Search results for: Manganese
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 202

Search results for: Manganese

142 Optimization of the Co-Precipitation of Industrial Waste Metals in a Continuous Reactor System

Authors: Thomas S. Abia II, Citlali Garcia-Saucedo

Abstract:

A continuous copper precipitation treatment (CCPT) system was conceived at Intel Chandler Site to serve as a first-of-kind (FOK) facility-scale waste copper (Cu), nickel (Ni), and manganese (Mn) co-precipitation facility. The process was designed to treat highly variable wastewater discharged from a substrate packaging research factory. The paper discusses metals co-precipitation induced by internal changes for manufacturing facilities that lack the capacity for hardware expansion due to real estate restrictions, aggressive schedules, or budgetary constraints. Herein, operating parameters such as pH and oxidation reduction potential (ORP) were examined to analyze the ability of the CCPT System to immobilize various waste metals. Additionally, influential factors such as influent concentrations and retention times were investigated to quantify the environmental variability against system performance. A total of 2,027 samples were analyzed and statistically evaluated to measure the performance of CCPT that was internally retrofitted for Mn abatement to meet environmental regulations. In order to enhance the consistency of the influent, a separate holding tank was cannibalized from another system to collect and slow-feed the segregated Mn wastewater from the factory into CCPT. As a result, the baseline influent Mn decreased from 17.2+18.7 mg1L-1 at pre-pilot to 5.15+8.11 mg1L-1 post-pilot (70.1% reduction). Likewise, the pre-trial and post-trial average influent Cu values to CCPT were 52.0+54.6 mg1L-1 and 33.9+12.7 mg1L-1, respectively (34.8% reduction). However, the raw Ni content of 0.97+0.39 mg1L-1 at pre-pilot increased to 1.06+0.17 mg1L-1 at post-pilot. The average Mn output declined from 10.9+11.7 mg1L-1 at pre-pilot to 0.44+1.33 mg1L-1 at post-pilot (96.0% reduction) as a result of the pH and ORP operating setpoint changes. In similar fashion, the output Cu quality improved from 1.60+5.38 mg1L-1 to 0.55+1.02 mg1L-1 (65.6% reduction) while the Ni output sustained a 50% enhancement during the pilot study (0.22+0.19 mg1L-1 reduced to 0.11+0.06 mg1L-1). pH and ORP were shown to be significantly instrumental to the precipitative versatility of the CCPT System.

Keywords: copper, co-precipitation, industrial wastewater treatment, manganese, optimization, pilot study

Procedia PDF Downloads 254
141 Enhanced Ripening Behaviour of Manganese Doped Cadmium Selenide Quantum Dots (Mn-doped CdSe QDs)

Authors: N. A. Hamizi, M. R. Johan, Y. H. Hor, A. N. Sabri, Y. Y. A. Yong

Abstract:

In this research, Mn-doped CdSe QDs is synthesized by using paraffin liquid as the reacting solvent and oleic acid as the ligands for Cd in order to produce Mn-doped CdSe QDs in zinc-blende crystal structure. Characterization studies for synthesized Mn-doped CdSe QDs are carried out using UV-visible and photoluminescence spectroscopy. The absorption wavelengths in UV-vis test and emission wavelengths in PL test were increase with the increases in the ripening temperature and time respectively.

Keywords: semiconductor, chemical synthesis, optical properties, ripening

Procedia PDF Downloads 346
140 Study of the Morphological and Optical Properties of Nanometric NiO

Authors: Nassima Hamzaoui, Mostefa Ghamnia

Abstract:

Nanoscale thin films of pure and Mn-doped Nickel oxide (NiO) were prepared by dissolving nickel chloride hexahydrate (NiCl2, 6H2O) and manganese chloride tetrahydrate (MnCl2,4H2O) under experimental conditions. The resulting solution was stirred at room temperature for 30 OC minutes in order to obtain homogeneity. The solution was sprayed onto heated glass substrates. The films obtained were characterized by X-ray diffraction to verify crystallinity. Atomic force microscopy (AFM) reveals surface topographical structure. UV-visible spectroscopy shows good transparency of the NiO layers.

Keywords: films, NiO, AFM, X-ray diffraction

Procedia PDF Downloads 37
139 Upconversion Nanoparticle-Mediated Carbon Monoxide Prodrug Delivery System for Cancer Therapy

Authors: Yaw Opoku-Damoah, Run Zhang, Hang Thu Ta, Zhi Ping Xu

Abstract:

Gas therapy is still at an early stage of research and development. Even though most gasotransmitters have proven their therapeutic potential, their handling, delivery, and controlled release have been extremely challenging. This research work employs a versatile nanosystem that is capable of delivering a gasotransmitter in the form of a photo-responsive carbon monoxide-releasing molecule (CORM) for targeted cancer therapy. The therapeutic action was mediated by upconversion nanoparticles (UCNPs) designed to transfer bio-friendly low energy near-infrared (NIR) light to ultraviolet (UV) light capable of triggering carbon monoxide (CO) from a water-soluble amphiphilic manganese carbonyl complex CORM incorporated into a carefully designed lipid drug delivery system. Herein, gaseous CO that plays a role as a gasotransmitter with cytotoxic and homeostatic properties was investigated to instigate cellular apoptosis. After successfully synthesizing the drug delivery system, the ability of the system to encapsulate and mediate the sustained release of CO after light excitation was demonstrated. CO fluorescence probe (COFP) was successfully employed to determine the in vitro drug release profile upon NIR light irradiation. The uptake of nanoparticles enhanced by folates and its receptor interaction was also studied for cellular uptake purposes. The anticancer potential of the final lipid nanoparticle Lipid/UCNPs/CORM/FA (LUCF) was also determined by cell viability assay. Intracellular CO release and a subsequent therapeutic action involving ROS production, mitochondrial damage, and CO production was also evaluated. In all, this current project aims to use in vitro studies to determine the potency and efficiency of a NIR-mediated CORM prodrug delivery system.

