Search results for: adversarial attacks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 692

Search results for: adversarial attacks

632 Fathers’ Rights to Contact and Care: Moving Beyond the Adversarial Approach

Authors: Wesahl Domingo, Prinslean Mahery

Abstract:

Our paper focuses on the rights’ to contact and care of fathers in the heterosexual context, despite the reality of same sex parenting in South Africa. We argue that despite the new South African Children’s Act framework creating a shift from the idea of parental power over a child to the notion that parents have parental responsibilities and rights in respect of a child. This shift has however not fundamentally changed the constant battle that parents and other interested parties have over children. In most cases it is fathers who must battle to either maintain contact with their child/ren or fight to have care (which includes custody) of their child/ren. This is the case whether or not the father was married to the mother of the child in question. In part one of the paper, we deal with the historical development of rights to care and contact and describe the current system in the context of case law and legislation in South Africa. Part two provides a critical analysis of a few anthologies of “what fathers are complaining about.” In conclusion, in part three, we outline the way forward –“moving beyond the adversarial approach” through the “care of ethics approach.” So what is the care perspective? The care perspective is a relational ethic which views the primary moral concern as of creating and sustaining responsive connection to others. We apply the care of ethics approach to parenting plans and family law mediation in the context of fathers’ rights to care and contact. We argue by avoiding the adversarial system and engaging in a problem solving process focused on finding solutions for the future, divorcing parents can turn their attention to their children rather than battling each other.

Keywords: fathers' right to care, contact, custody, family law

Procedia PDF Downloads 475
631 Exploring Cybersecurity and Phishing Attacks within Healthcare Institutions in Saudi Arabia: A Narrative Review

Authors: Ebtesam Shadadi, Rasha Ibrahim, Essam Ghadafi

Abstract:

Phishing poses a significant threat as a cybercrime by tricking end users into revealing their confidential and sensitive information. Attackers often manipulate victims to achieve their malicious goals. The increasing prevalence of Phishing has led to extensive research on this issue, including studies focusing on phishing attempts in healthcare institutions in the Kingdom of Saudi Arabia. This paper explores the importance of analyzing phishing attacks, specifically focusing on those targeting the healthcare industry. The study delves into the tactics, obstacles, and remedies associated with these attacks, all while considering the implications for Saudi Vision 2030.

Keywords: phishing, cybersecurity, cyber threat, social engineering, vision 2030

Procedia PDF Downloads 61
630 AI/ML Atmospheric Parameters Retrieval Using the “Atmospheric Retrievals conditional Generative Adversarial Network (ARcGAN)”

Authors: Thomas Monahan, Nicolas Gorius, Thanh Nguyen

Abstract:

Exoplanet atmospheric parameters retrieval is a complex, computationally intensive, inverse modeling problem in which an exoplanet’s atmospheric composition is extracted from an observed spectrum. Traditional Bayesian sampling methods require extensive time and computation, involving algorithms that compare large numbers of known atmospheric models to the input spectral data. Runtimes are directly proportional to the number of parameters under consideration. These increased power and runtime requirements are difficult to accommodate in space missions where model size, speed, and power consumption are of particular importance. The use of traditional Bayesian sampling methods, therefore, compromise model complexity or sampling accuracy. The Atmospheric Retrievals conditional Generative Adversarial Network (ARcGAN) is a deep convolutional generative adversarial network that improves on the previous model’s speed and accuracy. We demonstrate the efficacy of artificial intelligence to quickly and reliably predict atmospheric parameters and present it as a viable alternative to slow and computationally heavy Bayesian methods. In addition to its broad applicability across instruments and planetary types, ARcGAN has been designed to function on low power application-specific integrated circuits. The application of edge computing to atmospheric retrievals allows for real or near-real-time quantification of atmospheric constituents at the instrument level. Additionally, edge computing provides both high-performance and power-efficient computing for AI applications, both of which are critical for space missions. With the edge computing chip implementation, ArcGAN serves as a strong basis for the development of a similar machine-learning algorithm to reduce the downlinked data volume from the Compact Ultraviolet to Visible Imaging Spectrometer (CUVIS) onboard the DAVINCI mission to Venus.

