Search results for: zinc supplementation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 982

Search results for: zinc supplementation

142 The Ability of Consortium Wastewater Protozoan and Bacterial Species to Remove Chemical Oxygen Demand in the Presence of Nanomaterials under Varying pH Conditions

Authors: Anza-Vhudziki Mboyi, Ilunga Kamika, Maggy Momba

Abstract:

The aim of this study was to ascertain the survival limit and capability of commonly found wastewater protozoan (Aspidisca sp, Trachelophyllum sp, and Peranema sp) and bacterial (Bacillus licheniformis, Brevibacillus laterosporus, and Pseudomonas putida) species to remove COD while exposed to commercial nanomaterials under varying pH conditions. The experimental study was carried out in modified mixed liquor media adjusted to various pH levels (pH 2, 7 and 10), and a comparative study was performed to determine the difference between the cytotoxicity effects of commercial zinc oxide (nZnO) and silver (nAg) nanomaterials (NMs) on the target wastewater microbial communities using standard methods. The selected microbial communities were exposed to lethal concentrations ranging from 0.015 g/L to 40 g/L for nZnO and from 0.015 g/L to 2 g/L for nAg for a period of 5 days of incubation at 30°C (100 r/min). Compared with the absence of NMs in wastewater mixed liquor, the relevant environmental concentration ranging between 10 µg/L and 100 µg/L, for both nZnO and nAg caused no adverse effects, but the presence of 20 g of nZnO/L and 0.65 g of nAg/L significantly inhibited microbial growth. Statistical evidence showed that nAg was significantly more toxic compared to nZnO, but there was an insignificant difference in toxicity between microbial communities and pH variations. A significant decrease in the removal of COD by microbial populations was observed in the presence of NMs with a moderate correlation of r = 0.3 to r = 0.7 at all pH levels. It was evident that there was a physical interaction between commercial NMs and target wastewater microbial communities; although not quantitatively assessed, cell morphology and cell death were observed. Such phenomena suggest the high resilience of the microbial community, but it is the accumulation of NMs that will have adverse effects on the performance in terms of COD removal.

Keywords: bacteria, biological treatment, chemical oxygen demand (COD) and nanomaterials, consortium, pH, protozoan

Procedia PDF Downloads 275
141 Biogas Potential of Deinking Sludge from Wastepaper Recycling Industry: Influence of Dewatering Degree and High Calcium Carbonate Content

Authors: Moses Kolade Ogun, Ina Korner

Abstract:

To improve on the sustainable resource management in the wastepaper recycling industry, studies into the valorization of wastes generated by the industry are necessary. The industry produces different residues, among which is the deinking sludge (DS). The DS is generated from the deinking process and constitutes a major fraction of the residues generated by the European pulp and paper industry. The traditional treatment of DS by incineration is capital intensive due to energy requirement for dewatering and the need for complementary fuel source due to DS low calorific value. This could be replaced by a biotechnological approach. This study, therefore, investigated the biogas potential of different DS streams (different dewatering degrees) and the influence of the high calcium carbonate content of DS on its biogas potential. Dewatered DS (solid fraction) sample from filter press and the filtrate (liquid fraction) were collected from a partner wastepaper recycling company in Germany. The solid fraction and the liquid fraction were mixed in proportion to realize DS with different water content (55–91% fresh mass). Spiked samples of DS using deionized water, cellulose and calcium carbonate were prepared to simulate DS with varying calcium carbonate content (0– 40% dry matter). Seeding sludge was collected from an existing biogas plant treating sewage sludge in Germany. Biogas potential was studied using a 1-liter batch test system under the mesophilic condition and ran for 21 days. Specific biogas potential in the range 133- 230 NL/kg-organic dry matter was observed for DS samples investigated. It was found out that an increase in the liquid fraction leads to an increase in the specific biogas potential and a reduction in the absolute biogas potential (NL-biogas/ fresh mass). By comparing the absolute biogas potential curve and the specific biogas potential curve, an optimal dewatering degree corresponding to a water content of about 70% fresh mass was identified. This degree of dewatering is a compromise when factors such as biogas yield, reactor size, energy required for dewatering and operation cost are considered. No inhibitory influence was observed in the biogas potential of DS due to the reported high calcium carbonate content of DS. This study confirms that DS is a potential bioresource for biogas production. Further optimization such as nitrogen supplementation due to DS high C/N ratio can increase biogas yield.

Keywords: biogas, calcium carbonate, deinking sludge, dewatering, water content

Procedia PDF Downloads 137
140 New Biobased(Furanic-Sulfonated) Poly(esteramide)s

Authors: Souhir Abid

Abstract:

The growing interest in vegetal biomass as an alternative for fossil resources has stimulated the development of numerous classes of monomers. Polymers from renewable resources have attracted an increasing amount of attention over the last two decades, predominantly due to two major reasons (i) firstly environmental concerns, and (ii) secondly the use of monomers from renewable feedstock is a steadily growing field of interest in order to reduce the amount of petroleum consumed in the chemical industry and to open new high-value-added markets to agriculture. Furanic polymers have been considered as alternative environmentally friendly polymers. In our earlier work, modifying furanic polyesters by incorporation of amide functions along their backbone, lead to a particular class of polymer ‘poly(ester-amide)s’, was investigated to combine the excellent mechanical properties of polyamides and the biodegradability of polyesters. As a continuation of our studies on this family of polymer, a series of furanic poly(ester-amide)s bearing sulfonate groups in the main chain were synthesized from 5,5’-Isopropylidene-bis(ethyl 2-furoate), dimethyl 5-sodiosulfoisophthalate, ethylene glycol and hexamethylene diamine by melt polycondensation using zinc acetate as a catalyst. In view of the complexity of the NMR spectrum analysis of the resulting sulfonated poly(ester-amide)s, we found that it is useful to prepare initially the corresponding homopolymers: sulfonated polyesters and polyamides. Structural data of these polymers will be used as a basic element in 1H NMR characterization. The hydrolytic degradation in acidic aqueous conditions (pH = 4,35 ) at 37 °C over the period of four weeks show that the mechanism of the hydrolysis of poly(ester amide)s was elucidated in relation with the microstructure. The strong intermolecular hydrogen bonding interactions between amide functions and water molecules increases the hydrophilicity of the macromolecular chains and consequently their hydrolytic degradation.

Keywords: furan, hydrolytic degradation, polycondensation, poly(ester amide)

Procedia PDF Downloads 269
139 Recovery of Selenium from Scrubber Sludge in Copper Process

Authors: Lakshmikanth Reddy, Bhavin Desai, Chandrakala Kari, Sanjay Sarkar, Pradeep Binu

Abstract:

The sulphur dioxide gases generated as a by-product of smelting and converting operations of copper concentrate contain selenium apart from zinc, lead, copper, cadmium, bismuth, antimony, and arsenic. The gaseous stream is treated in waste heat boiler, electrostatic precipitator and scrubbers to remove coarse particulate matter in order to produce commercial grade sulfuric acid. The gas cleaning section of the acid plant uses water to scrub the smelting gases. After scrubbing, the sludge settled at the bottom of the scrubber, was analyzed in present investigation. It was found to contain 30 to 40 wt% copper and selenium up to 40 wt% selenium. The sludge collected during blow-down is directly recycled to the smelter for copper recovery. However, the selenium is expected to again vaporize due to high oxidation potential during smelting and converting, causing accumulation of selenium in sludge. In present investigation, a roasting process has been developed to recover the selenium before the copper recovery from the sludge at smelter. Selenium is associated with copper in sludge as copper selenide, as determined by X-ray diffraction and electron microscopy. The thermodynamic and thermos-gravimetry study revealed that the copper selenide phase present in the sludge was amenable to oxidation at 600°C forming oxides of copper and selenium (Cu-Se-O). However, the dissociation of selenium from the copper oxide was made possible by sulfatation using sulfur dioxide between 450 to 600°C, resulting into the formation of CuSO₄ (s) and SeO₂ (g). Lab scale trials were carried out in vertical tubular furnace to determine the optimum roasting conditions with respect to roasting time, temperature and molar ratio of O₂:SO₂. Using these optimum conditions, selenium up to 90 wt% in the form of SeO₂ vapors could be recovered from the sludge in a large-scale commercial roaster. Roasted sludge free from the selenium and containing oxides and sulfates of copper could now be recycled in the smelter for copper recovery.