Keywords: carbon monoxide-releasing molecule, upconversion nanoparticles, site-specific delivery, amphiphilic manganese carbonyl complex, prodrug delivery system.

Procedia PDF Downloads 95
138 MnO₂-Carbon Nanotubes Catalyst for Enhanced Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cell

Authors: Abidullah, Basharat Hussain, Jong Seok Kim

Abstract:

Polymer electrolyte membrane fuel cell (PEMFC) is an electrochemical cell, which undergoes an oxygen reduction reaction to produce electrical energy. Platinum (Pt) metal has been used as a catalyst since its inception, but expensiveness is the major obstacle in the commercialization of fuel cells. Herein a non-precious group metal (NPGM) is employed instead of Pt to reduce the cost of PEMFCs. Manganese dioxide impregnated carbon nanotubes (MnO₂-CNTs composite) is a catalyst having excellent electrochemical properties and offers a better alternative to the Platinum-based PEMFC. The catalyst is synthesized by impregnating the transition metal on large surface carbonaceous CNTs by hydrothermal synthesis techniques. To enhance the catalytic activity and increase the volumetric current density, the sample was pyrolyzed at 800ᵒC under a nitrogen atmosphere. During pyrolysis, the nitrogen was doped in the framework of CNTs. Then the material was treated with acid for removing the unreacted metals and adding oxygen functional group to the CNT framework. This process ameliorates the catalytic activity of the manganese-based catalyst. The catalyst has been characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and the catalyst activity has been examined by rotating disc electrode (RDE) experiment. The catalyst was strong enough to withstand an austere alkaline environment in experimental conditions and had a high electrocatalytic activity for oxygen reduction reaction (ORR). Linear Sweep Voltammetry (LSV) depicts an excellent current density of -4.0 mA/cm² and an overpotential of -0.3V vs. standard calomel electrode (SCE) in 0.1M KOH electrolyte. Rotating disk electrode (RDE) was conducted at 400, 800, 1200, and 1600 rpm. The catalyst exhibited a higher methanol tolerance and long term durability with respect to commercial Pt/C. The results for MnO₂-CNT show that the low-cost catalyst will supplant the expensive Pt/C catalyst in the fuel cell.

Keywords: carbon nanotubes, methanol fuel cell, oxygen reduction reaction, MnO₂-CNTs

Procedia PDF Downloads 105
137 Heavy Metals among Female Adolescents Attending Secondary Schools in Kano, Nigeria

Authors: I. Yunusa, M. A. Ibrahim, A. H. Yakasai, L. U. S. Ezeanyika

Abstract:

This study was conducted to examine the level of heavy metals among 192 apparently healthy female adolescents randomly selected from three different boarding secondary schools in the urban area of the most populated city in north-western part of Nigeria. Atomic absorption spectrometry (AAS) was used to determine the plasma levels of the heavy metals which include cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb) and zinc (Zn). Our findings revealed the following mean±SD values for each of the heavy metal; 0.11±0.01µg Cd/L, 0.09 ± 0.02µg Co/L, 0.19 ± 0.02 µg Cr/L, 0.91 ± 0.02 µg Cu/L, 1.53 ± 0.31 µg Fe/L, 0.01 ± 0.04 µg Mn/L, 0.3.8 ± 0.04µg Mo/L, 0.04±0.01µg Ni/L, 0.04 ± 0.01µg Pb/L and 2.80 ± 0.24µg Zn/L respectively. It was concluded that toxicity from heavy metals did not exist among female adolescents.

Keywords: heavy metals, female, adolescents, Nigeria

Procedia PDF Downloads 366
136 Development of Risk-Based Ambient Air Quality Standards in the Russian Federation on the Basis of Risk Assessment Procedures Harmonized with International Approaches

Authors: Nina V. Zaitseva, Pavel Z. Shur, Nina G. Atiskova

Abstract:

Nowadays harmonization of sanitary and hygienic standards of environmental quality with international standards is crucial part of integration of Russia into the international community. Harmonization of Russian and international ambient air quality standards may be realized by risk-based standards development. In this paper approaches to risk-based standards development and examples of these approaches implementation are presented.

Keywords: harmonization, health risk assessment, evolutionary modelling, benchmark level, nickel, manganese

Procedia PDF Downloads 369
135 Band Structure Computation of GaMnAs Using the Multiband k.p Theory

Authors: Khadijah B. Alziyadi, Khawlh A. Alzubaidi, Amor M. Alsayari

Abstract:

Recently, GaMnAs diluted magnetic semiconductors(DMSs) have received considerable attention because they combine semiconductor and magnetic properties. GaMnAs has been used as a model DMS and as a test bed for many concepts and functionalities of spintronic devices. In this paper, a theoretical study on the band structure ofGaMnAswill be presented. The model that we used in this study is the 8-band k.p methodwherespin-orbit interaction, spin splitting, and strain are considered. The band structure of GaMnAs will be calculated in different directions in the reciprocal space. The effect of manganese content on the GaMnAs band structure will be discussed. Also, the influence of strain, which varied continuously from tensile to compressive, on the different bands will be studied.

