Search results for: dissipative systems
667 Investigating the Algorithm to Maintain a Constant Speed in the Wankel Engine
Authors: Adam Majczak, Michał Bialy, Zbigniew Czyż, Zdzislaw Kaminski
Abstract:
Increasingly stringent emission standards for passenger cars require us to find alternative drives. The share of electric vehicles in the sale of new cars increases every year. However, their performance and, above all, range cannot be today successfully compared to those of cars with a traditional internal combustion engine. Battery recharging lasts hours, which can be hardly accepted due to the time needed to refill a fuel tank. Therefore, the ways to reduce the adverse features of cars equipped with electric motors only are searched for. One of the methods is a combination of an electric engine as a main source of power and a small internal combustion engine as an electricity generator. This type of drive enables an electric vehicle to achieve a radically increased range and low emissions of toxic substances. For several years, the leading automotive manufacturers like the Mazda and the Audi together with the best companies in the automotive industry, e.g., AVL have developed some electric drive systems capable of recharging themselves while driving, known as a range extender. An electricity generator is powered by a Wankel engine that has seemed to pass into history. This low weight and small engine with a rotating piston and a very low vibration level turned out to be an excellent source in such applications. Its operation as an energy source for a generator almost entirely eliminates its disadvantages like high fuel consumption, high emission of toxic substances, or short lifetime typical of its traditional application. The operation of the engine at a constant rotational speed enables a significant increase in its lifetime, and its small external dimensions enable us to make compact modules to drive even small urban cars like the Audi A1 or the Mazda 2. The algorithm to maintain a constant speed was investigated on the engine dynamometer with an eddy current brake and the necessary measuring apparatus. The research object was the Aixro XR50 rotary engine with the electronic power supply developed at the Lublin University of Technology. The load torque of the engine was altered during the research by means of the eddy current brake capable of giving any number of load cycles. The parameters recorded included speed and torque as well as a position of a throttle in an inlet system. Increasing and decreasing load did not significantly change engine speed, which means that control algorithm parameters are correctly selected. This work has been financed by the Polish Ministry of Science and Higher Education.Keywords: electric vehicle, power generator, range extender, Wankel engine
Procedia PDF Downloads 156666 Fuel Cells Not Only for Cars: Technological Development in Railways
Authors: Marita Pigłowska, Beata Kurc, Paweł Daszkiewicz
Abstract:
Railway vehicles are divided into two groups: traction (powered) vehicles and wagons. The traction vehicles include locomotives (line and shunting), railcars (sometimes referred to as railbuses), and multiple units (electric and diesel), consisting of several or a dozen carriages. In vehicles with diesel traction, fuel energy (petrol, diesel, or compressed gas) is converted into mechanical energy directly in the internal combustion engine or via electricity. In the latter case, the combustion engine generator produces electricity that is then used to drive the vehicle (diesel-electric drive or electric transmission). In Poland, such a solution dominates both in heavy linear and shunting locomotives. The classic diesel drive is available for the lightest shunting locomotives, railcars, and passenger diesel multiple units. Vehicles with electric traction do not have their own source of energy -they use pantographs to obtain electricity from the traction network. To determine the competitiveness of the hydrogen propulsion system, it is essential to understand how it works. The basic elements of the construction of a railway vehicle drive system that uses hydrogen as a source of traction force are fuel cells, batteries, fuel tanks, traction motors as well as main and auxiliary converters. The compressed hydrogen is stored in tanks usually located on the roof of the vehicle. This resource is supplemented with the use of specialized infrastructure while the vehicle is stationary. Hydrogen is supplied to the fuel cell, where it oxidizes. The effect of this chemical reaction is electricity and water (in two forms -liquid and water vapor). Electricity is stored in batteries (so far, lithium-ion batteries are used). Electricity stored in this way is used to drive traction motors and supply onboard equipment. The current generated by the fuel cell passes through the main converter, whose task is to adjust it to the values required by the consumers, i.e., batteries and the traction motor. The work will attempt to construct a fuel cell with unique electrodes. This research is a trend that connects industry with science. The first goal will be to obtain hydrogen on a large scale in tube furnaces, to thoroughly analyze the obtained structures (IR), and to apply the method in fuel cells. The second goal is to create low-energy energy storage and distribution station for hydrogen and electric vehicles. The scope of the research includes obtaining a carbon variety and obtaining oxide systems on a large scale using a tubular furnace and then supplying vehicles. Acknowledgments: This work is supported by the Polish Ministry of Science and Education, project "The best of the best! 4.0", number 0911/MNSW/4968 – M.P. and grant 0911/SBAD/2102—B.K.Keywords: railway, hydrogen, fuel cells, hybrid vehicles
Procedia PDF Downloads 187665 Finite Element Modeling and Analysis of Reinforced Concrete Coupled Shear Walls Strengthened with Externally Bonded Carbon Fiber Reinforced Polymer Composites
Authors: Sara Honarparast, Omar Chaallal
Abstract:
Reinforced concrete (RC) coupled shear walls (CSWs) are very effective structural systems in resisting lateral loads due to winds and earthquakes and are particularly used in medium- to high-rise RC buildings. However, most of existing old RC structures were designed for gravity loads or lateral loads well below the loads specified in the current modern seismic international codes. These structures may behave in non-ductile manner due to poorly designed joints, insufficient shear reinforcement and inadequate anchorage length of the reinforcing bars. This has been the main impetus to investigate an appropriate strengthening method to address or attenuate the deficiencies of these structures. The objective of this paper is to twofold: (i) evaluate the seismic performance of existing reinforced concrete coupled shear walls under reversed cyclic loading; and (ii) investigate the seismic performance of RC CSWs strengthened with externally bonded (EB) carbon fiber reinforced polymer (CFRP) sheets. To this end, two CSWs were considered as follows: (a) the first one is representative of old CSWs and therefore was designed according to the 1941 National Building Code of Canada (NBCC, 1941) with conventionally reinforced coupling beams; and (b) the second one, representative of new CSWs, was designed according to modern NBCC 2015 and CSA/A23.3 2014 requirements with diagonally reinforced coupling beam. Both CSWs were simulated using ANSYS software. Nonlinear behavior of concrete is modeled using multilinear isotropic hardening through a multilinear stress strain curve. The elastic-perfectly plastic stress-strain curve is used to simulate the steel material. Bond stress–slip is modeled between concrete and steel reinforcement in conventional coupling beam rather than considering perfect bond to better represent the slip of the steel bars observed in the coupling beams of these CSWs. The old-designed CSW was strengthened using CFRP sheets bonded to the concrete substrate and the interface was modeled using an adhesive layer. The behavior of CFRP material is considered linear elastic up to failure. After simulating the loading and boundary conditions, the specimens are analyzed under reversed cyclic loading. The comparison of results obtained for the two unstrengthened CSWs and the one retrofitted with EB CFRP sheets reveals that the strengthening method improves the seismic performance in terms of strength, ductility, and energy dissipation capacity.Keywords: carbon fiber reinforced polymer, coupled shear wall, coupling beam, finite element analysis, modern code, old code, strengthening
Procedia PDF Downloads 197664 Factors Affecting the Success of Premarital Screening Services in Middle Eastern Countries
Authors: Wafa Al Jabri
Abstract:
Background: In Middle Eastern Countries (MECs), there is a high prevalence of genetic blood disorders (GBDs), particularly sickle cell disease and thalassemia. The GBDs are considered a major public health concern that place a huge burden to individuals, families, communities, and health care systems. The high rates of consanguineous marriages, along with the unacceptable termination of at-risk pregnancy in MECs, reduce the possible solutions to control the high prevalence of GBDs. Since the early 1970s, most of MECs have started introducing premarital screening services (PSS) as a preventive measure to identify the asymptomatic carriers of GBDs and to provide genetic counseling to help couples plan for healthy families; yet, the success rate of PSS is very low. Purpose: This paper aims to highlight the factors that affect the success of PSS in MECs. Methods: An integrative review of articles located in CINAHL, PubMed, SCOPUS, and MedLine was carried out using the following terms: “premarital screening,” “success,” “effectiveness,” and “ genetic blood disorders”. Second, a hand search of the reference lists and Google searches were conducted to find studies that did not exist in the primary database searches. Only studies which are conducted in MECs and published after 2010 were included. Studies that were not published in English were excluded. Results: Eighteen articles were included in the review. The results showed that PSS in most of the MECs was successful in achieving its objective of identifying high-risk marriages; however, the service failed to meet its ultimate goal of reducing the prevalence of GBDs. Various factors seem to hinder the success of PSS, including poor public awareness, late timing of the screening, culture and social stigma, lack of prenatal diagnosis services and therapeutic abortion, emotional factors, religious beliefs, and lack of genetic counseling services. However, poor public awareness, late timing of the screening, religious misbeliefs, and the lack of adequate counseling services were the most common barriers identified. Conclusion and Implications: The review help in providing a framework for an effective preventive measure to reduce the prevalence of GBDs in MECS. This framework focuses primarily in overcoming the identified barriers by providing effective health education programs in collaboration with religious leaders, offering the screening test to young adults at an earlier stage, and tailoring the genetic counseling to consider people’s values, beliefs, and preferences.Keywords: premarital screening, middle east, genetic blood disorders, factors
Procedia PDF Downloads 81663 The Effect of the Construction Contract System by Simulating the Comparative Costs of Capital to the Financial Feasibility of the Construction of Toll Bali Mandara
Authors: Mas Pertiwi I. G. AG Istri, Sri Kristinayanti Wayan, Oka Aryawan I. Gede Made
Abstract:
Ability of government to meet the needs of infrastructure investment constrained by the size of the budget commitments for other sectors. Another barrier is the complexity of the process of land acquisition. Public Private Partnership can help bridge the investment gap by including the amount of funding from the private sector, shifted the responsibility of financing, construction of the asset, and the operation and post-project design and care to them. In principle, a construction project implementation always requires the investor as a party to provide resources in the form of funding which it must be contained in a successor agreement in the form of a contract. In general, construction contracts consist of contracts which passed in Indonesia and contract International. One source of funding used in the implementation of construction projects comes from funding that comes from the collaboration between the government and the private sector, for example with the system: BLT (Build Lease Transfer), BOT (Build Operate Transfer), BTO (Build Transfer Operate) and BOO (Build Operate Own). And form of payment under a construction contract can be distinguished several ways: monthly payment, payments based on progress and payment after completed projects (Turn Key). One of the tools used to analyze the feasibility of the investment is to use financial models. The financial model describes the relationship between different variables and assumptions used. From a financial model will be known how the cash flow structure of the project, which includes revenues, expenses, liabilities to creditors and the payment of taxes to the government. Net cash flow generated from the project will be used as a basis for analyzing the feasibility of investment source of project financing Public Private Partnership could come from equity or debt. The proportion of funding according to its source is a comparison of a number of investment funds originating from each source of financing for a total investment cost during the construction period by selected the contract system and several alternative financing percentage ratio determined according to sources will generate cash flow structure that is different. Of the various possibilities for the structure of the cash flow generated will be analyzed by software is to test T Paired to compared the contract system used by various alternatives comparison of financing to determine the effect of the contract system and the comparison of such financing for the feasibility of investment toll road construction project for the economic life of 20 (twenty) years. In this use case studies of toll road contruction project Bali Mandara. And in this analysis only covered two systems contracts, namely Build Operate Transfer and Turn Key. Based on the results obtained by analysis of the variable investment feasibility of the NPV, BCR and IRR between the contract system Build Operate Transfer and contract system Turn Key on the interest rate of 9%, 12% and 15%.Keywords: contract system, financing, internal rate of return, net present value
Procedia PDF Downloads 227662 Acoustic Energy Harvesting Using Polyvinylidene Fluoride (PVDF) and PVDF-ZnO Piezoelectric Polymer
Authors: S. M. Giripunje, Mohit Kumar
Abstract:
Acoustic energy that exists in our everyday life and environment have been overlooked as a green energy that can be extracted, generated, and consumed without any significant negative impact to the environment. The harvested energy can be used to enable new technology like wireless sensor networks. Technological developments in the realization of truly autonomous MEMS devices and energy storage systems have made acoustic energy harvesting (AEH) an increasingly viable technology. AEH is the process of converting high and continuous acoustic waves from the environment into electrical energy by using an acoustic transducer or resonator. AEH is not popular as other types of energy harvesting methods since sound waves have lower energy density and such energy can only be harvested in very noisy environment. However, the energy requirements for certain applications are also correspondingly low and also there is a necessity to observe the noise to reduce noise pollution. So the ability to reclaim acoustic energy and store it in a usable electrical form enables a novel means of supplying power to relatively low power devices. A quarter-wavelength straight-tube acoustic resonator as an acoustic energy harvester is introduced with polyvinylidene fluoride (PVDF) and PVDF doped with ZnO nanoparticles, piezoelectric cantilever beams placed inside the resonator. When the resonator is excited by an incident acoustic wave at its first acoustic eigen frequency, an amplified acoustic resonant standing wave is developed inside the resonator. The acoustic pressure gradient of the amplified standing wave then drives the vibration motion of the PVDF piezoelectric beams, generating electricity due to the direct piezoelectric effect. In order to maximize the amount of the harvested energy, each PVDF and PVDF-ZnO piezoelectric beam has been designed to have the same structural eigen frequency as the acoustic eigen frequency of the resonator. With a single PVDF beam placed inside the resonator, the harvested voltage and power become the maximum near the resonator tube open inlet where the largest acoustic pressure gradient vibrates the PVDF beam. As the beam is moved to the resonator tube closed end, the voltage and power gradually decrease due to the decreased acoustic pressure gradient. Multiple piezoelectric beams PVDF and PVDF-ZnO have been placed inside the resonator with two different configurations: the aligned and zigzag configurations. With the zigzag configuration which has the more open path for acoustic air particle motions, the significant increases in the harvested voltage and power have been observed. Due to the interruption of acoustic air particle motion caused by the beams, it is found that placing PVDF beams near the closed tube end is not beneficial. The total output voltage of the piezoelectric beams increases linearly as the incident sound pressure increases. This study therefore reveals that the proposed technique used to harvest sound wave energy has great potential of converting free energy into useful energy.Keywords: acoustic energy, acoustic resonator, energy harvester, eigenfrequency, polyvinylidene fluoride (PVDF)
Procedia PDF Downloads 382661 Life at the Fence: Lived Experiences of Navigating Cultural and Social Complexities among South Sudanese Refugees in Australia
Authors: Sabitra Kaphle, Rebecca Fanany, Jenny Kelly
Abstract:
Australia welcomes significant numbers of humanitarian arrivals every year with the commitment to provide equal opportunities and the resources required for integration into the new society. Over the last two decades, more than 24,000 South Sudanese people have come to call Australia home. Most of these refugees experienced several challenges whilesettlinginto the new social structures and service systems in Australia. The aim of the research is to explore the factors influencing social and cultural integration of South Sudanese refugees who have settled in Australia. Methodology: This studyused a phenomenological approach based on in-depth interviews designed to elicit the lived experiences of South Sudanese refugees settled in Australia. It applied the principles of narrative ethnography, allowing participants an opportunity to speak about themselves and their experiences of social and cultural integration-using their own words. Twenty-six participants were recruited to the study. Participants were long-term residents (over 10 years of settlement experience)who self-identified as refugees from South Sudan. Participants were given an opportunity to speak in the language of their choice, and interviews were conducted by a bilingual interviewer in their preferred language, time, and location. Interviews were recorded and transcribed verbatim and translated to Englishfor thematic analysis. Findings: Participants’ experiences portray the complexities of integrating into a new society due tothe daily challenges that South Sudaneserefugees face. Themes emerged from narrativesindicated that South Sudanese refugees express a high level of association with a Sudanese identity while demonstrating a significant level of integration into the Australian society. Despite this identity dilemma, these refugees show a high level of consensus about the experiencesof living in Australia that is closely associated with a group identity. In the process of maintaining identity andsocial affiliation, there are significant inter-generational cultural conflicts that participants experience in adapting to Australian society. It has been elucidated that identityconflict often emerges centeringon what constitutes authentic cultural practice as well as who is entitled to claim to be a member of the South Sudanese culture. Conclusions: Results of this study suggest that the cultural identity and social affiliations of South Sudanese refugees settling into Australian society are complex and multifaceted. While there are positive elements of theirintegration into the new society, inter-generational conflictsand identity confusion require further investigation to understand the context that will assist refugees to integrate more successfully into their new society. Given the length of stay of these refugees in Australia, government and settlement agencies may benefit from developing appropriate resources and process that are adaptive to the social and cultural context in which newly arrived refugees will live.Keywords: cultural integration, inter-generational conflict, lived experiences, refugees, South sudanese
Procedia PDF Downloads 114660 From Talk to Action-Tackling Africa’s Pollution and Climate Change Problem
Authors: Ngabirano Levis
Abstract:
One of Africa’s major environmental challenges remains air pollution. In 2017, UNICEF estimated over 400,000 children in Africa died as a result of indoor pollution, while 350 million children remain exposed to the risks of indoor pollution due to the use of biomass and burning of wood for cooking. Over time, indeed, the major causes of mortality across Africa are shifting from the unsafe water, poor sanitation, and malnutrition to the ambient and household indoor pollution, and greenhouse gas (GHG) emissions remain a key factor in this. In addition, studies by the OECD estimated that the economic cost of premature deaths due to Ambient Particulate Matter Pollution (APMP) and Household Air Pollution across Africa in 2013 was about 215 Billion US Dollars and US 232 Billion US Dollars, respectively. This is not only a huge cost for a continent where over 41% of the Sub-Saharan population lives on less than 1.9 US Dollars a day but also makes the people extremely vulnerable to the negative climate change and environmental degradation effects. Such impacts have led to extended droughts, flooding, health complications, and reduced crop yields hence food insecurity. Climate change, therefore, poses a threat to global targets like poverty reduction, health, and famine. Despite efforts towards mitigation, air contributors like carbon dioxide emissions are on a generally upward trajectory across Africa. In Egypt, for instance, emission levels had increased by over 141% in 2010 from the 1990 baseline. Efforts like the climate change adaptation and mitigation financing have also hit obstacles on the continent. The International Community and developed nations stress that Africa still faces challenges of limited human, institutional and financial systems capable of attracting climate funding from these developed economies. By using the qualitative multi-case study method supplemented by interviews of key actors and comprehensive textual analysis of relevant literature, this paper dissects the key emissions and air pollutant sources, their impact on the well-being of the African people, and puts forward suggestions as well as a remedial mechanism to these challenges. The findings reveal that whereas climate change mitigation plans appear comprehensive and good on paper for many African countries like Uganda; the lingering political interference, limited research guided planning, lack of population engagement, irrational resource allocation, and limited system and personnel capacity has largely impeded the realization of the set targets. Recommendations have been put forward to address the above climate change impacts that threaten the food security, health, and livelihoods of the people on the continent.Keywords: Africa, air pollution, climate change, mitigation, emissions, effective planning, institutional strengthening