Keywords: copper, selenium, copper selenide, sludge, roasting, SeO₂

Procedia PDF Downloads 179
138 Plasma Pretreatment for Improving the Durability of Antibacterial Activity of Cotton Using ZnO Nanoparticles

Authors: Sheila Shahidi, Hootan Rezaee, Abosaeed Rashidi, Mahmood Ghoranneviss

Abstract:

Plasma treatment has an explosive increase in interest and use in industrial applications as for example in medical, biomedical, automobile, electronics, semiconductor and textile industry. A lot of intensive basic research has been performed in the last decade in the field of textiles along with technical textiles. Textile manufacturers and end-users alike have been searching for ways to improve the surface properties of natural and man-made fibers. Specifically, there is a need to improve adhesion and wettability. Functional groups may be introduced onto the fiber surface by using gas plasma treatments, improving fiber surface properties without affecting the fiber’s bulk properties. In this research work, ZnO nanoparticles (ZnO-NPs) were insitue synthesized by sonochemical method at room temperature on both untreated and plasma pretreated cotton woven fabric. Oxygen and nitrogen plasmas were used for pre-functionalization of cotton fabric. And the effect of oxygen and nitrogen pre-functionalization on adhesion properties between ZnO nanoparticles and cotton surface were studied. The results show that nanoparticles with average sizes of 20-100 nm with different morphologies have been created on the surface of samples. Synthesis of ZnO-NPs was varied in the morphological transformation by changes in zinc acetate dehydrate concentration. Characterizations were carried out using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Inductive coupled plasma (ICP) and Spectrophotometery. The antibacterial activities of the fabrics were assessed semi-quantitatively by the colonies count method. The results show that the finished fabric demonstrated significant antibacterial activity against S. aureus in antibacterial test. The wash fastness of both untreated and plasma pretreated samples after 30 times of washing was investigated. The results showed that the parameters of plasma reactor plays very important role for improving the antibacterial durability.

Keywords: antibacterial activity, cotton, fabric, nanoparticles, plasma

Procedia PDF Downloads 509
137 Optimization of Sintering Process with Deteriorating Quality of Iron Ore Fines

Authors: Chandra Shekhar Verma, Umesh Chandra Mishra

Abstract:

Blast Furnace performance mainly depends on the quality of sinter as a major portion of iron-bearing material occupies by it hence its quality w.r.t. Tumbler Index (TI), Reducibility Index (RI) and Reduction Degradation Index (RDI) are the key performance indicators of sinter plant. Now it became very tough to maintain the desired quality with the increasing alumina (Al₂O₃) content in iron fines and study is focused on it. Alumina is a refractory material and required more heat input to fuse thereby affecting the desired sintering temperature, i.e. 1300°C. It goes in between the grain boundaries of the bond and makes it weaker. Sinter strength decreases with increasing alumina content, and weak sinter generates more fines thereby reduces the net sinter production as well as plant productivity. Presence of impurities beyond the acceptable norm: such as LOI, Al₂O₃, MnO, TiO₂, K₂O, Na₂O, Hydrates (Goethite & Limonite), SiO₂, phosphorous and zinc, has led to greater challenges in the thrust areas such as productivity, quality and cost. The ultimate aim of this study is maintaining the sinter strength even with high Al₂O without hampering the plant productivity. This study includes mineralogy test of iron fines to find out the fraction of different phases present in the ore and phase analysis of product sinter to know the distribution of different phases. Corrections were done focusing majorly on varying Al₂O₃/SiO₂ ratio, basicity: B2 (CaO/SiO₂), B3 (CaO+MgO/SiO₂) and B4 (CaO+MgO/SiO₂+Al₂O₃). The concept of Alumina / Silica ratio, B3 & B4 found to be useful. We used to vary MgO, Al₂O₃/SiO₂, B2, B3 and B4 to get the desired sinter strength even at high alumina (4.2 - 4.5%) in sinter. The study concludes with the establishment of B4, and Al₂O₃/SiO₂ ratio in between 1.53-1.60 and 0.63- 0.70 respectively and have achieved tumbler index (Drum Index) 76 plus with the plant productivity of 1.58-1.6 t/m2/hr. at JSPL, Raigarh. Study shows that despite of high alumina in sinter, its physical quality can be controlled by maintaining the above-mentioned parameters.

Keywords: Basicity-2, Basicity-3, Basicity-4, Sinter

Procedia PDF Downloads 149
136 Effect of Cigarette Smoke on Micro-Architecture of Respiratory Organs with and without Dietary Probiotics

Authors: Komal Khan, Hafsa Zaneb, Saima Masood, Muhammad Younus, Sanan Raza

Abstract:

Cigarette smoke induces many physiological and pathological changes in respiratory tract like goblet cell hyperplasia and regional distention of airspaces. It is also associated with elevation of inflammatory profiles in different airway compartments. As probiotics are generally known to promote mucosal tolerance, it was postulated that prophylactic use of probiotics can be helpful in reduction of respiratory damage induced by cigarette smoke exposure. Twenty-four adult mice were randomly divided into three groups (cigarette-smoke (CS) group, cigarette-smoke+ Lactobacillus (CS+ P) group, control (Cn) group), each having 8 mice. They were exposed to cigarette smoke for 28 days (6 cigarettes/ day for 6 days/week). Wright-Giemsa staining of bronchoalveolar lavage fluid (BALF) was performed in three mice per group. Tissue samples of trachea and lungs of 7 mice from each group were processed by paraffin embedding technique for haematoxylin & eosin (H & E) and alcian blue- periodic acid-Schiff (AB-PAS) staining. Then trachea (goblet cell number, ratio and loss of cilia) and lungs (airspace distention) were studied. The results showed that the number of goblet cells was increased in CS group as a result of defensive mechanism of the respiratory system against irritating substances. This study also revealed that the cells of CS group having acidic glycoprotein were found to be higher in quantity as compared to those containing neutral glycoprotein. However, CS + P group showed a decrease in goblet cell index due to enhanced immunity by prophylactically used probiotics. Moreover, H & E stained tracheas showed significant loss of cilia in CS group due to propelling of mucous but little loss in CS + P group because of having good protective tracheal epithelium. In lungs, protection of airspaces was also much more evident in CS+ P group as compared to CS group having distended airspaces, especially at 150um distance from terminal bronchiole. In addition, a comprehensive analysis of inflammatory cells population of BALF showed neutrophilia and eosinophilia was significantly reduced in CS+ P group. This study proved that probiotics are found to be useful for reduction of changes in micro-architecture of the respiratory system. Thus, dietary supplementation of probiotic as prophylactic measure can be useful in achieving immunomodulatory effects.

Keywords: cigarette smoke, probiotics, goblet cells, airspace enlargement, BALF

Procedia PDF Downloads 337
135 Coagulation-flocculation Process with Metal Salts, Synthetic Polymers and Biopolymers for the Removal of Trace Metals (Cu, Pb, Ni, Zn) from Wastewater

Authors: Andrew Hargreaves, Peter Vale, Jonathan Whelan, Carlos Constantino, Gabriela Dotro, Pablo Campo

Abstract:

As a consequence of their potential to cause harm, there are strong regulatory drivers that require metals to be removed as part of the wastewater treatment process. Bioavailability-based standards have recently been specified for copper (Cu), lead (Pb), nickel (Ni) and zinc (Zn) and are expected to reduce acceptable metal concentrations. In order to comply with these standards, wastewater treatment works may require new treatment types to enhance metal removal and it is, therefore, important to examine potential treatment options. A substantial proportion of Cu, Pb, Ni and Zn in effluent is adsorbed to and/or complexed with macromolecules (eg. proteins, polysaccharides, aminosugars etc.) that are present in the colloidal size fraction. Therefore, technologies such as coagulation-flocculation (CF) that are capable of removing colloidal particles have good potential to enhance metals removal from wastewater. The present study investigated the effectiveness of CF at removing trace metals from humus effluent using the following coagulants; ferric chloride (FeCl3), the synthetic polymer polyethyleneimine (PEI), and the biopolymers chitosan and Tanfloc. Effluent samples were collected from a trickling filter treatment works operating in the UK. Using jar tests, the influence of coagulant dosage and the velocity and time of the slow mixing stage were studied. Chitosan and PEI had a limited effect on the removal of trace metals (<35%). FeCl3 removed 48% Cu, 56% Pb and 41% Zn at the recommended dose of 0.10 mg/L. At the recommended dose of 0.25 mg/L Tanfloc removed 77% Cu, 68% Pb, 18% Ni and 42% Zn. The dominant mechanism for particle removal by FeCl3 was enmeshment in the precipitates (i.e. sweep flocculation) whereas, for Tanfloc, inter-particle bridging was the dominant removal mechanism. Overall, FeCl3 and Tanfloc were found to be most effective at removing trace metals from wastewater.

