Search results for: best practices in online learning
3773 Effect of Inflorescence Removal and Earthing-Up Times on Growth and Yield of Potato (Solanum tuberosum L.) at Jimma Southwestern Ethiopia
Authors: Dessie Fisseha, Derbew Belew, Ambecha Olika
Abstract:
Potato is a high-potential food security crop in Ethiopia. However, the yield and productivity of the crop have been far below the world average. This is due to several factors, including appropriate agronomic practices, such as time of earthing-up and inflorescence management. A field experiment was conducted at Jimma, Southwest Ethiopia, during 2016/17 under irrigation to determine the effect of time of earthing-up and inflorescence removal on the growth, yield, and quality of potatoes. The treatments consisted of a time of earthing-up (no earthing-up, earthing-up at 15, 30, and 45 days after complete plant emergence) and inflorescence removal (inflorescence removed and not removed). Potato variety (Belete) was used for this experiment. A 2x4 factorial experiment was laid out with three replications. Data collected on the growth, yield, and quality components of potatoes were analyzed using SAS Version 9.3 statistical software. Inflorescence removal affected the majority of the growth and yield parameters, while the time of earthing-up affected all growth, yield, and quality (green tuber number) parameters. Earthing-up at 15 days in combination with inflorescence removal (at 60 days after complete plant emergence) gave better plant growth and maximum tuber yield of the Belete potato variety under irrigated conditions. Since the current research was conducted at one location, in one season, and with one potato cultivar (Belete), it would be advisable to repeat the experiment so as to arrive at a final conclusion and subsequent recommendation.Keywords: Belete, earthing-up, inflorescence, yield
Procedia PDF Downloads 773772 Role of Education in the Transference of Global Values
Authors: Baratali Monfarediraz
Abstract:
Humans’ identity is not only under the influence of a certain society or social structure but also it is influenced by an international identity. This article is a research on role of education in the manifestation of universally accepted values such as, advancement of science, improvement in the quality of education, preservation of the natural environment, preservation, and spread of peace, exchange of knowledge and technology, equal educational opportunities, benefiting from a universal morality and etc. Therefore, the relation between universal beliefs and values and educational approaches and programs is the first thing to pay attention to. Studies indicate that the first step in achieving the above mentioned goals is offering learning strategies. Therefore the importance of educational approaches and programs as a tool for the transference of ideas, experiences and thoughts becomes quite clear. Proper education gives everyone the opportunity of acquiring knowledge while creating tendency toward social activities paves the way for achieving the universal values.Keywords: globalization, universal values, education, universal goal, values, society
Procedia PDF Downloads 3803771 An Assessment of the Extent and Impact of Motor Insurance Fraud Claims in Nigeria
Authors: Olatokunbo Shoyemi, Mario Brito, Ian Dawson
Abstract:
In recent times, the Nigerian motor insurers have experienced high volume of motor insurance claim pay-outs and insignificant contribution to the net premium income of the Nigerian insurance market, which has been a major concern for the shareholders/stakeholders. It has been argued that there are many factors that have brought about these concerns. However, anecdotal evidence (ongoing debates among industry practitioners) suggests prevalence of fraud due to poor practices in motor insurance business in Nigeria. This study is therefore aimed to carry out an assessment of fraud in motor insurance claims as perceived by experts in the Nigerian insurance market. This study adopted a descriptive research design, and the analysis was built on a survey among insurance experts in Nigeria using a designed questionnaire. A purposive and snowball sampling were used to select our sample (N = 120) - representing a selection of all professionally qualified insurance experts in Nigeria insurance industry. The study found that Nigerian insurance experts (i) largely agree that there is a problematic level of fraud in the Nigerian motor insurance industry; (ii) perceive soft fraud to be about 3 times more common than hard fraud in the Nigerian motor insurance industry, and (iii) strongly agree there are problematic impacts from fraud on the solvency of the Nigerian motor insurers. This paper has provided an empirical understanding of the existence, extent, and impact of fraud risks within the Nigerian insurance market based on expert knowledge and insights rather than, as has often been the case, a reliance on individual anecdotes.Keywords: claims, net premium income, motor insurance, soft fraud, hard fraud
Procedia PDF Downloads 1083770 Implications of Creating a 3D Vignette as a Reflective Practice for Continuous Professional Development of Foreign Language Teachers
Authors: Samiah H. Ghounaim
Abstract:
The topic of this paper is significant because of the increasing need for intercultural training for foreign language teachers due to the continuous challenges they face in their diverse classrooms. First, the structure of the intercultural training program designed will be briefly described, and the structure of a 3D vignette and its intended purposes will be elaborated on. This was the first stage where the program was designed and implemented on the period of three months with a group of local and expatriate foreign language teachers/practitioners at a university in the Middle East. After that, a set of primary data collected during the first stage of this research on the design and co-construction process of a 3D vignette will be reviewed and analysed in depth. Each practitioner designed a personal incident into a 3D vignette where each dimension of the vignette viewed the same incident from a totally different perspective. Finally, the results and the implications of having participant construct their personal incidents into a 3D vignette as a reflective practice will be discussed in detail as well as possible extensions for the research. This process proved itself to be an effective reflective practice where the participants were stimulated to view their incidents in a different light. Co-constructing one’s own critical incidents –be it a positive experience or not– into a structured 3D vignette encouraged participants to decentralise themselves from the incidents and, thus, creating a personal reflective space where they had the opportunity to see different potential outcomes for each incident, as well as prepare for the reflective discussion of their vignette with their peers. This provides implications for future developments in reflective writing practices and possibilities for educators’ continuous professional development (CPD).Keywords: 3D vignettes, intercultural competence training, reflective practice, teacher training