Keywords: band structure, diluted magnetic semiconductor, k.p method, strain

Procedia PDF Downloads 126
134 Estimation of Morbidity Level of Industrial Labour Conditions at Zestafoni Ferroalloy Plant

Authors: M. Turmanauli, T. Todua, O. Gvaberidze, R. Javakhadze, N. Chkhaidze, N. Khatiashvili

Abstract:

Background: Mining process has the significant influence on human health and quality of life. In recent years the events in Georgia were reflected on the industry working process, especially minimal requirements of labor safety, hygiene standards of workplace and the regime of work and rest are not observed. This situation is often caused by the lack of responsibility, awareness, and knowledge both of workers and employers. The control of working conditions and its protection has been worsened in many of industries. Materials and Methods: For evaluation of the current situation the prospective epidemiological study by face to face interview method was conducted at Georgian “Manganese Zestafoni Ferroalloy Plant” in 2011-2013. 65.7% of employees (1428 bulletin) were surveyed and the incidence rates of temporary disability days were studied. Results: The average length of a temporary disability single accident was studied taking into consideration as sex groups as well as the whole cohort. According to the classes of harmfulness the following results were received: Class 2.0-10.3%; 3.1-12.4%; 3.2-35.1%; 3.3-12.1%; 3.4-17.6%; 4.0-12.5%. Among the employees 47.5% and 83.1% were tobacco and alcohol consumers respectively. According to the age groups and years of work on the base of previous experience ≥50 ages and ≥21 years of work data prevalence respectively. The obtained data revealed increased morbidity rate according to age and years of work. It was found that the bone and articulate system and connective tissue diseases, aggravation of chronic respiratory diseases, ischemic heart diseases, hypertension and cerebral blood discirculation were the leading among the other diseases. High prevalence of morbidity observed in the workplace with not satisfactory labor conditions from the hygienic point of view. Conclusion: According to received data the causes of morbidity are the followings: unsafety labor conditions; incomplete of preventive medical examinations (preliminary and periodic); lack of access to appropriate health care services; derangement of gathering, recording, and analysis of morbidity data. This epidemiological study was conducted at the JSC “Manganese Ferro Alloy Plant” according to State program “ Prevention of Occupational Diseases” (Program code is 35 03 02 05).

Keywords: occupational health, mining process, morbidity level, cerebral blood discirculation

Procedia PDF Downloads 411
133 Mechanism of Failure of Pipeline Steels in Sour Environment

Authors: Abhishek Kumar

Abstract:

X70 pipeline steel was electrochemically charged with hydrogen for different durations in order to find crack nucleation and propagation sites. After 3 hours charging, suitable regions for crack initiation and propagation were found. These regions were studied by OM, SEM, EDS and later Vicker hardness test was done. The results brought out that HIC cracks nucleated from regions rich of inclusions and further propagated through the segregation area of some elements, such as manganese, carbon, silicon and sulfur. It is worth-mentioning that all these potential sites for crack nucleation and propagation appeared at the centre of cross section of the specimens. Additionally, cracked area has harder phase than the non-cracked area which was confirmed by hardness test.

Keywords: X70 steel, morphology of inclusions, SEM/EDS/OM, simulation, statistical data

Procedia PDF Downloads 298
132 A Study of Soil Heavy Metal Pollution in the Manganese Mining in Drama, Greece

Authors: A. Argiri, A. Molla, Tzouvalekas, E. Skoufogianni, N. Danalatos

Abstract:

The release of heavy metals into the environment has increased over the last years. In this study, 25 soil samples (0-15 cm) from the fields near the mining area in Drama region were selected. The samples were analyzed in the laboratory for their physicochemical properties and for seven “pseudo-total’’ heavy metals content, namely Pb, Zn, Cd, Cr, Cu, Ni, and Mn. The total metal concentrations (Pb, Zn, Cd, Cr, Cu, Ni and Mn) in digests were determined by using the atomic absorption spectrophotometer. According to the results, the mean concentration of the listed heavy metals in 25 soil samples are Cd 1.1 mg/kg, Cr 15 mg/kg, Cu 21.7 mg/kg, Ni 30.1 mg/kg, Pd 50.8 mg/kg, Zn 99.5 mg/kg and Mn 815.3 mg/kg. The results show that the heavy metals remain in the soil even if the mining closed many years ago.

Keywords: Greece, heavy metals, mining, pollution

Procedia PDF Downloads 101
131 Miniaturized PVC Sensors for Determination of Fe2+, Mn2+ and Zn2+ in Buffalo-Cows’ Cervical Mucus Samples

Authors: Ahmed S. Fayed, Umima M. Mansour

Abstract:

Three polyvinyl chloride membrane sensors were developed for the electrochemical evaluation of ferrous, manganese and zinc ions. The sensors were used for assaying metal ions in cervical mucus (CM) of Egyptian river buffalo-cows (Bubalus bubalis) as their levels vary dependent on cyclical hormone variation during different phases of estrus cycle. The presented sensors are based on using ionophores, β-cyclodextrin (β-CD), hydroxypropyl β-cyclodextrin (HP-β-CD) and sulfocalix-4-arene (SCAL) for sensors 1, 2 and 3 for Fe2+, Mn2+ and Zn2+, respectively. Dioctyl phthalate (DOP) was used as the plasticizer in a polymeric matrix of polyvinylchloride (PVC). For increasing the selectivity and sensitivity of the sensors, each sensor was enriched with a suitable complexing agent, which enhanced the sensor’s response. For sensor 1, β-CD was mixed with bathophenanthroline; for sensor 2, porphyrin was incorporated with HP-β-CD; while for sensor 3, oxine was the used complexing agent with SCAL. Linear responses of 10-7-10-2 M with cationic slopes of 53.46, 45.01 and 50.96 over pH range 4-8 were obtained using coated graphite sensors for ferrous, manganese and zinc ionic solutions, respectively. The three sensors were validated, according to the IUPAC guidelines. The obtained results by the presented potentiometric procedures were statistically analyzed and compared with those obtained by atomic absorption spectrophotometric method (AAS). No significant differences for either accuracy or precision were observed between the two techniques. Successful application for the determination of the three studied cations in CM, for the purpose to determine the proper time for artificial insemination (AI) was achieved. The results were compared with those obtained upon analyzing the samples by AAS. Proper detection of estrus and correct time of AI was necessary to maximize the production of buffaloes. In this experiment, 30 multi-parous buffalo-cows were in second to third lactation and weighting 415-530 kg, and were synchronized with OVSynch protocol. Samples were taken in three times around ovulation, on day 8 of OVSynch protocol, on day 9 (20 h before AI) and on day 10 (1 h before AI). Beside analysis of trace elements (Fe2+, Mn2+ and Zn2+) in CM using the three sensors, the samples were analyzed for the three cations and also Cu2+ by AAS in the CM samples and blood samples. The results obtained were correlated with hormonal analysis of serum samples and ultrasonography for the purpose of determining of the optimum time of AI. The results showed significant differences and powerful correlation with Zn2+ composition of CM during heat phase and the ovulation time, indicating that the parameter could be used as a tool to decide optimal time of AI in buffalo-cows.

Keywords: PVC Sensors, buffalo-cows, cyclodextrins, atomic absorption spectrophotometry, artificial insemination, OVSynch protocol

Procedia PDF Downloads 200
130 Effect of Germination on Nutritional Values of Isolates from Two Varieties (DAS and BS) of Under-Utilized Nigerian Cultivated Solojo Cowpea (Vigna Unguiculata L. Walp)

Authors: Henry O. Chibudike, Olubamike A. Adeyoju, Bolanle O. Oluwole, Kayode O. Adebowale, Bamidele I. Olu-Owolabi, Chinedum E. Chibudike

Abstract:

Studies on the Mineral Content of Solojo Flour and Protein Isolates from the two varieties (DAS and BS) of Nigeria cultivated solojo cowpeas were conducted to determine their nutritional value. These inorganic elements or minerals were classified into 3 categories: the ultra-trace minerals, which are the third category; the microelements, also known as the trace minerals, in the second category; while the first category is the macro elements, also known as major minerals. Some of the macro-elements are Ca, P, Na and Cl; the second category, micro-elements include iron, copper, cobalt, potassium, magnesium, iodine, zinc, manganese, molybdenum, F, Cr, Se and S. Results show that the proportion of Sodium (Na) which is ingested into the body in the form of NaCl through food intake maintenance of body pH and to retain water ranged from 728.97 to 253.37 ppm (72.90 to 25.34 mg/100 g); 715.24 to 235.45 ppm; 735.28 to 270.37 ppm; 726.59 to 264.35ppm, for FFDAS, FFBS, DAS and BS respectively with all values of the germinated samples all bellow the control. While FFDAS iron content ranged from 4.25 to 13.50 mg/100 g; FFBS ranged from 3.15 to 12.56 mg/100 g; DAS ranged from 3.81 to 12.90 mg/100g; BS ranged from 3.42 to 9.40 mg/100 g. The values of the germinated flours were all greater than the ungerminated flour. Iron helps to transport oxygen round the body and also helps in red blood cells building and to convert food into needed energy by the body. While Manganese an element that is needed in micro quantity but necessary to convert food into energy, is also crucial for healthy bone and cartilage creation. Results also show that zinc quantity increased as germination proceeded, and the values ranged from 38.80 ppm to 230.00 ppm (3.880 mg/100 g to 23.00 mg/100 g; 0.003880% to 0.0230%); 40.84 to 250.01 ppm; 32.85 to 93.41 ppm; 37.07 to 115.00 ppm, for FFDAS, FFBS, DAS and BS respectively. The Ca content improved significantly (p<0.05) with sprouting; the value extended from 250.56 ppm to 760.03 ppm (25.056 to 76.00 mg/100g or 0.0251 to 0.0760 %); 400.40 to 998.22 ppm; 116.87 to 195.69 ppm; 113.48 to 220.75 ppm, for FFDAS, FFBS, DAS and BS respectively. Zinc element although needed at the micro level in the body, is essential for a strong immune system to keep the body in good health. It is also crucial for the maintenance of a healthy sense of taste and odor, while Calcium is critical for strong bones and teeth, blood coagulation, and muscle tightening and relaxation. Magnesium is needed to build enzymes and antioxidants and also for healthy bones, while Potassium is needed to maintain water balance, muscle movement, and nerve impulses. It functions in conjunction with Na to regulate blood pressure.