Keywords: deep learning, generative adversarial network, edge computing, atmospheric parameters retrieval

Procedia PDF Downloads 170
629 Experimental Analysis of Tools Used for Doxing and Proposed New Transforms to Help Organizations Protect against Doxing Attacks

Authors: Parul Khanna, Pavol Zavarsky, Dale Lindskog

Abstract:

Doxing is a term derived from documents, and hence consists of collecting information on an organization or individual through social media websites, search engines, password cracking methods, social engineering tools and other sources of publicly displayed information. The main purpose of doxing attacks is to threaten, embarrass, harass and humiliate the organization or individual. Various tools are used to perform doxing. Tools such as Maltego visualize organization’s architecture which helps in determining weak links within the organization. This paper discusses limitations of Maltego Chlorine CE 3.6.0 and suggests measures as to how organizations can use these tools to protect themselves from doxing attacks.

Keywords: advanced persistent threat, FOCA, OSINT, PII

Procedia PDF Downloads 256
628 Ensuring Cyber Security Using Kippo Honeypots

Authors: S. Vivekananda Pandian

Abstract:

A major challenging task in this current scenario is protecting your computer and other electronic gadgets against Cyber-attacks. In this current era Cyber warfare becomes a major threat to the entire world which targets a particular organization or a country spreading the Malwares, Breaching the securities, causing major loss to the organization. Several sectors both public and private are computerized such as Energy sectors, Oil refinery sectors, Defense sectors and Aviation sectors are prone to attacks. Several attacks are unknown while accessing the internet. To study the characteristics and Intention of the Attacker Kippo Honeypots are used. Honeypots are the trap set by us which enables them to monitor the malicious activities and detailed study about attackers which leads to strengthening of the security.

Keywords: attackers, security, Kippo Honeypots, virtual machine

Procedia PDF Downloads 427
627 Countering Terrorism and Defending Human Right after 9/11: The European Perspective

Authors: Anita Blagojević

Abstract:

It is well known that the terrorist attacks on the New York City and Washington, D.C. prompted unprecedented international action to enhance international cooperation in the prevention and suppression of terrorism. In the months (and years) after September 11, the world community focused on two main efforts: first, on efforts to bring those responsible for terrorist attacks to justice, and second, on efforts to prevent future terrorist attacks. In that sense, many governments took advantage of these efforts to strengthen their national security. In that process, however, human rights and civil liberties of certain groups of people were alleged. As a consequence, part of the price paid for protecting national security against terrorist attacks was the threat of infringement on people's fundamental rights and freedoms. The aim of this paper is to analyze the role of the European Union and the Council of Europe in finding the answer to the one of the main security dilemma for the present era: how to find the balance between the protection of national security and guarantee of the people's rights and fundamental freedoms?

Keywords: terrorism, antiterrorism, European Union, Council of Europe, human rights

Procedia PDF Downloads 378
626 Security in Cyberspace: A Comprehensive Review of COVID-19 Continued Effects on Security Threats and Solutions in 2021 and the Trajectory of Cybersecurity Going into 2022

Authors: Mojtaba Fayaz, Richard Hallal

Abstract:

This study examines the various types of dangers that our virtual environment is vulnerable to, including how it can be attacked and how to avoid/secure our data. The terrain of cyberspace is never completely safe, and Covid- 19 has added to the confusion, necessitating daily periodic checks and evaluations. Cybercriminals have been able to enact with greater skill and undertake more conspicuous and sophisticated attacks while keeping a higher level of finesse by operating from home. Different types of cyberattacks, such as operation-based attacks, authentication-based attacks, and software-based attacks, are constantly evolving, but research suggests that software-based threats, such as Ransomware, are becoming more popular, with attacks expected to increase by 93 percent by 2020. The effectiveness of cyber frameworks has shifted dramatically as the pandemic has forced work and private life to become intertwined, destabilising security overall and creating a new front of cyber protection for security analysis and personal. The high-rise formats in which cybercrimes are carried out, as well as the types of cybercrimes that exist, such as phishing, identity theft, malware, and DDoS attacks, have created a new front of cyber protection for security analysis and personal safety. The overall strategy for 2022 will be the introduction of frameworks that address many of the issues associated with offsite working, as well as education that provides better information about commercialised software that does not provide the highest level of security for home users, allowing businesses to plan better security around their systems.

Keywords: cyber security, authentication, software, hardware, malware, COVID-19, threat actors, awareness, home users, confidentiality, integrity, availability, attacks

Procedia PDF Downloads 116
625 Semi-Supervised Outlier Detection Using a Generative and Adversary Framework

Authors: Jindong Gu, Matthias Schubert, Volker Tresp

Abstract:

In many outlier detection tasks, only training data belonging to one class, i.e., the positive class, is available. The task is then to predict a new data point as belonging either to the positive class or to the negative class, in which case the data point is considered an outlier. For this task, we propose a novel corrupted Generative Adversarial Network (CorGAN). In the adversarial process of training CorGAN, the Generator generates outlier samples for the negative class, and the Discriminator is trained to distinguish the positive training data from the generated negative data. The proposed framework is evaluated using an image dataset and a real-world network intrusion dataset. Our outlier-detection method achieves state-of-the-art performance on both tasks.