Procedia PDF Downloads 1083769 The Analysis of Cultural Diversity in EFL Textbook for Senior High School in Indonesia
Authors: Soni Ariawan
Abstract:
The study aims to explore the cultural diversity highlighted in EFL textbook for Senior High School grade 10 in Indonesia. The visual images are selected as the data and qualitatively analysed using content analysis. The reason to choose visual images because images are not always neutral and they might impact teaching and learning process. In the current study, cultural diversity aspects are focused on religion (Muslim, Protestant, Catholic, Hindu, Buddhist, Confucian), gender (male, female, unclear), ethnic (Melanesian, Austronesian, Foreigner) and socioeconomic (low, middle, high, undetermined) diversity as the theoretical framework. The four aspects of cultural diversity are sufficiently representative to draw a conclusion in investigating Indonesian culture representation in EFL textbook. The finding shows that cultural diversity is not proportionally reflected in the textbook, particularly in the visual images.Keywords: EFL textbook, cultural diversity, visual images, Indonesia
Procedia PDF Downloads 3143768 Quality Control of Distinct Cements by IR Spectroscopy: First, insights into Perspectives and Opportunities
Authors: Tobias Bader, Joerg Rickert
Abstract:
One key factor in achieving net zero emissions along the cement and concrete value chain in Europe by 2050 is the use of distinct constituents to produce improved and advanced cements. These cements will contain e.g. calcined clays, recycled concrete fines that are chemically similar as well as X-ray amorphous and therefore difficult to distinguish. This leads to enhanced requirements on the analytical methods for quality control regarding accuracy as well as reproducibility due to the more complex cement composition. With the methods currently provided for in the European standards, it will be a challenge to ensure reliable analyses of the composition of the cements. In an ongoing research project, infrared (IR) spectroscopy in combination with mathematical tools (chemometrics) is going to be evaluated as an additional analytical method with fast and low preparation effort for the characterization of silicate-based cement constituents. The resulting comprehensive database should facilitate determination of the composition of new cements. First results confirmed the applicability of near-infrared IR for the characterization of traditional silicate-based cement constituents (e.g. clinker, granulated blast furnace slag) and modern X-ray amorphous constituents (e.g. calcined clay, recycled concrete fines) as well as different sulfate species (e.g. gypsum, hemihydrate, anhydrite). A multivariant calibration model based on numerous calibration mixtures is in preparation. The final analytical concept to be developed will form the basis for establishing IR spectroscopy as a rapid analytical method for characterizing material flows of known and unknown inorganic substances according to their material properties online and offline. The underlying project was funded by the Federal Institute for Research on Building, Urban Affairs and Spatial Development on behalf of the Federal Ministry of Housing, Urban Development and Building with funds from the ‘Zukunft Bau’ research programme.Keywords: cement, infrared spectroscopy, quality control, X-ray amorphous
Procedia PDF Downloads 413767 Using Combination of Sets of Features of Molecules for Aqueous Solubility Prediction: A Random Forest Model
Authors: Muhammet Baldan, Emel Timuçin
Abstract:
Generally, absorption and bioavailability increase if solubility increases; therefore, it is crucial to predict them in drug discovery applications. Molecular descriptors and Molecular properties are traditionally used for the prediction of water solubility. There are various key descriptors that are used for this purpose, namely Drogan Descriptors, Morgan Descriptors, Maccs keys, etc., and each has different prediction capabilities with differentiating successes between different data sets. Another source for the prediction of solubility is structural features; they are commonly used for the prediction of solubility. However, there are little to no studies that combine three or more properties or descriptors for prediction to produce a more powerful prediction model. Unlike available models, we used a combination of those features in a random forest machine learning model for improved solubility prediction to better predict and, therefore, contribute to drug discovery systems.Keywords: solubility, random forest, molecular descriptors, maccs keys
Procedia PDF Downloads 473766 Water Resources Crisis in Saudi Arabia, Challenges and Possible Management Options: An Analytic Review
Authors: A. A. Ghanim
Abstract:
The Kingdom of Saudi Arabia (KSA) is heading towards a severe and rapidly expanding water crisis, which can have negative impacts on the country’s environment and economy. Of the total water consumption in KSA, the agricultural sector accounts for nearly 87% of the total water use and, therefore, any attempt that overlooks this sector will not help in improving the sustainability of the country’s water resources. KSA Vision 2030 gives priority of water use in the agriculture sector for the regions that have natural renewable water resources. It means that there is little concern for making reuse of municipal wastewater for irrigation purposes in any region in general and in water-scarce regions in particular. The use of treated wastewater is very limited in Saudi Arabia, but it has very considerable potential for future expansion due its numerous beneficial uses. This study reviews the current situation of water resources in Saudi Arabia, providing more highlights on agriculture and wastewater reuse. The reviewed study is proposing some corrective measures for development and better management of water resources in the Kingdom. Suggestions also include consideration of treated water as an alternative source for irrigation in some regions of the country. The study concluded that a sustainable solution for the water crisis in KSA requires implementation of multiple measures in an integrated manner. The integrated solution plan should focus on two main directions: first, improving the current management practices of the existing water resources; second, developing new water supplies from both conventional and non-conventional sources.Keywords: Saudia Arabia, water resources, water crises, wastewater reuse