Keywords: coagulation-flocculation, jar test, trace metals, wastewater

Procedia PDF Downloads 218
134 Double Burden of Malnutrition among Children under Five in Sub-Saharan Africa and Other Least Developed Countries: A Systematic Review

Authors: Getenet Dessie, Jinhu Li, Son Nghiem, Tinh Doan

Abstract:

Background: Concerns regarding malnutrition have evolved from focusing solely on single forms to addressing the simultaneous occurrence of multiple types, commonly referred to as the double or triple burden of malnutrition. Nevertheless, data concerning the concurrent occurrence of various types of malnutrition are scarce. Therefore, this systematic review and meta-analysis aims to assess the pooled prevalence of the double burden of malnutrition among children under five in Sub-Saharan Africa and other least-developed countries (LDCs). Methods: Electronic, web-based searches were conducted from January 15 to June 28, 2023, across several databases, including PubMed, Embase, Google Scholar, and the World Health Organization's Hinari portal, as well as other search engines, to identify primary studies published up to June 28, 2023. Laboratory-based cross-sectional studies on children under the age of five were included. Two independent authors assessed the risk of bias and the quality of the identified articles. The primary outcomes of this study were micronutrient deficiencies and the comorbidity of stunting and anemia, as well as wasting and anemia. The random-effects model was utilized for analysis. The association of identified variables with the various forms of malnutrition was also assessed using adjusted odds ratios (AOR) with a 95% confidence interval (CI). This review was registered in PROSPERO with the reference number CRD42023409483. Findings: The electronic search generated 6,087 articles, 93 of which matched the inclusion criteria for the final meta-analysis. Micronutrient deficiencies were prevalent among children under five in Sub-Saharan Africa and other LDCs, with rates ranging from 16.63% among 25,169 participants for vitamin A deficiency to 50.90% among 3,936 participants for iodine deficiency. Iron deficiency anemia affected 20.56% of the 63,121 participants. The combined prevalence of wasting anemia and stunting anemia was 5.41% among 64,709 participants and 19.98% among 66,016 participants, respectively. Both stunting and vitamin A supplementation were associated with vitamin A and iron deficiencies, with adjusted odds ratios (AOR) of 1.54 (95% CI: 1.01, 2.37) and 1.37 (95% CI: 1.21, 1.55), respectively. Interpretation: The prevalence of the double burden of malnutrition among children under the age of five was notably high in Sub-Saharan Africa and other LDCs. These findings indicate a need for increased attention and a focus on understanding the factors influencing this double burden of malnutrition.

Keywords: children, Sub-Saharan Africa, least developed countries, double burden of malnutrition, systematic review, meta-analysis

Procedia PDF Downloads 54
133 Intensive Multidisciplinary Feeding Intervention for a Toddler with In-Utero Drug Exposure

Authors: Leandra Prempeh, Emily Malugen

Abstract:

Prenatal drug exposure can have a molecular impact on the hypothalamic and reward genes that regulate feeding behavior. This can impact feeding regulation, resulting in feeding difficulties and growth failure. This was potentially seen in “McKayla,” a 19- month old girl with a history of in-utero drug exposure, patent ductus arteriosus, and gastroesophageal reflux disease who presented for intensive day treatment feeding therapy. She was diagnosed with Avoidant Restrictive Food Intake Disorder, described as total food refusal and meeting 100% of her caloric needs from a gastrostomy tube. The primary goals during intensive feeding therapy were to increase her oral intake and decrease her reliance on supplementation with formula. Several behavioral antecedent manipulations were implemented to establish consistent responding and make progress towards treatment goals. This included multiple modified bolus placements (using underloaded and Nuk brush), reinforcement contingencies, and variety fading before stability was finally achieved. Following, increasing retention of bites then increasing volume and variety were goals targeted. From treatment onset to the last 3 days of treatment, McKayla's rate of rapid acceptance of bite presentations increased significantly from 33.33% to 93.13%, rapid swallowing went from 0.00% to 92.32%, and her percentage of inappropriate mealtime behavior and expels decreased from 58.33% and 100% to 2.31% and 7.68%, respectively. Overall, the treatment team successfully introduced and increased the bite size of 7 pureed foods, generalize the treatment to caregivers with high integrity, and began facilitating tube weaning. She was receiving about 33.42% of her needs by mouth at the time of discharge. Other nutritional concerns addressed during treatment included drinking a nutritionally complete drink out of an open cup and age appropriate growth. McKayla continued to have emesis almost daily, as was her baseline before starting treatment; however, the frequency during mealtime decreased. Overall, McKayla responded well to treatment. She had a very slow response to treatment and required a lot of antecedent manipulations to establish consistent responding. As the literature suggests, [drug]-exposed neonates, like McKayla, may be at increased risk for nutritional and growth challenges that may persist throughout development. This supports the need for longterm follow-up of infant growth.

Keywords: behavioral intervention, feeding problems, in-utero drug exposure, intensive multidisciplinary intervention

Procedia PDF Downloads 40
132 Trace Elements in Yerba Mate from Brazil and Argentina by Inductively Coupled Plasma Mass Spectrometry

Authors: F. V. Matta, C. M. Donnelly, M. B. Jaafar, N. I. Ward

Abstract:

‘Yerba Mate’ (Ilex paraguariensis) is a native plant from South America with the main producers being Argentina and Brazil. ‘Mate’ is widely consumed in Argentina, Brazil, Uruguay and Paraguay. The most popular format is as an infusion made from dried leaves of a traditional cup, roasted material in tea bags or iced tea infusions. There are many alleged health benefits resulted from mate consumption, even though there is a lack of conclusive research published in the international literature. The main objective of this study was to develop and evaluate the sample preparation and instrumental analysis stages involved in the determination of trace elements in yerba mate using inductively coupled plasma mass spectrometry (ICP-MS). Specific details on the methods of sample digestion, validation of the ICP-MS analysis especially for polyatomic ion correction and matrix effects associated with the complex medium of mate will be presented. More importantly, mate produced in Brazil and Argentina, is subject to different soil conditions, methods of cultivation and production, especially for loose leaves and tea bags. The highest concentrations for loose mate leaf were for (mg/kg, dry weight): aluminium (253.6 – 506.9 for Brazil (Bra), 230.0 – 541.8 for Argentina (Arg), respectively), manganese (378.3 – 762.6 Bra; 440.8 – 879.9 Arg), iron (32.5 – 85.7 Bra; 28.2 – 132.9 Arg), zinc (28.2 – 91.1 Bra; 39.1 – 92.3 Arg), nickel (2.2 – 4.3 Bra; 2.9 – 10.8 Arg) and copper (4.8 – 9.1 Bra; 4.3 – 9.2 Arg), with lower levels of chromium, cobalt, selenium, molybdenum, cadmium, lead and arsenic. Elemental levels of mate leaf consumed in tea bags were found to be higher, mainly due to only using leaf material (as opposed to leaf and twig for loose packed product). Further implications of the way of consuming yerba mate will be presented, including different infusion methods in Brazil and Argentina. This research provides for the first time an extensive evaluation of mate products from both countries and the possible implications of specific trace elements, especially Mn, Fe, Se, Cu and Zn and the various health claims of consuming yerba mate.