Keywords: one-class classification, outlier detection, generative adversary networks, semi-supervised learning

Procedia PDF Downloads 151
624 Survey of Intrusion Detection Systems and Their Assessment of the Internet of Things

Authors: James Kaweesa

Abstract:

The Internet of Things (IoT) has become a critical component of modern technology, enabling the connection of numerous devices to the internet. The interconnected nature of IoT devices, along with their heterogeneous and resource-constrained nature, makes them vulnerable to various types of attacks, such as malware, denial-of-service attacks, and network scanning. Intrusion Detection Systems (IDSs) are a key mechanism for protecting IoT networks and from attacks by identifying and alerting administrators to suspicious activities. In this review, the paper will discuss the different types of IDSs available for IoT systems and evaluate their effectiveness in detecting and preventing attacks. Also, examine the various evaluation methods used to assess the performance of IDSs and the challenges associated with evaluating them in IoT environments. The review will highlight the need for effective and efficient IDSs that can cope with the unique characteristics of IoT networks, including their heterogeneity, dynamic topology, and resource constraints. The paper will conclude by indicating where further research is needed to develop IDSs that can address these challenges and effectively protect IoT systems from cyber threats.

Keywords: cyber-threats, iot, intrusion detection system, networks

Procedia PDF Downloads 80
623 Active Cyber Defense within the Concept of NATO’s Protection of Critical Infrastructures

Authors: Serkan Yağlı, Selçuk Dal

Abstract:

Cyber-attacks pose a serious threat to all states. Therefore, states constantly seek for various methods to encounter those threats. In addition, recent changes in the nature of cyber-attacks and their more complicated methods have created a new concept: active cyber defence (ACD). This article tries to answer firstly why ACD is important to NATO and find out the viewpoint of NATO towards ACD. Secondly, infrastructure protection is essential to cyber defence. Critical infrastructure protection with ACD means is even more important. It is assumed that by implementing active cyber defence, NATO may not only be able to repel the attacks but also be deterrent. Hence, the use of ACD has a direct positive effect in all international organizations’ future including NATO.

Keywords: active cyber defence, advanced persistent treat, critical infrastructure, NATO

Procedia PDF Downloads 243
622 USBware: A Trusted and Multidisciplinary Framework for Enhanced Detection of USB-Based Attacks

Authors: Nir Nissim, Ran Yahalom, Tomer Lancewiki, Yuval Elovici, Boaz Lerner

Abstract:

Background: Attackers increasingly take advantage of innocent users who tend to use USB devices casually, assuming these devices benign when in fact they may carry an embedded malicious behavior or hidden malware. USB devices have many properties and capabilities that have become the subject of malicious operations. Many of the recent attacks targeting individuals, and especially organizations, utilize popular and widely used USB devices, such as mice, keyboards, flash drives, printers, and smartphones. However, current detection tools, techniques, and solutions generally fail to detect both the known and unknown attacks launched via USB devices. Significance: We propose USBWARE, a project that focuses on the vulnerabilities of USB devices and centers on the development of a comprehensive detection framework that relies upon a crucial attack repository. USBWARE will allow researchers and companies to better understand the vulnerabilities and attacks associated with USB devices as well as providing a comprehensive platform for developing detection solutions. Methodology: The framework of USBWARE is aimed at accurate detection of both known and unknown USB-based attacks by a process that efficiently enhances the framework's detection capabilities over time. The framework will integrate two main security approaches in order to enhance the detection of USB-based attacks associated with a variety of USB devices. The first approach is aimed at the detection of known attacks and their variants, whereas the second approach focuses on the detection of unknown attacks. USBWARE will consist of six independent but complimentary detection modules, each detecting attacks based on a different approach or discipline. These modules include novel ideas and algorithms inspired from or already developed within our team's domains of expertise, including cyber security, electrical and signal processing, machine learning, and computational biology. The establishment and maintenance of the USBWARE’s dynamic and up-to-date attack repository will strengthen the capabilities of the USBWARE detection framework. The attack repository’s infrastructure will enable researchers to record, document, create, and simulate existing and new USB-based attacks. This data will be used to maintain the detection framework’s updatability by incorporating knowledge regarding new attacks. Based on our experience in the cyber security domain, we aim to design the USBWARE framework so that it will have several characteristics that are crucial for this type of cyber-security detection solution. Specifically, the USBWARE framework should be: Novel, Multidisciplinary, Trusted, Lightweight, Extendable, Modular and Updatable and Adaptable. Major Findings: Based on our initial survey, we have already found more than 23 types of USB-based attacks, divided into six major categories. Our preliminary evaluation and proof of concepts showed that our detection modules can be used for efficient detection of several basic known USB attacks. Further research, development, and enhancements are required so that USBWARE will be capable to cover all of the major known USB attacks and to detect unknown attacks. Conclusion: USBWARE is a crucial detection framework that must be further enhanced and developed.

