Search results for: complex network platform
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11216

Search results for: complex network platform

2546 The Asymptotic Hole Shape in Long Pulse Laser Drilling: The Influence of Multiple Reflections

Authors: Torsten Hermanns, You Wang, Stefan Janssen, Markus Niessen, Christoph Schoeler, Ulrich Thombansen, Wolfgang Schulz

Abstract:

In long pulse laser drilling of metals, it can be demonstrated that the ablation shape approaches a so-called asymptotic shape such that it changes only slightly or not at all with further irradiation. These findings are already known from ultra short pulse (USP) ablation of dielectric and semiconducting materials. The explanation for the occurrence of an asymptotic shape in long pulse drilling of metals is identified, a model for the description of the asymptotic hole shape numerically implemented, tested and clearly confirmed by comparison with experimental data. The model assumes a robust process in that way that the characteristics of the melt flow inside the arising melt film does not change qualitatively by changing the laser or processing parameters. Only robust processes are technically controllable and thus of industrial interest. The condition for a robust process is identified by a threshold for the mass flow density of the assist gas at the hole entrance which has to be exceeded. Within a robust process regime the melt flow characteristics can be captured by only one model parameter, namely the intensity threshold. In analogy to USP ablation (where it is already known for a long time that the resulting hole shape results from a threshold for the absorbed laser fluency) it is demonstrated that in the case of robust long pulse ablation the asymptotic shape forms in that way that along the whole contour the absorbed heat flux density is equal to the intensity threshold. The intensity threshold depends on the special material and radiation properties and has to be calibrated be one reference experiment. The model is implemented in a numerical simulation which is called AsymptoticDrill and requires such a few amount of resources that it can run on common desktop PCs, laptops or even smart devices. Resulting hole shapes can be calculated within seconds what depicts a clear advantage over other simulations presented in literature in the context of industrial every day usage. Against this background the software additionally is equipped with a user-friendly GUI which allows an intuitive usage. Individual parameters can be adjusted using sliders while the simulation result appears immediately in an adjacent window. A platform independent development allow a flexible usage: the operator can use the tool to adjust the process in a very convenient manner on a tablet during the developer can execute the tool in his office in order to design new processes. Furthermore, at the best knowledge of the authors AsymptoticDrill is the first simulation which allows the import of measured real beam distributions and thus calculates the asymptotic hole shape on the basis of the real state of the specific manufacturing system. In this paper the emphasis is placed on the investigation of the effect of multiple reflections on the asymptotic hole shape which gain in importance when drilling holes with large aspect ratios.

Keywords: asymptotic hole shape, intensity threshold, long pulse laser drilling, robust process

Procedia PDF Downloads 215
2545 Co₂Fe LDH on Aromatic Acid Functionalized N Doped Graphene: Hybrid Electrocatalyst for Oxygen Evolution Reaction

Authors: Biswaranjan D. Mohapatra, Ipsha Hota, Swarna P. Mantry, Nibedita Behera, Kumar S. K. Varadwaj

Abstract:

Designing highly active and low-cost oxygen evolution (2H₂O → 4H⁺ + 4e⁻ + O₂) electrocatalyst is one of the most active areas of advanced energy research. Some precious metal-based electrocatalysts, such as IrO₂ and RuO₂, have shown excellent performance for oxygen evolution reaction (OER); however, they suffer from high-cost and low abundance which limits their applications. Recently, layered double hydroxides (LDHs), composed of layers of divalent and trivalent transition metal cations coordinated to hydroxide anions, have gathered attention as an alternative OER catalyst. However, LDHs are insulators and coupled with carbon materials for the electrocatalytic applications. Graphene covalently doped with nitrogen has been demonstrated to be an excellent electrocatalyst for energy conversion technologies such as; oxygen reduction reaction (ORR), oxygen evolution reaction (OER) & hydrogen evolution reaction (HER). However, they operate at high overpotentials, significantly above the thermodynamic standard potentials. Recently, we reported remarkably enhanced catalytic activity of benzoate or 1-pyrenebutyrate functionalized N-doped graphene towards the ORR in alkaline medium. The molecular and heteroatom co-doping on graphene is expected to tune the electronic structure of graphene. Therefore, an innovative catalyst architecture, in which LDHs are anchored on aromatic acid functionalized ‘N’ doped graphene may presumably boost the OER activity to a new benchmark. Herein, we report fabrication of Co₂Fe-LDH on aromatic acid (AA) functionalized ‘N’ doped reduced graphene oxide (NG) and studied their OER activities in alkaline medium. In the first step, a novel polyol method is applied for synthesis of AA functionalized NG, which is well dispersed in aqueous medium. In the second step, Co₂Fe LDH were grown on AA functionalized NG by co-precipitation method. The hybrid samples are abbreviated as Co₂Fe LDH/AA-NG, where AA is either Benzoic acid or 1, 3-Benzene dicarboxylic acid (BDA) or 1, 3, 5 Benzene tricarboxylic acid (BTA). The crystal structure and morphology of the samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). These studies confirmed the growth of layered single phase LDH. The electrocatalytic OER activity of these hybrid materials was investigated by rotating disc electrode (RDE) technique on a glassy carbon electrode. The linear sweep voltammetry (LSV) on these catalyst samples were taken at 1600rpm. We observed significant OER performance enhancement in terms of onset potential and current density on Co₂Fe LDH/BTA-NG hybrid, indicating the synergic effect. This exploration of molecular functionalization effect in doped graphene and LDH system may provide an excellent platform for innovative design of OER catalysts.

Keywords: π-π functionalization, layered double hydroxide, oxygen evolution reaction, reduced graphene oxide

Procedia PDF Downloads 209
2544 Queerness and Gender Representation Through the Lens of Five Ghanaian Artists

Authors: Sela Adjei

Abstract:

This research delves into the nuanced representations of queerness in Ghana, presented through photographs, illustrations, film and music videos on social media and streaming platforms. The study focuses on the works of five Ghanaian artists (Va-Bene Elikem Fiatsi, Angel Maxine, Josephine Kuuire, Bright Ackwerh and Philip Nee Whang) within the context of Ghana's evolving media landscape. Of primary concern is a need to uncover the various aspects of queerness captured within the distinct artistic expressions of these five creatives. This study adopts a qualitative approach by analyzing artistic expressions of queerness in Ghana’s digital media spaces. Content analysis and visual semiotics served as the guiding tools to discuss and decipher the nuanced messages embedded in their works, considering both the visual and narrative aspects. This dual approach takes into account both the visual aesthetics and narrative elements, enhancing our understanding of the complex interplay between queerness and gender representation in the media. This study's contribution is twofold. First, it enriches the discourse surrounding queerness as portrayed by artists within Ghana's vibrant media landscape and situates their works within the broader discourse of global gender identities. Secondly, analyzing the creative output of these five Ghanaian artists broadens our understanding of gender minorities and the various challenges they face in Ghana (currently debating in parliament to pass an anti-LGBTQ+ bill that criminalizes activities related to gender minority groups). While focusing on the intersection of queerness, art, and gender identities, the reflections in this study challenge existing narratives and offer fresh insights into how these artists navigate and challenge societal norms through their creative expressions.