Procedia PDF Downloads 83659 Jungle Justice on Emotional Health Challenges of Residents in Lagos Metropolis
Authors: Aaron Akinloye
Abstract:
this research focuses on the impact of jungle justice on the emotional health challenges experienced by residents in the Lagos metropolitan city in Nigeria. Jungle justice refers to the practice of individuals taking the law into their own hands and administering punishment without proper legal procedures. The aim of this study is to investigate the influence of jungle justice on the emotional challenges faced by residents in Lagos. The specific objectives of the study are to examine the effects of jungle justice on trauma, pressure, fear, and depression among residents. The study adopts a descriptive survey research design and uses a questionnaire as the research instrument. The population of the study consisted of residents in the three senatorial districts that make up Lagos State. A simple random sampling technique was used to select two Local Government Areas (Yaba and Shomolu) from each of the three senatorial districts of Lagos State. Also, a simple random sampling technique was used to select fifty (50) residents from each of the chosen Local Government Areas to make three hundred (300) residents that formed the sample of the study. Accidental sampling technique is employed to select a sample of 300 residents. Data on the variables of interest is collected using a self-developed questionnaire. The research instrument undergoes validation through face, content, and construct validation processes. The reliability coefficient of the instrument is found to be 0.84. The study reveals that jungle justice significantly influences trauma, pressure, fear, and depression among residents in Lagos metropolitan city. The statistical analysis shows significant relationships between jungle justice and these emotional health challenges (df (298) t= 2.33, p< 0.05; df (298) t= 2.16, p< 0.05; df (298) t= 2.20, p< 0.05; df (298) t= 2.14, p< 0.05). This study contributes to the literature by highlighting the negative effects of jungle justice on the emotional well-being of residents. It emphasizes the importance of addressing this issue and implementing measures to prevent such vigilante actions. Data is collected through the administration of the self-developed questionnaire to the selected residents. The collected data is then analyzed using inferential statistics, specifically mean analysis, to examine the relationships between jungle justice and the emotional health challenges experienced by the residents. The main question addressed in this study is how jungle justice affects the emotional health challenges faced by residents in Lagos metropolitan city. Conclusion: The study concludes that jungle justice has a significant influence on trauma, pressure, fear, and depression among residents. To address this issue, recommendations are made, including the implementation of comprehensive awareness campaigns, improvement of law enforcement agencies, development of support systems for victims, and revision of the legal framework to effectively address jungle justice. Overall, this research contributes to the understanding of the consequences of jungle justice and provides recommendations for intervention to protect the emotional well-being of residents in Lagos metropolitan city.Keywords: jungle justice, emotional health, depression, anger
Procedia PDF Downloads 74658 Reactors with Effective Mixing as a Solutions for Micro-Biogas Plant
Authors: M. Zielinski, M. Debowski, P. Rusanowska, A. Glowacka-Gil, M. Zielinska, A. Cydzik-Kwiatkowska, J. Kazimierowicz
Abstract:
Technologies for the micro-biogas plant with heating and mixing systems are presented as a part of the Research Coordination for a Low-Cost Biomethane Production at Small and Medium Scale Applications (Record Biomap). The main objective of the Record Biomap project is to build a network of operators and scientific institutions interested in cooperation and the development of promising technologies in the sector of small and medium-sized biogas plants. The activities carried out in the project will bridge the gap between research and market and reduce the time of implementation of new, efficient technological and technical solutions. Reactor with simultaneously mixing and heating system is a concrete tank with a rectangular cross-section. In the reactor, heating is integrated with the mixing of substrate and anaerobic sludge. This reactor is solution dedicated for substrates with high solids content, which cannot be introduced to the reactor with pumps, even with positive displacement pumps. Substrates are poured to the reactor and then with a screw pump, they are mixed with anaerobic sludge. The pumped sludge, flowing through the screw pump, is simultaneously heated by a heat exchanger. The level of the fermentation sludge inside the reactor chamber is above the bottom edge of the cover. Cover of the reactor is equipped with the screw pump driver. Inside the reactor, an electric motor is installed that is driving a screw pump. The heated sludge circulates in the digester. The post-fermented sludge is collected using a drain well. The inlet to the drain well is below the level of the sludge in the digester. The biogas is discharged from the reactor by the biogas intake valve located on the cover. The technology is very useful for fermentation of lignocellulosic biomass and substrates with high content of dry mass (organic wastes). The other technology is a reactor for micro-biogas plant with a pressure mixing system. The reactor has a form of plastic or concrete tank with a circular cross-section. The effective mixing of sludge is ensured by profiled at 90° bottom of the tank. Substrates for fermentation are supplied by an inlet well. The inlet well is equipped with a cover that eliminates odour release. The introduction of a new portion of substrates is preceded by pumping of digestate to the disposal well. Optionally, digestate can gravitationally flow to digestate storage tank. The obtained biogas is discharged into the separator. The valve supplies biogas to the blower. The blower presses the biogas from the fermentation chamber in such a way as to facilitate the introduction of a new portion of substrates. Biogas is discharged from the reactor by valve that enables biogas removal but prevents suction from outside the reactor.Keywords: biogas, digestion, heating system, mixing system
Procedia PDF Downloads 152657 The Administration of Infection Diseases During the Pandemic COVID-19 and the Role of the Differential Diagnosis with Biomarkers VB10
Authors: Sofia Papadimitriou
Abstract:
INTRODUCTION: The differential diagnosis between acute viral and bacterial infections is an important cost-effectiveness parameter at the stage of the treatment process in order to achieve the maximum benefits in therapeutic intervention by combining the minimum cost to ensure the proper use of antibiotics.The discovery of sensitive and robust molecular diagnostic tests in response to the role of the host in infections has enhanced the accurate diagnosis and differentiation of infections. METHOD: The study used a sample of six independent blood samples (total=756) which are associated with human proteins-proteins, each of which at the transcription stage expresses a different response in the host network between viral and bacterial infections.Τhe individual blood samples are subjected to a sequence of computer filters that identify a gene panel corresponding to an autonomous diagnostic score. The data set and the correspondence of the gene panel to the diagnostic patents a new Bangalore -Viral Bacterial (BL-VB). FINDING: We use a biomarker based on the blood of 10 genes(Panel-VB) that are an important prognostic value for the detection of viruses from bacterial infections with a weighted average AUROC of 0.97(95% CL:0.96-0.99) in eleven independent samples (sets n=898). We discovered a base with a patient score (VB 10 ) according to the table, which is a significant diagnostic value with a weighted average of AUROC 0.94(95% CL: 0.91-0.98) in 2996 patient samples from 56 public sets of data from 19 different countries. We also studied VB 10 in a new cohort of South India (BL-VB,n=56) and found 97% accuracy in confirmed cases of viral and bacterial infections. We found that VB 10 (a)accurately identifies the type of infection even in unspecified cases negative to the culture (b) shows its clinical condition recovery and (c) applies to all age groups, covering a wide range of acute bacterial and viral infectious, including non-specific pathogens. We applied our VB 10 rating to publicly available COVID 19 data and found that our rating diagnosed viral infection in patient samples. RESULTS: Τhe results of the study showed the diagnostic power of the biomarker VB 10 as a diagnostic test for the accurate diagnosis of acute infections in recovery conditions. We look forward to helping you make clinical decisions about prescribing antibiotics and integrating them into your policies management of antibiotic stewardship efforts. CONCLUSIONS: Overall, we are developing a new property of the RNA-based biomarker and a new blood test to differentiate between viral and bacterial infections to assist a physician in designing the optimal treatment regimen to contribute to the proper use of antibiotics and reduce the burden on antimicrobial resistance, AMR.Keywords: acute infections, antimicrobial resistance, biomarker, blood transcriptome, systems biology, classifier diagnostic score
Procedia PDF Downloads 155656 Balanced Score Card a Tool to Improve Naac Accreditation – a Case Study in Indian Higher Education
Authors: CA Kishore S. Peshori
Abstract:
Introduction: India, a country with vast diversity and huge population is going to have largest young population by 2020. Higher education has and will always be the basic requirement for making a developing nation to a developed nation. To improve any system it needs to be bench-marked. There have been various tools for bench-marking the systems. Education is delivered in India by universities which are mainly funded by government. This universities for delivering the education sets up colleges which are again funded mainly by government. Recently however there has also been autonomy given to universities and colleges. Moreover foreign universities are waiting to enter Indian boundaries. With a large number of universities and colleges it has become more and more necessary to measure this institutes for bench-marking. There have been various tools for measuring the institute. In India college assessments have been made compulsory by UGC. Naac has been offically recognised as the accrediation criteria. The Naac criteria has been based on seven criterias namely: 1. Curricular assessments, 2. Teaching learning and evaluation, 3. Research Consultancy and Extension, 4. Infrastructure and learning resources, 5. Student support and progression, 6. Governance leadership and management, 7. Innovation and best practices. The Naac tries to bench mark the institution for identification, sustainability, dissemination and adaption of best practices. It grades the institution according to this seven criteria and the funding of institution is based on these grades. Many of the colleges are struggling to get best of grades but they have not come across a systematic tool to achieve the results. Balanced Scorecard developed by Kaplan has been a successful tool for corporates to develop best of practices so as to increase their financial performance and also retain and increase their customers so as to grow the organization to next level.It is time to test this tool for an educational institute. Methodology: The paper tries to develop a prototype for college based on the secondary data. Once a prototype is developed the researcher based on questionnaire will try to test this tool for successful implementation. The success of this research will depend on its implementation of BSC on an institute and its grading improved due to this successful implementation. Limitation of time is a major constraint in this research as Naac cycle takes minimum 4 years for accreditation and reaccreditation the methodology will limit itself to secondary data and questionnaire to be circulated to colleges along with the prototype model of BSC. Conclusion: BSC is a successful tool for enhancing growth of an organization. Educational institutes are no exception to these. BSC will only have to be realigned to suit the Naac criteria. Once this prototype is developed the success will be tested only on its implementation but this research paper will be the first step towards developing this tool and will also initiate the success by developing a questionnaire and getting and evaluating the responses for moving to the next level of actual implementationKeywords: balanced scorecard, bench marking, Naac, UGC
Procedia PDF Downloads 271655 Conservation Challenges of Wetlands Biodiversity in Northeast Region of Bangladesh
Authors: Anisuzzaman Khan, A. J. K. Masud
Abstract:
Bangladesh is the largest delta in the world predominantly comprising large network of rives and wetlands. Wetlands in Bangladesh are represented by inland freshwater, estuarine brakishwater and tidal salt-water coastal wetlands. Bangladesh possesses enormous area of wetlands including rivers and streams, freshwater lakes and marshes, haors, baors, beels, water storage reservoirs, fish ponds, flooded cultivated fields and estuarine systems with extensive mangrove swamps. The past, present, and future of Bangladesh, and its people’s livelihoods are intimately connected to its relationship with water and wetlands. More than 90% of the country’s total area consists of alluvial plains, crisscrossed by a complex network of rivers and their tributaries. Floodplains, beels (low-lying depressions in the floodplain), haors (deep depression) and baors (oxbow lakes) represent the inland freshwater wetlands. Over a third of Bangladesh could be termed as wetlands, considering rivers, estuaries, mangroves, floodplains, beels, baors and haors. The country’s wetland ecosystems also offer critical habitats for globally significant biological diversity. Of these the deeply flooded basins of north-east Bangladesh, known as haors, are a habitat of wide range of wild flora and fauna unique to Bangladesh. The haor basin lies within the districts of Sylhet, Sunamgonj, Netrokona, Kishoregonj, Habigonj, Moulvibazar, and Brahmanbaria in the Northeast region of Bangladesh comprises the floodplains of the Meghna tributaries and is characterized by the presence of numerous large, deeply flooded depressions, known as haors. It covers about around 8,568 km2 area of Bangladesh. The topography of the region is steep at around foothills in the north and slopes becoming mild and milder gradually at downstream towards south. Haor is a great reservoir of aquatic biological resources and acts as the ecological safety net to the nature as well as to the dwellers of the haor. But in reality, these areas are considered as wastelands and to make these wastelands into a productive one, a one sided plan has been implementing since long. The programme is popularly known as Flood Control, Drainage and Irrigation (FCDI) which is mainly devoted to increase the monoculture rice production. However, haor ecosystem is a multiple-resource base which demands an integrated sustainable development approach. The ongoing management approach is biased to only rice production through FCDI. Thus this primitive mode of action is diminishing other resources having more economic potential ever thought.Keywords: freshwater wetlands, biological diversity, biological resources, conservation and sustainable development
Procedia PDF Downloads 326654 Overcoming Adversity: Women with Disabled Children and Microfinance Solutions
Authors: Aarif Hussain, Afnan Tariq
Abstract:
In recent years, microfinance has emerged as a critical tool for promoting financial inclusion and empowering marginalized communities, particularly women. In India, where poverty and lack of access to financial services continue to be significant challenges for many, microfinance has the potential to provide much-needed support to women with disabled children. These women face unique challenges, including discrimination, lack of access to education and employment, and limited support systems, making it even more difficult for them to break out of poverty and provide for their families. Microfinance, by providing small loans, savings products, and other financial services, can help these women to start or grow businesses, build assets, and achieve financial independence. India has adhered to an SHG-bank linkage model of microfinance since 1980, and programs like IRDP and SGSY were initiatives in the same direction. In the year 2011, India launched DAY-NRLM, a restructured version of SGSY. DAY-NRLM is an SHG-based microfinance program targeting the rural women of India. It aims to organise these poor women into SHGs and link them to banking institutions for creating sustainable livelihoods. The program has a reservation for disabled women but has no special status for mothers with disabled children. The impact of microfinance on women with disabilities and their families has been well documented. Studies have shown that women participating in microfinance programs are more likely to start businesses, increase their income, and improve their standard of living. Furthermore, these women are more likely to invest in their children's education and health, which can have long-term positive effects on their family’s well-being. In the Union territory of Jammu and Kashmir, the programme started in 2013 and is running smoothly to date. Women with children having a disability have not been documented as a category within the programme. The core aspect of this study is to delve into these women’s lives and analyse the impact of SHG membership on their lives and their children. The participants were selected purposively. For data collection, in-depth interviews were conducted. The findings of the paper show that microfinance has the potential to play a significant role in promoting financial inclusion and empowering women with children having disabilities in Kashmir. By providing access to small loans, savings products, and other financial services, microfinance can help these women to start or grow businesses, build assets, and achieve financial independence. However, more work is needed to ensure that these women have equal access to financial services and opportunities and that microfinance institutions are equipped to effectively serve this population. Working together to address these challenges can create a brighter future for women with children having disabilities and their families in India.Keywords: DAY-NRLM, microfinance, SHGs, women, disabled children
Procedia PDF Downloads 70653 Exploring the Motivations That Drive Paper Use in Clinical Practice Post-Electronic Health Record Adoption: A Nursing Perspective
Authors: Sinead Impey, Gaye Stephens, Lucy Hederman, Declan O'Sullivan
Abstract:
Continued paper use in the clinical area post-Electronic Health Record (EHR) adoption is regularly linked to hardware and software usability challenges. Although paper is used as a workaround to circumvent challenges, including limited availability of a computer, this perspective does not consider the important role paper, such as the nurses’ handover sheet, play in practice. The purpose of this study is to confirm the hypothesis that paper use post-EHR adoption continues as paper provides both a cognitive tool (that assists with workflow) and a compensation tool (to circumvent usability challenges). Distinguishing the different motivations for continued paper-use could assist future evaluations of electronic record systems. Methods: Qualitative data were collected from three clinical care environments (ICU, general ward and specialist day-care) who used an electronic record for at least 12 months. Data were collected through semi-structured interviews with 22 nurses. Data were transcribed, themes extracted using an inductive bottom-up coding approach and a thematic index constructed. Findings: All nurses interviewed continued to use paper post-EHR adoption. While two distinct motivations for paper use post-EHR adoption were confirmed by the data - paper as a cognitive tool and paper as a compensation tool - further finding was that there was an overlap between the two uses. That is, paper used as a compensation tool could also be adapted to function as a cognitive aid due to its nature (easy to access and annotate) or vice versa. Rather than present paper persistence as having two distinctive motivations, it is more useful to describe it as presenting on a continuum with compensation tool and cognitive tool at either pole. Paper as a cognitive tool referred to pages such as nurses’ handover sheet. These did not form part of the patient’s record, although information could be transcribed from one to the other. Findings suggest that although the patient record was digitised, handover sheets did not fall within this remit. These personal pages continued to be useful post-EHR adoption for capturing personal notes or patient information and so continued to be incorporated into the nurses’ work. Comparatively, the paper used as a compensation tool, such as pre-printed care plans which were stored in the patient's record, appears to have been instigated in reaction to usability challenges. In these instances, it is expected that paper use could reduce or cease when the underlying problem is addressed. There is a danger that as paper affords nurses a temporary information platform that is mobile, easy to access and annotate, its use could become embedded in clinical practice. Conclusion: Paper presents a utility to nursing, either as a cognitive or compensation tool or combination of both. By fully understanding its utility and nuances, organisations can avoid evaluating all incidences of paper use (post-EHR adoption) as arising from usability challenges. Instead, suitable remedies for paper-persistence can be targeted at the root cause.Keywords: cognitive tool, compensation tool, electronic record, handover sheet, nurse, paper persistence
Procedia PDF Downloads 438652 Coupling Strategy for Multi-Scale Simulations in Micro-Channels