Keywords: beverage analysis, ICP-MS, trace elements, yerba mate

Procedia PDF Downloads 205
131 Orange Fleshed Sweet Potato Response to Filter Cake and Macadamia Husk Compost in Two Agro-Ecologies of Kwazulu-Natal, South Africa

Authors: Kayode Fatokun, Nozipho N. Motsa

Abstract:

Field experiments were carried out during the summer/autumn (first trial) and winter/spring (second trial) seasons of 2019 and 2021 inDlangubo, Ngwelezane, and Mtubatubaareas of KwaZulu-Natal Province of South Africa to study the drought amelioration effects and impact of 2 locally available organic wastes [filter cake (FC) and macadamia husk compost (MHC)] on the productivity, and physiological responses of 4 orange-fleshed sweet potato cultivars (Buregard cv., Impilo, W-119 and 199062.1). The effects of FC and MHC were compared with that of inorganic fertilizer (IF) [2:3:2 (30)], FC+IF, MHC+IF, and control. The soil amendments were applied in the first trials only. Climatic data such as humidity, temperature, and rainfall were taken via remote sensing. The results of the first trial indicated that filter cake and IF significantly performed better than MHC. While the strength of filter cake may be attributable to its rich array of mineral nutrients such as calcium, magnesium, potassium, sodium, zinc, copper, manganese, iron, and phosphorus. The little performance from MHC may be attributable to its water holding capacity. Also, a positive correction occurred between the yield of the test OFSP cultivars and climatic factors such as rainfall, NDVI, and NDWI values. Whereas the inorganic fertilizer did not have any significant effect on the growth and productivity of any of the tested sweet potato cultivars in the second trial; FC, and MHC largely maintained their significant performances. In conclusion, the use of FC is highly recommended in the production of the test orange-fleshed sweet potato cultivars. Also, the study indicated that both FC and MHC may not only supply the needed plant nutrients but has the capacity to reduce the impact of drought on the growth of the test cultivars. These findings are of great value to farmers, especially the resource-poorones.

Keywords: amendments, drought, filter cake, macadamia husk compost, sweet potato

Procedia PDF Downloads 67
130 Phytoextraction of Heavy Metals in a Contaminated Site in Assam, India Using Indian Pennywort and Fenugreek: An Experimental Study

Authors: Chinumani Choudhury

Abstract:

Heavy metal contamination is an alarming problem, which poses a serious risk to human health and the surrounding geology. Soils get contaminated with heavy metals due to the un-regularized industrial discharge of the toxic metal-rich effluents. Under such a condition, the remediation of the contaminated sites becomes imperative for a sustainable, safe, and healthy environment. Phytoextraction, which involves the removal of heavy metals from the soil through root absorption and uptake, is a viable remediation technique, which ensures extraction of the toxic inorganic compound available in the soil even at low concentrations. The soil present in the Silghat Region of Assam, India, is mostly contaminated with Zinc (Zn) and Lead (Pb), having concentrations as high as to cause a serious environmental problem if proper measures are not taken. In the present study, an extensive experimental study was carried out to understand the effectiveness of two commonly planted trees in Assam, namely, i) Indian Pennywort and ii) Fenugreek, in the removal of heavy metals from the contaminated soil. The basic characterization of the soil in the contaminated site of the Silghat region was performed and the field concentration of Zn and Pb was recorded. Various long-term laboratory pot tests were carried out by sowing the seeds of Indian Pennywort and Fenugreek in a soil, which was spiked, with a very high dosage of Zn and Pb. The tests were carried out for different concentration of a particular heavy metal and the individual effectiveness in the absorption of the heavy metal by the plants were studied. The concentration of the soil was monitored regularly to assess the rate of depletion and the simultaneous uptake of the heavy metal from the soil to the plant. The amount of heavy metal uptake by the plant was also quantified by analyzing the plant sample at the end of the testing period. Finally, the study throws light on the applicability of the studied plants in the field for effective remediation of the contaminated sites of Assam.

Keywords: phytoextraction, heavy-metals, Indian pennywort, fenugreek

Procedia PDF Downloads 97
129 Biochemical Characterization of CTX-M-15 from Enterobacter cloacae and Designing a Novel Non-β-Lactam-β-Lactamase Inhibitor

Authors: Mohammad Faheem, M. Tabish Rehman, Mohd Danishuddin, Asad U. Khan

Abstract:

The worldwide dissemination of CTX-M type β-lactamases is a threat to human health. Previously, we have reported the spread of blaCTX-M-15 gene in different clinical strains of Enterobacteriaceae from the hospital settings of Aligarh in north India. In view of the varying resistance pattern against cephalosporins and other β-lactam antibiotics, we intended to understand the correlation between MICs and catalytic activity of CTX-M-15. In this study, steady-state kinetic parameters and MICs were determined on E. coli DH5α transformed with blaCTX-M-15 gene that was cloned from Enterobacter cloacae (EC-15) strain of clinical background. The effect of conventional β-lactamase inhibitors (clavulanic acid, sulbactam and tazobactam) on CTX-M-15 was also studied. We have found that tazobactam is the best among these inhibitors against CTX-M-15. The inhibition characteristic of tazobactam is defined by its very low IC50 value (6 nM), high affinity (Ki = 0.017 µM) and better acylation efficiency (k+2/K9 = 0.44 µM-1s-1). It forms an acyl-enzyme covalent complex, which is quite stable (k+3 = 0.0057 s-1). Since increasing resistance has been reported against conventional b-lactam antibiotic-inhibitor combinations, we aspire to design a non-b-lactam core containing b-lactamase inhibitor. For this, we screened ZINC database and performed molecular docking to identify a potential non-β-lactam based inhibitor (ZINC03787097). The MICs of cephalosporin antibiotics in combination with this inhibitor gave promising results. Steady-state kinetics and molecular docking studies showed that ZINC03787097 is a reversible inhibitor which binds non-covalently to the active site of the enzyme through hydrogen bonds and hydrophobic interactions. Though, it’s IC50 (180 nM) is much higher than tazobactam, it has good affinity for CTX-M-15 (Ki = 0.388 µM). This study concludes that ZINC03787097 compound can be used as seed molecule to design more efficient non-b-lactam containing b-lactamase inhibitor that could evade pre-existing bacterial resistance mechanisms.

Keywords: ESBL, non-b-lactam-b-lactamase inhibitor, bioinformatics, biomedicine

Procedia PDF Downloads 216
128 Design of New Baby Food Product Using Whey

Authors: Henri El Zakhem, Anthony Dahdah, Lara Frangieh, Jessica Koura

Abstract:

Nowadays, the removal of whey produced in the dairy processes has been the most important problem in the dairy industry. Every year, about 47% of the 115 million tons of whey produced world-wide are disposed in the environment. Whey is a nutritious liquid, containing whey proteins (β-lactoglobulin, α-lactalbumin, immunoglobulin-G, proteose pepton), lactose, vitamins (B5, B2, C, and B6), minerals (Calcium, Magnesium, Phosphorous, Potassium, Chloride, and Sodium), and trace elements (Zinc, Iron, Iodine, and Copper). The first objective was to increase the economical and commercial value of whey which is considered as by-product. The second objective of this study was to formulate a new baby food with good nutritional, sensory and storage properties and acceptable to consumers using the cheese whey. The creation of the new product must pass through the following stages: idea stage, development stage which includes the business planning and the product development prototype, packaging stage, production stage, test marketing stage, quality control/sanitation. Three types of whey-based food were selected and prepared by mixing whey and apple, whey and banana as well as whey, apple, and banana.To compile with the recommended dietary allowances (RDA) and adequate intakes (AI) for vitamins and minerals, each sample is formed from 114g of sliced and smashed fruits mixed with 8 mL of whey. Mixtures are heated to 72oC for 15 seconds, and filled in pasteurized jars. Jars were conserved at 4oC. Following the experimental part, sensory evaluation made by an experienced panel took place. Hedonic tests results show that the mixture of whey, apple, and banana has the most delicious and sweetness taste followed by the mixture of whey and banana, and finally the mixture of whey and apple. This study was concluded with a managerial and engineering study that reveals that the project is economically profitable to be executed in Lebanon.