Keywords: queer, film, representation, streaming, media, gender

Procedia PDF Downloads 66
2543 Computational Approaches to Study Lineage Plasticity in Human Pancreatic Ductal Adenocarcinoma

Authors: Almudena Espin Perez, Tyler Risom, Carl Pelz, Isabel English, Robert M. Angelo, Rosalie Sears, Andrew J. Gentles

Abstract:

Pancreatic ductal adenocarcinoma (PDAC) is one of the most deadly malignancies. The role of the tumor microenvironment (TME) is gaining significant attention in cancer research. Despite ongoing efforts, the nature of the interactions between tumors, immune cells, and stromal cells remains poorly understood. The cell-intrinsic properties that govern cell lineage plasticity in PDAC and extrinsic influences of immune populations require technically challenging approaches due to the inherently heterogeneous nature of PDAC. Understanding the cell lineage plasticity of PDAC will improve the development of novel strategies that could be translated to the clinic. Members of the team have demonstrated that the acquisition of ductal to neuroendocrine lineage plasticity in PDAC confers therapeutic resistance and is a biomarker of poor outcomes in patients. Our approach combines computational methods for deconvolving bulk transcriptomic cancer data using CIBERSORTx and high-throughput single-cell imaging using Multiplexed Ion Beam Imaging (MIBI) to study lineage plasticity in PDAC and its relationship to the infiltrating immune system. The CIBERSORTx algorithm uses signature matrices from immune cells and stroma from sorted and single-cell data in order to 1) infer the fractions of different immune cell types and stromal cells in bulked gene expression data and 2) impute a representative transcriptome profile for each cell type. We studied a unique set of 300 genomically well-characterized primary PDAC samples with rich clinical annotation. We deconvolved the PDAC transcriptome profiles using CIBERSORTx, leveraging publicly available single-cell RNA-seq data from normal pancreatic tissue and PDAC to estimate cell type proportions in PDAC, and digitally reconstruct cell-specific transcriptional profiles from our study dataset. We built signature matrices and optimized by simulations and comparison to ground truth data. We identified cell-type-specific transcriptional programs that contribute to cancer cell lineage plasticity, especially in the ductal compartment. We also studied cell differentiation hierarchies using CytoTRACE and predict cell lineage trajectories for acinar and ductal cells that we believe are pinpointing relevant information on PDAC progression. Collaborators (Angelo lab, Stanford University) has led the development of the Multiplexed Ion Beam Imaging (MIBI) platform for spatial proteomics. We will use in the very near future MIBI from tissue microarray of 40 PDAC samples to understand the spatial relationship between cancer cell lineage plasticity and stromal cells focused on infiltrating immune cells, using the relevant markers of PDAC plasticity identified from the RNA-seq analysis.

Keywords: deconvolution, imaging, microenvironment, PDAC

Procedia PDF Downloads 130
2542 Investigation of the Properties of Epoxy Modified Binders Based on Epoxy Oligomer with Improved Deformation and Strength Properties

Authors: Hlaing Zaw Oo, N. Kostromina, V. Osipchik, T. Kravchenko, K. Yakovleva

Abstract:

The process of modification of ed-20 epoxy resin synthesized by vinyl-containing compounds is considered. It is shown that the introduction of vinyl-containing compounds into the composition based on epoxy resin ED-20 allows adjusting the technological and operational characteristics of the binder. For improvement of the properties of epoxy resin, following modifiers were selected: polyvinylformalethyl, polyvinyl butyral and composition of linear and aromatic amines (Аramine) as a hardener. Now the big range of hardeners of epoxy resins exists that allows varying technological properties of compositions, and also thermophysical and strength indicators. The nature of the aramin type hardener has a significant impact on the spatial parameters of the mesh, glass transition temperature, and strength characteristics. Epoxy composite materials based on ED-20 modified with polyvinyl butyral were obtained and investigated. It is shown that the composition of resins based on derivatives of polyvinyl butyral and ED-20 allows obtaining composite materials with a higher complex of deformation-strength, adhesion and thermal properties, better water resistance, frost resistance, chemical resistance, and impact strength. The magnitude of the effect depends on the chemical structure, temperature and curing time. In the area of concentrations, where the effect of composite synergy is appearing, the values of strength and stiffness significantly exceed the similar parameters of the individual components of the mixture. The polymer-polymer compositions form their class of materials with diverse specific properties that ensure their competitive application. Coatings with high performance under cyclic loading have been obtained based on epoxy oligomers modified with vinyl-containing compounds.

Keywords: epoxy resins, modification, vinyl-containing compounds, deformation, strength properties

Procedia PDF Downloads 114
2541 Fabrication and Characterization Analysis of La-Sr-Co-Fe-O Perovskite Hollow Fiber Catalyst for Oxygen Removal in Landfill Gas

Authors: Seong Woon Lee, Soo Min Lim, Sung Sik Jeong, Jung Hoon Park

Abstract:

The atmospheric concentration of greenhouse gas (GHG, Green House Gas) is increasing continuously as a result of the combustion of fossil fuels and industrial development. In response to this trend, many researches have been conducted on the reduction of GHG. Landfill gas (LFG, Land Fill Gas) is one of largest sources of GHG emissions containing the methane (CH₄) as a major constituent and can be considered renewable energy sources as well. In order to use LFG by connecting to the city pipe network, it required a process for removing impurities. In particular, oxygen must be removed because it can cause corrosion of pipes and engines. In this study, methane oxidation was used to eliminate oxygen from LFG and perovskite-type ceramic catalysts of La-Sr-Co-Fe-O composition was selected as a catalyst. Hollow fiber catalysts (HFC, Hollow Fiber Catalysts) have attracted attention as a new concept alternative because they have high specific surface area and mechanical strength compared to other types of catalysts. HFC was prepared by a phase-inversion/sintering technique using commercial La-Sr-Co-Fe-O powder. In order to measure the catalysts' activity, simulated LFG was used for feed gas and complete oxidation reaction of methane was confirmed. Pore structure of the HFC was confirmed by SEM image and perovskite structure of single phase was analyzed by XRD. In addition, TPR analysis was performed to verify the oxygen adsorption mechanism of the HFC. Acknowledgement—The project is supported by the ‘Global Top Environment R&D Program’ in the ‘R&D Center for reduction of Non-CO₂ Greenhouse gases’ (Development and demonstration of oxygen removal technology of landfill gas) funded by Korea Ministry of Environment (ME).

