Search results for: water level changes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20029

Search results for: water level changes

19189 Hydraulic Characteristics of the Tidal River Dongcheon in Busan City

Authors: Young Man Cho, Sang Hyun Kim

Abstract:

Even though various management practices such as sediment dredging were attempted to improve water quality of Dongcheon located in Busan, the environmental condition of this stream was deteriorated. Therefore, Busan metropolitan city had pumped and diverted sea water to upstream of Dongcheon for several years. This study explored hydraulic characteristics of Dongcheon to configure the best management practice for ecological restoration and water quality improvement of a man-made urban stream. Intensive field investigation indicates that average flow velocities at depths of 20% and 80% from the water surface ranged 5 to 10 cm/s and 2 to 5 cm/s, respectively. Concentrations of dissolved oxygen for all depths were less than 0.25 mg/l during low tidal period. Even though density difference can be found along stream depth, density current seems rarely generated in Dongcheon. Short period of high tidal portion and shallow depths are responsible for well-mixing nature of Doncheon.

Keywords: hydraulic, tidal river, density current, sea water

Procedia PDF Downloads 224
19188 An Assessment of Water and Sediment Quality of the Danube River: Polycyclic Aromatic Hydrocarbons and Trace Metals

Authors: A. Szabó Nagy, J. Szabó, I. Vass

Abstract:

Water and sediment samples from the Danube River and Moson Danube Arm (Hungary) have been collected and analyzed for contamination by 18 polycyclic aromatic hydrocarbons (PAHs) and eight trace metal(loid)s (As, Cu, Pb, Ni, Cr, Cd, Hg and Zn) in the period of 2014-2015. Moreover, the trace metal(loid) concentrations were measured in the Rába and Marcal rivers (parts of the tributary system feeding the Danube). Total PAH contents in water were found to vary from 0.016 to 0.133 µg/L and concentrations in sediments varied in the range of 0.118 mg/kg and 0.283 mg/kg. Source analysis of PAHs using diagnostic concentration ratios indicated that PAHs found in sediments were of pyrolytic origins. The dissolved trace metal and arsenic concentrations were relatively low in the surface waters. However, higher concentrations were detected in the water samples of Rába (Zn, Cu, Ni, Pb) and Marcal (As, Cu, Ni, Pb) compared to the Danube and Moson Danube. The concentrations of trace metals in sediments were higher than those found in water samples.

Keywords: surface water, sediment, PAH, trace metal

Procedia PDF Downloads 314
19187 Improvement of Chemical Demulsifier Performance Using Silica Nanoparticles

Authors: G. E. Gandomkar, E. Bekhradinassab, S. Sabbaghi, M. M. Zerafat

Abstract:

The reduction of water content in crude oil emulsions reduces pipeline corrosion potential and increases the productivity. Chemical emulsification of crude oil emulsions is one of the methods available to reduce the water content. Presence of demulsifier causes the film layer between the crude oil emulsion and water droplets to become unstable leading to the acceleration of water coalescence. This research has been performed to study the improvement performance of a chemical demulsifier by silica nanoparticles. The silica nano-particles have been synthesized by sol-gel technique and precipitation using poly vinyl alcohol (PVA) and poly ethylene glycol (PEG) as surfactants and then nano-particles are added to the demulsifier. The silica nanoparticles were characterized by Particle Size Analyzer (PSA) and SEM. Upon the addition of nanoparticles, bottle tests have been carried out to separate and measure the water content. The results show that silica nano-particles increase the demulsifier efficiency by about 40%.

Keywords: demulsifier, dehydration, silicon dioxide, nanoparticle

Procedia PDF Downloads 401
19186 Numerical Simulation of Different Enhanced Oil Recovery (EOR) Scenarios on a Volatile Oil Reservoir

Authors: Soheil Tavakolpour

Abstract:

Enhance Oil Recovery (EOR) can be considered as an undeniable action in reservoirs life period. Different kind of EOR methods are available, but suitable EOR method depends on reservoir properties, like rock and fluid properties. In this paper, we nominated fifth SPE’s Comparative Solution Projects (CSP) for testing different scenarios. We used seven EOR scenarios for this reservoir and we simulated it for 10 years after 2 years production without any injection. The first scenario is waterflooding for whole of the 10 years period. The second scenario is gas injection for ten years. The third scenario is Water-Alternation-Gas (WAG). In the next scenario, water injected for 4 years before starting WAG injection for the next 6 years. In the fifth scenario, water injected after 6 years WAG injection for 4 years. For sixth and last scenarios, all the things are similar to fourth and fifth scenarios, but gas injected instead of water. Results show that fourth scenario was the most efficient method for 10 years EOR, but it resulted very high water production. Fifth scenario was efficient too, with little water production in comparison to the fourth scenario. Gas injection was not economically attractive. In addition to high gas production, it produced less oil in comparison to other scenarios.