Procedia PDF Downloads 1723765 Utilization of Hybrid Teaching Methods to Improve Writing Skills of Undergraduate Students
Authors: Tahira Zaman
Abstract:
The paper intends to discover the utility of hybrid teaching methods to aid undergraduate students to improve their English academic writing skills. A total of 45 undergraduate students were selected randomly from three classes from varying language abilities, with the research design of monitoring and rubrics evaluation as a means of measure. Language skills of the students were upgraded with the help of experiential learning methods using reflective writing technique, guided method in which students were merely directed to correct form of writing techniques along with self-guided method for the students to produce a library research-based article measured through a standardized rubrics provided. The progress of the students was monitored and checked through rubrics and self-evaluation and concluded that a change was observed in the students’ writing abilities.Keywords: self evaluation, hybrid, self evaluation, reflective writing
Procedia PDF Downloads 1623764 Music Note Detection and Dictionary Generation from Music Sheet Using Image Processing Techniques
Authors: Muhammad Ammar, Talha Ali, Abdul Basit, Bakhtawar Rajput, Zobia Sohail
Abstract:
Music note detection is an area of study for the past few years and has its own influence in music file generation from sheet music. We proposed a method to detect music notes on sheet music using basic thresholding and blob detection. Subsequently, we created a notes dictionary using a semi-supervised learning approach. After notes detection, for each test image, the new symbols are added to the dictionary. This makes the notes detection semi-automatic. The experiments are done on images from a dataset and also on the captured images. The developed approach showed almost 100% accuracy on the dataset images, whereas varying results have been seen on captured images.Keywords: music note, sheet music, optical music recognition, blob detection, thresholding, dictionary generation
Procedia PDF Downloads 1813763 Designing Supplier Partnership Success Factors in the Coal Mining Industry
Authors: Ahmad Afif, Teuku Yuri M. Zagloel
Abstract:
Sustainable supply chain management is a new pattern that has emerged recently in industry and companies. The procurement process is one of the key factors for efficiency in supply chain management practices. Partnership is one of the procurement strategies for strategic items. The success factors of the partnership must be determined to avoid things that endanger the financial and operational status of the company. The current supplier partnership research focuses on the selection of general criteria and sustainable supplier selection. Currently, there is still limited research on the success factors of supplier partnerships that focus on strategic items in the coal mining industry. Meanwhile, the procurement of coal mining has its own characteristics, and there are regulations related to the procurement of goods. Therefore, this research was conducted to determine the categories of goods that are included in the strategic items and to design the success factors of supplier partnerships. The main factors studied are general, financial, production, reputation, synergies, and sustainable. The research was conducted using the Kraljic method to determine the categories of goods that are included in the strategic items. To design a supplier partnership success factor using the Hybrid Multi Criteria Decision Making method. Integrated Fuzzy AHP-Fuzzy TOPSIS is used to determine the weight of the success factors of supplier partnerships and to rank suppliers on the factors used.Keywords: supplier, partnership, strategic item, success factors, and coal mining industry
Procedia PDF Downloads 1313762 Investigating the Effectiveness of Multilingual NLP Models for Sentiment Analysis
Authors: Othmane Touri, Sanaa El Filali, El Habib Benlahmar
Abstract:
Natural Language Processing (NLP) has gained significant attention lately. It has proved its ability to analyze and extract insights from unstructured text data in various languages. It is found that one of the most popular NLP applications is sentiment analysis which aims to identify the sentiment expressed in a piece of text, such as positive, negative, or neutral, in multiple languages. While there are several multilingual NLP models available for sentiment analysis, there is a need to investigate their effectiveness in different contexts and applications. In this study, we aim to investigate the effectiveness of different multilingual NLP models for sentiment analysis on a dataset of online product reviews in multiple languages. The performance of several NLP models, including Google Cloud Natural Language API, Microsoft Azure Cognitive Services, Amazon Comprehend, Stanford CoreNLP, spaCy, and Hugging Face Transformers are being compared. The models based on several metrics, including accuracy, precision, recall, and F1 score, are being evaluated and compared to their performance across different categories of product reviews. In order to run the study, preprocessing of the dataset has been performed by cleaning and tokenizing the text data in multiple languages. Then training and testing each model has been applied using a cross-validation approach where randomly dividing the dataset into training and testing sets and repeating the process multiple times has been used. A grid search approach to optimize the hyperparameters of each model and select the best-performing model for each category of product reviews and language has been applied. The findings of this study provide insights into the effectiveness of different multilingual NLP models for Multilingual Sentiment Analysis and their suitability for different languages and applications. The strengths and limitations of each model were identified, and recommendations for selecting the most performant model based on the specific requirements of a project were provided. This study contributes to the advancement of research methods in multilingual NLP and provides a practical guide for researchers and practitioners in the field.Keywords: NLP, multilingual, sentiment analysis, texts
