seen to have considerable potential for using it in processes where buffer capacity and pH control is vitally important.Keywords: alkaline material, buffer capacity, biogas production, bioreactors
Procedia PDF Downloads 2426459 Enhancement in Digester Efficiency and Numerical Analysis for Optimal Design Parameters of Biogas Plant Using Design of Experiment Approach
Authors: Rajneesh, Priyanka Singh
Abstract:
Biomass resources have been one of the main energy sources for mankind since the dawn of civilization. There is a vast scope to convert these energy sources into biogas which is a clean, low carbon technology for efficient management and conversion of fermentable organic wastes into a cheap and versatile fuel and bio/organic manure. Thus, in order to enhance the performance of anaerobic digester, an optimizing analysis of resultant parameters (organic dry matter (oDM) content, methane percentage, and biogas yield) has been done for a plug flow anaerobic digester having mesophilic conditions (20-40°C) with the wet fermentation process. Based on the analysis, correlations for oDM, methane percentage, and biogas yield are derived using multiple regression analysis. A statistical model is developed to correlate the operating variables using the design of experiment approach by selecting central composite design (CCD) of a response surface methodology. Results shown in the paper indicates that as the operating temperature increases the efficiency of digester gets improved provided that the pH and hydraulic retention time (HRT) remains constant. Working in an optimized range of carbon-nitrogen ratio for the plug flow digester, the output parameters show a positive change with the variation of dry matter content (DM).Keywords: biogas, digester efficiency, design of experiment, plug flow digester
Procedia PDF Downloads 3786458 Influence of Disintegration of Sida hermaphrodita Silage on Methane Fermentation Efficiency
Authors: Marcin Zielinski, Marcin Debowski, Paulina Rusanowska, Magda Dudek
Abstract:
As a result of sonification, the destruction of complex biomass structures results in an increase in the biogas yield from the conditioned material. First, the amount of organic matter released into the solution due to disintegration was determined. This parameter was determined by changes in the carbon content in liquid phase of the conditioned substrate. The amount of carbon in the liquid phase increased with the prolongation of the sonication time to 16 min. Further increase in the duration of sonication did not cause a statistically significant increase in the amount of organic carbon in the liquid phase. The disintegrated material was then used for respirometric measurements for determination of the impact of the conditioning process used on methane fermentation effectiveness. The relationship between the amount of energy introduced into the lignocellulosic substrate and the amount of biogas produced has been demonstrated. Statistically significant increase in the amount of biogas was observed until sonication of 16 min. Further increase in energy in the conditioning process did not significantly increase the production of biogas from the treated substrate. The biogas production from the conditioned substrate was 17% higher than from the reference biomass at that time. The ultrasonic disintegration method did not significantly affect the observed biogas composition. In all series, the methane content in the produced biogas from the conditioned substrate was similar to that obtained with the raw substrate sample (51.1%). Another method of substrate conditioning was hydrothermal depolymerization. This method consists in application of increased temperature and pressure to substrate. These phenomena destroy the structure of the processed material, the release of organic compounds to the solution, which should lead to increase the amount of produced biogas from such treated biomass. The hydrothermal depolymerization was conducted using an innovative microwave heating method. Control measurements were performed using conventional heating. The obtained results indicate the relationship between depolymerization temperature and the amount of biogas. Statistically significant value of the biogas production coefficients increased as the depolymerization temperature increased to 150°C. Further raising the depolymerization temperature to 180°C did not significantly increase the amount of produced biogas in the respirometric tests. As a result of the hydrothermal depolymerization obtained using microwave at 150°C for 20 min, the rate of biogas production from the Sida silage was 780 L/kg VS, which accounted for nearly 50% increase compared to 370 L/kg VS obtained from the same silage but not depolymerised. The study showed that by microwave heating it is possible to effectively depolymerized substrate. Significant differences occurred especially in the temperature range of 130-150ºC. The pre-treatment of Sida hermaphrodita silage (biogas substrate) did not significantly affect the quality of the biogas produced. The methane concentration was about 51.5% on average. The study was carried out in the framework of the project under program BIOSTRATEG funded by the National Centre for Research and Development No. 1/270745/2/NCBR/2015 'Dietary, power, and economic potential of Sida hermaphrodita cultivation on fallow land'.Keywords: disintegration, biogas, methane fermentation, Virginia fanpetals, biomass