Keywords: Solojo cowpea, underutilized legumes, protein isolates, BS, DAS, ungerminated

Procedia PDF Downloads 37
129 Customized Cow’s Urine Battery Using MnO2 Depolarizer

Authors: Raj Kumar Rajak, Bharat Mishra

Abstract:

Bio-battery represents an entirely new long term, reasonable, reachable and ecofriendly approach to production of sustainable energy. Types of batteries have been developed using MnO2 in various ways. MnO2 is suitable with physical, chemical, electrochemical, and catalytic properties, serving as an effective cathodic depolarizer and may be considered as being the life blood of the battery systems. In the present experimental work, we have studied the effect of generation of power by bio-battery using different concentrations of MnO2. The tests show that it is possible to generate electricity using cow’s urine as an electrolyte. After ascertaining the optimum concentration of MnO2, various battery parameters and performance indicates that cow urine solely produces power of 695 mW, while a combination with MnO2 (40%) enhances power of bio-battery, i.e. 1377 mW. On adding more and more MnO2 to the electrolyte, the power suppressed because inflation of internal resistance. The analysis of the data produced from experiment shows that MnO2 is quite suitable to energize the bio-battery.

Keywords: bio-batteries, cow’s urine, manganese dioxide, non-conventional

Procedia PDF Downloads 243
128 Evaluation of Major and Minor Components in Dakahlia Water Resources for Drinking Purposes

Authors: R. A. Mandour

Abstract:

The physical, chemical, and microbiological analyses of fifty Quaternary water samples representing the different types of drinking water (surface and wells) in the governorate were carried-out. This paper aims to evaluate the drinking water in Dakahlia governorate in comparison with the national and international standards as a step to handle water pollutants affecting human health in this governorate. All investigated water samples were chemically considered suitable for drinking except two samples for iron, two samples for lead and one water sample for manganese having values higher than the permissible limit of EMH and WHO. Also microbiologically there were five water samples having a high total count of bacteria and three samples having high coli form than the permissible limit of EMH. Obviously, groundwater samples from Mit-Ghamr, El-Sinbillawin and Aga districts of Dakahlia governorate should have special attention for treatment.

Keywords: major ions, minor elements, microbiology, EMH, WHO

Procedia PDF Downloads 358
127 Evaluation of the Nutritional Potential of a Developed Spice Formulation for nah poh (An Emulsion-Based Gravy): Physicochemical and Techno-Functional Characterisations

Authors: Djiazet Stève, Mezajoug Kenfack Laurette Blandine, Ravi Pullakhandam, Bethala L. A. Prabhavathi Devi, Tchiegang Clergé, Prathapkumar Halady Shetty

Abstract:

The nutritional potential of a developed spice formulation for nah poh was evaluated. It was found that when spices were used for the formulation for nah poh, the concentration of some nutrients is diluted while that of some of them increases. The proportion of unsaturated fats was estimated to be 76.2% of the total fat content while the chemical score varied between 31 to 39%. The contents of some essential minerals of nutritional interest in mg are as follows for 100g of spice: 2372.474 ± 0.007 for potassium, 16.447 ± 0.010 for iron, 4.772 ± 0.005 for zinc, 0.537 ± 0.001 for cupper, 0.138 ± 0.005 for selenium, and 112.954 ± 0.003 for manganese. This study shows that the consumption of these spices in the form of formulation significantly contributes to meet the mineral requirements of the populations whose food habits regularly require these spices.

Keywords: spice formulation, characterisation, nutritional potential, nah poh, techno functional properties

Procedia PDF Downloads 200
126 Nanohybride Porphyrin and Silver as an Efficient Catalyst for Oxidation of Alcohols by Tetrabutylammonium Peroxomonosulfate

Authors: Atena Naeimi, Asghar Amiri, Zahra Ghasemi

Abstract:

A stable suspension of nanocomposite simple manganese(III) meso-tetraphenylporphyrin nanoaggregates and Ag was prepared by a host–guest procedure, in which ethanol and water are used as ‘green’ solvents. The oxidation of alcohols by tetrabutylammonium Peroxomonosulfate(TP) were efficiently enhanced with excellent selectivity under the influence of simple Mn(TPP)OAc (TPP = meso-tetraphenylporphyrin) nanoparticles. Enhanced stabilities and activities were achieved with nanostructured Mn catalysts compared to those of the individual counterparts in solution according to turnover numbers and UV/Vis studies. The title nanocatalyst facilitates a greener reaction because the reaction solvent is water and TP is safe to use. The efficiency of the oxidation system depends critically upon the steric hindrances and electronic structures of both nitrogen donor ligand sand porphyrin nanoparticles.

Keywords: oxidation, nanoaggregates, porphyrinoids, silver

Procedia PDF Downloads 268
125 Analysis of Various Factors Affecting Hardness and Content of Phases Resulting from 1030 Carbon Steel Heat Treatment Using AC3 Software

Authors: Saeid Shahraki, Mohammad Mahdi Kaekha

Abstract:

1030 steel, a kind of carbon steel used in homogenization, cold-forming, quenching, and tempering conditions, is generally utilized in small parts resisting medium stress, such as connection foundations, hydraulic cylinders, tiny gears, pins, clamps, automotive normal forging parts, camshafts, levers, pundits, and nuts. In this study, AC3 software was used to measure the effect of carbon and manganese percentage, dimensions and geometry of pieces, the type of the cooling fluid, temperature, and time on hardness and the content of 1030 steel phases. Next, the results are compared with the analytical values obtained from the Lumped Capacity Method.