Keywords: USB, device, cyber security, attack, detection

Procedia PDF Downloads 397
621 Data Analysis to Uncover Terrorist Attacks Using Data Mining Techniques

Authors: Saima Nazir, Mustansar Ali Ghazanfar, Sanay Muhammad Umar Saeed, Muhammad Awais Azam, Saad Ali Alahmari

Abstract:

Terrorism is an important and challenging concern. The entire world is threatened by only few sophisticated terrorist groups and especially in Gulf Region and Pakistan, it has become extremely destructive phenomena in recent years. Predicting the pattern of attack type, attack group and target type is an intricate task. This study offers new insight on terrorist group’s attack type and its chosen target. This research paper proposes a framework for prediction of terrorist attacks using the historical data and making an association between terrorist group, their attack type and target. Analysis shows that the number of attacks per year will keep on increasing, and Al-Harmayan in Saudi Arabia, Al-Qai’da in Gulf Region and Tehreek-e-Taliban in Pakistan will remain responsible for many future terrorist attacks. Top main targets of each group will be private citizen & property, police, government and military sector under constant circumstances.

Keywords: data mining, counter terrorism, machine learning, SVM

Procedia PDF Downloads 408
620 A Blind Three-Dimensional Meshes Watermarking Using the Interquartile Range

Authors: Emad E. Abdallah, Alaa E. Abdallah, Bajes Y. Alskarnah

Abstract:

We introduce a robust three-dimensional watermarking algorithm for copyright protection and indexing. The basic idea behind our technique is to measure the interquartile range or the spread of the 3D model vertices. The algorithm starts by converting all the vertices to spherical coordinate followed by partitioning them into small groups. The proposed algorithm is slightly altering the interquartile range distribution of the small groups based on predefined watermark. The experimental results on several 3D meshes prove perceptual invisibility and the robustness of the proposed technique against the most common attacks including compression, noise, smoothing, scaling, rotation as well as combinations of these attacks.

Keywords: watermarking, three-dimensional models, perceptual invisibility, interquartile range, 3D attacks

Procedia PDF Downloads 474
619 Constructing White-Box Implementations Based on Threshold Shares and Composite Fields

Authors: Tingting Lin, Manfred von Willich, Dafu Lou, Phil Eisen

Abstract:

A white-box implementation of a cryptographic algorithm is a software implementation intended to resist extraction of the secret key by an adversary. To date, most of the white-box techniques are used to protect block cipher implementations. However, a large proportion of the white-box implementations are proven to be vulnerable to affine equivalence attacks and other algebraic attacks, as well as differential computation analysis (DCA). In this paper, we identify a class of block ciphers for which we propose a method of constructing white-box implementations. Our method is based on threshold implementations and operations in composite fields. The resulting implementations consist of lookup tables and few exclusive OR operations. All intermediate values (inputs and outputs of the lookup tables) are masked. The threshold implementation makes the distribution of the masked values uniform and independent of the original inputs, and the operations in composite fields reduce the size of the lookup tables. The white-box implementations can provide resistance against algebraic attacks and DCA-like attacks.

Keywords: white-box, block cipher, composite field, threshold implementation

Procedia PDF Downloads 168
618 American Criminal Justice Responses to Terrorism in the Post 9/11 Era

Authors: Summer Jackson

Abstract:

September 11, 2001 terrorist attacks exposed weaknesses in federal law enforcement’s ability to proactively counter threats to American homeland security. Following the attacks, legislative reforms and policy changes cleared both bureaucratic and legal obstacles to anti-terrorism efforts. The Federal Bureau of Investigation (FBI) transformed into a domestic intelligence agency responsible for preventing future terrorist attacks. Likewise, the passage of the 2001 USA Patriot Act gave federal agents new discretionary powers to more easily collect intelligence on those suspected of supporting terrorism. Despite these changes, there has been only limited scholarly attention paid to terrorism responses by the federal criminal justice system. This study sought to examine the investigative and prosecutorial changes made in the Post-9/11 era. The methodology employed bivariate and multivariate statistics using data from the American Terrorism Study (ATS). This analysis examined how policy changes are reflected in the nature of terrorism investigations, the handling of terrorist defendants by federal prosecutors, and the outcomes of terrorism cases since 2001. The findings indicate significant investigative and prosecutorial changes in the Post-9/11 era. Specifically, this study found terrorism cases involved younger defendants, fewer indictees per case, less use of human intelligence, less complicated attacks, less serious charges, and more plea bargains. Overall, this study highlights the important shifts in responses to terrorism following the 9/11 attacks.