Keywords: complete oxidation, greenhouse gas, hollow fiber catalyst, land fill gas, oxygen removal, perovskite catalyst

Procedia PDF Downloads 117
2540 The Significance of Ernest Hemingway's Writing Style in the Development of Georgian Prose of 1950-1960s

Authors: Natia Kvachakidze

Abstract:

The given research aims to study and analyze the influence of Ernest Hemingway’s writing style on Georgian prose of 1950s and 1960s. It is universally known that Ernest Hemingway’s unique writing style has had an enormous effect on various writers. His work remains highly relevant and influential even today. This is especially true about the works written in English, but literary prose created in other languages is not an exception. Certain stylistic peculiarities characteristic for Hemingway’s writing can be traced in literary works written in various languages. It is particularly interesting for us, Georgians, how all these aspects were reflected in Georgian prose of the second-half of XX century. This particular paper (which is a part of a larger research) focuses on major significant peculiarities of Georgian prose of 1950-1960s that might be connected to Hemingway's writing. In this respect, GuramRcheulishvili’s (1934-1960) works should be particularly distinguished (especially his short fiction), but literary works of other Georgian authors are not at all less important. The research involves the analysis of the prose works of some Georgian writers of the given period in the context of tracing similarities and parallels between them and the characteristic features of Ernest Hemingway’s writing style. The use of everyday language as well as short and simple sentences, a concise and sparse style, repetitions, intense dialogues are some of the essential traits in question. Themes like birth and death, war and violence, family, nature, disillusionment also prove to be vitally important for this research. Complex interconnections between the author, the narrator, and the protagonist (often autobiographical) provide another interesting subject to study. At the same time, this paper aims at studying and revealing how Hemingway’s method was reflected and transformed in Georgian prose. In this respect, it is interesting to trace not only the direct effect of Hemingway’s style but also the role of certain Georgian translations of the works of this American writer.

Keywords: hemingway, prose, georgian writers, writing style

Procedia PDF Downloads 184
2539 Investigations of Bergy Bits and Ship Interactions in Extreme Waves Using Smoothed Particle Hydrodynamics

Authors: Mohammed Islam, Jungyong Wang, Dong Cheol Seo

Abstract:

The Smoothed Particle Hydrodynamics (SPH) method is a novel, meshless, and Lagrangian technique based numerical method that has shown promises to accurately predict the hydrodynamics of water and structure interactions in violent flow conditions. The main goal of this study is to build confidence on the versatility of the Smoothed Particle Hydrodynamics (SPH) based tool, to use it as a complementary tool to the physical model testing capabilities and support research need for the performance evaluation of ships and offshore platforms exposed to an extreme and harsh environment. In the current endeavor, an open-sourced SPH-based tool was used and validated for modeling and predictions of the hydrodynamic interactions of a 6-DOF ship and bergy bits. The study involved the modeling of a modern generic drillship and simplified bergy bits in floating and towing scenarios and in regular and irregular wave conditions. The predictions were validated using the model-scale measurements on a moored ship towed at multiple oblique angles approaching a floating bergy bit in waves. Overall, this study results in a thorough comparison between the model scale measurements and the prediction outcomes from the SPH tool for performance and accuracy. The SPH predicted ship motions and forces were primarily within ±5% of the measurements. The velocity and pressure distribution and wave characteristics over the free surface depicts realistic interactions of the wave, ship, and the bergy bit. This work identifies and presents several challenges in preparing the input file, particularly while defining the mass properties of complex geometry, the computational requirements, and the post-processing of the outcomes.

Keywords: SPH, ship and bergy bit, hydrodynamic interactions, model validation, physical model testing

Procedia PDF Downloads 135
2538 Optimization for Guide RNA and CRISPR/Cas9 System Nanoparticle Mediated Delivery into Plant Cell for Genome Editing

Authors: Andrey V. Khromov, Antonida V. Makhotenko, Ekaterina A. Snigir, Svetlana S. Makarova, Natalia O. Kalinina, Valentin V. Makarov, Mikhail E. Taliansky

Abstract:

Due to its simplicity, CRISPR/Cas9 has become widely used and capable of inducing mutations in the genes of organisms of various kingdoms. The aim of this work was to develop applications for the efficient modification of DNA coding sequences of phytoene desaturase (PDS), coilin and vacuolar invertase (Solanum tuberosum) genes, and to develop a new nanoparticles carrier efficient technology to deliver the CRISPR/Cas9 system for editing the plant genome. For each of the genes - coilin, PDS and vacuolar invertase, five single RNA guide (sgRNAs) were synthesized. To determine the most suitable nanoplatform, two types of NP platforms were used: magnetic NPs (MNPS) and gold NPs (AuNPs). To test the penetration efficiency, they were functionalized with fluorescent agents - BSA * FITS and GFP, as well as labeled Cy3 small-sized RNA. To measure the efficiency, a fluorescence and confocal microscopy were used. It was shown that the best of these options were AuNP - both in the case of proteins and in the case of RNA. The next step was to check the possibility of delivering components of the CRISPR/Cas9 system to plant cells for editing target genes. AuNPs were functionalized with a ribonucleoprotein complex consisting of Cas9 and corresponding to target genes sgRNAs, and they were biolistically bombarded to axillary buds and apical meristems of potato plants. After the treatment by the best NP carrier, potato meristems were grown to adult plants. DNA isolated from this plants was sent to a preliminary fragment of the analysis to screen out the non-transformed samples, and then to the NGS. The present work was carried out with the financial support from the Russian Science Foundation (grant No. 16-16-04019).

Keywords: biobombardment, coilin, CRISPR/Cas9, nanoparticles, NPs, PDS, sgRNA, vacuolar invertase

Procedia PDF Downloads 321
2537 Performance Evaluation of Routing Protocol in Cognitive Radio with Multi Technological Environment

Authors: M. Yosra, A. Mohamed, T. Sami

Abstract:

Over the past few years, mobile communication technologies have seen significant evolution. This fact promoted the implementation of many systems in a multi-technological setting. From one system to another, the Quality of Service (QoS) provided to mobile consumers gets better. The growing number of normalized standards extends the available services for each consumer, moreover, most of the available radio frequencies have already been allocated, such as 3G, Wifi, Wimax, and LTE. A study by the Federal Communications Commission (FCC) found that certain frequency bands are partially occupied in particular locations and times. So, the idea of Cognitive Radio (CR) is to share the spectrum between a primary user (PU) and a secondary user (SU). The main objective of this spectrum management is to achieve a maximum rate of exploitation of the radio spectrum. In general, the CR can greatly improve the quality of service (QoS) and improve the reliability of the link. The problem will reside in the possibility of proposing a technique to improve the reliability of the wireless link by using the CR with some routing protocols. However, users declared that the links were unreliable and that it was an incompatibility with QoS. In our case, we choose the QoS parameter "bandwidth" to perform a supervised classification. In this paper, we propose a comparative study between some routing protocols, taking into account the variation of different technologies on the existing spectral bandwidth like 3G, WIFI, WIMAX, and LTE. Due to the simulation results, we observe that LTE has significantly higher availability bandwidth compared with other technologies. The performance of the OLSR protocol is better than other on-demand routing protocols (DSR, AODV and DSDV), in LTE technology because of the proper receiving of packets, less packet drop and the throughput. Numerous simulations of routing protocols have been made using simulators such as NS3.