Authors: Dahia Chibouti, Benoit Trouette, Eric Chenier
Abstract:
With the development of micro-electro-mechanical systems (MEMS), understanding fluid flow and heat transfer at the micrometer scale is crucial. In the case where the flow characteristic length scale is narrowed to around ten times the mean free path of gas molecules, the classical fluid mechanics and energy equations are still valid in the bulk flow, but particular attention must be paid to the gas/solid interface boundary conditions. Indeed, in the vicinity of the wall, on a thickness of about the mean free path of the molecules, called the Knudsen layer, the gas molecules are no longer in local thermodynamic equilibrium. Therefore, macroscopic models based on the continuity of velocity, temperature and heat flux jump conditions must be applied at the fluid/solid interface to take this non-equilibrium into account. Although these macroscopic models are widely used, the assumptions on which they depend are not necessarily verified in realistic cases. In order to get rid of these assumptions, simulations at the molecular scale are carried out to study how molecule interaction with walls can change the fluid flow and heat transfers at the vicinity of the walls. The developed approach is based on a kind of heterogeneous multi-scale method: micro-domains overlap the continuous domain, and coupling is carried out through exchanges of information between both the molecular and the continuum approaches. In practice, molecular dynamics describes the fluid flow and heat transfers in micro-domains while the Navier-Stokes and energy equations are used at larger scales. In this framework, two kinds of micro-simulation are performed: i) in bulk, to obtain the thermo-physical properties (viscosity, conductivity, ...) as well as the equation of state of the fluid, ii) close to the walls to identify the relationships between the slip velocity and the shear stress or between the temperature jump and the normal temperature gradient. The coupling strategy relies on an implicit formulation of the quantities extracted from micro-domains. Indeed, using the results of the molecular simulations, a Bayesian regression is performed in order to build continuous laws giving both the behavior of the physical properties, the equation of state and the slip relationships, as well as their uncertainties. These latter allow to set up a learning strategy to optimize the number of micro simulations. In the present contribution, the first results regarding this coupling associated with the learning strategy are illustrated through parametric studies of convergence criteria, choice of basis functions and noise of input data. Anisothermic flows of a Lennard Jones fluid in micro-channels are finally presented.Keywords: multi-scale, microfluidics, micro-channel, hybrid approach, coupling
Procedia PDF Downloads 164651 Financial Modeling for Net Present Benefit Analysis of Electric Bus and Diesel Bus and Applications to NYC, LA, and Chicago
Authors: Jollen Dai, Truman You, Xinyun Du, Katrina Liu
Abstract:
Transportation is one of the leading sources of greenhouse gas emissions (GHG). Thus, to meet the Paris Agreement 2015, all countries must adopt a different and more sustainable transportation system. From bikes to Maglev, the world is slowly shifting to sustainable transportation. To develop a utility public transit system, a sustainable web of buses must be implemented. As of now, only a handful of cities have adopted a detailed plan to implement a full fleet of e-buses by the 2030s, with Shenzhen in the lead. Every change requires a detailed plan and a focused analysis of the impacts of the change. In this report, the economic implications and financial implications have been taken into consideration to develop a well-rounded 10-year plan for New York City. We also apply the same financial model to the other cities, LA and Chicago. We picked NYC, Chicago, and LA to conduct the comparative NPB analysis since they are all big metropolitan cities and have complex transportation systems. All three cities have started an action plan to achieve a full fleet of e-bus in the decades. Plus, their energy carbon footprint and their energy price are very different, which are the key factors to the benefits of electric buses. Using TCO (Total Cost Ownership) financial analysis, we developed a model to calculate NPB (Net Present Benefit) /and compare EBS (electric buses) to DBS (diesel buses). We have considered all essential aspects in our model: initial investment, including the cost of a bus, charger, and installation, government fund (federal, state, local), labor cost, energy (electricity or diesel) cost, maintenance cost, insurance cost, health and environment benefit, and V2G (vehicle to grid) benefit. We see about $1,400,000 in benefits for a 12-year lifetime of an EBS compared to DBS provided the government fund to offset 50% of EBS purchase cost. With the government subsidy, an EBS starts to make positive cash flow in 5th year and can pay back its investment in 5 years. Please remember that in our model, we consider environmental and health benefits, and every year, $50,000 is counted as health benefits per bus. Besides health benefits, the significant benefits come from the energy cost savings and maintenance savings, which are about $600,000 and $200,000 in 12-year life cycle. Using linear regression, given certain budget limitations, we then designed an optimal three-phase process to replace all NYC electric buses in 10 years, i.e., by 2033. The linear regression process is to minimize the total cost over the years and have the lowest environmental cost. The overall benefits to replace all DBS with EBS for NYC is over $2.1 billion by the year of 2033. For LA, and Chicago, the benefits for electrification of the current bus fleet are $1.04 billion and $634 million by 2033. All NPB analyses and the algorithm to optimize the electrification phase process are implemented in Python code and can be shared.Keywords: financial modeling, total cost ownership, net present benefits, electric bus, diesel bus, NYC, LA, Chicago
Procedia PDF Downloads 48650 X-Ray Detector Technology Optimization in Computed Tomography
Authors: Aziz Ikhlef
Abstract:
Most of multi-slices Computed Tomography (CT) scanners are built with detectors composed of scintillator - photodiodes arrays. The photodiodes arrays are mainly based on front-illuminated technology for detectors under 64 slices and on back-illuminated photodiode for systems of 64 slices or more. The designs based on back-illuminated photodiodes were being investigated for CT machines to overcome the challenge of the higher number of runs and connection required in front-illuminated diodes. In backlit diodes, the electronic noise has already been improved because of the reduction of the load capacitance due to the routing reduction. This is translated by a better image quality in low signal application, improving low dose imaging in large patient population. With the fast development of multi-detector-rows CT (MDCT) scanners and the increasing number of examinations, the clinical community has raised significant concerns on radiation dose received by the patient in both medical and regulatory community. In order to reduce individual exposure and in response to the recommendations of the International Commission on Radiological Protection (ICRP) which suggests that all exposures should be kept as low as reasonably achievable (ALARA), every manufacturer is trying to implement strategies and solutions to optimize dose efficiency and image quality based on x-ray emission and scanning parameters. The added demands on the CT detector performance also comes from the increased utilization of spectral CT or dual-energy CT in which projection data of two different tube potentials are collected. One of the approaches utilizes a technology called fast-kVp switching in which the tube voltage is switched between 80 kVp and 140 kVp in fraction of a millisecond. To reduce the cross-contamination of signals, the scintillator based detector temporal response has to be extremely fast to minimize the residual signal from previous samples. In addition, this paper will present an overview of detector technologies and image chain improvement which have been investigated in the last few years to improve the signal-noise ratio and the dose efficiency CT scanners in regular examinations and in energy discrimination techniques. Several parameters of the image chain in general and in the detector technology contribute in the optimization of the final image quality. We will go through the properties of the post-patient collimation to improve the scatter-to-primary ratio, the scintillator material properties such as light output, afterglow, primary speed, crosstalk to improve the spectral imaging, the photodiode design characteristics and the data acquisition system (DAS) to optimize for crosstalk, noise and temporal/spatial resolution.Keywords: computed tomography, X-ray detector, medical imaging, image quality, artifacts
Procedia PDF Downloads 193649 Large-Scale Production of High-Performance Fiber-Metal-Laminates by Prepreg-Press-Technology
Authors: Christian Lauter, Corin Reuter, Shuang Wu, Thomas Troester
Abstract:
Lightweight construction became more and more important over the last decades in several applications, e.g. in the automotive or aircraft sector. This is the result of economic and ecological constraints on the one hand and increasing safety and comfort requirements on the other hand. In the field of lightweight design, different approaches are used due to specific requirements towards the technical systems. The use of endless carbon fiber reinforced plastics (CFRP) offers the largest weight saving potential of sometimes more than 50% compared to conventional metal-constructions. However, there are very limited industrial applications because of the cost-intensive manufacturing of the fibers and production technologies. Other disadvantages of pure CFRP-structures affect the quality control or the damage resistance. One approach to meet these challenges is hybrid materials. This means CFRP and sheet metal are combined on a material level. Therefore, new opportunities for innovative process routes are realizable. Hybrid lightweight design results in lower costs due to an optimized material utilization and the possibility to integrate the structures in already existing production processes of automobile manufacturers. In recent and current research, the advantages of two-layered hybrid materials have been pointed out, i.e. the possibility to realize structures with tailored mechanical properties or to divide the curing cycle of the epoxy resin into two steps. Current research work at the Chair for Automotive Lightweight Design (LiA) at the Paderborn University focusses on production processes for fiber-metal-laminates. The aim of this work is the development and qualification of a large-scale production process for high-performance fiber-metal-laminates (FML) for industrial applications in the automotive or aircraft sector. Therefore, the prepreg-press-technology is used, in which pre-impregnated carbon fibers and sheet metals are formed and cured in a closed, heated mold. The investigations focus e.g. on the realization of short process chains and cycle times, on the reduction of time-consuming manual process steps, and the reduction of material costs. This paper gives an overview over the considerable steps of the production process in the beginning. Afterwards experimental results are discussed. This part concentrates on the influence of different process parameters on the mechanical properties, the laminate quality and the identification of process limits. Concluding the advantages of this technology compared to conventional FML-production-processes and other lightweight design approaches are carried out.Keywords: composite material, fiber-metal-laminate, lightweight construction, prepreg-press-technology, large-series production