Keywords: terrorism, law enforcement, post-9/11, federal policy

Procedia PDF Downloads 119
617 Mitigating Denial of Service Attacks in Information Centric Networking

Authors: Bander Alzahrani

Abstract:

Information-centric networking (ICN) using architectures such as Publish-Subscribe Internet Routing Paradigm (PSIRP) is one of the promising candidates for a future Internet, has recently been under the spotlight by the research community to investigate the possibility of redesigning the current Internet architecture to solve many issues such as routing scalability, security, and quality of services issues.. The Bloom filter-based forwarding is a source-routing approach that is used in the PSIRP architecture. This mechanism is vulnerable to brute force attacks which may lead to denial-of-service (DoS) attacks. In this work, we present a new forwarding approach that keeps the advantages of Bloom filter-based forwarding while mitigates attacks on the forwarding mechanism. In practice, we introduce a special type of forwarding nodes called Edge-FW to be placed at the edge of the network. The role of these node is to add an extra security layer by validating and inspecting packets at the edge of the network against brute-force attacks and check whether the packet contains a legitimate forwarding identifier (FId) or not. We leverage Certificateless Aggregate Signature (CLAS) scheme with a small size of 64-bit which is used to sign the FId. Hence, this signature becomes bound to a specific FId. Therefore, malicious nodes that inject packets with random FIds will be easily detected and dropped at the Edge-FW node when the signature verification fails. Our preliminary security analysis suggests that with the proposed approach, the forwarding plane is able to resist attacks such as DoS with very high probability.

Keywords: bloom filter, certificateless aggregate signature, denial-of-service, information centric network

Procedia PDF Downloads 198
616 Modelling Insider Attacks in Public Cloud

Authors: Roman Kulikov, Svetlana Kolesnikova

Abstract:

Last decade Cloud Computing technologies have been rapidly becoming ubiquitous. Each year more and more organizations, corporations, internet services and social networks trust their business sensitive information to Public Cloud. The data storage in Public Cloud is protected by security mechanisms such as firewalls, cryptography algorithms, backups, etc.. In this way, however, only outsider attacks can be prevented, whereas virtualization tools can be easily compromised by insider. The protection of Public Cloud’s critical elements from internal intruder remains extremely challenging. A hypervisor, also called a virtual machine manager, is a program that allows multiple operating systems (OS) to share a single hardware processor in Cloud Computing. One of the hypervisor's functions is to enforce access control policies. Furthermore, it prevents guest OS from disrupting each other and from accessing each other's memory or disk space. Hypervisor is the one of the most critical and vulnerable elements in Cloud Computing infrastructure. Nevertheless, it has been poorly protected from being compromised by insider. By exploiting certain vulnerabilities, privilege escalation can be easily achieved in insider attacks on hypervisor. In this way, an internal intruder, who has compromised one process, is able to gain control of the entire virtual machine. Thereafter, the consequences of insider attacks in Public Cloud might be more catastrophic and significant to virtual tools and sensitive data than of outsider attacks. So far, almost no preventive security countermeasures have been developed. There has been little attention paid for developing models to assist risks mitigation strategies. In this paper formal model of insider attacks on hypervisor is designed. Our analysis identifies critical hypervisor`s vulnerabilities that can be easily compromised by internal intruder. Consequently, possible conditions for successful attacks implementation are uncovered. Hence, development of preventive security countermeasures can be improved on the basis of the proposed model.