Procedia PDF Downloads 3096457 Hydrogen Sulfide Removal from Biogas Using Biofilm on Packed Bed of Salak Fruit Seeds
Authors: Retno A. S. Lestari, Wahyudi B. Sediawan, Siti Syamsiah, Sarto
Abstract:
Sulfur-oxidizing bacteria were isolated and then grown on snakefruits seeds forming biofilm. Their performance in sulfide removal were experimentally observed. Snakefruit seeds were then used as packing material in a cylindrical tube. Biological treatment of hydrogen sulfide from biogas was investigated using biofilm on packed bed of snakefruits seeds. Biogas containing 27,9512 ppm of hydrogen sulfide was flown through the bed. Then the hydrogen sulfide concentrations in the outlet at various times were analyzed. A set of simple kinetics model for the rate of the sulfide removal and the bacterial growth was proposed. The axial sulfide concentration gradient in the flowing liquid are assumed to be steady-state. Mean while the biofilm grows on the surface of the seeds and the oxidation takes place in the biofilm. Since the biofilm is very thin, the sulfide concentration in the biofilm is assumed to be uniform. The simultaneous ordinary differential equations obtained were then solved numerically using Runge-Kutta method. The acuracy of the model proposed was tested by comparing the calcultion results using the model with the experimental data obtained. It turned out that the model proposed can be applied to describe the removal of sulfide liquid using bio-filter in packed bed. The values of the parameters were also obtained by curve-fitting. The biofilter could remove 89,83 % of the inlet of hydrogen sulfide from biogas for 2.5 h, and optimum loading of 8.33 ml/h.Keywords: Sulfur-oxidizing bacteria, snakefruits seeds, biofilm, packing material, biogas
Procedia PDF Downloads 4086456 Technical and Economic Potential of Partial Electrification of Railway Lines
Authors: Rafael Martins Manzano Silva, Jean-Francois Tremong
Abstract:
Electrification of railway lines allows to increase speed, power, capacity and energetic efficiency of rolling stocks. However, this process of electrification is complex and costly. An electrification project is not just about design of catenary. It also includes installation of structures around electrification, as substation installation, electrical isolation, signalling, telecommunication and civil engineering structures. France has more than 30,000 km of railways, whose only 53% are electrified. The others 47% of railways use diesel locomotive and represent only 10% of the circulation (tons.km). For this reason, a new type of electrification, less expensive than the usual, is requested to enable the modernization of these railways. One solution could be the use of hybrids trains. This technology opens up new opportunities for less expensive infrastructure development such as the partial electrification of railway lines. In a partially electrified railway, the power supply of theses hybrid trains could be made either by the catenary or by the on-board energy storage system (ESS). Thus, the on-board ESS would feed the energetic needs of the train along the non-electrified zones while in electrified zones, the catenary would feed the train and recharge the on-board ESS. This paper’s objective deals with the technical and economic potential identification of partial electrification of railway lines. This study provides different scenarios of electrification by replacing the most expensive places to electrify using on-board ESS. The target is to reduce the cost of new electrification projects, i.e. reduce the cost of electrification infrastructures while not increasing the cost of rolling stocks. In this study, scenarios are constructed in function of the electrification’s cost of each structure. The electrification’s cost varies considerably because of the installation of catenary support in tunnels, bridges and viaducts is much more expensive than in others zones of the railway. These scenarios will be used to describe the power supply system and to choose between the catenary and the on-board energy storage depending on the position of the train on the railway. To identify the influence of each