Procedia PDF Downloads 239648 Challenges of Blockchain Applications in the Supply Chain Industry: A Regulatory Perspective
Authors: Pardis Moslemzadeh Tehrani
Abstract:
Due to the emergence of blockchain technology and the benefits of cryptocurrencies, intelligent or smart contracts are gaining traction. Artificial intelligence (AI) is transforming our lives, and it is being embraced by a wide range of sectors. Smart contracts, which are at the heart of blockchains, incorporate AI characteristics. Such contracts are referred to as "smart" contracts because of the underlying technology that allows contracting parties to agree on terms expressed in computer code that defines machine-readable instructions for computers to follow under specific situations. The transmission happens automatically if the conditions are met. Initially utilised for financial transactions, blockchain applications have since expanded to include the financial, insurance, and medical sectors, as well as supply networks. Raw material acquisition by suppliers, design, and fabrication by manufacturers, delivery of final products to consumers, and even post-sales logistics assistance are all part of supply chains. Many issues are linked with managing supply chains from the planning and coordination stages, which can be implemented in a smart contract in a blockchain due to their complexity. Manufacturing delays and limited third-party amounts of product components have raised concerns about the integrity and accountability of supply chains for food and pharmaceutical items. Other concerns include regulatory compliance in multiple jurisdictions and transportation circumstances (for instance, many products must be kept in temperature-controlled environments to ensure their effectiveness). Products are handled by several providers before reaching customers in modern economic systems. Information is sent between suppliers, shippers, distributors, and retailers at every stage of the production and distribution process. Information travels more effectively when individuals are eliminated from the equation. The usage of blockchain technology could be a viable solution to these coordination issues. In blockchains, smart contracts allow for the rapid transmission of production data, logistical data, inventory levels, and sales data. This research investigates the legal and technical advantages and disadvantages of AI-blockchain technology in the supply chain business. It aims to uncover the applicable legal problems and barriers to the use of AI-blockchain technology to supply chains, particularly in the food industry. It also discusses the essential legal and technological issues and impediments to supply chain implementation for stakeholders, as well as methods for overcoming them before releasing the technology to clients. Because there has been little research done on this topic, it is difficult for industrial stakeholders to grasp how blockchain technology could be used in their respective operations. As a result, the focus of this research will be on building advanced and complex contractual terms in supply chain smart contracts on blockchains to cover all unforeseen supply chain challenges.Keywords: blockchain, supply chain, IoT, smart contract
Procedia PDF Downloads 125647 The Lighthouse Project: Recent Initiatives to Navigate Australian Families Safely Through Parental Separation
Authors: Kathryn McMillan
Abstract:
A recent study of 8500 adult Australians aged 16 and over revealed 62% had experienced childhood maltreatment. In response to multiple recommendations by bodies such as the Australian Law Reform Commission, parliamentary reports and stakeholder input, a number of key initiatives have been developed to grapple with the difficulties of a federal-state system and to screen and triage high-risk families navigating their way through the court system. The Lighthouse Project (LHP) is a world-first initiative of the Federal Circuit and Family Courts in Australia (FCFOCA) to screen family law litigants for major risk factors, including family violence, child abuse, alcohol or substance abuse and mental ill-health at the point of filing in all applications that seek parenting orders. It commenced on 7 December 2020 on a pilot basis but has now been expanded to 15 registries across the country. A specialist risk screen, Family DOORS, Triage has been developed – focused on improving the safety and wellbeing of families involved in the family law system safety planning and service referral, and ¬ differentiated case management based on risk level, with the Evatt List specifically designed to manage the highest risk cases. Early signs are that this approach is meeting the needs of families with multiple risks moving through the Court system. Before the LHP, there was no data available about the prevalence of risk factors experienced by litigants entering the family courts and it was often assumed that it was the litigation process that was fueling family violence and other risks such as suicidality. Data from the 2022 FCFCOA annual report indicated that in parenting proceedings, 70% alleged a child had been or was at risk of abuse, 80% alleged a party had experienced Family Violence, 74 % of children had been exposed to Family Violence, 53% alleged through substance misuse by party children had caused or was at risk of causing harm to children and 58% of matters allege mental health issues of a party had caused or placed a child at risk of harm. Those figures reveal the significant overlap between child protection and family violence, both of which are under the responsibility of state and territory governments. Since 2020, a further key initiative has been the co-location of child protection and police officials amongst a number of registries of the FCFOCA. The ability to access in a time-effective way details of family violence or child protection orders, weapons licenses, criminal convictions or proceedings is key to managing issues across the state and federal divide. It ensures a more cohesive and effective response to family law, family violence and child protection systems.Keywords: child protection, family violence, parenting, risk screening, triage.
Procedia PDF Downloads 76646 Model Tests on Geogrid-Reinforced Sand-Filled Embankments with a Cover Layer under Cyclic Loading
Authors: Ma Yuan, Zhang Mengxi, Akbar Javadi, Chen Longqing
Abstract:
The structure of sand-filled embankment with cover layer is treated with tipping clay modified with lime on the outside of the packing, and the geotextile is placed between the stuffing and the clay. The packing is usually river sand, and the improved clay protects the sand core against rainwater erosion. The sand-filled embankment with cover layer has practical problems such as high filling embankment, construction restriction, and steep slope. The reinforcement can be applied to the sand-filled embankment with cover layer to solve the complicated problems such as irregular settlement caused by poor stability of the embankment. At present, the research on the sand-filled embankment with cover layer mainly focuses on the sand properties, construction technology, and slope stability, and there are few studies in the experimental field, the deformation characteristics and stability of reinforced sand-filled embankment need further study. In addition, experimental research is relatively rare when the cyclic load is considered in tests. A subgrade structure of geogrid-reinforced sand-filled embankment with cover layer was proposed. The mechanical characteristics, the deformation properties, reinforced behavior and the ultimate bearing capacity of the embankment structure under cyclic loading were studied. For this structure, the geogrids in the sand and the tipping soil are through the geotextile which is arranged in sections continuously so that the geogrids can cross horizontally. Then, the Unsaturated/saturated Soil Triaxial Test System of Geotechnical Consulting and Testing Systems (GCTS), USA was modified to form the loading device of this test, and strain collector was used to measuring deformation and earth pressure of the embankment. A series of cyclic loading model tests were conducted on the geogrid-reinforced sand-filled embankment with a cover layer under a different number of reinforcement layers, the length of reinforcement and thickness of the cover layer. The settlement of the embankment, the normal cumulative deformation of the slope and the earth pressure were studied under different conditions. Besides cyclic loading model tests, model experiments of embankment subjected cyclic-static loading was carried out to analyze ultimate bearing capacity with different loading. The experiment results showed that the vertical cumulative settlement under long-term cyclic loading increases with the decrease of the number of reinforcement layers, length of the reinforcement arrangement and thickness of the tipping soil. Meanwhile, these three factors also have an influence on the decrease of the normal deformation of the embankment slope. The earth pressure around the loading point is significantly affected by putting geogrid in a model embankment. After cyclic loading, the decline of ultimate bearing capacity of the reinforced embankment can be effectively reduced, which is contrary to the unreinforced embankment.Keywords: cyclic load; geogrid; reinforcement behavior; cumulative deformation; earth pressure
Procedia PDF Downloads 121645 Stable Diffusion, Context-to-Motion Model to Augmenting Dexterity of Prosthetic Limbs
Authors: André Augusto Ceballos Melo
Abstract:
Design to facilitate the recognition of congruent prosthetic movements, context-to-motion translations guided by image, verbal prompt, users nonverbal communication such as facial expressions, gestures, paralinguistics, scene context, and object recognition contributes to this process though it can also be applied to other tasks, such as walking, Prosthetic limbs as assistive technology through gestures, sound codes, signs, facial, body expressions, and scene context The context-to-motion model is a machine learning approach that is designed to improve the control and dexterity of prosthetic limbs. It works by using sensory input from the prosthetic limb to learn about the dynamics of the environment and then using this information to generate smooth, stable movements. This can help to improve the performance of the prosthetic limb and make it easier for the user to perform a wide range of tasks. There are several key benefits to using the context-to-motion model for prosthetic limb control. First, it can help to improve the naturalness and smoothness of prosthetic limb movements, which can make them more comfortable and easier to use for the user. Second, it can help to improve the accuracy and precision of prosthetic limb movements, which can be particularly useful for tasks that require fine motor control. Finally, the context-to-motion model can be trained using a variety of different sensory inputs, which makes it adaptable to a wide range of prosthetic limb designs and environments. Stable diffusion is a machine learning method that can be used to improve the control and stability of movements in robotic and prosthetic systems. It works by using sensory feedback to learn about the dynamics of the environment and then using this information to generate smooth, stable movements. One key aspect of stable diffusion is that it is designed to be robust to noise and uncertainty in the sensory feedback. This means that it can continue to produce stable, smooth movements even when the sensory data is noisy or unreliable. To implement stable diffusion in a robotic or prosthetic system, it is typically necessary to first collect a dataset of examples of the desired movements. This dataset can then be used to train a machine learning model to predict the appropriate control inputs for a given set of sensory observations. Once the model has been trained, it can be used to control the robotic or prosthetic system in real-time. The model receives sensory input from the system and uses it to generate control signals that drive the motors or actuators responsible for moving the system. Overall, the use of the context-to-motion model has the potential to significantly improve the dexterity and performance of prosthetic limbs, making them more useful and effective for a wide range of users Hand Gesture Body Language Influence Communication to social interaction, offering a possibility for users to maximize their quality of life, social interaction, and gesture communication.Keywords: stable diffusion, neural interface, smart prosthetic, augmenting