Keywords: baby food, by-product, cheese whey, formulation

Procedia PDF Downloads 250
127 A Study on Effect of Almahdi Aluminium Factory of Bandar Abbas on Environment Status of the Region with an Emphasis on Measuring of Some Scarce Metals Existing in the Air (Atmosphere)

Authors: Maryam Ehsanpour, Maryam Malekpour, Rastin Afkhami

Abstract:

Today, industry is one of the indices of growth and development of countries and is a suitable applicable criterion to compare the countries. Bandar Abbas has a high industrial centralization in term of geographical redundancy of industries in comparison with other rural and urban places of Hormozgan province. Most important and major industries of the province are located in Bandar abbas eighth refinery, power plant, zinc melting company, Almahdi Aluminium, Hormozgan steel, south steel, which are the most important of these industries. So, it is necessary to study pollution from these industries and their destructive effects on environment of region. In respect of these things, general purpose of this research is codling and presenting managing solution of Almahdi Aluminium factory in them of measuring of air (atmosphere) parameters. For gaining this purpose it is necessary to determine measure of heavy metals suspension in the air (atmosphere) in the neighborhood of industries and also in residential regions close to them as partial purposes. So, for achieving the purposes above, operation of sampling from the air in two hot and cold seasons of the year (2010-2011) was performed, after field reviews to recognize the sources of effluence and to choose place of sampling stations. Sampling and preparation way to read was based on EPA and NIOSH. Also, decreasing process was included Fe>Al>Cd>Pb>Ni respectively, in term of results gaining from sampling of ingredients existing in the air (atmosphere). Also Ni and Fe elements in samples of air were higher than permissive measure in both of cold and hot season. Average of these two metals was 34% and 33% in cold season and 44% and 34% micrograms/m3 in hot season. Finally, suitable managing solutions to improve existing situation is presented in term for all results.

Keywords: Almahdi aluminium factory, Bandar Abbas, scarce metals, atmosphere

Procedia PDF Downloads 567
126 Risk Assessment of Trace Element Pollution in Gymea Bay, NSW, Australia

Authors: Yasir M. Alyazichi, Brian G. Jones, Errol McLean, Hamd N. Altalyan, Ali K. M. Al-Nasrawi

Abstract:

The main purpose of this study is to assess the sediment quality and potential ecological risk in marine sediments in Gymea Bay located in south Sydney, Australia. A total of 32 surface sediment samples were collected from the bay. Current track trajectories and velocities have also been measured in the bay. The resultant trace elements were compared with the adverse biological effect values Effect Range Low (ERL) and Effect Range Median (ERM) classifications. The results indicate that the average values of chromium, arsenic, copper, zinc, and lead in surface sediments all reveal low pollution levels and are below ERL and ERM values. The highest concentrations of trace elements were found close to discharge points and in the inner bay, and were linked with high percentages of clay minerals, pyrite and organic matter, which can play a significant role in trapping and accumulating these elements. The lowest concentrations of trace elements were found to be on the shoreline of the bay, which contained high percentages of sand fractions. It is postulated that the fine particles and trace elements are disturbed by currents and tides, then transported and deposited in deeper areas. The current track velocities recorded in Gymea Bay had the capability to transport fine particles and trace element pollution within the bay. As a result, hydrodynamic measurements were able to provide useful information and to help explain the distribution of sedimentary particles and geochemical properties. This may lead to knowledge transfer to other bay systems, including those in remote areas. These activities can be conducted at a low cost, and are therefore also transferrable to developing countries. The advent of portable instruments to measure trace elements in the field has also contributed to the development of these lower cost and easily applied methodologies available for use in remote locations and low-cost economies.

Keywords: current track velocities, gymea bay, surface sediments, trace elements

Procedia PDF Downloads 227
125 Study of Electro-Chemical Properties of ZnO Nanowires for Various Application

Authors: Meera A. Albloushi, Adel B. Gougam

Abstract:

The development in the field of piezoelectrics has led to a renewed interest in ZnO nanowires (NWs) as a promising material in the nanogenerator devices category. It can be used as a power source for self-powered electronic systems with higher density, higher efficiency, longer lifetime, as well as lower cost of fabrication. Highly aligned ZnO nanowires seem to exhibit a higher performance compared with nonaligned ones. The purpose of this study was to develop ZnO nanowires and to investigate their electrical and chemical properties for various applications. They were grown on silicon (100) and glass substrates. We have used a low temperature and non-hazardous method: aqueous chemical growth (ACG). ZnO (non-doped) and AZO (Aluminum doped) seed layers were deposited using RF magnetron sputteringunder Argon pressure of 3 mTorr and deposition power of 180 W, the times of growth were selected to obtain thicknesses in the range of 30 to 125 nm. Some of the films were subsequently annealed. The substrates were immersed tilted in an equimolar solution composed of zinc nitrate and hexamine (HMTA) of 0.02 M and 0.05 M in the temperature range of 80 to 90 ᵒC for 1.5 to 2 hours. The X-ray diffractometer shows strong peaks at 2Ө = 34.2ᵒ of ZnO films which indicates that the films have a preferred c-axis wurtzite hexagonal (002) orientation. The surface morphology of the films is investigated by atomic force microscope (AFM) which proved the uniformity of the film since the roughness is within 5 nm range. The scanning electron microscopes(SEM) (Quanta FEG 250, Quanta 3D FEG, Nova NanoSEM 650) are used to characterize both ZnO film and NWs. SEM images show forest of ZnO NWs grown vertically and have a range of length up to 2000 nm and diameter of 20-300 nm. The SEM images prove that the role of the seed layer is to enhance the vertical alignment of ZnO NWs at the pH solution of 5-6. Also electrical and optical properties of the NWs are carried out using Electrical Force Microscopy (EFM). After growing the ZnO NWs, developing the nano-generator is the second step of this study in order to determine the energy conversion efficiency and the power output.

Keywords: ZnO nanowires(NWs), aqueous chemical growth (ACG), piezoelectric NWs, harvesting enery

Procedia PDF Downloads 299
124 Luteolin Exhibits Anti-Diabetic Effects by Increasing Oxidative Capacity and Regulating Anti-Oxidant Metabolism

Authors: Eun-Young Kwon, Myung-Sook Choi, Su-Jung Cho, Ji-Young Choi, So Young Kim, Youngji Han

Abstract:

Overweight and obesity have been linked to a low-grade chronic inflammatory response and an increased risk of developing metabolic syndrome including insulin resistance, type 2 diabetes mellitus and certain types of cancers. Luteolin is a dietary flavonoid with anti-inflammatory, anti-oxidant, anti-cancer and anti-diabetic properties. However, little is known about the detailed mechanism associated with the effect of luteolin on inflammation-related obesity and its complications. The aim of the present study was to reveal the anti-diabetic effect of luteolin in diet-induced obesity mice using “transcriptomics” tool. Thirty-nine male C57BL/6J mice (4-week-old) were randomly divided into 3 groups and were fed normal diet, high-fat diet (HFD, 20% fat) and HFD+0.005% (w/w) luteolin for 16 weeks. Luteolin improved insulin resistance, as measured by HOMA-IR and glucose tolerance, along with preservation action of pancreatic β-cells, compared to the HFD group. Luteoiln was significantly decreased the levels of leptin and ghrelin that play a pivotal role in energy balance, and the macrophage low-grade inflammation marker sCD163 (soluble Cd antigen 163) in plasma. Activities of hepatic anti-oxidant enzymes (catalase and glutathione peroxidase) were increased, while the levels of plasma transaminase (GOT and GPT) and oxidative damage markers (hepatic mitochondria H2O2 and TBARS) were markedly decreased by luteolin supplementation. In addition, luteolin increased oxidative capacity and fatty acid utilization by presenting decrease in enzyme activities of citrate synthase, cytochrome C oxidase and β-hydroxyacyl CoA dehydrogenase and UCP3 gene expression compared to high-fat diet. Moreover, our microarray results of muscle also revealed down-regulated gene expressions associated with TCA cycle by HFD were reversed to normal level by luteolin treatment. Taken together, our results indicate that luteolin is one of bioactive components for improving insulin resistance by increasing oxidative capacity, modulating anti-oxidant metabolism and suppressing inflammatory signaling cascades in diet-induced obese mice. These results provide possible therapeutic targets for prevention and treatment of diet-induced obesity and its complications.