Keywords: 1030Steel, AC3software, heat treatment, lumped capacity method

Procedia PDF Downloads 262
124 Synthesis of Metal Curcumin Complexes with Iron(III) and Manganese(II): The Effects on Alzheimer's Disease

Authors: Emel Yildiz, Nurcan Biçer, Fazilet Aksu, Arash Alizadeh Yegani

Abstract:

Plants provide the wealth of bioactive compounds, which exert a substantial strategy for the treatment of neurological disorders such as Alzheimer's disease. Recently, a lot of studies have explored the medicinal properties of curcumin, including antitumoral, antimicrobial, anti-inflammatory, antioxidant, antiviral, and anti-Alzheimer's disease effects. Metal complexes of curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) were synthesized with Mn(II) and Fe(III). The structures of synthesized metal complexes have been characterized by using spectroscopic and analytic methods such as elemental analysis, magnetic susceptibility, FT-IR, AAS, TG and argentometric titration. It was determined that the complexes have octahedral geometry. The effects of the metal complexes on the disorder of memory, which is an important symptom of Alzheimer's Disease were studied on lab rats with Plus-Maze Tests at Behavioral Pharmacology Laboratory.

Keywords: curcumin, Mn(II), Fe(III), Alzheimer disease, beta amyloid 25-35

Procedia PDF Downloads 286
123 Male Oreochromis mossambica as Indicator for Water Pollution with Trace Elements in Relation to Condition Factor from Pakistan

Authors: Muhammad Naeem, Syed M. Moeen-ud-Din Raheel, Muhammad Arshad, Muhammad Naeem Qaisar, Muhammad Khalid, Muhammad Zubair Ahmed, Muhammad Ashraf

Abstract:

Iron, Copper, Cadmium, Zinc, Manganese, Chromium levels were estimated to study the risk of trace elements on human consumption. The area of collection was Dera Ghazi Khan, Pakistan and was evaluated by means of flame atomic absorption spectrophotometer. The standards find in favor of the six heavy metals were in accordance with the threshold edge concentrations on behalf of fish meat obligatory by European and other international normative. Regressions were achieved for both size (length and weight) and condition factor with concentrations of metal present in the fish body.

Keywords: Oreochromis mossambica, toxic analysis, body size, condition factor

Procedia PDF Downloads 557
122 Hydrothermal Synthesis of Octahedral Molecular Sieve from Mn Oxide Residues

Authors: Irlana C. do Mar, Thayna A. Ferreira, Dayane S. Rezende, Bruno A. M. Figueira, José M. R. Mercury

Abstract:

This work presents a low-cost Mn starting material to synthesis manganese oxide octahedral molecular sieve with Mg²⁺ in the tunnel (Mg-OMS-1), based on the Mn residues from Carajás Mineral Province (Amazon, Brazil). After hydrothermal and cation exchange procedures, the Mn residues transformed to a single phase, Mg-OMS-1. The raw material and the synthesis processes were analyzed by means of X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Infrared spectroscopy (FTIR). The tunnel structure was synthesized hydrothermally at 180 °C for three days without impurities. According to the XRD analysis, the formation of crystalline Mg-OMS-1 was identified through reflections at 9.8º, 12º and 18º (2θ), as well as a thermal stability around 300 ºC. The SEM analysis indicated that the final product presents good crystallinity with a homogeneous size. In addition, an intense and diagnostic FTIR band was identified at 515 cm⁻¹ related to the MnO₆ octahedral stretching vibrations.

Keywords: Mn residues , Octahedral Molecular Sieve, Synthesis, Characterization

Procedia PDF Downloads 173
121 Trophic Variations in Uptake and Assimilation of Cadmium, Manganese and Zinc: An Estuarine Food-Chain Radiotracer Experiment

Authors: K. O’Mara, T. Cresswell

Abstract:

Nearly half of the world’s population live near the coast, and as a result, estuaries and coastal bays in populated or industrialized areas often receive metal pollution. Heavy metals have a chemical affinity for sediment particles and can be stored in estuarine sediments and become biologically available under changing conditions. Organisms inhabiting estuaries can be exposed to metals from a variety of sources including metals dissolved in water, bound to sediment or within contaminated prey. Metal uptake and assimilation responses can vary even between species that are biologically similar, making pollution effects difficult to predict. A multi-trophic level experiment representing a common Eastern Australian estuarine food chain was used to study the sources for Cd, Mn and Zn uptake and assimilation in organisms occupying several trophic levels. Sand cockles (Katelysia scalarina), school prawns (Metapenaeus macleayi) and sand whiting (Sillago ciliata) were exposed to radiolabelled seawater, suspended sediment and food. Three pulse-chase trials on filter-feeding sand cockles were performed using radiolabelled phytoplankton (Tetraselmis sp.), benthic microalgae (Entomoneis sp.) and suspended sediment. Benthic microalgae had lower metal uptake than phytoplankton during labelling but higher cockle assimilation efficiencies (Cd = 51%, Mn = 42%, Zn = 63 %) than both phytoplankton (Cd = 21%, Mn = 32%, Zn = 33%) and suspended sediment (except Mn; (Cd = 38%, Mn = 42%, Zn = 53%)). Sand cockles were also sensitive to uptake of Cd, Mn and Zn dissolved in seawater. Uptake of these metals from the dissolved phase was negligible in prawns and fish, with prawns only accumulating metals during moulting, which were then lost with subsequent moulting in the depuration phase. Diet appears to be the main source of metal assimilation in school prawns, with 65%, 54% and 58% assimilation efficiencies from Cd, Mn and Zn respectively. Whiting fed contaminated prawns were able to exclude the majority of the metal activity through egestion, with only 10%, 23% and 11% assimilation efficiencies from Cd, Mn and Zn respectively. The findings of this study support previous studies that find diet to be the dominant accumulation source for higher level trophic organisms. These results show that assimilation efficiencies can vary depending on the source of exposure; sand cockles assimilated more Cd, Mn, and Zn from the benthic diatom than phytoplankton and assimilation was higher in sand whiting fed prawns compared to artificial pellets. The sensitivity of sand cockles to metal uptake and assimilation from a variety of sources poses concerns for metal availability to predators ingesting the clam tissue, including humans. The high tolerance of sand whiting to these metals is reflected in their widespread presence in Eastern Australian estuaries, including contaminated estuaries such as Botany Bay and Port Jackson.