Procedia PDF Downloads 1053761 Privacy Concerns and Law Enforcement Data Collection to Tackle Domestic and Sexual Violence
Authors: Francesca Radice
Abstract:
Domestic and sexual violence provokes, on average in Australia, one female death per week due to intimate violence behaviours. 83% of couples meet online, and intercepting domestic and sexual violence at this level would be beneficial. It has been observed that violent or coercive behaviour has been apparent from initial conversations on dating apps like Tinder. Child pornography, stalking, and coercive control are some criminal offences from dating apps, including women murdered after finding partners through Tinder. Police databases and predictive policing are novel approaches taken to prevent crime before harm is done. This research will investigate how police databases can be used in a privacy-preserving way to characterise users in terms of their potential for violent crime. Using the COPS database of NSW Police, we will explore how the past criminal record can be interpreted to yield a category of potential danger for each dating app user. It is up to the judgement of each subscriber on what degree of the potential danger they are prepared to enter into. Sentiment analysis is an area where research into natural language processing has made great progress over the last decade. This research will investigate how sentiment analysis can be used to interpret interchanges between dating app users to detect manipulative or coercive sentiments. These can be used to alert law enforcement if continued for a defined number of communications. One of the potential problems of this approach is the potential prejudice a categorisation can cause. Another drawback is the possibility of misinterpreting communications and involving law enforcement without reason. The approach will be thoroughly tested with cross-checks by human readers who verify both the level of danger predicted by the interpretation of the criminal record and the sentiment detected from personal messages. Even if only a few violent crimes can be prevented, the approach will have a tangible value for real people.Keywords: sentiment analysis, data mining, predictive policing, virtual manipulation
Procedia PDF Downloads 783760 A Framework for ERP Project Evaluation Based on BSC Model: A Study in Iran
Authors: Mohammad Reza Ostad Ali Naghi Kashani, Esfanji Elia
Abstract:
Nowadays, the amounts of companies which tend to have an Enterprise Resource Planning (ERP) application are increasing particularly in developing countries like Iran. ERP projects are expensive, time consuming, and complex, in addition the failure rate is high among these projects. It is important to know whether these projects could meet their goals or not. Furthermore, the area which should be improved should be identified. In this paper we made a framework to evaluate ERP projects success implementation. First, based on literature review we made a framework based on BSC model, financial, customer, processes, learning and knowledge, because of the importance of change management it was added to model. Then an organization was divided in three layers. We choose corporate, managerial, and operational levels. Then to find criteria to assess each aspect, we use Delphi method in two rounds. And for the second round we made a questionnaire and did some statistical tasks on them. Based on the statistical results some of them are accepted and others are rejected.Keywords: ERP, BSC, ERP project evaluation, IT projects
Procedia PDF Downloads 3223759 Assessment of Forest Resource Exploitation in the Rural Communities of District Jhelum
Authors: Rubab Zafar Kahlon, Ibtisam Butt
Abstract:
Forest resources are deteriorating and experiencing decline around the globe due to unsustainable use and over exploitation. The present study was an attempt to determine the relationship between human activities, forest resource utilization, extraction methods and practices of forest resource exploitation in the district Jhelum of Pakistan. For this purpose, primary sources of data were used which were collected from 8 villages through structured questionnaire and tabulated in Microsoft Excel 365 and SPSS 22 was used for multiple linear regression analysis. The results revealed that farming, wood cutting, animal husbandry and agro-forestry were the major occupations in the study area. Most commonly used resources included timber 26%, fuelwood 25% and fodder 19%. Methods used for resource extraction included gathering 49%, plucking 34% trapping 11% and cutting 6%. Population growth, increased demand of fuelwood and land conversion were the main reasons behind forest degradation. Results for multiple linear regression revealed that Forest based activities, sources of energy production, methods used for wood harvesting and resource extraction and use of fuelwood for energy production contributed significantly towards extensive forest resource exploitation with p value <0.5 within the study area. The study suggests that effective measures should be taken by forest department to control the unsustainable use of forest resources by stringent management interventions and awareness campaigns in Jhelum district.Keywords: forest resource, biodiversity, expliotation, human activities
Procedia PDF Downloads 933758 The Importance of Outside Classroom Activities in Developing Oral Fluency in an EFL Context
Authors: Maaly Jarrah
Abstract:
In a study abroad context, students have the advantage of immersing themselves in the environment of the target language and being exposed to it. However, in and a stay home context, where English is not the mother tongue, students’ exposure to the second language is often times restricted to the classroom. Although language teachers are keen to develop inside class room activities and practices that increase the suitability of students to acquire a second language (Cook & Singleton, 2014), many would agree that class time is too limited to enhance students’ oral fluency skills. Consequently, creating opportunities outside the classroom for students to speak English is an effective strategy in compensating for students’ limited use of the L2. In an argument by Ortega (2012) external classroom activities have equal significance in enabling students learn English as a second language. The author further asserts that the activities provide a non-educational environment from which a student may feel free and comfortable to acquire new language skills. This study investigates the significance of outside classroom activities in promoting students’ oral proficiency. In addition, it reports on students’ perceptions of such activities. 15 participants from the American University of Kuwait took part in this study. Open-ended interviews were done to find out what the participants thought of these activities, and what they gained from them. Interview results show that students found outside classroom activities very effective in improving not only their oral fluency skills, but their confidence and critical thinking skills as well. The implications of this research study are for language practitioners and language programs in the EFL context to be aware of the benefits of incorporating outside classroom activities in language teaching.Keywords: language teaching, oral fluency, outside classroom activities
Procedia PDF Downloads 4593757 Experiences on the Application of WIKI Based Coursework in a Fourth-Year Engineering Module
Authors: D. Hassell, D. De Focatiis
Abstract:
This paper presents work on the application of wiki based coursework for a fourth-year engineering module delivered as part of both a MEng and MSc programme in Chemical Engineering. The module was taught with an equivalent structure simultaneously on two separate campuses, one in the United Kingdom (UK) and one in Malaysia, and the subsequent results were compared. Student feedback was sought via questionnaires, with 45 respondents from the UK and 49 from Malaysia. Results include discussion on; perceived difficulty; student enjoyment and experiences; differences between MEng and MSc students; differences between cohorts on different campuses. The response of students to the use of wiki-based coursework was found to vary based on their experiences and background, with UK students being generally more positive on its application than those in Malaysia.Keywords: engineering education, student differences, student learning, web based coursework
Procedia PDF Downloads 2963756 Surface to the Deeper: A Universal Entity Alignment Approach Focusing on Surface Information
Authors: Zheng Baichuan, Li Shenghui, Li Bingqian, Zhang Ning, Chen Kai
Abstract:
Entity alignment (EA) tasks in knowledge graphs often play a pivotal role in the integration of knowledge graphs, where structural differences often exist between the source and target graphs, such as the presence or absence of attribute information and the types of attribute information (text, timestamps, images, etc.). However, most current research efforts are focused on improving alignment accuracy, often along with an increased reliance on specific structures -a dependency that inevitably diminishes their practical value and causes difficulties when facing knowledge graph alignment tasks with varying structures. Therefore, we propose a universal knowledge graph alignment approach that only utilizes the common basic structures shared by knowledge graphs. We have demonstrated through experiments that our method achieves state-of-the-art performance in fair comparisons.Keywords: knowledge graph, entity alignment, transformer, deep learning
Procedia PDF Downloads 463755 Evaluation of Golden Beam Data for the Commissioning of 6 and 18 MV Photons Beams in Varian Linear Accelerator
Authors: Shoukat Ali, Abdul Qadir Jandga, Amjad Hussain
Abstract:
Objective: The main purpose of this study is to compare the Percent Depth dose (PDD) and In-plane and cross-plane profiles of Varian Golden beam data to the measured data of 6 and 18 MV photons for the commissioning of Eclipse treatment planning system. Introduction: Commissioning of treatment planning system requires an extensive acquisition of beam data for the clinical use of linear accelerators. Accurate dose delivery require to enter the PDDs, Profiles and dose rate tables for open and wedges fields into treatment planning system, enabling to calculate the MUs and dose distribution. Varian offers a generic set of beam data as a reference data, however not recommend for clinical use. In this study, we compared the generic beam data with the measured beam data to evaluate the reliability of generic beam data to be used for the clinical purpose. Methods and Material: PDDs and Profiles of Open and Wedge fields for different field sizes and at different depths measured as per Varian’s algorithm commissioning guideline. The measurement performed with PTW 3D-scanning water phantom with semi-flex ion chamber and MEPHYSTO software. The online available Varian Golden Beam Data compared with the measured data to evaluate the accuracy of the golden beam data to be used for the commissioning of Eclipse treatment planning system. Results: The deviation between measured vs. golden beam data was in the range of 2% max. In PDDs, the deviation increases more in the deeper depths than the shallower depths. Similarly, profiles have the same trend of increasing deviation at large field sizes and increasing depths. Conclusion: Study shows that the percentage deviation between measured and golden beam data is within the acceptable tolerance and therefore can be used for the commissioning process; however, verification of small subset of acquired data with the golden beam data should be mandatory before clinical use.Keywords: percent depth dose, flatness, symmetry, golden beam data
Procedia PDF Downloads 4893754 Achieving Sustainable Lifestyles Based on the Spiritual Teaching and Values of Buddhism from Lumbini, Nepal
Authors: Purna Prasad Acharya, Madhav Karki, Sunta B. Tamang, Uttam Basnet, Chhatra Katwal
Abstract:
The paper outlines the idea behind achieving sustainable lifestyles based on the spiritual values and teachings of Lord Buddha. This objective is to be achieved by spreading the tenets and teachings of Buddhism throughout the Asia Pacific region and the world from the sacred birth place of Buddha - Lumbini, Nepal. There is an urgent need to advance the relevance of Buddhist philosophy in tackling the triple planetary crisis of climate change, nature’s decline, and pollution. Today, the world is facing an existential crisis due to the above crises, exasperated by hunger, poverty and armed conflict. To address multi-dimensional impacts, the global communities have to adopt simple life styles that respect nature and universal human values. These were the basic teachings of Gautam Buddha. Lumbini, Nepal has the moral obligation to widely disseminate Buddha’s teaching to the world and receive constant feedback and learning to develop human and ecosystem resilience by molding the lifestyles of current and future generations through adaptive learning and simplicity across the geography and nationality based on spirituality and environmental stewardship. By promoting Buddhism, Nepal has developed a pro-nature tourism industry that focuses on both its spiritual and bio-cultural heritage. Nepal is a country rich in ancient wisdom, where sages have sought knowledge, practiced meditation, and followed spiritual paths for thousands of years. It can spread the teachings of Buddha in a way people can search for and adopt ways to live, creating harmony with nature. Using tools of natural sciences and social sciences, the team will package knowledge and share the idea of community well-being within the framework of environmental sustainability, social harmony and universal respect for nature and people in a more holistic manner. This notion takes into account key elements of sustainable development such as food-energy-water-biodiversity interconnections, environmental conservation, ecological integrity, ecosystem health, community resiliency, adaptation capacity, and indigenous culture, knowledge and values. This inclusive concept has garnered a strong network of supporters locally, regionally, and internationally. The key objectives behind this concept are: a) to leverage expertise and passion of a network of global collaborators to advance research, education, and policy outreach in the areas of human sustainability based on lifestyle change using the power of spirituality and Buddha’s teaching, resilient lifestyles, and adaptive living; b) help develop creative short courses for multi-disciplinary teaching in educational institutions worldwide in collaboration with Lumbini Buddha University and other relevant partners in Nepal; c) help build local and regional intellectual and cultural teaching and learning capacity by improving professional collaborations to promote nature based and Buddhist value-based lifestyles by connecting Lumbini to Nepal’s rich nature; d) promote research avenues to provide policy relevant knowledge that is creative, innovative, as well as practical and locally viable; and e) connect local research and outreach work with academic and cultural partners in South Korea so as to open up Lumbini based Buddhist heritage and Nepal’s Karnali River basin’s unique natural landscape to Korean scholars and students to promote sustainable lifestyles leading to human living in harmony with nature.Keywords: triple planetary crisis, spirituality, sustainable lifestyles, living in harmony with nature, resilience
Procedia PDF Downloads 363753 Changes in Air Quality inside Vehicles and in Working Conditions of Professional Drivers during COVID-19 Pandemic in Paris Area
Authors: Melissa Hachem, Lynda Bensefa-Colas, Isabelle Momas
Abstract:
We evaluated the impact of the first lockdown restriction measures (March-May 2020) in the Paris area on (1) the variation of in-vehicle ultrafine particle (UFP) and black carbon (BC) concentrations between pre-and post-lockdown period and (2) the professional drivers working conditions and practices. The study was conducted on 33 Parisian taxi drivers. UFP and BC were measured inside their vehicles with DiSCmini® and microAeth®, respectively, on two typical working days before and after the first lockdown. The job-related characteristics were self-reported. Our results showed that after the first lockdown, the number of clients significantly decreased as well as the taxi driver's journey duration. Taxi drivers significantly opened their windows more and reduced the use of air recirculation. UFP decreased significantly by 32% and BC by 31% after the first lockdown, with a weaker positive correlation compared to before the lockdown. The reduction of in-vehicle UFP was explained mainly by the reduction of traffic flow and ventilation settings, though the latter probably varied according to the traffic condition. No predictor explained the variation of in-vehicle BC concentration between pre-and post-lockdown periods, suggesting different sources of UFP and BC. The road traffic was not anymore the dominant source of BC post-lockdown. We emphasize the role of traffic emissions on in-vehicle air pollution and that preventive measures such as ventilation settings will help to better manage air quality inside a vehicle in order to minimize exposure of professional drivers, as well as passengers, to air pollutants.Keywords: black carbon, COVID-19, France, lockdown, taxis, ultrafine particles
Procedia PDF Downloads 1923752 An Artificial Intelligence Framework to Forecast Air Quality
Authors: Richard Ren
Abstract:
Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms
Procedia PDF Downloads 1273751 Keyframe Extraction Using Face Quality Assessment and Convolution Neural Network
Authors: Rahma Abed, Sahbi Bahroun, Ezzeddine Zagrouba
Abstract:
Due to the huge amount of data in videos, extracting the relevant frames became a necessity and an essential step prior to performing face recognition. In this context, we propose a method for extracting keyframes from videos based on face quality and deep learning for a face recognition task. This method has two steps. We start by generating face quality scores for each face image based on the use of three face feature extractors, including Gabor, LBP, and HOG. The second step consists in training a Deep Convolutional Neural Network in a supervised manner in order to select the frames that have the best face quality. The obtained results show the effectiveness of the proposed method compared to the methods of the state of the art.Keywords: keyframe extraction, face quality assessment, face in video recognition, convolution neural network
Procedia PDF Downloads 2343750 The Boundary Element Method in Excel for Teaching Vector Calculus and Simulation
Authors: Stephen Kirkup
Abstract:
This paper discusses the implementation of the boundary element method (BEM) on an Excel spreadsheet and how it can be used in teaching vector calculus and simulation. There are two separate spreadheets, within which Laplace equation is solved by the BEM in two dimensions (LIBEM2) and axisymmetric three dimensions (LBEMA). The main algorithms are implemented in the associated programming language within Excel, Visual Basic for Applications (VBA). The BEM only requires a boundary mesh and hence it is a relatively accessible method. The BEM in the open spreadsheet environment is demonstrated as being useful as an aid to teaching and learning. The application of the BEM implemented on a spreadsheet for educational purposes in introductory vector calculus and simulation is explored. The development of assignment work is discussed, and sample results from student work are given. The spreadsheets were found to be useful tools in developing the students’ understanding of vector calculus and in simulating heat conduction.Keywords: boundary element method, Laplace’s equation, vector calculus, simulation, education
Procedia PDF Downloads 1633749 A Review On Traditional Agroforestry Systems In Europe Revisited: Biodiversity, Ecosystem Services, And Future Perspectives
Authors: Thuy Hang Le
Abstract:
Traditional agroforestry systems are land-use practices still widespread in tropical and subtropical countries, while in Europe have significantly decreased due to land-use intensification, land abandonment, and urbanization. Nevertheless, scientific evidence reveals that traditional agroforestry systems significantly support biodiversity and ecosystem services and may positively contribute to socioeconomic rural regional development. We worked out a review that follows the PRISMA approach and compiled comprehensive information on traditional agroforestry systems in Europe. Based on the differentiation of different land-use systems, also considering the agricultural as well as forestry components, we compiled information regarding current distribution, management (agrodiversity), biodiversity and agrobiodiversity, ecosystem and landscape services, threats, and restoration initiatives. From a total of 3,304 studies that dealt with agroforestry systems in Europe, both “modern” (e.g., buffer strip) and “traditional” (e.g., meadow orchards), we filtered out 158 studies from 35 European countries which represent the basis for in-depth investigation. We found, for example, that the traditional pastoral agroforestry system in the Mediterranean region, the so-called Dehesa, can harbor up to 300 plant species as well as 238 bird species, of which 134 are breeding birds. With regard to carbon storage, the traditional orchard agroforestry system in Germany stocks ranged between 6.5 and 9.8 Mg C ha−1, showing significantly higher values compared to an intensively used grassland with around 3.4 to 6.7 Mg C ha−1. With the remarkably high benefit for biodiversity and ecosystem services provided, the important role and multifunctionality of traditional agroforestry systems in Europe should be acknowledged and promoted.Keywords: biodiversity, ecosystem services, landscape services, traditional agroforestry systems
Procedia PDF Downloads 743748 The Challenge of Teaching French as a Foreign Language in a Multilingual Community
Authors: Carol C. Opara, Olukemi E. Adetuyi-Olu-Francis
Abstract:
The teaching of French language, like every other language, has its numerous challenges. A multilingual community, however, is a linguistic environment housing diverse languages, each with its peculiarity, both pros, and cones. A foreign language will have to strive hard for survival in an environment where various indigenous languages, as well as an established official language, exist. This study examined the challenges and prospects of the teaching of French as a foreign language in a multilingual community. A 22-item questionnaire was used to elicit information from 40 Nigerian Secondary school teachers of French. One of the findings of this study showed that the teachers of the French language are not motivated. Also, the linguistic environment is not favourable for the teaching and learning of French language in Nigeria. One of the recommendations was that training and re-training of teachers of French should be of utmost importance to the Nigerian Federal Ministry of Education.Keywords: challenges, french as foreign language, multilingual community, teaching
Procedia PDF Downloads 2203747 ChatGPT Performs at the Level of a Third-Year Orthopaedic Surgery Resident on the Orthopaedic In-training Examination
Authors: Diane Ghanem, Oscar Covarrubias, Michael Raad, Dawn LaPorte, Babar Shafiq
Abstract:
Introduction: Standardized exams have long been considered a cornerstone in measuring cognitive competency and academic achievement. Their fixed nature and predetermined scoring methods offer a consistent yardstick for gauging intellectual acumen across diverse demographics. Consequently, the performance of artificial intelligence (AI) in this context presents a rich, yet unexplored terrain for quantifying AI's understanding of complex cognitive tasks and simulating human-like problem-solving skills. Publicly available AI language models such as ChatGPT have demonstrated utility in text generation and even problem-solving when provided with clear instructions. Amidst this transformative shift, the aim of this study is to assess ChatGPT’s performance on the orthopaedic surgery in-training examination (OITE). Methods: All 213 OITE 2021 web-based questions were retrieved from the AAOS-ResStudy website. Two independent reviewers copied and pasted the questions and response options into ChatGPT Plus (version 4.0) and recorded the generated answers. All media-containing questions were flagged and carefully examined. Twelve OITE media-containing questions that relied purely on images (clinical pictures, radiographs, MRIs, CT scans) and could not be rationalized from the clinical presentation were excluded. Cohen’s Kappa coefficient was used to examine the agreement of ChatGPT-generated responses between reviewers. Descriptive statistics were used to summarize the performance (% correct) of ChatGPT Plus. The 2021 norm table was used to compare ChatGPT Plus’ performance on the OITE to national orthopaedic surgery residents in that same year. Results: A total of 201 were evaluated by ChatGPT Plus. Excellent agreement was observed between raters for the 201 ChatGPT-generated responses, with a Cohen’s Kappa coefficient of 0.947. 45.8% (92/201) were media-containing questions. ChatGPT had an average overall score of 61.2% (123/201). Its score was 64.2% (70/109) on non-media questions. When compared to the performance of all national orthopaedic surgery residents in 2021, ChatGPT Plus performed at the level of an average PGY3. Discussion: ChatGPT Plus is able to pass the OITE with a satisfactory overall score of 61.2%, ranking at the level of third-year orthopaedic surgery residents. More importantly, it provided logical reasoning and justifications that may help residents grasp evidence-based information and improve their understanding of OITE cases and general orthopaedic principles. With further improvements, AI language models, such as ChatGPT, may become valuable interactive learning tools in resident education, although further studies are still needed to examine their efficacy and impact on long-term learning and OITE/ABOS performance.Keywords: artificial intelligence, ChatGPT, orthopaedic in-training examination, OITE, orthopedic surgery, standardized testing