Keywords: anti-oxidant metabolism, diabetes, luteolin, oxidative capacity

Procedia PDF Downloads 315
123 Investigation of Correlation Between Radon Concentration and Metals in Produced Water from Oilfield Activities

Authors: Nacer Hamza

Abstract:

Naturally radiation exposure that present due to the cosmic ray or the naturel occurring radioactives materials(NORMs) that originated in the earth's crust and are present everywhere in the environment(1) , a significant concentration of NORMs reported in the produced water which comes out during the oil extraction process, so that the management of this produced water is a challenge for oil and gas companies which include either minimization of produced water which considered as the best way in the term of environment based in the fact that ,the lower water produced the lower cost in treating this water , recycling and reuse by reinjected produced water that fulfills some requirements to enhance oil recovery or disposal in the case that the produced water cannot be minimize or reuse. In the purpose of produced water management, the investigation of NORMs activity concentration present in it considered as the main step for more understanding of the radionuclide’s distribution. Many studies reported the present of NORMs in produced water and investigated the correlation between 〖Ra〗^226and the different metals present in produced water(2) including Cations and anions〖Na〗^+,〖Cl〗^-, 〖Fe〗^(2+), 〖Ca〗^(2+) . and lead, nickel, zinc, cadmium, and copper commonly exist as heavy metal in oil and gas field produced water(3). However, there are no real interesting to investigate the correlation between 〖Rn〗^222and the different metals exist in produced water. methods using, in first to measure the radon concentration activity in produced water samples is a RAD7 .RAD7 is a radiometer instrument based on the solid state detectors(4) which is a type of semi-conductor detector for alpha particles emitting from Rn and their progenies, in second the concentration of different metals presents in produced water measure using an atomic absorption spectrometry AAS. Then to investigate the correlation between the 〖Rn〗^222concentration activity and the metals concentration in produced water a statistical method is Pearson correlation analysis which based in the correlation coefficient obtained between the 〖Rn〗^222 and metals. Such investigation is important to more understanding how the radionuclides act in produced water based on this correlation with metals , in first due to the fact that 〖Rn〗^222decays through the sequence 〖Po〗^218, 〖Pb〗^214, 〖Bi〗^214, 〖Po〗^214, and〖Pb〗^210, those daughters are metals thus they will precipitate with metals present in produced water, secondly the short half-life of 〖Rn〗^222 (3.82 days) lead to faster precipitation of its progenies with metals in produced water.

Keywords: norms, radon concentration, produced water, heavy metals

Procedia PDF Downloads 125
122 Prophylactic Effect of Dietary Garlic (Allium sativum) Inclusion in Feed of Commercial Broilers with Coccidiosis Raised at the Experimental Animal Unit of the Department of Veterinary Medicine, University of Ibadan, Oyo State, Nigeria

Authors: Ogunlesi Olufunso, John Ogunsola, Omolade Oladele, Benjamin Emikpe

Abstract:

Context: Coccidiosis is a parasitic disease that affects poultry production, leading to economic losses. Garlic is known for medicinal properties and has been used as a natural remedy for various diseases. This study aims to investigate the prophylactic effect of garlic inclusion in the feed of commercial broilers with coccidiosis. Research Aim: The aim of this study is to determine the possible effect of garlic meal inclusion in poultry feed on the body weight gain of commercial broilers and to investigate it's therapeutic effect on broilers with coccidiosis. Methodology: The study conducted a case-control study for eight weeks with One hundred Arbor acre commercial broilers separated into five (5) groups from day-old, where 6,000 Eimeria oocysts were orally inoculated into each broiler in the different groups. Feed intake, body weight gain, feed conversion ratio, oocyt shedding rate, histopathology and erythrocyte indices were assessed. Findings: The inclusion of garlic meal in the broilers' diet resulted in an improved feed conversion ratio, decreased oocyst counts, reduced diarrhoeic fecal spots, decreased susceptibility to coccidial infection, and increased packed cell volume (PCV). Theoretical Importance: This study contributes to the understanding of the prophylactic effect of garlic supplementation, including its antiparasitic properties on commercial broilers with coccidiosis. It highlights the potential use of non-conventional feed additives or ayurvedic herb and spices in the treatment of poultry diseases. Data Collection and Analysis Procedures: The study collected data on feed intake, body weight gain, oocyst shedding rate, histopathological observations, and erythrocyte indices. Data were analyzed using Analysis of Variance and Duncan's Multiple range Test. Questions Addressed: The study addressed the possible effect of garlic meal inclusion in poultry feed on the body weight gain of broilers and its therapeutic effect on broilers with coccidiosis. Conclusion: The study concludes that garlic inclusion in the feed of broilers has a prophylactic effect, including antiparasitic properties, resulting in improved feed conversion ratio, reduced oocyst counts and increased PCV.

Keywords: broilers, eimeria spp, garlic, Ibadan

Procedia PDF Downloads 55
121 Ambient Electrospray Deposition: An Efficient Technique to Immobilize Laccase on Cheap Electrodes With Unprecedented Reuse and Storage Performances

Authors: Mattea Carmen Castrovilli, Antonella Cartoni

Abstract:

Electrospray ionisation (ESI), a well-established technique widely used to produce ion beams of biomolecules in mass spectrometry (ESI-MS), can be used for ambient soft landing of enzymes on a specific substrate. In this work, we show how the ambient electrospray deposition (ESD) technique can be successfully exploited for manufacturing a promising, green-friendly electrochemical amperometric laccase-based biosensor with unprecedented reuse and storage performance. These biosensors have been manufactured by spraying a laccase solution of 2μg/μL at 20% of methanol on a commercial carbon screen printed electrode (C-SPE) using a custom ESD set-up. The laccase-based ESD biosensor has been tested against catechol compounds in the linear range 2-100 μM, with a limit of detection of 1.7 μM, without interference from cadmium, chrome, arsenic, and zinc and without any memory effects, but showing a matrix effect in lake and well water. The ESD biosensor shows enhanced performances compared to the ones fabricated with other immobilization methods, like drop-casting. Indeed, it retains 100% activity up to two months of storage at ambient conditions without any special care and working stability up to 63 measurements on the same electrode just prepared and 20 on a one-year-old electrode subjected to redeposition together with a 100% resistance to use of the same electrode in subsequent days. The ESD method is a one-step, environmentally friendly method that allows the deposition of the bio-recognition layer without using any additional chemicals. The promising results in terms of storage and working stability also obtained with the more fragile lactate oxidase enzyme suggest these improvements should be attributed to the ESD technique rather than to the bioreceptor, highlighting how the ESD could be useful in reducing pollution from disposable devices. Acknowledgment: The understanding at the molecular level of this promising biosensor by using different spectroscopies, microscopies and analytical techniques is the subject of our PRIN 2022 project ESILARANTE.

Keywords: reuse, storage performance, immobilization, electrospray deposition, biosensor, laccase, catechol detection, green chemistry

Procedia PDF Downloads 35
120 Assessment of the Effect of Ethanolic Leaf Extract of Annona squamosa L. on Den Induced Hepatocellular Carcinoma in Experimental Animals

Authors: Vanitha Varadharaj, Vijalakshmi Krishnamurthy

Abstract:

Annona squamosa Linn, commonly known as Sugar apple, belonging to the family Annonaceae, is said to show varied medicinal effects, including insecticide, antiovulatory and abortifacient. The alkaloid and flavonoids present in Annona squamosa leaf has proved to have antioxidant activity. The present work has been planned to investigate the effect of ethanolic leaf extract of Annona squamosa leaf on Den Induced wistar albino rats. The study was carried out to analyze the biochemical Parmeters like Total Proteins, Bilirubin, Enzymatic and Non –Enzymatic enzymes, Marker enzymes and Tumor markers in serum and also the histopathological studies in liver is carried out in control and DEN induced rats. Supplementation of ELAS (Ethanolic Leaf Extract Of Annona squamosa) reduced the liver weight and also reduced the tumour incidence. Chemoprevention group showed near normal values of bilirubin when compared with the control rats. Total protein was decreased in the cancer bearing group and on treatment with the extract the levels of protein were restored. Both in pre and post treatment group, the activities of enzymatic antioxidants such as superoxide dismutase, catalase, and Glutathione peroxidase were increased but in pre treated animals it was more effective than post treated animals. The non- enzymatic antioxidants such as vitamin C and vitamin E were brought back to normal level significantly in post and pre treated animals. Activities of marker enzymes such as SGOT, SGPT, ALP, γ GT were significantly elevated in the serum of cancer animals and the values returned to normal after treatment with the extract suggesting the hepato protective effect of the extract. Lipid peroxide was found to be elevated in the cancer induced group. This condition was brought back to the normal in the pre and post treated animals with ELAS. Histological examination also confirmed the anti- carcinogenic potential of ELAS, Cancer induced groups had a triple fold increase in their AFP values when compared to other groups. DEN treatment increased the level of AFP expression while ELAS partially counteracted the effect of it. So the scientific validation obtained from this study may pave way to many budding scientists to find new drugs from Annona squamosa for various ailments.