Keywords: cognitive radio, multi technology, network simulator (NS3), routing protocol

Procedia PDF Downloads 65
2536 Innovative Predictive Modeling and Characterization of Composite Material Properties Using Machine Learning and Genetic Algorithms

Authors: Hamdi Beji, Toufik Kanit, Tanguy Messager

Abstract:

This study aims to construct a predictive model proficient in foreseeing the linear elastic and thermal characteristics of composite materials, drawing on a multitude of influencing parameters. These parameters encompass the shape of inclusions (circular, elliptical, square, triangle), their spatial coordinates within the matrix, orientation, volume fraction (ranging from 0.05 to 0.4), and variations in contrast (spanning from 10 to 200). A variety of machine learning techniques are deployed, including decision trees, random forests, support vector machines, k-nearest neighbors, and an artificial neural network (ANN), to facilitate this predictive model. Moreover, this research goes beyond the predictive aspect by delving into an inverse analysis using genetic algorithms. The intent is to unveil the intrinsic characteristics of composite materials by evaluating their thermomechanical responses. The foundation of this research lies in the establishment of a comprehensive database that accounts for the array of input parameters mentioned earlier. This database, enriched with this diversity of input variables, serves as a bedrock for the creation of machine learning and genetic algorithm-based models. These models are meticulously trained to not only predict but also elucidate the mechanical and thermal conduct of composite materials. Remarkably, the coupling of machine learning and genetic algorithms has proven highly effective, yielding predictions with remarkable accuracy, boasting scores ranging between 0.97 and 0.99. This achievement marks a significant breakthrough, demonstrating the potential of this innovative approach in the field of materials engineering.

Keywords: machine learning, composite materials, genetic algorithms, mechanical and thermal proprieties

Procedia PDF Downloads 57
2535 Delineating Concern Ground in Block Caving – Underground Mine Using Ground Penetrating Radar

Authors: Eric Sitorus, Septian Prahastudhi, Turgod Nainggolan, Erwin Riyanto

Abstract:

Mining by block or panel caving is a mining method that takes advantage of fractures within an ore body, coupled with gravity, to extract material from a predetermined column of ore. The caving column is weakened from beneath through the use of undercutting, after which the ore breaks up and is extracted from below in a continuous cycle. The nature of this method induces cyclical stresses on the pillars of excavations as stress is built up and released over time, which has a detrimental effect on both the installed ground support and the rock mass itself. Ground support capacity, especially on the production where excavation void ratio is highest, is subjected to heavy loading. Strain above threshold of the elongation of support capacity can yield resulting in damage to excavations. Geotechnical engineers must evaluate not only the remnant capacity of ground support systems but also investigate depth of rock mass yield within pillars, backs and floors. Ground Penetrating Radar (GPR) is a geophysical method that has the ability to evaluate rock mass damage using electromagnetic waves. This paper illustrates a case study from the Grasberg mining complex where non-invasive information on the depth of damage and condition of the remaining rock mass was required. GPR with 100 MHz antenna resolution was used to obtain images of the subsurface to determine rehabilitation requirements prior to recommencing production activities. The GPR surveys were used to calibrate the reflection coefficient response of varying rock mass conditions to known Rock Quality Designation (RQD) parameters observed at the mine. The calibrated GPR survey allowed site engineers to map subsurface conditions and plan rehabilitation accordingly.

Keywords: block caving, ground penetrating radar, reflectivity, RQD

Procedia PDF Downloads 139
2534 Adaptive Motion Compensated Spatial Temporal Filter of Colonoscopy Video

Authors: Nidhal Azawi

Abstract:

Colonoscopy procedure is widely used in the world to detect an abnormality. Early diagnosis can help to heal many patients. Because of the unavoidable artifacts that exist in colon images, doctors cannot detect a colon surface precisely. The purpose of this work is to improve the visual quality of colonoscopy videos to provide better information for physicians by removing some artifacts. This work complements a series of work consisting of three previously published papers. In this paper, Optic flow is used for motion compensation, and then consecutive images are aligned/registered to integrate some information to create a new image that has or reveals more information than the original one. Colon images have been classified into informative and noninformative images by using a deep neural network. Then, two different strategies were used to treat informative and noninformative images. Informative images were treated by using Lucas Kanade (LK) with an adaptive temporal mean/median filter, whereas noninformative images are treated by using Lucas Kanade with a derivative of Gaussian (LKDOG) with adaptive temporal median images. A comparison result showed that this work achieved better results than that results in the state- of- the- art strategies for the same degraded colon images data set, which consists of 1000 images. The new proposed algorithm reduced the error alignment by about a factor of 0.3 with a 100% successfully image alignment ratio. In conclusion, this algorithm achieved better results than the state-of-the-art approaches in case of enhancing the informative images as shown in the results section; also, it succeeded to convert the non-informative images that have very few details/no details because of the blurriness/out of focus or because of the specular highlight dominate significant amount of an image to informative images.

Keywords: optic flow, colonoscopy, artifacts, spatial temporal filter

Procedia PDF Downloads 117
2533 A Review on Applications of Evolutionary Algorithms to Reservoir Operation for Hydropower Production

Authors: Nkechi Neboh, Josiah Adeyemo, Abimbola Enitan, Oludayo Olugbara

Abstract:

Evolutionary algorithms are techniques extensively used in the planning and management of water resources and systems. It is useful in finding optimal solutions to water resources problems considering the complexities involved in the analysis. River basin management is an essential area that involves the management of upstream, river inflow and outflow including downstream aspects of a reservoir. Water as a scarce resource is needed by human and the environment for survival and its management involve a lot of complexities. Management of this scarce resource is necessary for proper distribution to competing users in a river basin. This presents a lot of complexities involving many constraints and conflicting objectives. Evolutionary algorithms are very useful in solving this kind of complex problems with ease. Evolutionary algorithms are easy to use, fast and robust with many other advantages. Many applications of evolutionary algorithms, which are population based search algorithm, are discussed. Different methodologies involved in the modeling and simulation of water management problems in river basins are explained. It was found from this work that different evolutionary algorithms are suitable for different problems. Therefore, appropriate algorithms are suggested for different methodologies and applications based on results of previous studies reviewed. It is concluded that evolutionary algorithms, with wide applications in water resources management, are viable and easy algorithms for most of the applications. The results suggested that evolutionary algorithms, applied in the right application areas, can suggest superior solutions for river basin management especially in reservoir operations, irrigation planning and management, stream flow forecasting and real-time applications. The future directions in this work are suggested. This study will assist decision makers and stakeholders on the best evolutionary algorithm to use in varied optimization issues in water resources management.

Keywords: evolutionary algorithm, multi-objective, reservoir operation, river basin management

Procedia PDF Downloads 494
2532 Proactive Change or Adaptive Response: A Study on the Impact of Digital Transformation Strategy Modes on Enterprise Profitability From a Configuration Perspective

Authors: Jing-Ma

Abstract:

Digital transformation (DT) is an important way for manufacturing enterprises to shape new competitive advantages, and how to choose an effective DT strategy is crucial for enterprise growth and sustainable development. Rooted in strategic change theory, this paper incorporates the dimensions of managers' digital cognition, organizational conditions, and external environment into the same strategic analysis framework and integrates the dynamic QCA method and PSM method to study the antecedent grouping of the DT strategy mode of manufacturing enterprises and its impact on corporate profitability based on the data of listed manufacturing companies in China from 2015 to 2019. We find that the synergistic linkage of different dimensional elements can form six equivalent paths of high-level DT, which can be summarized as the proactive change mode of resource-capability dominated as well as adaptive response mode such as industry-guided resource replenishment. Capacity building under complex environments, market-industry synergy-driven, forced adaptation under peer pressure, and the managers' digital cognition play a non-essential but crucial role in this process. Except for individual differences in the market industry collaborative driving mode, other modes are more stable in terms of individual and temporal changes. However, it is worth noting that not all paths that result in high levels of DT can contribute to enterprise profitability, but only high levels of DT that result from matching the optimization of internal conditions with the external environment, such as industry technology and macro policies, can have a significant positive impact on corporate profitability.