Keywords: WAG, SPE’s comparative solution projects, numerical simulation, EOR scenarios

Procedia PDF Downloads 432
19185 The Assessment Groundwater Geochemistry of Some Wells in Rafsanjan Plain, Southeast of Iran

Authors: Milad Mirzaei Aminiyan, Abdolreza Akhgar, Farzad Mirzaei Aminiyan

Abstract:

Water quality is the critical factor that influence on human health and quantity and quality of grain production in semi-humid and semi-arid area. Pistachio is a main crop that accounts for a considerable portion of Iranian agricultural exports. Give that pistachio tree is a tolerant type of tree to saline and alkaline soil and water conditions, but groundwater and irrigation water quality play important roles in main production this crop. For this purpose, 94 well water samples were taken from 25 wells and samples were analyzed. The results showed give that region’s geological, climatic characteristics, statistical analysis, and based on dominant cations and anions in well water samples (piper diagram); four main types of water were found: Na-Cl, K-Cl, Na-SO4, and K-SO4. It seems that most wells in terms of water quality (salinity and alkalinity) and based on Wilcox diagram have critical status. The analysis suggested that more than eighty-seven percentage of the well water samples have high values of EC that these values are higher than into critical limit EC value for irrigation water, which may be due to the sandy soils in this area. Most groundwater were relatively unsuitable for irrigation but it could be used by application of correct management such as removing and reducing the ion concentrations of Cl‾, SO42‾, Na+ and total hardness in groundwater and also the concentrated deep groundwater was required treatment to reduce the salinity and sodium hazard. Given that irrigation water quality in this area was relatively unsuitable for most agriculture production but pistachio tree was adapted to this area conditions. The integrated management of groundwater for irrigation is the way to solve water quality issues not only in Rafsanjan area, but also in other arid and semi-arid areas.

Keywords: groundwater quality, irrigation water quality, salinity, alkalinity, Rafsanjan plain, pistachio

Procedia PDF Downloads 415
19184 Response of Wheat (Triticum aestivum L.) to Deficit Irrigation Management in the Semi-Arid Awash Basin of Ethiopia

Authors: Gobena D. Bayisa, A. Mekonen, Megersa O. Dinka, Tilahun H. Nebi, M. Boja

Abstract:

Crop production in arid and semi-arid regions of Ethiopia is largely limited by water availability. Changing climate conditions and declining water resources increase the need for appropriate approaches to improve water use and find ways to increase production through reduced and more reliable water supply. In the years 2021/22 and 2022/23, a field experiment was conducted to evaluate the effect of limited irrigation water use on bread wheat (Triticum aestivum L.) production, water use efficiency, and financial benefits. Five irrigation treatments, i.e., full irrigation (100% ETc/ control), 85% ETc, 70% ETc, 55% ETc, and 40% ETc, were evaluated using a randomized complete block design (RCBD) with four replicates in the semi-arid climate condition of Awash basin of Ethiopia. Statistical analysis showed a significant effect of irrigation levels on wheat grain yield, water use efficiency, crop water response factor, economic profit, wheat grain quality, aboveground biomass, and yield index. The highest grain yield (5085 kg ha⁻¹) was obtained with 100% ETc irrigation (417.2 mm), and the lowest grain yield with 40% ETc (223.7 mm). Of the treatments, 70% ETc produced the higher wheat grain yield (4555 kg ha⁻¹), the highest water use efficiency (1.42 kg m⁻³), and the highest yield index (0.43). Using the saved water, wheat could be produced 23.4% more with a 70% ETc deficit than full irrigation on 1.38 ha of land, and it could get the highest profit (US$2563.9) and higher MRR (137%). The yield response factor and crop-water production function showed potential reductions associated with increased irrigation deficits. However, a 70% ETc deficit is optimal for increasing wheat grain yield, water use efficiency, and economic benefits of irrigated wheat production. The result indicates that deficit irrigation of wheat under the typical arid and semi-arid climatic conditions of the Awash Basin can be a viable irrigation management approach for enhancing water use efficiency while minimizing the decrease in crop yield could be considered effective.