Procedia PDF Downloads 903746 The Role of the University of Zululand in Documenting and Disseminating Indigenous Knowledge, in KwaZulu-Natal, South Africa
Authors: Smiso Buthelezi, Petros Dlamini, Dennis Ocholla
Abstract:
The study assesses the University of Zululand's practices for documenting, sharing, and accessing indigenous knowledge. Two research objectives guided it: to determine how indigenous knowledge (IK) is developed at the University of Zululand and how indigenous knowledge (IK) is documented at the University of Zululand. The study adopted both interpretive and positivist research paradigms. Ultimately, qualitative and quantitative research methods were used. The qualitative research approach collected data from academic and non-academic staff members. Interviews were conducted with 18 academic staff members and 5 with support staff members. The quantitative research approach was used to collect data from indigenous knowledge (IK) theses and dissertations from the University of Zululand Institutional Repository between 2009-2019. The study results revealed that many departments across the University of Zululand were involved in creating indigenous knowledge (IK)-related content. The department of African Languages was noted to be more involved in creating IK-related content. Moreover, the documentation of the content related to indigenous knowledge (IK) at the University of Zululand is done frequently but is not readily known. It was found that the creation and documentation of indigenous knowledge by different departments faced several challenges. The common challenges are a lack of interest among indigenous knowledge (IK) owners in sharing their knowledge, the local language as a barrier, and a shortage of proper tools for recording and capturing indigenous knowledge (IK). One of the study recommendations is the need for an indigenous knowledge systems (IKS) policy to be in place at the University of Zululand.Keywords: knowledge creation, SECI model, information and communication technology., indigenous knowledge
Procedia PDF Downloads 1133745 Impact of Climate on Productivity of Major Cereal Crops in Sokoto State, Nigeria
Authors: M. B. Sokoto, L. Tanko, Y. M. Abdullahi
Abstract:
The study aimed at examining the impact of climatic factors (rainfall, minimum and maximum temperature) on the productivity of major cereals in Sokoto state, Nigeria. Secondary data from 1997-2008 were used in respect of annual yield of Major cereals crops (maize, millet, rice, and sorghum (t ha-1). Data in respect of climate was collected from Sokoto Energy Research Centre (SERC) for the period under review. Data collected was analyzed using descriptive statistics, correlation and regression analysis. The result of the research reveals that there is variation in the trend of the climatic factors and also variation in cereals output. The effect of average temperature on yields has a negative effect on crop yields. Similarly, rainfall is not significant in explaining the effect of climate on cereal crops production. The study has revealed to some extend the effect of climatic variables, such as rainfall, relative humidity, maximum and minimum temperature on major cereals production in Sokoto State. This will assist in planning ahead in cereals production in the area. Other factors such as soil fertility, correct timing of planting and good cultural practices (such as spacing of strands), protection of crops from weeds, pests and diseases and planting of high yielding varieties should also be taken into consideration for increase yield of cereals.Keywords: cereals, climate, impact, major, productivity
Procedia PDF Downloads 3903744 Investigation of Perceived Parental Attitude (Perceived Parental Autonomy Support and Psychological Control) on Life Orientation: Considering the Moderating Effect of Perceived Body Dysmorphic Symptoms Among Adolescents and Young Adult Females
Authors: Mehwish Ishfaq, Aiman Kamran
Abstract:
This study aimed at impact of perceived parental attitude on life orientation with moderating role of body dysmorphic symptoms. Perceived parental attitude comprised of parental autonomy support & psychological control to their child for development of individuality, self-regulation, and bodily construction that includes cognitive, social, and affective development. This perceived parental attitude have significant relationship with life orientation on individual’s self. Data was collected from schools and universities residing in Islamabad and Rawalpindi and was also obtained through online survey. Instrument used to measure perceived parental attitude was Perceived Parental Autonomy Support Scale (PPASS). Through The Life Orientation Test (LOT-R) which was developed by Michael F. Scheier in 1994, level of optimism and pessimism was assessed. For measuring body dysmorphic disorder, the Body Dysmorphic Questionnaire (BDDQ) which was developed by Dr. Katherine A. Phillips in 2009, a screening scale was used. The present study includes a total sample size of (N= 100) females and was conducted through cross-sectional survey. The findings of current study suggested that perceived parental attitude showed negative relationship with life orientation and this relationship was moderated by body dysmorphic disorder symptoms in females. There was significant age difference in body dysmorphia, perceived parental attitude, and life orientation. Body dysmorphic symptoms were more common in females with age 20-29 (M= 1.33, S.D=1.91) as compared to 12-19 (M=1.16, S.D=1.95). Participants also reported that affected relationship with either parent caused problems in daily life, including school, public interactions and activities leading to low dispositional optimism in life orientation. This study gives us insight about maintaining factors for body dysmorphic disorder symptoms which is beneficial for therapeutic approaches.Keywords: body dysmorphic disorder, perceived parental attitude, parental autonomy support, psychological control, dispositional optimism
Procedia PDF Downloads 15