Keywords: digital transformation, strategy mode, enterprise profitability, dynamic QCA, PSM approach

Procedia PDF Downloads 27
2531 Research on Internet Attention of Tourism and Marketing Strategy in Northeast Sichuan Economic Zone in China Based on Baidu Index

Authors: Chuanqiao Zheng, Wei Zeng, Haozhen Lin

Abstract:

As of March 2020, the number of Chinese netizens has reached 904 million. The proportion of Internet users accessing the Internet through mobile phones is as high as 99.3%. Under the background of 'Internet +', tourists have a stronger sense of independence in the choice of tourism destinations and tourism products. Tourists are more inclined to learn about the relevant information on tourism destinations and other tourists' evaluations of tourist products through the Internet. The search engine, as an integrated platform that contains a wealth of information, is highly valuable to the analysis of the characteristics of the Internet attention given to various tourism destinations, through big data mining and analysis. This article uses the Baidu Index as the data source, which is one of the products of Baidu Search. The Baidu Index is based on big data, which collects and shares the search results of a large number of Internet users on the Baidu search engine. The big data used in this article includes search index, demand map, population profile, etc. The main research methods used are: (1) based on the search index, analyzing the Internet attention given to the tourism in five cities in Northeast Sichuan at different times, so as to obtain the overall trend and individual characteristics of tourism development in the region; (2) based on the demand map and the population profile, analyzing the demographic characteristics and market positioning of the tourist groups in these cities to understand the characteristics and needs of the target groups; (3) correlating the Internet attention data with the permanent population of each province in China in the corresponding to construct the Boston matrix of the Internet attention rate of the Northeast Sichuan tourism, obtain the tourism target markets, and then propose development strategies for different markets. The study has found that: a) the Internet attention given to the tourism in the region can be categorized into tourist off-season and peak season; the Internet attention given to tourism in different cities is quite different. b) tourists look for information including tour guide information, ticket information, traffic information, weather information, and information on the competing tourism cities; with regard to the population profile, the main group of potential tourists searching for the keywords of tourism in the five prefecture-level cities in Northeast Sichuan are youth. The male to female ratio is about 6 to 4, with males being predominant. c) through the construction of the Boston matrix, it is concluded that the star market for tourism in the Northeast Sichuan Economic Zone includes Sichuan and Shaanxi; the cash cows market includes Hainan and Ningxia; the question market includes Jiangsu and Shanghai; the dog market includes Hubei and Jiangxi. The study concludes with the following planning strategies and recommendations: i) creating a diversified business format that integrates cultural and tourism; ii) creating a brand image of niche tourism; iii) focusing on the development of tourism products; iv) innovating composite three-dimensional marketing channels.

Keywords: Baidu Index, big data, internet attention, tourism

Procedia PDF Downloads 126
2530 An Analysis on Clustering Based Gene Selection and Classification for Gene Expression Data

Authors: K. Sathishkumar, V. Thiagarasu

Abstract:

Due to recent advances in DNA microarray technology, it is now feasible to obtain gene expression profiles of tissue samples at relatively low costs. Many scientists around the world use the advantage of this gene profiling to characterize complex biological circumstances and diseases. Microarray techniques that are used in genome-wide gene expression and genome mutation analysis help scientists and physicians in understanding of the pathophysiological mechanisms, in diagnoses and prognoses, and choosing treatment plans. DNA microarray technology has now made it possible to simultaneously monitor the expression levels of thousands of genes during important biological processes and across collections of related samples. Elucidating the patterns hidden in gene expression data offers a tremendous opportunity for an enhanced understanding of functional genomics. However, the large number of genes and the complexity of biological networks greatly increase the challenges of comprehending and interpreting the resulting mass of data, which often consists of millions of measurements. A first step toward addressing this challenge is the use of clustering techniques, which is essential in the data mining process to reveal natural structures and identify interesting patterns in the underlying data. This work presents an analysis of several clustering algorithms proposed to deals with the gene expression data effectively. The existing clustering algorithms like Support Vector Machine (SVM), K-means algorithm and evolutionary algorithm etc. are analyzed thoroughly to identify the advantages and limitations. The performance evaluation of the existing algorithms is carried out to determine the best approach. In order to improve the classification performance of the best approach in terms of Accuracy, Convergence Behavior and processing time, a hybrid clustering based optimization approach has been proposed.

Keywords: microarray technology, gene expression data, clustering, gene Selection

Procedia PDF Downloads 327
2529 Change of Education Business in the Age of 5G

Authors: Heikki Ruohomaa, Vesa Salminen

Abstract:

Regions are facing huge competition to attract companies, businesses, inhabitants, students, etc. This way to improve living and business environment, which is rapidly changing due to digitalization. On the other hand, from the industry's point of view, the availability of a skilled labor force and an innovative environment are crucial factors. In this context, qualified staff has been seen to utilize the opportunities of digitalization and respond to the needs of future skills. World Manufacturing Forum has stated in the year 2019- report that in next five years, 40% of workers have to change their core competencies. Through digital transformation, new technologies like cloud, mobile, big data, 5G- infrastructure, platform- technology, data- analysis, and social networks with increasing intelligence and automation, enterprises can capitalize on new opportunities and optimize existing operations to achieve significant business improvement. Digitalization will be an important part of the everyday life of citizens and present in the working day of the average citizen and employee in the future. For that reason, the education system and education programs on all levels of education from diaper age to doctorate have been directed to fulfill this ecosystem strategy. Goal: The Fourth Industrial Revolution will bring unprecedented change to societies, education organizations and business environments. This article aims to identify how education, education content, the way education has proceeded, and overall whole the education business is changing. Most important is how we should respond to this inevitable co- evolution. Methodology: The study aims to verify how the learning process is boosted by new digital content, new learning software and tools, and customer-oriented learning environments. The change of education programs and individual education modules can be supported by applied research projects. You can use them in making proof- of- the concept of new technology, new ways to teach and train, and through the experiences gathered change education content, way to educate and finally education business as a whole. Major findings: Applied research projects can prove the concept- phases on real environment field labs to test technology opportunities and new tools for training purposes. Customer-oriented applied research projects are also excellent for students to make assignments and use new knowledge and content and teachers to test new tools and create new ways to educate. New content and problem-based learning are used in future education modules. This article introduces some case study experiences on customer-oriented digital transformation projects and how gathered knowledge on new digital content and a new way to educate has influenced education. The case study is related to experiences of research projects, customer-oriented field labs/learning environments and education programs of Häme University of Applied Sciences.