Keywords: cadmium, food chain, metal, manganese, trophic, zinc

Procedia PDF Downloads 180
120 Preparation and Characterization of BaMnO₃ Application to the Photocatalytic Oxidation of Paracetamol under Solar Light

Authors: Dahmane Mohamed, Tab Asma, Trari Mohamed

Abstract:

BaMnO₃ nanoparticles were synthesized by a nitrate route. Its structure and physical properties were characterized by means of X-ray powder diffraction, radio crystallographic analysis, ultraviolet-visible absorption spectroscopy in diffuse reflectance mode, infrared spectroscopy, and electrochemical measurements. The optical study showed that barium manganese oxide presents a direct transition with band energy 2.13 eV. The electrochemical study allowed us to identify the redox peaks and the corrosion parameters. Capacitance measurement clearly showed n-type conductivity. The photodegradation of paracetamol by BaMnO₃ was followed by UV-visible spectrophotometry; the results were then confirmed by HPLC. BaMnO₃ has shown its photocatalytic efficiency in the photodegradation of 10 mg/L paracetamol under solar irradiation, with a yield of ≈ 88%. The kinetic study has shown that paracetamol degrades with first-order kinetics.

Keywords: BaMnO₃, photodegradation, paracetamol, electrochemical measurements, solar light

Procedia PDF Downloads 77
119 Selective Solvent Extraction of Calcium and Magnesium from Concentrate Nickel Solutions Using Mixtures of Cyanex 272 and D2EHPA

Authors: Alexandre S. Guimarães, Marcelo B. Mansur

Abstract:

The performance of organophosphorus extractants Cyanex 272 and D2EHPA on the purification of concentrate nickel sulfate solutions was evaluated. Batch scale tests were carried out at pH range of 2 to 7 using a laboratory solution simulating concentrate nickel liquors as those typically obtained when sulfate intermediates from nickel laterite are re-leached and treated for the selective removal of cobalt, zinc, manganese and copper with Cyanex 272 ([Ca] = 0.57 g/L, [Mg] = 3.2 g/L, and [Ni] = 88 g/L). The increase on the concentration of D2EHPA favored the calcium extraction. The extraction of magnesium is dependent on the pH and of ratio of extractants D2EHPA and Cyanex 272 in the organic phase. The composition of the investigated organic phase did not affect nickel extraction. The number of stages is dependent on the magnesium extraction. The most favorable operating condition to selectively remove calcium and magnesium was determined.

Keywords: solvent extraction, organophosphorus extractants, alkaline earth metals, nickel

Procedia PDF Downloads 502
118 Development of ELF Passive Shielding Application Using Magnetic Aqueous Substrate

Authors: W. N. L. Mahadi, S. N. Syed Zin, W. A. R. Othman, N. A. Mohd Rasyid, N. Jusoh

Abstract:

Public concerns on Extremely Low Frequency (ELF) Electromagnetic Field (EMF) exposure have been elongated since the last few decades. Electrical substations and high tension rooms (HT room) in commercial buildings were among the contributing factors emanating ELF magnetic fields. This paper discussed various shielding methods conventionally used in mitigating the ELF exposure. Nevertheless, the standard methods were found to be impractical and incapable of meeting currents shielding demands. In response to that, remarkable researches were conducted in effort to invent novel methods which is more convenient and efficient such as magnetic aqueous shielding or paint, textiles and papers shielding. A mitigation method using magnetic aqueous substrate in shielding application was proposed in this paper for further investigation. using Manganese Zinc Ferrite (Mn0.4Zn0.6Fe2O4). The magnetic field and flux distribution inside the aqueous magnetic material are evaluated to optimize shielding against ELF-EMF exposure, as to mitigate its exposure.

Keywords: ELF shielding, magnetic aqueous substrate, shielding effectiveness, passive shielding, magnetic material

Procedia PDF Downloads 510
117 Electrochemical Studies of Si, Si-Ge- and Ge-Air Batteries

Authors: R. C. Sharma, Rishabh Bansal, Prajwal Menon, Manoj K. Sharma

Abstract:

Silicon-air battery is highly promising for electric vehicles due to its high theoretical energy density (8470 Whkg⁻¹) and its discharge products are non-toxic. For the first time, pure silicon and germanium powders are used as anode material. Nickel wire meshes embedded with charcoal and manganese dioxide powder as cathode and concentrated potassium hydroxide is used as electrolyte. Voltage-time curves have been presented in this study for pure silicon and germanium powder and 5% and 10% germanium with silicon powder. Silicon powder cell assembly gives a stable voltage of 0.88 V for ~20 minutes while Si-Ge provides cell voltage of 0.80-0.76 V for ~10-12 minutes, and pure germanium cell provides cell voltage 0.80-0.76 V for ~30 minutes. The cell voltage is higher for concentrated (10%) sodium hydroxide solution (1.08 V) and it is stable for ~40 minutes. A sharp decrease in cell voltage beyond 40 min may be due to rapid corrosion.