Keywords: annona squamosa, biochemical parmeters, cancer, leaf extract

Procedia PDF Downloads 309
119 Study of the Hysteretic I-V Characteristics in a Polystyrene/ZnO-Nanorods Stack Layer

Authors: You-Lin Wu, Yi-Hsing Sung, Shih-Hung Lin, Jing-Jenn Lin

Abstract:

Performance improvement in optoelectronic devices such as solar cells and photodetectors has been reported when a polymer/ZnO nanorods stack is used. Resistance switching of polymer/ZnO nanocrystals (or nanorods) hybrid has also gained a lot of research interests recently. It has been reported that high- and low-resistance states of a metal/insulator/metal (MIM) structure diode with a polystyrene (PS) and ZnO hybrid as the insulator layer can be switched by applied bias after a high-voltage forming process, while the same device structure merely with a PS layer does not show any forming behavior. In this work, we investigated the current-voltage (I-V) characteristics of an MIM device with a PS/ZnO nanorods stack deposited on fluorine-doped tin oxide (FTO) glass substrate. The ZnO nanorods were grown by a hydrothermal method using a mixture of zinc nitrate, hexamethylenetetramine, and DI water. Following that, a PS layer was deposited by spin coating. Finally, the device with a structure of Ti/ PS/ZnO nanorods/FTO was completed by e-gun evaporated Ti layer on top of the PS layer. Semiconductor parameters analyzer Agilent 4156C was then used to measure the I-V characteristics of the device by applying linear ramp sweep voltage with sweep sequence of 0V → 4V → 0V → 3V → 0V → 2V → 0V → 1V → 0V in both positive and negative directions. It is interesting to find that the I-V characteristics are bias dependent and hysteretic, indicating that the device Ti/PS/ZnO nanorods/FTO structure has ferroelectricity. Our results also show that the maximum hysteresis loop height of the I-V characteristics as well as the voltage at which the maximum hysteresis loop height of each scan occurs increase with increasing maximum sweep voltage. It should be noticed that, although ferroelectricity has been found in ZnO at its melting temperature (1975℃) and in Li- or Co-doped ZnO, neither PS nor ZnO has ferroelectricity at room temperature. Using the same structure but with a PS or ZnO layer only as the insulator does not give and hysteretic I-V characteristics. It is believed that a charge polarization layer is induced near the PS/ZnO nanorods stack interface and thus causes the ferroelectricity in the device with Ti/PS/ZnO nanorods/FTO structure. Our results show that the PS/ZnO stack can find a potential application in a resistive switching memory device with MIM structure.

Keywords: ferroelectricity, hysteresis, polystyrene, resistance switching, ZnO nanorods

Procedia PDF Downloads 290
118 Oncology and Phytomedicine in the Advancement of Cancer Therapy for Better Patient Care

Authors: Hailemeleak Regassa

Abstract:

Traditional medicines use medicinal plants as a source of ingredients, and many modern medications are indirectly derived from plants. Consumers in affluent nations are growing disenchanted with contemporary healthcare and looking for alternatives. Oxidative stress is the primary cause of multiple diseases, and exogenous antioxidant supplementation or strengthening the body's endogenous antioxidant defenses are potential ways to counteract the negative effects of oxidative damage. Plants can biosynthesize non-enzymatic antioxidants that can reduce ROS-induced oxidative damage. Aging often aids the propagation and development of carcinogenesis, and older animals and older people exhibit increased vulnerability to tumor promoters. Cancer is a major public health issue, with several anti-cancer medications in clinical use. Potential drugs such as flavopiridol, roscovitine, combretastatin A-4, betulinic acid, and silvestrol are in the clinical or preclinical stages of research. Methodology: Microbial Growth media, Dimethyl sulfoxide (DMSO), methanol, ethyl acetate, and n-hexane were obtained from Himedia Labs, Mumbai, India. plant were collected from the Herbal Garden of Shoolini University campus, Solan, India (Latitude - 30.8644° N and longitude - 77.1184° E). The identity was confirmed by Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan (H.P.), India, and documented in Voucher specimens - UHF- Herbarium no. 13784; vide book no. 3818 Receipt No. 086. The plant materials were washed with tap water, and 0.1% mercury chloride for 2 minutes, rinsed with distilled water, air dried, and kept in a hot air oven at 40ºc on blotting paper until all the water evaporated and became well dried for grinding. After drying, the plant materials were grounded using a mixer grinder into fine powder transferred into airtight containers with proper labeling, and stored at 4ºc for future use (Horablaga et al., 2023). The extraction process was done according to Altemimi et al., 2017. The 5g powder was mixed with 15 ml of the respective solvents (n-hexane, ethyl acetate, and methanol), and kept for 4-5 days on the platform shaker. The solvents used are based on their increasing polarity index. Then the extract was centrifuged at 10,000rpm for 5 minutes and filtered using No.1 Whatman filter paper.

Keywords: cancer, phytomedicine, medicinal plants, oncology

Procedia PDF Downloads 37
117 Investigation of Electrochemical, Morphological, Rheological and Mechanical Properties of Nano-Layered Graphene/Zinc Nanoparticles Incorporated Cold Galvanizing Compound at Reduced Pigment Volume Concentration

Authors: Muhammad Abid

Abstract:

The ultimate goal of this research was to produce a cold galvanizing compound (CGC) at reduced pigment volume concentration (PVC) to protect metallic structures from corrosion. The influence of the partial replacement of Zn dust by nano-layered graphene (NGr) and Zn metal nanoparticles on the electrochemical, morphological, rheological, and mechanical properties of CGC was investigated. EIS was used to explore the electrochemical nature of coatings. The EIS results revealed that the partial replacement of Zn by NGr and Zn nanoparticles enhanced the cathodic protection at reduced PVC (4:1) by improving the electrical contact between the Zn particles and the metal substrate. The Tafel scan was conducted to support the cathodic behaviour of the coatings. The sample formulated solely with Zn at PVC 4:1 was found to be dominated in physical barrier characteristics over cathodic protection. By increasing the concentration of NGr in the formulation, the corrosion potential shifted towards a more negative side. The coating with 1.5% NGr showed the highest galvanic action at reduced PVC. FE-SEM confirmed the interconnected network of conducting particles. The coating without NGr and Zn nanoparticles at PVC 4:1 showed significant gaps between the Zn dust particles. The novelty was evidenced when micrographs showed the consistent distribution of NGr and Zn nanoparticles all over the surface, which acted as a bridge between spherical Zn particles and provided cathodic protection at a reduced PVC. The layered structure of graphene also improved the physical shielding effect of the coatings, which limited the diffusion of electrolytes and corrosion products (oxides/hydroxides) into the coatings, which was reflected by the salt spray test. The rheological properties of coatings showed good liquid/fluid properties. All the coatings showed excellent adhesion but had different strength values. A real-time scratch resistance assessment showed all the coatings had good scratch resistance.

Keywords: protective coatings, anti-corrosion, galvanization, graphene, nanomaterials, polymers

Procedia PDF Downloads 64
116 Heavy Metals and Carcinogenic Risk Assessment in Free-Ranged Livestock of Lead-Contaminated Goldmine Communities of Zamfara State, Northern Nigeria

Authors: Sulaiman Rabiu, Muazu Gusau Abubakar, Jafar Usman Zakari

Abstract:

The consumption of meat is of great importance as it provides a good source of proteins and significant amount of essential trace element to the body. However, contamination of meat and meat products with heavy metals is becoming a serious threat to food safety and public health. Therefore, the present study is aimed to evaluate the concentration of some heavy metals in muscles and entrails of free-ranged cattle, sheep and goats. A total of sixty (60) fresh samples of muscles, liver, kidney, small intestines and stomach of free ranged cattle, sheep and goats were collected from abattoirs of different goldmine communities of Anka, Bukkuyum, Maru andTalata-Mafara Local Government Areas of Zamfara State, Nigeria. The samples were digested using 10 mL of a mixed 70% high grade concentration of HNO₃ and 65% HCl (4:1 v/v); the mixture was heated until dense fumes disappeared forming a clear transparent solution and diluted to 50 mL with deionized water. Actual concentrations of Cd, Cr, Cu, Co, As, Ni, Mn, Pb and Zn were determined using Microwave Plasma Atomic Emission Spectrophotometer (MP-AES). From the results obtained, goat liver had the highest mean concentration of lead, arsenic, cobalt and manganese (12.43± 0.31, 14.25±0.32, 3.47± 0.86 and 12.68± 0.92 mg/kg respectively) while goat kidney had the highest concentration of copper and zinc (10.08±0.61 and 24.16±1.30 mg/kg respectively). The highest concentrations of cadmium and nickel were recorded in sheep kidney (7.75± 0.65 and 2.08±0.10 mg/kg respectively). Cattle muscles had the highest chromium concentration than all the organs analysed. The target hazard quotients (THQs) for all the metals were below 1.0, but TR which is a risk indices for carcinogenicity indicates an alarming result that requires stringent control to protect public health.Therefore, intensive public health awareness on the risk associated with contamination of heavy metals in meat should be advocated.