Keywords: education process, digitalization content, digital tools for education, learning environments, transdisciplinary co-operation

Procedia PDF Downloads 179
2528 Day Ahead and Intraday Electricity Demand Forecasting in Himachal Region using Machine Learning

Authors: Milan Joshi, Harsh Agrawal, Pallaw Mishra, Sanand Sule

Abstract:

Predicting electricity usage is a crucial aspect of organizing and controlling sustainable energy systems. The task of forecasting electricity load is intricate and requires a lot of effort due to the combined impact of social, economic, technical, environmental, and cultural factors on power consumption in communities. As a result, it is important to create strong models that can handle the significant non-linear and complex nature of the task. The objective of this study is to create and compare three machine learning techniques for predicting electricity load for both the day ahead and intraday, taking into account various factors such as meteorological data and social events including holidays and festivals. The proposed methods include a LightGBM, FBProphet, combination of FBProphet and LightGBM for day ahead and Motifs( Stumpy) based on Mueens algorithm for similarity search for intraday. We utilize these techniques to predict electricity usage during normal days and social events in the Himachal Region. We then assess their performance by measuring the MSE, RMSE, and MAPE values. The outcomes demonstrate that the combination of FBProphet and LightGBM method is the most accurate for day ahead and Motifs for intraday forecasting of electricity usage, surpassing other models in terms of MAPE, RMSE, and MSE. Moreover, the FBProphet - LightGBM approach proves to be highly effective in forecasting electricity load during social events, exhibiting precise day ahead predictions. In summary, our proposed electricity forecasting techniques display excellent performance in predicting electricity usage during normal days and special events in the Himachal Region.

Keywords: feature engineering, FBProphet, LightGBM, MASS, Motifs, MAPE

Procedia PDF Downloads 75
2527 Saudi Women Facing Challenges in a Mixed-Gender Work Environment

Authors: A. Aldawsari

Abstract:

The complex issue of women working in a mixed-gender work environment has its roots in social and cultural factors. This research was done to identify and explore the social and cultural challenges Saudi women face in a mixed-gender work environment in Saudi Arabia. Over the years, Saudi women in mixed-gender work environments in Saudi Arabia have been of interest in various research areas, especially within the context of a hospital work environment. This research, which involves a female researcher interacting one-on-one with Saudi women, will address this issue as well as the effect of the 2030 Vision in Saudi Arabia, and it will aim to include several new fields of work environments for women in Saudi Arabia. The aim of this research is to examine the perceptions of Saudi women who work in a mixed gender environment regarding the general empowerment of women in these settings. The objective of this research is to explore the cultural and social challenges that influence Saudi women's rights to work in a mixed-gender environment in Saudi Arabia. The significance of this research lies in the fact that there is an urgency to resolve issue of female employment in Saudi Arabia, where Saudi women still suffer from inequality in employment opportunity. Although the Saudi government is seeking to empower women by integrating them into a mixed-gender work environment, which is a key goal and prominent social change advocated for in the 2030 Vision, this same goal is one of the main challenges in the face of achieving female empowerment. The methodology section focuses on appropriate methods that can be used to study the effect of social and cultural challenges on the employment of women. It then determines the conditions and limitations of the research by applying a qualitative research approach to the investigation and analysing the data collected from the interviews. A statistical analysis tool, such as NVivo, will be used for the qualitative analysis of the interviews. The study found that the factor most responsible for creating social and cultural challenges is family—whether close family or distant family—more so than tribe or community.

Keywords: women, work, mixed-gender, environment

Procedia PDF Downloads 138
2526 Curcumin Derivatives as Potent Inhibitors of Inducible Nitric Oxide Synthase in Osteoarthritis: A Molecular Docking Study

Authors: F. Ambreen, A.Naheed

Abstract:

Osteoarthritis (OA) is a degenerative disorder affecting millions of people worldwide. Nitric oxide (NO) was found to play a catabolic role in the development of osteoarthritis. It is a toxic free radical gas generated during the metabolism of L-arginine by the enzyme Nitric oxide synthase (NOS). Inducible Nitric Oxide Synthase (iNOS) is one of the isoform of NOS, and its overexpression leads to the excessive formation of NO that results in pathophysiological joint conditions. Several synthetic anti-inflammatory drugs and inhibitors are present to date, but all showed side effects and complications. Therefore, the pursuit of natural disease-modifying drugs remains a top priority. Curcumin is an active component of turmeric, and the past few decades have witnessed intense research devoted to the antioxidant and anti-inflammatory properties of curcumin. The present study focused on curcumin and its derivatives in the search for new iNOS inhibitors for the treatment of osteoarthritis. We conducted a molecular docking study on curcumin and its four derivatives; cyclocurcumin, tetrahydrocurcumin, demethoxycurcumin and curcumin monoglucoside with iNOS using CLC Drug discovery work bench 3.02. We selected two co-crystallized ligands for this study; tetrahydrobiopterin and N-omega-propyl-L-arginine present in complex with the enzyme iNOS. Results showed the best binding affinity of N-omega-propyl-L-arginine with cyclocurcumin and curcumin monoglucoside that exhibit binding energies of -65.2 kcal/mol and -68 kcal/mol respectively. Whereas with tetrahydrobiopterin, best binding scores of -64.7 kcal/mol and -62.2 kcal/mol were found with tetrahydrocurcumin and demethoxycurcumin respectively. This information could open doors of research for the designing of novel drugs using herbs such as curcumin for the treatment of inflammatory joint diseases.

Keywords: curcumin, iNOS, molecular docking, osteoarthritis

Procedia PDF Downloads 131
2525 Smart Kids Coacher: Model for Childhood Obesity in Thailand

Authors: Pornwipa Daoduong, Jairak Loysongkroa, Napaphan Viriyautsahakul, Wachira Pengjuntr

Abstract:

Obesity is on of serious health problem in many countries including Thailand where the prevalence of childhood obesity has increased from 8.8 % in 2014 to 9.5 % in 2015 and 12.9 % in 2016. The Ministry of Public Health’s objective is to reduce prevalence of childhood Obesity to 10% or lower in 2017, by implementing the measure in relation to nutrition, physical activity (PA) and environment in 6,405 targeted school with proportion of school children with obesity is higher than 10 %. Smart Kids Coacher (SKC)” is a new innovative intervention created by Department of Health and consists of 252 regional and provincial officers. The SKC aims to train the super trainers about food and nutrition.PA and emotional control through implementing three learning activities including 1) Food for Fun is about Nutrition flag, Nutrition label, food portion and Nutrition surveillance; 2) Fun for Fit includes intermediated- and advanced level workouts within 60 minutes such as kangaroo dance, Chair stretching; and 3) Control emotional is about to prevent probability of access to unhealthy food, to ensure for having meal in appropriate time, and to recruit peers and family member to increase awareness among target groups. Apart from providing SKC lesson for 3,828 officers at district level, a number of students (2,176) as role model are selected through implementing “Smart Kids Leader: (SKL)”.Consequently. The SKC lowers proportion of childhood obesity from 17% in 2012 to 12.9% in 2016. Further, the SKC coverage should be expanded to other setting. Policy maker should be aware of the important of reduction of the prevalence of childhood obesity, and it’s related risk. Network and Collaboration between stakeholders are essential as well as an improvement of holistic intervention and knowledge “NuPETHS” for kids in the future.