Keywords: insider attack, public cloud, cloud computing, hypervisor

Procedia PDF Downloads 361
615 Cryptocurrency Crime: Behaviors of Malicious Smart Contracts in Blockchain

Authors: Malaw Ndiaye, Karim Konate

Abstract:

Blockchain and smart contracts can be used to facilitate almost any financial transaction. Thanks to these smart contracts, the settlement of dividends and coupons could be automated. The blockchain would allow all these transactions to be saved in a single ledger rather than in many databases through many organizations as is currently the case. Smart contracts have become lucrative and profitable targets for attackers because they can hold a large amount of money. This paper takes stock of cryptocurrency crime by assessing attacks due to smart contracts and the cost of losses. These losses are often the result of two types of malicious contracts: vulnerable contracts and criminal smart contracts. Studying the behavior of malicious contracts allows us to understand the root causes and consequences of attacks and the defense capabilities that exist although they do not definitively solve the crime problem. It makes it possible to approach new defense perspectives which will be concretized in future work.

Keywords: blockchain, malicious smart contracts, crypto-currency, crimes, attacks

Procedia PDF Downloads 274
614 Data Security: An Enhancement of E-mail Security Algorithm to Secure Data Across State Owned Agencies

Authors: Lindelwa Mngomezulu, Tonderai Muchenje

Abstract:

Over the decades, E-mails provide easy, fast and timely communication enabling businesses and state owned agencies to communicate with their stakeholders and with their own employees in real-time. Moreover, since the launch of Microsoft office 365 and many other clouds based E-mail services, many businesses have been migrating from the on premises E-mail services to the cloud and more precisely since the beginning of the Covid-19 pandemic, there has been a significant increase of E-mails utilization, which then leads to the increase of cyber-attacks. In that regard, E-mail security has become very important in the E-mail transportation to ensure that the E-mail gets to the recipient without the data integrity being compromised. The classification of the features to enhance E-mail security for further from the enhanced cyber-attacks as we are aware that since the technology is advancing so at the cyber-attacks. Therefore, in order to maximize the data integrity we need to also maximize security of the E-mails such as enhanced E-mail authentication. The successful enhancement of E-mail security in the future may lessen the frequency of information thefts via E-mails, resulting in the data of South African State-owned agencies not being compromised.

Keywords: e-mail security, cyber-attacks, data integrity, authentication

Procedia PDF Downloads 136
613 Distributed Cyber Physical Secure Framework for DC Microgrids: DC Ship Power System Applications

Authors: Grace karimi Muriithi, Behnaz Papari, Ali Arsalan, Christopher Shannon Edrington

Abstract:

Complexity and nonlinearity of the control system design is increasing for DC microgrid applications when the cyber concept associated with the technology constraints will added to the picture. Controllers’ functionality during the critical operation mode is required to guaranteed specifically for a high profile applications such as NAVY DC ship power system (SPS) as an small-scaled DC microgrid. Thus, SPS is susceptible to cyber-attacks and, accordingly, can provide the disastrous effects. In this study, a machine learning (ML) approach is demonstrated to offer the promising performance of SPS for developing an effective and robust functionality over attacks time. Simulation results analysis demonstrate that the proposed method can improve the controllability successfully.

Keywords: controlability, cyber attacks, distribute control, machine learning

Procedia PDF Downloads 114
612 Use of Generative Adversarial Networks (GANs) in Neuroimaging and Clinical Neuroscience Applications

Authors: Niloufar Yadgari

Abstract:

GANs are a potent form of deep learning models that have found success in various fields. They are part of the larger group of generative techniques, which aim to produce authentic data using a probabilistic model that learns distributions from actual samples. In clinical settings, GANs have demonstrated improved abilities in capturing spatially intricate, nonlinear, and possibly subtle disease impacts in contrast to conventional generative techniques. This review critically evaluates the current research on how GANs are being used in imaging studies of different neurological conditions like Alzheimer's disease, brain tumors, aging of the brain, and multiple sclerosis. We offer a clear explanation of different GAN techniques for each use case in neuroimaging and delve into the key hurdles, unanswered queries, and potential advancements in utilizing GANs in this field. Our goal is to connect advanced deep learning techniques with neurology studies, showcasing how GANs can assist in clinical decision-making and enhance our comprehension of the structural and functional aspects of brain disorders.

Keywords: GAN, pathology, generative adversarial network, neuro imaging

Procedia PDF Downloads 32
611 Optimizing Super Resolution Generative Adversarial Networks for Resource-Efficient Single-Image Super-Resolution via Knowledge Distillation and Weight Pruning

Authors: Hussain Sajid, Jung-Hun Shin, Kum-Won Cho

Abstract:

Image super-resolution is the most common computer vision problem with many important applications. Generative adversarial networks (GANs) have promoted remarkable advances in single-image super-resolution (SR) by recovering photo-realistic images. However, high memory requirements of GAN-based SR (mainly generators) lead to performance degradation and increased energy consumption, making it difficult to implement it onto resource-constricted devices. To relieve such a problem, In this paper, we introduce an optimized and highly efficient architecture for SR-GAN (generator) model by utilizing model compression techniques such as Knowledge Distillation and pruning, which work together to reduce the storage requirement of the model also increase in their performance. Our method begins with distilling the knowledge from a large pre-trained model to a lightweight model using different loss functions. Then, iterative weight pruning is applied to the distilled model to remove less significant weights based on their magnitude, resulting in a sparser network. Knowledge Distillation reduces the model size by 40%; pruning then reduces it further by 18%. To accelerate the learning process, we employ the Horovod framework for distributed training on a cluster of 2 nodes, each with 8 GPUs, resulting in improved training performance and faster convergence. Experimental results on various benchmarks demonstrate that the proposed compressed model significantly outperforms state-of-the-art methods in terms of peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and image quality for x4 super-resolution tasks.

Keywords: single-image super-resolution, generative adversarial networks, knowledge distillation, pruning

Procedia PDF Downloads 96
610 Classification of Attacks Over Cloud Environment

Authors: Karim Abouelmehdi, Loubna Dali, Elmoutaoukkil Abdelmajid, Hoda Elsayed, Eladnani Fatiha, Benihssane Abderahim

Abstract:

The security of cloud services is the concern of cloud service providers. In this paper, we will mention different classifications of cloud attacks referred by specialized organizations. Each agency has its classification of well-defined properties. The purpose is to present a high-level classification of current research in cloud computing security. This classification is organized around attack strategies and corresponding defenses.

Keywords: cloud computing, classification, risk, security

Procedia PDF Downloads 548
609 Clicking Based Graphical Password Scheme Resistant to Spyware

Authors: Bandar Alahmadi

Abstract:

The fact that people tend to remember pictures better than texts, motivates researchers to develop graphical passwords as an alternative to textual passwords. Graphical passwords as such were introduced as a possible alternative to traditional text passwords, in which users prove their identity by clicking on pictures rather than typing alphanumerical text. In this paper, we present a scheme for graphical passwords that are resistant to shoulder surfing attacks and spyware attacks. The proposed scheme introduces a clicking technique to chosen images. First, the users choose a set of images, the images are then included in a grid where users can click in the cells around each image, the location of the click and the number of clicks are saved. As a result, the proposed scheme can be safe from shoulder surface and spyware attacks.

Keywords: security, password, authentication, attack, applications

Procedia PDF Downloads 164
608 Generating Swarm Satellite Data Using Long Short-Term Memory and Generative Adversarial Networks for the Detection of Seismic Precursors

Authors: Yaxin Bi

Abstract:

Accurate prediction and understanding of the evolution mechanisms of earthquakes remain challenging in the fields of geology, geophysics, and seismology. This study leverages Long Short-Term Memory (LSTM) networks and Generative Adversarial Networks (GANs), a generative model tailored to time-series data, for generating synthetic time series data based on Swarm satellite data, which will be used for detecting seismic anomalies. LSTMs demonstrated commendable predictive performance in generating synthetic data across multiple countries. In contrast, the GAN models struggled to generate synthetic data, often producing non-informative values, although they were able to capture the data distribution of the time series. These findings highlight both the promise and challenges associated with applying deep learning techniques to generate synthetic data, underscoring the potential of deep learning in generating synthetic electromagnetic satellite data.

Keywords: LSTM, GAN, earthquake, synthetic data, generative AI, seismic precursors

Procedia PDF Downloads 32
607 Generative Adversarial Network for Bidirectional Mappings between Retinal Fundus Images and Vessel Segmented Images

Authors: Haoqi Gao, Koichi Ogawara

Abstract:

Retinal vascular segmentation of color fundus is the basis of ophthalmic computer-aided diagnosis and large-scale disease screening systems. Early screening of fundus diseases has great value for clinical medical diagnosis. The traditional methods depend on the experience of the doctor, which is time-consuming, labor-intensive, and inefficient. Furthermore, medical images are scarce and fraught with legal concerns regarding patient privacy. In this paper, we propose a new Generative Adversarial Network based on CycleGAN for retinal fundus images. This method can generate not only synthetic fundus images but also generate corresponding segmentation masks, which has certain application value and challenge in computer vision and computer graphics. In the results, we evaluate our proposed method from both quantitative and qualitative. For generated segmented images, our method achieves dice coefficient of 0.81 and PR of 0.89 on DRIVE dataset. For generated synthetic fundus images, we use ”Toy Experiment” to verify the state-of-the-art performance of our method.