partial electrification scenario in the sizing of the on-board ESS, a model of the railway line and of the rolling stock is developed for a real case. This real case concerns a railway line located in the south of France. The energy consumption and the power demanded at each point of the line for each power supply (catenary or on-board ESS) are provided at the end of the simulation. Finally, the cost of a partial electrification is obtained by adding the civil engineering costs of the zones to be electrified plus the cost of the on-board ESS. The study of the technical and economic potential ends with the identification of the most economically interesting scenario of electrification.Keywords: electrification, hybrid, railway, storage
Procedia PDF Downloads 4296455 Comprehensive Assessment of Energy Efficiency within the Production Process
Authors: S. Kreitlein, N. Eder, J. Franke
Abstract:
The importance of energy efficiency within the production process increases steadily. Unfortunately, so far no tools for a comprehensive assessment of energy efficiency within the production process exist. Therefore the Institute for Factory Automation and Production Systems of the Friedrich-Alexander-University Erlangen-Nuremberg has developed two methods with the goal of achieving transparency and a quantitative assessment of energy efficiency: EEV (Energy Efficiency Value) and EPE (Energetic Process Efficiency). This paper describes the basics and state of the art as well as the developed approaches.Keywords: energy efficiency, energy efficiency value, energetic process efficiency, production
Procedia PDF Downloads 7336454 Evaluation of Shock Sensitivity of Nano-Scaled 1,3,5-Trinitro-1,3,5-Triazacyclohexane Using Small Scale Gap Test
Authors: Kang-In Lee, Woo-Jin Lee, Keun-Deuk Lee, Ju-Seung Chae
Abstract:
In this study, small scale gap test (SSGT) was performed to measure shock sensitivity of nano-scaled 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) samples. The shock sensitivity of energetic materials is usually evaluated by the method of large-scale gap test (LSGT) that has a higher reliability than other methods. But LSGT has the disadvantage that it takes a high cost and time by using a large amount of explosive. In this experiment, nano-scaled RDX samples were prepared by spray crystallization in two different drying methods. In addition, 30μm RDX sample produced by precipitation crystallization and 5μm RDX sample produced by fluid energy mill process were tested to compare shock sensitivity. The study of shock sensitivity measured by small-scale gap test shows that small sized RDX particles have greater insensitivity. As a result, we infer SSGT method has higher reliability compared to the literature as measurement of shock sensitivity of energetic materials.Keywords: nano-scaled RDX, SSGT(small scale gap test), shock sensitivity, RDX
Procedia PDF Downloads 2586453 The Essential but Uncertain Role of the Vietnamese Association of Cities of Vietnam in Promoting Community-Based Housing Upgrading
Authors: T. Nguyen, H. Rennie, S. Vallance, M. Mackay
Abstract:
Municipal Associations, also called Unions, Leagues or Federations of municipalities have been established worldwide to represent the interests and needs of urban governments in the face of increasing urban issues. In 2008, the Association of Cities of Vietnam (ACVN) joined the Asian Coalition of Community Action Program (ACCA program) and introduced the community-based upgrading approach to help Vietnamese cities to address urban upgrading issues. While this community-based upgrading approach has only been implemented in a small number of Vietnamese cities and its replication has faced certain challenges, it is worthy to explore insights on how the Association of cities of Vietnam played its role in implementing some reportedly successful projects. This paper responds to this inquiry and presents results extracted from the author’s PhD study that sets out with a general objective to critically examine how social capital dimensions (i.e., bonding, bridging and linking) were formed, mobilized and maintained in a local collective and community-based upgrading process. Methodologically, the study utilized the given general categorization of bonding, bridging and linking capitals to explore and confirm how social capital operated in the real context of a community-based upgrading process, particularly in the context of Vietnam. To do this, the study conducted two exploratory and qualitative case studies of housing projects in Friendship neighbourhood (Vinh city) and Binh Dong neighbourhood (Tan An city). This paper presents the findings of the Friendship neighbourhood case study, focusing on the role of the Vietnamese municipal association in forming, mobilizing and maintaining bonding, bridging