Keywords: childhood obesity, model, obesity, smart kids coacher

Procedia PDF Downloads 246
2524 Roof and Road Network Detection through Object Oriented SVM Approach Using Low Density LiDAR and Optical Imagery in Misamis Oriental, Philippines

Authors: Jigg L. Pelayo, Ricardo G. Villar, Einstine M. Opiso

Abstract:

The advances of aerial laser scanning in the Philippines has open-up entire fields of research in remote sensing and machine vision aspire to provide accurate timely information for the government and the public. Rapid mapping of polygonal roads and roof boundaries is one of its utilization offering application to disaster risk reduction, mitigation and development. The study uses low density LiDAR data and high resolution aerial imagery through object-oriented approach considering the theoretical concept of data analysis subjected to machine learning algorithm in minimizing the constraints of feature extraction. Since separating one class from another in distinct regions of a multi-dimensional feature-space, non-trivial computing for fitting distribution were implemented to formulate the learned ideal hyperplane. Generating customized hybrid feature which were then used in improving the classifier findings. Supplemental algorithms for filtering and reshaping object features are develop in the rule set for enhancing the final product. Several advantages in terms of simplicity, applicability, and process transferability is noticeable in the methodology. The algorithm was tested in the different random locations of Misamis Oriental province in the Philippines demonstrating robust performance in the overall accuracy with greater than 89% and potential to semi-automation. The extracted results will become a vital requirement for decision makers, urban planners and even the commercial sector in various assessment processes.

Keywords: feature extraction, machine learning, OBIA, remote sensing

Procedia PDF Downloads 364
2523 Applying Resilience Engineering to improve Safety Management in a Construction Site: Design and Validation of a Questionnaire

Authors: M. C. Pardo-Ferreira, J. C. Rubio-Romero, M. Martínez-Rojas

Abstract:

Resilience Engineering is a new paradigm of safety management that proposes to change the way of managing the safety to focus on the things that go well instead of the things that go wrong. Many complex and high-risk sectors such as air traffic control, health care, nuclear power plants, railways or emergencies, have applied this new vision of safety and have obtained very positive results. In the construction sector, safety management continues to be a problem as indicated by the statistics of occupational injuries worldwide. Therefore, it is important to improve safety management in this sector. For this reason, it is proposed to apply Resilience Engineering to the construction sector. The Construction Phase Health and Safety Plan emerges as a key element for the planning of safety management. One of the key tools of Resilience Engineering is the Resilience Assessment Grid that allows measuring the four essential abilities (respond, monitor, learn and anticipate) for resilient performance. The purpose of this paper is to develop a questionnaire based on the Resilience Assessment Grid, specifically on the ability to learn, to assess whether a Construction Phase Health and Safety Plans helps companies in a construction site to implement this ability. The research process was divided into four stages: (i) initial design of a questionnaire, (ii) validation of the content of the questionnaire, (iii) redesign of the questionnaire and (iii) application of the Delphi method. The questionnaire obtained could be used as a tool to help construction companies to evolve from Safety-I to Safety-II. In this way, companies could begin to develop the ability to learn, which will serve as a basis for the development of the other abilities necessary for resilient performance. The following steps in this research are intended to develop other questions that allow evaluating the rest of abilities for resilient performance such as monitoring, learning and anticipating.

Keywords: resilience engineering, construction sector, resilience assessment grid, construction phase health and safety plan

Procedia PDF Downloads 140
2522 Power Quality Modeling Using Recognition Learning Methods for Waveform Disturbances

Authors: Sang-Keun Moon, Hong-Rok Lim, Jin-O Kim

Abstract:

This paper presents a Power Quality (PQ) modeling and filtering processes for the distribution system disturbances using recognition learning methods. Typical PQ waveforms with mathematical applications and gathered field data are applied to the proposed models. The objective of this paper is analyzing PQ data with respect to monitoring, discriminating, and evaluating the waveform of power disturbances to ensure the system preventative system failure protections and complex system problem estimations. Examined signal filtering techniques are used for the field waveform noises and feature extractions. Using extraction and learning classification techniques, the efficiency was verified for the recognition of the PQ disturbances with focusing on interactive modeling methods in this paper. The waveform of selected 8 disturbances is modeled with randomized parameters of IEEE 1159 PQ ranges. The range, parameters, and weights are updated regarding field waveform obtained. Along with voltages, currents have same process to obtain the waveform features as the voltage apart from some of ratings and filters. Changing loads are causing the distortion in the voltage waveform due to the drawing of the different patterns of current variation. In the conclusion, PQ disturbances in the voltage and current waveforms indicate different types of patterns of variations and disturbance, and a modified technique based on the symmetrical components in time domain was proposed in this paper for the PQ disturbances detection and then classification. Our method is based on the fact that obtained waveforms from suggested trigger conditions contain potential information for abnormality detections. The extracted features are sequentially applied to estimation and recognition learning modules for further studies.

Keywords: power quality recognition, PQ modeling, waveform feature extraction, disturbance trigger condition, PQ signal filtering

Procedia PDF Downloads 189
2521 Exploring the Role of Phosphorylation on the β-lactamase Activity of OXA24/40

Authors: Dharshika Rajalingam, Jeffery W. Peng

Abstract:

Acinetobacter baumannii is a challenging threat to global health, recognized as a multidrug-resistant pathogen. -lactamase is one of the principal resistant mechanisms developed by A. baumannii to survive against -lactam antibiotics. OXA24/40 is one of the types of -lactamases, a well-documented carbapenem hydrolyzing class D -lactamases (CHDL). It was revealed that OXA24/40 showed resistivity against doripenem, one of the carbapenems, by two different mechanisms as hydrolysis and -lactonization. Furthermore, it undergoes genetic mutations to broaden the -lactamase activity to survive against antibiotic environments. One of the crucial characterizations of prokaryotes to develop adaptation is post-translational modification (PTM), mainly phosphorylation. However, the PTM of OXA24/40 is an unknown feature, and the impact of PTM on antibiotic resistivity is yet to be explored. We approached these hypotheses using NMR and MS techniques and found that the OXA24/40 could be phosphorylated in vitro. The Ser81 at the active STFK motif of OXA24/40 of catalytic pocket was identified as the site of phosphorylation using 1D 31P NMR experiment, whereas S81 is required to form an acyl-enzyme complex between enzyme and -lactam antibiotics. The activity of completely phosphorylated OXA24/40 wild type against doripenem revealed that the phosphorylation of active Ser inactivates the -lactamases activity of OXA24/40. The 1D 1H CPMG NMR-based activity assay of phosphorylated OXA24/40 against doripenem confirmed that both deactivating mechanisms are inhibited by phosphorylation. Carbamylated Lysine at the active STFK motif is one of the critical features of CHDL required for the acylation and deacylation reactions of the enzyme. The 1D 13C NMR experiment confirmed that the K84 of phosphorylated OXA24/40 is de-carbamylated. Phosphorylation of OXA24/40 affects both active S81 and carbamylated K84 of OXA24 that are required for the resistivity of -lactamase. So, phosphorylation could be one of the reasons for the genetic mutation of OXA24/40 for the development of antibiotic resistivity. Further research can lead to an understanding of the effect of phosphorylation on the clinical mutants of the OXA24-like -lactamase family on the broadening of -lactamase activity.