Keywords: Silicon-air battery, Germanium-air battery, voltage-time curve, open circuit voltage, Anodic corrosion

Procedia PDF Downloads 212
116 Electrochemical Performance of Al-Mn2O3 Based Electrode Materials

Authors: Noor Ul Ain Bhatti, M. Junaid Khan, Javed Ahmad, Murtaza Saleem, Shahid M. Ramay, Saadat A. Siddiqi

Abstract:

Manganese oxide is being recently used as electrode material for rechargeable batteries. In this study, Al incorporated Mn2O3 compositions were synthesized to study the effect of Al doping on electrochemical performance of host material. Structural studies were carried out using X-ray diffraction analysis to confirm the phase stability and explore the lattice parameters, crystallite size, lattice strain, density and cell volume. Morphology and composition were analyzed using field emission scanning electron microscope and energy dispersive X-ray spectroscopy, respectively. Dynamic light scattering analysis was performed to observe the average particle size of the compositions. FTIR measurements exhibit the O-Al-O and O-Mn-O and Al-O bonding and with increasing the concentration of Al, the vibrational peaks of Mn-O become sharper. An enhanced electrochemical performance was observed in compositions with higher Al content.

Keywords: Mn2O3, electrode materials, energy storage and conversion, electrochemical performance

Procedia PDF Downloads 344
115 Bienzymatic Nanocomposites Biosensors Complexed with Gold Nanoparticles, Polyaniline, Recombinant MN Peroxidase from Corn, and Glucose Oxidase to Measure Glucose

Authors: Anahita Izadyar

Abstract:

Using a recombinant enzyme derived from corn and a simple modification, we are fabricating a facile, fast, and cost-beneficial novel biosensor to measure glucose. We are applying Plant Produced Mn Peroxidase (PPMP), glucose oxidase (GOx), polyaniline (PANI) as conductive polymer and gold nanoparticles (AuNPs) on Au electrode using electrochemical response to detect glucose. We applied the entrapment method of enzyme composition, which is generally used to immobilize conductive polymer and facilitate electron transfer from the enzyme oxidation-reduction center to the sample solution. In this work, the oxidation of glucose on the modified gold electrode was quantified with Linear Sweep Voltammetry(LSV). We expect that the modified biosensor has the potential for monitoring various biofluids.

Keywords: plant-produced manganese peroxidase, enzyme-based biosensors, glucose, modified gold nanoparticles electrode, polyaniline

Procedia PDF Downloads 174
114 Effect of Sprouting Period of Proximate Composition, Functional Properties and Mineral Content on Malted Sorghum Flour

Authors: Adebola Ajayi, Olakunle M. Makanjuola

Abstract:

Effect of sprouting period on proximate, functional and mineral properties of malted sorghum flour was evaluated. The study was carried out to determine the proximate, functional and mineral properties of sprouting period on malted sorghum flour produced. The malted sorghum flour was obtained by sorting, weighing, washing, steeping, draining, germination, drying, dry milling, sieving. Malted sorghum flour was evaluated for proximate composition, functional properties and mineral contents. Moisture, protein, fat content, crude fiber, ash contents and carbohydrate of 24 and 48 hours, were in the range of 10.50-11.0, 11.17-11.17, 1.50-4.00, 2.50-1.50, 1.50-1.54 and 73.15-70.79% respectively. Bulk density ranged between 0.64 and 0.59g/ml, water and oil absorption capacities ranged between 139.3 and 150.0 and 217.3 and 222.7g/g respectively. Calcium, Magnesium, Zinc, Iron and Manganese were also range of 12.5, 59.3-60.0, 3.22-3.25, 3.80-3.90 and 3.22-3.25 mg/100g respectively. The results indicate that the germination of red sorghum resulted in the enhancement of the nutritional quality and its functional properties.

Keywords: sprouting, sorghum, malted sorghum flour, cabinet dryer

Procedia PDF Downloads 186
113 Mesoporous RGO@(Co,Mn)3O4 Nanocomposite Prepared by Microwave Method and Its Electrochemical Performance

Authors: Charmaine Lamiel, Van Hoa Nguyen, Jae-Jin Shim

Abstract:

Supercapacitors are energy storage devices capable of storing more energy than conventional capacitors and have higher power density than batteries. The advantages of this method include the non-use of reducing agents and acidic medium, and no further use of a post-heat treatment unlike the conventional processes, in which calcination is generally employed after obtaining the initial product. Furthermore, it also offers a shorter reaction time at low temperatures and low power requirements, which allows low fabrication and energy cost. In this study, microwave irradiation was used for the facile and rapid synthesis of mesoporous RGO@(Co,Mn)3O4 nanosheets as an electrode material. The as-prepared electrode exhibited a high capacitance of 953 F•g^−1 at 1 A•g^−1 in a 6 M KOH electrolyte solution. Moreover, the electrode exhibited a high energy density of 76.2 Wh•kg^−1 at a power density of 720 W•kg^−1, and a high power density of 7200 W•kg^−1 at an energy density of 38 Wh•kg^−1. The successful methodology was considered to be efficient and cost-effective, thereby providing an active electrode material with very promising electrochemical performance.

Keywords: cobalt-manganese oxide, electrochemical, graphene, microwave synthesis, supercapacitor

Procedia PDF Downloads 190