Procedia PDF Downloads 99644 Reactivities of Turkish Lignites during Oxygen Enriched Combustion
Authors: Ozlem Uguz, Ali Demirci, Hanzade Haykiri-Acma, Serdar Yaman
Abstract:
Lignitic coal holds its position as Turkey’s most important indigenous energy source to generate energy in thermal power plants. Hence, efficient and environmental-friendly use of lignite in electricity generation is of great importance. Thus, clean coal technologies have been planned to mitigate emissions and provide more efficient burning in power plants. In this context, oxygen enriched combustion (oxy-combustion) is regarded as one of the clean coal technologies, which based on burning with oxygen concentrations higher than that in air. As it is known that the most of the Turkish coals are low rank with high mineral matter content, unburnt carbon trapped in ash is, unfortunately, high, and it leads significant losses in the overall efficiencies of the thermal plants. Besides, the necessity of burning huge amounts of these low calorific value lignites to get the desired amount of energy also results in the formation of large amounts of ash that is rich in unburnt carbon. Oxygen enriched combustion technology enables to increase the burning efficiency through the complete burning of almost all of the carbon content of the fuel. This also contributes to the protection of air quality and emission levels drop reasonably. The aim of this study is to investigate the unburnt carbon content and the burning reactivities of several different lignite samples under oxygen enriched conditions. For this reason, the combined effects of temperature and oxygen/nitrogen ratios in the burning atmosphere were investigated and interpreted. To do this, Turkish lignite samples from Adıyaman-Gölbaşı and Kütahya-Tunçbilek regions were characterized first by proximate and ultimate analyses and the burning profiles were derived using DTA (Differential Thermal Analysis) curves. Then, these lignites were subjected to slow burning process in a horizontal tube furnace at different temperatures (200ºC, 400ºC, 600ºC for Adıyaman-Gölbaşı lignite and 200ºC, 450ºC, 800ºC for Kütahya-Tunçbilek lignite) under atmospheres having O₂+N₂ proportions of 21%O₂+79%N₂, 30%O₂+70%N₂, 40%O₂+60%N₂, and 50%O₂+50%N₂. These burning temperatures were specified based on the burning profiles derived from the DTA curves. The residues obtained from these burning tests were also analyzed by proximate and ultimate analyses to detect the unburnt carbon content along with the unused energy potential. Reactivity of these lignites was calculated using several methodologies. Burning yield under air condition (21%O₂+79%N₂) was used a benchmark value to compare the effectiveness of oxygen enriched conditions. It was concluded that oxygen enriched combustion method enhanced the combustion efficiency and lowered the unburnt carbon content of ash. Combustion of low-rank coals under oxygen enriched conditions was found to be a promising way to improve the efficiency of the lignite-firing energy systems. However, cost-benefit analysis should be considered for a better justification of this method since the use of more oxygen brings an unignorable additional cost.Keywords: coal, energy, oxygen enriched combustion, reactivity
Procedia PDF Downloads 273643 The Digital Microscopy in Organ Transplantation: Ergonomics of the Tele-Pathological Evaluation of Renal, Liver, and Pancreatic Grafts
Authors: Constantinos S. Mammas, Andreas Lazaris, Adamantia S. Mamma-Graham, Georgia Kostopanagiotou, Chryssa Lemonidou, John Mantas, Eustratios Patsouris
Abstract:
The process to build a better safety culture, methods of error analysis, and preventive measures, starts with an understanding of the effects when human factors engineering refer to remote microscopic diagnosis in surgery and specially in organ transplantation for the evaluation of the grafts. Α high percentage of solid organs arrive at the recipient hospitals and are considered as injured or improper for transplantation in the UK. Digital microscopy adds information on a microscopic level about the grafts (G) in Organ Transplant (OT), and may lead to a change in their management. Such a method will reduce the possibility that a diseased G will arrive at the recipient hospital for implantation. Aim: The aim of this study is to analyze the ergonomics of digital microscopy (DM) based on virtual slides, on telemedicine systems (TS) for tele-pathological evaluation (TPE) of the grafts (G) in organ transplantation (OT). Material and Methods: By experimental simulation, the ergonomics of DM for microscopic TPE of renal graft (RG), liver graft (LG) and pancreatic graft (PG) tissues is analyzed. In fact, this corresponded to the ergonomics of digital microscopy for TPE in OT by applying virtual slide (VS) system for graft tissue image capture, for remote diagnoses of possible microscopic inflammatory and/or neoplastic lesions. Experimentation included the development of an OTE-TS similar experimental telemedicine system (Exp.-TS) for simulating the integrated VS based microscopic TPE of RG, LG and PG Simulation of DM on TS based TPE performed by 2 specialists on a total of 238 human renal graft (RG), 172 liver graft (LG) and 108 pancreatic graft (PG) tissues digital microscopic images for inflammatory and neoplastic lesions on four electronic spaces of the four used TS. Results: Statistical analysis of specialist‘s answers about the ability to accurately diagnose the diseased RG, LG and PG tissues on the electronic space among four TS (A,B,C,D) showed that DM on TS for TPE in OT is elaborated perfectly on the ES of a desktop, followed by the ES of the applied Exp.-TS. Tablet and mobile-phone ES seem significantly risky for the application of DM in OT (p<.001). Conclusion: To make the largest reduction in errors and adverse events referring to the quality of the grafts, it will take application of human factors engineering to procurement, design, audit, and awareness-raising activities. Consequently, it will take an investment in new training, people, and other changes to management activities for DM in OT. The simulating VS based TPE with DM of RG, LG and PG tissues after retrieval, seem feasible and reliable and dependable on the size of the electronic space of the applied TS, for remote prevention of diseased grafts from being retrieved and/or sent to the recipient hospital and for post-grafting and pre-transplant planning.Keywords: digital microscopy, organ transplantation, tele-pathology, virtual slides
Procedia PDF Downloads 278642 Solar Liquid Desiccant Regenerator for Two Stage KCOOH Based Fresh Air Dehumidifier
Authors: M. V. Rane, Tareke Tekia
Abstract:
Liquid desiccant based fresh air dehumidifiers can be gainfully deployed for air-conditioning, agro-produce drying and in many industrial processes. Regeneration of liquid desiccant can be done using direct firing, high temperature waste heat or solar energy. Solar energy is clean and available in abundance; however, it is costly to collect. A two stage liquid desiccant fresh air dehumidification system can offer Coefficient of Performance (COP), in the range of 1.6 to 2 for comfort air conditioning applications. High COP helps reduce the size and cost of collectors required. Performance tests on high temperature regenerator of a two stage liquid desiccant fresh air dehumidifier coupled with seasonally tracked flat plate like solar collector will be presented in this paper. The two stage fresh air dehumidifier has four major components: High Temperature Regenerator (HTR), Low Temperature Regenerator (LTR), High and Low Temperature Solution Heat Exchangers and Fresh Air Dehumidifier (FAD). This open system can operate at near atmospheric pressure in all the components. These systems can be simple, maintenance-free and scalable. Environmentally benign, non-corrosive, moderately priced Potassium Formate, KCOOH, is used as a liquid desiccant. Typical KCOOH concentration in the system is expected to vary between 65 and 75%. Dilute liquid desiccant at 65% concentration exiting the fresh air dehumidifier will be pumped and preheated in solution heat exchangers before entering the high temperature solar regenerator. In the solar collector, solution will be regenerated to intermediate concentration of 70%. Steam and saturated solution exiting the solar collector array will be separated. Steam at near atmospheric pressure will then be used to regenerate the intermediate concentration solution up to a concentration of 75% in a low temperature regenerator where moisture vaporized be released in to atmosphere. Condensed steam can be used as potable water after adding a pinch of salt and some nutrient. Warm concentrated liquid desiccant will be routed to solution heat exchanger to recycle its heat to preheat the weak liquid desiccant solution. Evacuated glass tube based seasonally tracked solar collector is used for regeneration of liquid desiccant at high temperature. Temperature of regeneration for KCOOH is 133°C at 70% concentration. The medium temperature collector was designed for temperature range of 100 to 150°C. Double wall polycarbonate top cover helps reduce top losses. Absorber integrated heat storage helps stabilize the temperature of liquid desiccant exiting the collectors during intermittent cloudy conditions, and extends the operation of the system by couple of hours beyond the sunshine hours. This solar collector is light in weight, 12 kg/m2 without absorber integrated heat storage material, and 27 kg/m2 with heat storage material. Cost of the collector is estimated to be 10,000 INR/m2. Theoretical modeling of the collector has shown that the optical efficiency is 62%. Performance test of regeneration of KCOOH will be reported.Keywords: solar, liquid desiccant, dehumidification, air conditioning, regeneration
Procedia PDF Downloads 347641 Dynamic EEG Desynchronization in Response to Vicarious Pain
Authors: Justin Durham, Chanda Rooney, Robert Mather, Mickie Vanhoy
Abstract:
The psychological construct of empathy is to understand a person’s cognitive perspective and experience the other person’s emotional state. Deciphering emotional states is conducive for interpreting vicarious pain. Observing others' physical pain activates neural networks related to the actual experience of pain itself. The study addresses empathy as a nonlinear dynamic process of simulation for individuals to understand the mental states of others and experience vicarious pain, exhibiting self-organized criticality. Such criticality follows from a combination of neural networks with an excitatory feedback loop generating bistability to resonate permutated empathy. Cortical networks exhibit diverse patterns of activity, including oscillations, synchrony and waves, however, the temporal dynamics of neurophysiological activities underlying empathic processes remain poorly understood. Mu rhythms are EEG oscillations with dominant frequencies of 8-13 Hz becoming synchronized when the body is relaxed with eyes open and when the sensorimotor system is in idle, thus, mu rhythm synchrony is expected to be highest in baseline conditions. When the sensorimotor system is activated either by performing or simulating action, mu rhythms become suppressed or desynchronize, thus, should be suppressed while observing video clips of painful injuries if previous research on mirror system activation holds. Twelve undergraduates contributed EEG data and survey responses to empathy and psychopathy scales in addition to watching consecutive video clips of sports injuries. Participants watched a blank, black image on a computer monitor before and after observing a video of consecutive sports injuries incidents. Each video condition lasted five-minutes long. A BIOPAC MP150 recorded EEG signals from sensorimotor and thalamocortical regions related to a complex neural network called the ‘pain matrix’. Physical and social pain are activated in this network to resonate vicarious pain responses to processing empathy. Five EEG single electrode locations were applied to regions measuring sensorimotor electrical activity in microvolts (μV) to monitor mu rhythms. EEG signals were sampled at a rate of 200 Hz. Mu rhythm desynchronization was measured via 8-13 Hz at electrode sites (F3 & F4). Data for each participant’s mu rhythms were analyzed via Fast Fourier Transformation (FFT) and multifractal time series analysis.Keywords: desynchronization, dynamical systems theory, electroencephalography (EEG), empathy, multifractal time series analysis, mu waveform, neurophysiology, pain simulation, social cognition
Procedia PDF Downloads 283640 Stimulation of Nerve Tissue Differentiation and Development Using Scaffold-Based Cell Culture in Bioreactors
Authors: Simon Grossemy, Peggy P. Y. Chan, Pauline M. Doran
Abstract:
Nerve tissue engineering is the main field of research aimed at finding an alternative to autografts as a treatment for nerve injuries. Scaffolds are used as a support to enhance nerve regeneration. In order to successfully design novel scaffolds and in vitro cell culture systems, a deep understanding of the factors affecting nerve regeneration processes is needed. Physical and biological parameters associated with the culture environment have been identified as potentially influential in nerve cell differentiation, including electrical stimulation, exposure to extracellular-matrix (ECM) proteins, dynamic medium conditions and co-culture with glial cells. The mechanisms involved in driving the cell to differentiation in the presence of these factors are poorly understood; the complexity of each of them raises the possibility that they may strongly influence each other. Some questions that arise in investigating nerve regeneration include: What are the best protein coatings to promote neural cell attachment? Is the scaffold design suitable for providing all the required factors combined? What is the influence of dynamic stimulation on cell viability and differentiation? In order to study these effects, scaffolds adaptable to bioreactor culture conditions were designed to allow electrical stimulation of cells exposed to ECM proteins, all within a dynamic medium environment. Gold coatings were used to make the surface of viscose rayon microfiber scaffolds (VRMS) conductive, and poly-L-lysine (PLL) and laminin (LN) surface coatings were used to mimic the ECM environment and allow the attachment of rat PC12 neural cells. The robustness of the coatings was analyzed by surface resistivity measurements, scanning electron microscope (SEM) observation and immunocytochemistry. Cell attachment to protein coatings of PLL, LN and PLL+LN was studied using DNA quantification with Hoechst. The double coating of PLL+LN was selected based on high levels of PC12 cell attachment and the reported advantages of laminin for neural differentiation. The underlying gold coatings were shown to be biocompatible using cell proliferation and live/dead staining assays. Coatings exhibiting stable properties over time under dynamic fluid conditions were developed; indeed, cell attachment and the conductive power of the scaffolds were maintained over 2 weeks of bioreactor operation. These scaffolds are promising research tools for understanding complex neural cell behavior. They have been used to investigate major factors in the physical culture environment that affect nerve cell viability and differentiation, including electrical stimulation, bioreactor hydrodynamic conditions, and combinations of these parameters. The cell and tissue differentiation response was evaluated using DNA quantification, immunocytochemistry, RT-qPCR and functional analyses.Keywords: bioreactor, electrical stimulation, nerve differentiation, PC12 cells, scaffold
Procedia PDF Downloads 242639 Comparison of Two Home Sleep Monitors Designed for Self-Use
Authors: Emily Wood, James K. Westphal, Itamar Lerner
Abstract:
Background: Polysomnography (PSG) recordings are regularly used in research and clinical settings to study sleep and sleep-related disorders. Typical PSG studies are conducted in professional laboratories and performed by qualified researchers. However, the number of sleep labs worldwide is disproportionate to the increasing number of individuals with sleep disorders like sleep apnea and insomnia. Consequently, there is a growing need to supply cheaper yet reliable means to measure sleep, preferably autonomously by subjects in their own home. Over the last decade, a variety of devices for self-monitoring of sleep became available in the market; however, very few have been directly validated against PSG to demonstrate their ability to perform reliable automatic sleep scoring. Two popular mobile EEG-based systems that have published validation results, the DREEM 3 headband and the Z-Machine, have never been directly compared one to the other by independent researchers. The current study aimed to compare the performance of DREEM 3 and the Z-Machine to help investigators and clinicians decide which of these devices may be more suitable for their studies. Methods: 26 participants have completed the study for credit or monetary compensation. Exclusion criteria included any history of sleep, neurological or psychiatric disorders. Eligible participants arrived at the lab in the afternoon and received the two devices. They then spent two consecutive nights monitoring their sleep at home. Participants were also asked to keep a sleep log, indicating the time they fell asleep, woke up, and the number of awakenings occurring during the night. Data from both devices, including detailed sleep hypnograms in 30-second epochs (differentiating Wake, combined N1/N2, N3; and Rapid Eye Movement sleep), were extracted and aligned upon retrieval. For analysis, the number of awakenings each night was defined as four or more consecutive wake epochs between sleep onset and termination. Total sleep time (TST) and the number of awakenings were compared to subjects’ sleep logs to measure consistency with the subjective reports. In addition, the sleep scores from each device were compared epoch-by-epoch to calculate the agreement between the two devices using Cohen’s Kappa. All analysis was performed using Matlab 2021b and SPSS 27. Results/Conclusion: Subjects consistently reported longer times spent asleep than the time reported by each device (M= 448 minutes for sleep logs compared to M= 406 and M= 345 minutes for the DREEM and Z-Machine, respectively; both ps<0.05). Linear correlations between the sleep log and each device were higher for the DREEM than the Z-Machine for both TST and the number of awakenings, and, likewise, the mean absolute bias between the sleep logs and each device was higher for the Z-Machine for both TST (p<0.001) and awakenings (p<0.04). There was some indication that these effects were stronger for the second night compared to the first night. Epoch-by-epoch comparisons showed that the main discrepancies between the devices were for detecting N2 and REM sleep, while N3 had a high agreement. Overall, the DREEM headband seems superior for reliably scoring sleep at home.Keywords: DREEM, EEG, seep monitoring, Z-machine
Procedia PDF Downloads 106638 Assessing Socio-economic Impacts of Arsenic and Iron Contamination in Groundwater: Feasibility of Rainwater Harvesting in Amdanga Block, North 24 Parganas, West Bengal, India
Authors: Rajkumar Ghosh
Abstract:
The present study focuses on conducting a socio-economic assessment of groundwater contamination by arsenic and iron and explores the feasibility of rainwater harvesting (RWH) as an alternative water source in the Amdanga Block of North 24 Parganas, West Bengal, India. The region is plagued by severe groundwater contamination, primarily due to excessive concentrations of arsenic and iron, which pose significant health risks to the local population. The study utilizes a mixed-methods approach, combining quantitative analysis of water samples collected from different locations within the Amdanga Block and socio-economic surveys conducted among the affected communities. The results reveal alarmingly high levels of arsenic and iron contamination in the groundwater, surpassing the World Health Organization (WHO) and Indian government's permissible limits. This contamination significantly impacts the health and well-being of the local population, leading to a range of health issues such as skin The water samples are analyzed for arsenic and iron levels, while the surveys gather data on water usage patterns, health conditions, and socio-economic factors. lesions, respiratory disorders, and gastrointestinal problems. Furthermore, the socio-economic assessment highlights the vulnerability of the affected communities due to limited access to safe drinking water. The findings reveal the adverse socio-economic implications, including increased medical expenditures, reduced productivity, and compromised educational opportunities. To address these challenges, the study explores the feasibility of rainwater harvesting as an alternative source of clean water. RWH systems have the potential to mitigate groundwater contamination by providing a sustainable and independent water supply. The assessment includes evaluating the rainwater availability, analyzing the infrastructure requirements, and estimating the potential benefits and challenges associated with RWH implementation in the study area. The findings of this study contribute to a comprehensive understanding of the socio-economic impact of groundwater contamination by arsenic and iron, emphasizing the urgency to address this critical issue in the Amdanga Block. The feasibility assessment of rainwater harvesting serves as a practical solution to ensure a safe and sustainable water supply, reducing the dependency on contaminated groundwater sources. The study's results can inform policymakers, researchers, and local stakeholders in implementing effective mitigation measures and promoting the adoption of rainwater harvesting as a viable alternative in similar arsenic and iron-contaminated regions.Keywords: contamination, rainwater harvesting, groundwater, sustainable water supply
Procedia PDF Downloads 97