Keywords: OXA24/40, phosphorylation, clinical mutants, resistivity

Procedia PDF Downloads 83
2520 Phytosynthesized Iron Nanoparticles Elicited Growth and Biosynthesis of Steviol Glycosides in Invitro Stevia rebaudiana Plant Cultures

Authors: Amir Ali, Laura Yael Mendoza

Abstract:

The application of nanomaterials is becoming the most effective strategy of elicitation to produce a desirable level of plant biomass with complex medicinal compounds. This study was designed to check the influence of phytosynthesized iron nanoparticles (FeNPs) on physical growth characteristics, antioxidant status, and production of steviol glycosides of in vitro grown Stevia rebaudiana. Effect of different concentrations of iron nanoparticles replacement of iron sulfate in MS medium (stock solution) on invitro stevia plant growth following positive control (MS basal medium), negative control (iron sulfate devoid medium), iron sulfate devoid MS medium and supplemented with FeNPs at different concentrations (5.6 mg/L, 11.2 mg/L, 16.8 mg/L, 22.4 mg/L) was evaluated. The iron deficiency leads to a drastic reduction in plant growth. In contrast, applying FeNPs leads to improvement in plant height, leave diameter, improved leave morphology, etc., in a concentration-dependent manner. Furthermore, the stress caused by FeNPs at 16.8 mg/L in cultures produced higher levels of total phenolic content (3.7 ± 0.042 mg/g dry weight: DW) and total flavonoid content (1.9 ± 0.022 mg/g DW and antioxidant activity (78 ± 4.6%). In addition, plants grown in the presence of FeNPs at 22.4 mg/L resulted in higher enzymatic antioxidant activities (SOD = 3.5 ± 0.042 U/mg; POD = 2.6 ± 0.026 U/mg; CAT = 2.8 ± 0.034 U/mg and APx = 3.6 ± 0.043 U/ mg), respectively. Furthermore, exposure to a higher dose of FeNPs (22.4 mg/L) exhibited the maximum amount of stevioside (stevioside: 4.6 ± 0.058 mg/g (DW) and rebaudioside A: 4.9 ± 0.068 mg/g DW) as compared to other doses. The current investigation confirms the effectiveness of FeNPs in growth media. It offers a suitable prospect for commercially desirable production of S. rebaudiana biomass with higher sweet glycosides profiles in vitro.

Keywords: cell culture, stevia, iron nanoparticles, antioxidants

Procedia PDF Downloads 101
2519 Neotectonic Characteristics of the Western Part of Konya, Central Anatolia, Turkey

Authors: Rahmi Aksoy

Abstract:

The western part of Konya consists of an area of block faulted basin and ranges. Present day topography is characterized by alternating elongate mountains and depressions trending east-west. A number of depressions occur in the region. One of the large depressions is the E-W trending Kızılören-Küçükmuhsine (KK basin) basin bounded on both sides by normal faults and located on the west of the Konya city. The basin is about 5-12 km wide and 40 km long. Ranges north and south of the basin are composed of undifferentiated low grade metamorphic rocks of Silurian-Cretaceous age and smaller bodies of ophiolites of probable Cretaceous age. The basin fill consists of the upper Miocene-lower Pliocene fluvial, lacustrine, alluvial sediments and volcanic rocks. The younger and undeformed Plio-Quaternary basin fill unconformably overlies the older basin fill and is composed predominantly of conglomerate, mudstone, silt, clay and recent basin floor deposits. The paleostress data on the striated fault planes in the basin indicates NW-SE extension and associated with an NE-SW compression. The eastern end of the KK basin is cut and terraced by the active Konya fault zone. The Konya fault zone is NE trending, east dipping normal fault forming the western boundary of the Konya depression. The Konya depression consists mainly of Plio-Quaternary alluvial complex and recent basin floor sediments. The structural data gathered from the Konya fault zone support normal faulting with a small amount of dextral strike-slip tensional tectonic regime that shaped under the WNW-ESE extensional stress regime.

Keywords: central Anatolia, fault kinematics, Kızılören-Küçükmuhsine basin, Konya fault zone, neotectonics

Procedia PDF Downloads 364
2518 Predicting Match Outcomes in Team Sport via Machine Learning: Evidence from National Basketball Association

Authors: Jacky Liu

Abstract:

This paper develops a team sports outcome prediction system with potential for wide-ranging applications across various disciplines. Despite significant advancements in predictive analytics, existing studies in sports outcome predictions possess considerable limitations, including insufficient feature engineering and underutilization of advanced machine learning techniques, among others. To address these issues, we extend the Sports Cross Industry Standard Process for Data Mining (SRP-CRISP-DM) framework and propose a unique, comprehensive predictive system, using National Basketball Association (NBA) data as an example to test this extended framework. Our approach follows a holistic methodology in feature engineering, employing both Time Series and Non-Time Series Data, as well as conducting Explanatory Data Analysis and Feature Selection. Furthermore, we contribute to the discourse on target variable choice in team sports outcome prediction, asserting that point spread prediction yields higher profits as opposed to game-winner predictions. Using machine learning algorithms, particularly XGBoost, results in a significant improvement in predictive accuracy of team sports outcomes. Applied to point spread betting strategies, it offers an astounding annual return of approximately 900% on an initial investment of $100. Our findings not only contribute to academic literature, but have critical practical implications for sports betting. Our study advances the understanding of team sports outcome prediction a burgeoning are in complex system predictions and pave the way for potential profitability and more informed decision making in sports betting markets.

Keywords: machine learning, team sports, game outcome prediction, sports betting, profits simulation

Procedia PDF Downloads 109
2517 Effects of Electric Field on Diffusion Coefficients and Share Viscosity in Dusty Plasmas

Authors: Muhammad Asif ShakoorI, Maogang He, Aamir Shahzad

Abstract:

Dusty (complex) plasmas contained micro-sized charged dust particles in addition to ions, electrons, and neutrals. It is typically low-temperature plasma and exists in a wide variety of physical systems. In this work, the effects of an external electric field on the diffusion coefficient and share viscosity are investigated through equilibrium molecular dynamics (EMD) simulations in three-dimensional (3D) strongly coupled (SC) dusty plasmas (DPs). The effects of constant and varying normalized electric field strength (E*) have been computed along with different combinations of plasma states on the diffusion of dust particles using EMD simulations. Diffusion coefficient (D) and share viscosity (η) along with varied system sizes, in the limit of varying E* values, is accounted for an appropriate range of plasma coupling (Γ) and screening strength (κ) parameters. At varying E* values, it is revealed that the 3D diffusion coefficient increases with increasing E* and κ; however, it decreases with an increase of Γ but within statistical limits. The share viscosity increases with increasing E*and Γ and decreases with increasing κ. New simulation results are outstanding that the combined effects of electric field and screening strengths give well-matched values of Dandη at low-intermediate to large Γ with varying small-intermediate to large N. The current EMD simulation outcomes under varying electric field strengths are in satisfactory well-matched with previous known simulation data of EMD simulations of the SC-DPs. It has been shown that the present EMD simulation data enlarged the range of E* strength up to 0.1 ≤ E*≤ 1.0 in order to find the linear range of the DPs system and to demonstrate the fundamental nature of electric field linearity of 3D SC-DPs.

Keywords: strongly coupled dusty plasma, diffusion coefficient, share viscosity, molecular dynamics simulation, electric field strength

Procedia PDF Downloads 196