and linking capital for a community-based upgrading process. The findings highlight the essential but uncertain role of ACVN - the organization that has a hybrid legitimacy status - in such a process. The results improve our understanding both practically and theoretically. Practically, the results offer insights into the performance of a municipal association operating in a transitioning socio-political context of Vietnam. Theoretically, the paper questions the necessity of categorizing social capital dimensions (i.e., bonding, bridging and linking) by suggesting a holistic approach of looking at social capital for urban governance issues within the Vietnamese context and perhaps elsewhere.Keywords: bonding capital, bridging capital, municipal association, linking capital, social capital, housing upgrading
Procedia PDF Downloads 1486452 Investigation of the Effects of the Whey Addition on the Biogas Production of a Reactor Using Cattle Manure for Biogas Production
Authors: Behnam Mahdiyan Nasl
Abstract:
In a lab-scale research, the effects of feeding whey into the biogas system and how to solve the probable problems arising were analysed. In the study a semi-continuous glass reactor, having a total capacity of 13 liters and having a working capacity of 10 liters, was placed in an incubator, and the temperature was tried to be held at 38 °C. At first, the reactor was operated by adding 5 liters of animal manure and water with a ratio of 1/1. By passing time, the production rate of the gas reduced intensively that on the fourth day there was no production of gas and the system stopped working. In this condition, the pH was adjusted and by adding NaOH, it was increased from 5.4 to 7. On 48th day, the first gas measurement was done and an amount of 12.07 % of CH₄ was detected. After making buffer in the ambient, the number of bacteria existing in the cattle’s manure and contributing to the gas production was thought to be not adequate, and up to 20 % of its volume 2 liters of mud was added to the reactor. 7 days after adding the anaerobic mud, second gas measurement was carried out, and biogas including 43 % CH₄ was obtained. From the 61st day of the study, the cheese whey with the animal manure was started to be added with an amount of 40 mL per day. However, by passing time, the raising of the microorganisms existed in the whey (especially Ni and Co), the percent of methane in the biogas decreased. In fact, 2 weeks after adding PAS, the gas measurement was done and 36,97 % CH₄ was detected. 0,06 mL Ni-Co (to gain a concentration of 0.05 mg/L in the reactor’s mixture) solution was added to the system for 15 days. To find out the effect of the solution on archaea, 7 days after stopping addition of the solution, methane gas was found to have a 9,03 % increase and reach 46 %. Lastly, the effects of adding molasses to the reactor were investigated. The effects of its activity on the bacteria was analysed by adding 4 grams of it to the system. After adding molasses in 10 days, according to the last measurement, the amount of methane gas reached up to 49%.Keywords: biogas, cheese whey, cattle manure, energy
Procedia PDF Downloads 3346451 Using the Ecological Analysis Method to Justify the Environmental Feasibility of Biohydrogen Production from Cassava Wastewater Biogas
Authors: Jonni Guiller Madeira, Angel Sanchez Delgado, Ronney Mancebo Boloy
Abstract:
The use bioenergy, in recent years, has become a good alternative to reduce the emission of polluting gases. Several Brazilian and foreign companies are doing studies related to waste management as an essential tool in the search for energy efficiency, taking into consideration, also, the ecological aspect. Brazil is one of the largest cassava producers in the world; the cassava sub-products are the food base of millions of Brazilians. The repertoire of results about the ecological impact of the production, by steam reforming, of biohydrogen from cassava wastewater biogas is very limited because, in general, this commodity is more common in underdeveloped countries. This hydrogen, produced from cassava wastewater, appears as an alternative fuel to fossil fuels since this is a low-cost carbon source. This paper evaluates the environmental impact of biohydrogen production, by steam reforming, from cassava wastewater biogas. The ecological efficiency methodology developed by Cardu and Baica was used as a benchmark in this study. The methodology mainly assesses the emissions of equivalent carbon dioxide (CO₂, SOₓ, CH₄ and particulate matter). As a result, some environmental parameters, such as equivalent carbon dioxide emissions, pollutant indicator, and ecological efficiency are evaluated due to the fact that they are important to energy production. The average values of the environmental parameters among different biogas compositions (different concentrations of methane) were calculated, the average pollution indicator was 10.11 kgCO₂e/kgH₂ with an average ecological efficiency of 93.37%. As a conclusion, bioenergy production using biohydrogen from cassava wastewater treatment plant is a good option from the environmental feasibility point of view. This fact can be justified by the determination of environmental parameters and comparison of the environmental parameters of hydrogen production via steam reforming from different types of fuels.Keywords: biohydrogen, ecological efficiency, cassava, pollution indicator