Keywords: retinal vascular segmentations, generative ad-versarial network, cyclegan, fundus images

Procedia PDF Downloads 144
606 Cyber Attacks Management in IoT Networks Using Deep Learning and Edge Computing

Authors: Asmaa El Harat, Toumi Hicham, Youssef Baddi

Abstract:

This survey delves into the complex realm of Internet of Things (IoT) security, highlighting the urgent need for effective cybersecurity measures as IoT devices become increasingly common. It explores a wide array of cyber threats targeting IoT devices and focuses on mitigating these attacks through the combined use of deep learning and machine learning algorithms, as well as edge and cloud computing paradigms. The survey starts with an overview of the IoT landscape and the various types of attacks that IoT devices face. It then reviews key machine learning and deep learning algorithms employed in IoT cybersecurity, providing a detailed comparison to assist in selecting the most suitable algorithms. Finally, the survey provides valuable insights for cybersecurity professionals and researchers aiming to enhance security in the intricate world of IoT.

Keywords: internet of things (IoT), cybersecurity, machine learning, deep learning

Procedia PDF Downloads 31
605 Searching for Forensic Evidence in a Compromised Virtual Web Server against SQL Injection Attacks and PHP Web Shell

Authors: Gigih Supriyatno

Abstract:

SQL injection is one of the most common types of attacks and has a very critical impact on web servers. In the worst case, an attacker can perform post-exploitation after a successful SQL injection attack. In the case of forensics web servers, web server analysis is closely related to log file analysis. But sometimes large file sizes and different log types make it difficult for investigators to look for traces of attackers on the server. The purpose of this paper is to help investigator take appropriate steps to investigate when the web server gets attacked. We use attack scenarios using SQL injection attacks including PHP backdoor injection as post-exploitation. We perform post-mortem analysis of web server logs based on Hypertext Transfer Protocol (HTTP) POST and HTTP GET method approaches that are characteristic of SQL injection attacks. In addition, we also propose structured analysis method between the web server application log file, database application, and other additional logs that exist on the webserver. This method makes the investigator more structured to analyze the log file so as to produce evidence of attack with acceptable time. There is also the possibility that other attack techniques can be detected with this method. On the other side, it can help web administrators to prepare their systems for the forensic readiness.

Keywords: web forensic, SQL injection, investigation, web shell

Procedia PDF Downloads 148
604 Resolving Partisan Conflict: A Dialectical Approach

Authors: Michael F. Mascolo

Abstract:

Western democratic traditions are being strained. Western nations are losing the common agonistic ground needed to engage in traditional forms of democracy – adversarial debate, voting, and the peaceful transfer of power. Political polarization among party elites has become commonplace. Because it seeks to resolve conflict through the integration of opposites, a dialectical approach to resolving partisan conflict offers the promise of helping political partisans bridge ideological divides. This paper contains an analysis of dialectical engagement as a collaborative alternative to adversarial politics. Dialectical engagement involves two broad phases: collaborative political problem-solving and dialectical problem-solving. The paper contains a description of an 18-month longitudinal study assessing the effectiveness of dialectical engagement as a method for bridging divides on contentious socio-political issues. The study shows how dialectical engagement produced dramatic consensus among a small group of individuals from different political orientations as they worked together to resolve the issue of capital punishment.

Keywords: collaborative democracy, dialectical thinking, capital punishment, partisan conflict

Procedia PDF Downloads 71
603 An Entropy Based Novel Algorithm for Internal Attack Detection in Wireless Sensor Network

Authors: Muhammad R. Ahmed, Mohammed Aseeri

Abstract:

Wireless Sensor Network (WSN) consists of low-cost and multi functional resources constrain nodes that communicate at short distances through wireless links. It is open media and underpinned by an application driven technology for information gathering and processing. It can be used for many different applications range from military implementation in the battlefield, environmental monitoring, health sector as well as emergency response of surveillance. With its nature and application scenario, security of WSN had drawn a great attention. It is known to be valuable to variety of attacks for the construction of nodes and distributed network infrastructure. In order to ensure its functionality especially in malicious environments, security mechanisms are essential. Malicious or internal attacker has gained prominence and poses the most challenging attacks to WSN. Many works have been done to secure WSN from internal attacks but most of it relay on either training data set or predefined threshold. Without a fixed security infrastructure a WSN needs to find the internal attacks is a challenge. In this paper we present an internal attack detection method based on maximum entropy model. The final experimental works showed that the proposed algorithm does work well at the designed level.

Keywords: internal attack, wireless sensor network, network security, entropy

Procedia PDF Downloads 455