Keywords: contamination, goldmine, heavy metals, meat

Procedia PDF Downloads 58
115 Aorta Adhesion Molecules in Cholesterol-Fed Rats Supplemented with Extra Virgin Olive Oil or Sunflower Oil, in Either Commercial or Modified Forms

Authors: Ageliki I. Katsarou, Andriana C. Kaliora, Antonia Chiou, Apostolos Papalois, Nick Kalogeropoulos, Nikolaos K. Andrikopoulos

Abstract:

Chronic inflammation plays a pivotal role in CVD development, while phytochemicals have been shown to reduce CVD risk. Several studies have correlated olive oil consumption with CVD prevention and CVD risk reduction. However, the effect of individual olive oil macro- or micro-constituents and possible synergisms among them needs to be further elucidated. Herein, extra virgin olive oil (EVOO) lipidic and polar phenolics fractions were evaluated for their effect on inflammatory markers in cholesterol-fed rats. Oils combining different characteristics as to their polar phenolic content and lipid profile were used. Male Wistar rats were fed for 9 weeks on either a high-cholesterol diet (HCD) or a HCD supplemented with oils, either commercially available, i.e. EVOO, sunflower oil (SO), or modified as to their polar phenol content, i.e. phenolics deprived-EVOO (EVOOd), SO enriched with the EVOO phenolics (SOe). Post-intervention, aorta and blood samples were collected. HCD induced dyslipidemia, manifested by serum total cholesterol and low-density lipoprotein cholesterol elevation. Additionally, HCD resulted in higher adhesion molecules’ levels in rat aorta. In the case of E-selectin, this increase was attenuated by HCD supplementation with EVOO and EVOOd, while no alterations were observed in SO and SOe groups. No differences were observed between pairs of commercial and modified oils, indicating that oleates may be the components responsible for aorta E-selectin levels lowering. The same was true for vascular adhesion molecule-1 (VCAM-1); augmentation in cholesterol-fed animals was attenuated by EVOO and EVOOd diets, highlighting oleates effect. In addition, VCAM-1 levels were higher in SO group compared to the respective SOe, indicating that in the presence of phenolic compounds linoleic acid have become less prone to oxidation. Intercellular adhesion molecule-1 (ICAM-1) levels were higher in cholesterol-fed rats, however not affected by any of the oils supplemented during the intervention. Overall, EVOO was found superior in regulating adhesion molecule levels in rat aorta compared to SO. EVOO and EVOOd exhibited analogous effects on all adhesion molecules assessed, indicating that EVOO major constituents (oleates) improve E-selectin and VCAM-1 levels in rat aorta, independently from phenolics presence. Further research is needed to elucidate the effect of phenolics and oleates in other tissues.

Keywords: extra virgin olive oil, cholesterol-fed rats, polar phenolics, adhesion molecules

Procedia PDF Downloads 249
114 Reverse Osmosis Application on Sewage Tertiary Treatment

Authors: Elisa K. Schoenell, Cristiano De Oliveira, Luiz R. H. Dos Santos, Alexandre Giacobbo, Andréa M. Bernardes, Marco A. S. Rodrigues

Abstract:

Water is an indispensable natural resource, which must be preserved to human activities as well the ecosystems. However, the sewage discharge has been contaminating water resources. Conventional treatment, such as physicochemical treatment followed by biological processes, has not been efficient to the complete degradation of persistent organic compounds, such as medicines and hormones. Therefore, the use of advanced technologies to sewage treatment has become urgent and necessary. The aim of this study was to apply Reverse Osmosis (RO) on sewage tertiary treatment from a Waste Water Treatment Plant (WWTP) in south Brazil. It was collected 200 L of sewage pre-treated by wetland with aquatic macrophytes. The sewage was treated in a RO pilot plant, using a polyamide membrane BW30-4040 model (DOW FILMTEC), with 7.2 m² membrane area. In order to avoid damage to the equipment, this system contains a pleated polyester filter with 5 µm pore size. It was applied 8 bar until achieve 5 times of concentration, obtaining 80% of recovery of permeate, with 10 L.min-1 of concentrate flow rate. Samples of sewage pre-treated on WWTP, permeate and concentrate generated on RO was analyzed for physicochemical parameters and by gas chromatography (GC) to qualitative analysis of organic compounds. The results proved that the sewage treated on WWTP does not comply with the limit of phosphorus and nitrogen of Brazilian legislation. Besides this, it was found many organic compounds in this sewage, such as benzene, which is carcinogenic. Analyzing permeate results, it was verified that the RO as sewage tertiary treatment was efficient to remove of physicochemical parameters, achieving 100% of iron, copper, zinc and phosphorus removal, 98% of color removal, 91% of BOD and 62% of ammoniacal nitrogen. RO was capable of removing organic compounds, however, it was verified the presence of some organic compounds on de RO permeate, showing that RO did not have the capacity of removal all organic compounds of sewage. It has to be considered that permeate showed lower intensity of peaks in chromatogram in comparison to the sewage of WWTP. It is important to note that the concentrate generate on RO needs a treatment before its disposal in environment.

Keywords: organic compounds, reverse osmosis, sewage treatment, tertiary treatment

Procedia PDF Downloads 180
113 Operating Parameters and Costs Assessments of a Real Fishery Wastewater Effluent Treated by Electrocoagulation Process

Authors: Mirian Graciella Dalla Porta, Humberto Jorge José, Danielle de Bem Luiz, Regina de F. P. M.Moreira

Abstract:

Similar to most processing industries, fish processing produces large volumes of wastewater, which contains especially organic contaminants, salts and oils dispersed therein. Different processes have been used for the treatment of fishery wastewaters, but the most commonly used are chemical coagulation and flotation. These techniques are well known but sometimes the characteristics of the treated effluent do not comply with legal standards for discharge. Electrocoagulation (EC) is an electrochemical process that can be used to treat wastewaters in terms of both organic matter and nutrient removal. The process is based on the use of sacrificial electrodes such as aluminum, iron or zinc, that are oxidized to produce metal ions that can be used to coagulate and react with organic matter and nutrients in the wastewater. While EC processes are effective to treatment of several types of wastewaters, applications have been limited due to the high energy demands and high current densities. Generally, the for EC process can be performed without additional chemicals or pre-treatment, but the costs should be reduced for EC processes to become more applicable. In this work, we studied the treatment of a real wastewater from fishmeal industry by electrocoagulation process. Removal efficiencies for chemical oxygen demand (COD), total organic carbon (TOC) turbidity, phosphorous and nitrogen concentration were determined as a function of the operating conditions, such as pH, current density and operating time. The optimum operating conditions were determined to be operating time of 10 minutes, current density 100 A.m-2, and initial pH 4.0. COD, TOC, phosphorous concentration, and turbidity removal efficiencies at the optimum operating conditions were higher than 90% for aluminum electrode. Operating costs at the optimum conditions were calculated as US$ 0.37/m3 (US$ 0.038/kg COD) for Al electrode. These results demonstrate that the EC process is a promising technology to remove nutrients from fishery wastewaters, as the process has both a high efficiency of nutrient removal, and low energy requirements.

Keywords: electrocoagulation, fish, food industry, wastewater

Procedia PDF Downloads 219