Procedia PDF Downloads 1996450 Insights into the Annotated Genome Sequence of Defluviitoga tunisiensis L3 Isolated from a Thermophilic Rural Biogas Producing Plant
Authors: Irena Maus, Katharina Gabriella Cibis, Andreas Bremges, Yvonne Stolze, Geizecler Tomazetto, Daniel Wibberg, Helmut König, Alfred Pühler, Andreas Schlüter
Abstract:
Within the agricultural sector, the production of biogas from organic substrates represents an economically attractive technology to generate bioenergy. Complex consortia of microorganisms are responsible for biomass decomposition and biogas production. Recently, species belonging to the phylum Thermotogae were detected in thermophilic biogas-production plants utilizing renewable primary products for biomethanation. To analyze adaptive genome features of representative Thermotogae strains, Defluviitoga tunisiensis L3 was isolated from a rural thermophilic biogas plant (54°C) and completely sequenced on an Illumina MiSeq system. Sequencing and assembly of the D. tunisiensis L3 genome yielded a circular chromosome with a size of 2,053,097 bp and a mean GC content of 31.38%. Functional annotation of the complete genome sequence revealed that the thermophilic strain L3 encodes several genes predicted to facilitate growth of this microorganism on arabinose, galactose, maltose, mannose, fructose, raffinose, ribose, cellobiose, lactose, xylose, xylan, lactate and mannitol. Acetate, hydrogen (H2) and carbon dioxide (CO2) are supposed to be end products of the fermentation process. The latter gene products are metabolites for methanogenic archaea, the key players in the final step of the anaerobic digestion process. To determine the degree of relatedness of dominant biogas community members within selected digester systems to D. tunisiensis L3, metagenome sequences from corresponding communities were mapped on the L3 genome. These fragment recruitments revealed that metagenome reads originating from a thermophilic biogas plant covered 95% of D. tunisiensis L3 genome sequence. In conclusion, availability of the D. tunisiensis L3 genome sequence and insights into its metabolic capabilities provide the basis for biotechnological exploitation of genome features involved in thermophilic fermentation processes utilizing renewable primary products.Keywords: genome sequence, thermophilic biogas plant, Thermotogae, Defluviitoga tunisiensis
Procedia PDF Downloads 4996449 Biogas Production from Pistachio (Pistacia vera L.) Processing Waste
Authors: İ. Çelik, Goksel Demirer
Abstract:
Turkey is the third largest producer of pistachio (Pistacia vera L.) after Iran and United States. Harvested pistachio nuts are covered with organic hull which is removed by de-hulling process. Most of the pistachio by-products which are produced during de-hulling process are considered as agricultural waste and often mixed with soil, to a lesser extent are used as feedstuff by local livestock farmers and a small portion is used as herbal medicine. Due to its high organic and phenolic content as well as high solids concentration, pistachio processing wastes create significant waste management problems unless they are properly managed. However, there is not a well-established waste management method compensating the waste generated during the processing of pistachios. This study investigated the anaerobic treatability and biogas generation potential of pistachio hull waste. The effect of pre-treatment on biogas generation potential was investigated. For this purpose, Biochemical Methane Potential (BMP) Assays were conducted for two Chemical Oxygen Demand (COD) concentrations of 22 and 33 g tCOD l-1 at the absence and presence of chemical and thermal pre-treatment methods. The results revealed anaerobic digestion of the pistachio de-hulling wastes and subsequent biogas production as a renewable energy source are possible. The observed percent COD removal and methane yield values of the pre-treated pistachio de-hulling waste samples were significantly higher than the raw pistachio de-hulling waste. The highest methane yield was observed as 213.4 ml CH4/g COD.Keywords: pistachio de-hulling waste, biogas, renewable energy, pre-treatment
Procedia PDF Downloads 215