Keywords: crop-water response factor, deficit irrigation, water use efficiency, wheat production

Procedia PDF Downloads 68
19183 Response of Newzealand Rabbits to Drinking Water Treated with PolyDADMAC

Authors: Amna Beshir Medani Ahmed, Samia Mohammed Ali El Badwi, Ahmed El Amin Mohammed

Abstract:

This work has been managed to yield toxicity information on water treatment agents in the Sudan namely polyDADMAC, using New Zealand rabbits at multiple daily oral doses for a period of 10 weeks. Thirty-three heads of New Zealand rabbits were divided into 11 groups, each of three. Group 1 animals were the undosed controls. Test groups of either species were given polyDADMAC at similar dose rates of 0.5, 2.5, 4.5, 10, 15, 20, 25, 50, 100 and 150 mg/kg body weight respectively for groups 2,3,4,5,6,7,8,9,10 and 11. Clinical signs were closely observed with postmortem and histopathological examinations. Chemical investigations included enzymatic concentrations of ALP, GOT, CK, GPT and LDH together with hematological changes in Hb, PCV, RBCs and WBCs. Mortalities occurred to variable degrees irrespective of the dose level. On polyDADMAC challenge, the test species showed clinical signs of dullness, loss of weight, anorexia, diarrhea, difficulty in respiration, hind limb paralysis and recumbency. Notably oral dosing with polyDADMAC caused lung emphysema, hepatic and renal dysfunctions, irregularity in enzymatic activities and serum metabolites, sloughing of intestinal epithelium, decreased electrolytes in serum, and splenic haemosiderosis. On evaluation of the above results, polyDADMAC was considered toxic to New Zealand rabbits at all dose rates tried. Practical implications of the results were highlighted and suggestions for future work were put forward.

Keywords: polydiallyldiethylaluminiumchloride (polyDADMAC), nubian goats, toxicity of drinking water, treatment of drinking water using chemicals

Procedia PDF Downloads 370
19182 Enhanced Photoelectrochemical Water Splitting Coupled with Pharmaceutical Pollutants Degradation on Zr:BiVO4 Photoanodes by Synergetic Catalytic Activity of NiFeOOH Nanostructures

Authors: Mabrook Saleh Amera, Prabhakarn Arunachalama, Maged N. Shaddadb, Abdulhadi Al-Qadia

Abstract:

Global energy crises and water pollution have negatively impacted sustainable development in recent years. It is most promising to use Bismuth vanadate (BiVO4) as an electrode for photoelectrocatalytic (PEC) oxidation of water and pollution degradation. However, BiVO4 anodes suffer from poor charge separation and slow water oxidation. In this paper, a Zr:BiVO4/NiFeOOH heterojunction was successfully prepared by electrodeposition and photoelectrochemical transformation process. The method resulted in a notable 5-fold improvement in photocurrent features (1.27 mAcm−2 at 1.23 VRHE) and a lower onset potential of 0.6 VRHE. Photoanodes with high photocatalytic features and high photocorrosion resistance may be attributed their high conformity and amorphous nature of the coating. In this study, PEC was compared to electrocatalysis (EC), and the effect of bias potential on PEC degradation was discussed for tetracycline (TCH), riboflavin, and streptomycin. In PEC, TCH was degraded in the most efficient way (96 %) by Zr:BiVO4/NiFeOOH, three times larger than Zr:BiVO4 and EC (55 %). Thus, this study offers a potential solution for oxidizing PEC water and treating water pollution.

Keywords: photoelectrochemical, water splitting, pharmaceutical pollutants degradation, photoanodes, cocatalyst

Procedia PDF Downloads 52
19181 Black Soybeans Show Acute and Chronic Liver Protective Functions against CCl4 Induced Liver Damage

Authors: Cheng-Kuang Hsu, Chih-Hsiang Chang, Chi-Chih Wang

Abstract:

Black soybeans contain high amount of antioxidants including polyphenols, anthocyanins and flavones. The protective function of black soybean against CCl4 (a strong oxidant) induced acute and chronic liver damage was investigated in vivo using SD rats or ICR mouse. The evaluation of CCl4 induced oxidative stress in the liver tissues included the measurements of the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), the concentration of thiobarbituric acid reactive substances (TBARS), the activities of antioxidant enzymes (superoxide dismutase SOD, catalase, and glutathione peroxidase GPx), as well as the level of histological lesion in the liver tissues. For chronic experiment, a decoction at the concentration of 100 or 1000 mg/kg of body weight, produced by baking black soybean at 130°C for 5 min and followed by immerging in 100°C hot water for 20 min, showed the inhibitory effect against CCl4 induced liver damage in SD rats. Hot-water extract (80 °C for 30 min) from un-preheated black soybean at the concentration of 200 mg/kg of body weight could not reduce ALT and AST levels in CCl4 treated SD rats, but the hot-water extract from preheated black soybean did enhance antioxidant enzymes activities, decline ALT and AST levels. Specially, the hot-water extract from the seed cost of black soybean had the highest liver protective function since it can reduce vacuolization and necrosis in the liver tissues. For acute experiment, the hot-water extracts from black soybean and the seed coat, as well as pure cyanidin-3-glucoside (C3G) could reduce ALT and AST levels of CCl4 induced ICR mouse. The decoction and hot-water extract from the seed coat of black soybean had higher total polyphenols, anthocyanins and flavones contents than those extracts from whole black soybean. Such results agreed with high liver protective function in the decoction and hot-water from the seed coat of black soybean. Black soybean showed protective function only after preheating process (baking at 130°C for 5 to 10 min) because preheating treatment damaged the cell wall and made the extraction of the antioxidants more effectively.

Keywords: black soybean, liver protective function, antioxidant, antioxidative stress

Procedia PDF Downloads 479
19180 Science and Monitoring Underpinning River Restoration: A Case Study

Authors: Geoffrey Gilfillan, Peter Barham, Lisa Smallwood, David Harper

Abstract:

The ‘Welland for People and Wildlife’ project aimed to improve the River Welland’s ecology and water quality, and to make it more accessible to the community of Market Harborough. A joint monitoring project by the Welland Rivers Trust & University of Leicester was incorporated into the design. The techniques that have been used to measure its success are hydrological, geomorphological, and water quality monitoring, species and habitat surveys, and community engagement. Early results show improvements to flow and habitat diversity, water quality and biodiversity of the river environment. Barrier removal has increased stickleback mating activity, and decreased parasitically infected fish in sample catches. The habitats provided by the berms now boast over 25 native plant species, and the river is clearer, cleaner and with better-oxygenated water.

Keywords: community engagement, ecological monitoring, river restoration, water quality

Procedia PDF Downloads 229
19179 Hydration Evaluation In A Working Population in Greece

Authors: Aikaterini-Melpomeni Papadopoulou, Kyriaki Apergi, Margarita-Vasiliki Panagopoulou, Olga Malisova

Abstract:

Introduction: Adequate hydration is a vital factor that enhances concentration, memory, and decision-making abilities throughout the workday. Various factors may affect hydration status in workplace settings, and many variables, such as age, gender and activity level affect hydration needs. Employees frequently overlook their hydration needs amid busy schedules and demanding tasks, leading to dehydration that can negatively affect cognitive function, productivity, and overall well-being In addition, dietary habits, including fluid intake and food choices, can either support or hinder optimal hydration. However, factors that affect hydration balance among workers in Greece have not been adequately studied. Objective: This study aims to evaluate the hydration status of the working population in Greece and investigate the various factors that impact hydration status in workplace settings, considering demographic, dietary, and occupational influences in a Greek sample of employees from diverse working environments Materials & Methods: The study included 212 participants (46.2% women) from the working population in Greece. A validated questionnaire (Water Balance Questionnaire) was used to evaluate hydration status, along with additional questions on drinking habits and work-related factors. In particular, volunteers answered questions of different categories such as a) demographic socio-economic b) work style characteristics c) health, d) physical activity, e) food and fluid intake, f) fluid excretion and g) trends on fluid and water intake. Individual and multivariate regression analyses were performed to assess the relationships between demographic, work-related factors, and hydration balance. Results: Analysis showed that demographic factors like gender, age, and BMI, as well as certain work-related factors, had a weak and statistically non-significant effect on hydration balance. However, the use of a bottle or water container during work hours (b = 944.93, p < 0.001) and engaging in intense physical activity outside of work (b = -226.28, p < 0.001) were found to have a significant impact. Additionally, the consumption of beverages other than water (b = -416.14, p = 0.059) could negatively impact hydration balance. On average, the total consumption of the sample is 3410 ml of water daily, with men consuming approximately 440 ml / day more water (3470 ml / day) compared to women (3030 ml / day) with this difference also being statistically significant. Finally, the water balance, defined as the difference between water intake and water excretion, was found to be negative on average for the entire sample. Conclusions: This study is among the first to explore hydration status within the Greek working population. Findings indicate that awareness of adequate hydration and individual actions, such as using a water bottle during work, may influence hydration balance.

Keywords: hydration, working population, water balance, workplace behavior

Procedia PDF Downloads 5
19178 Fault Detection of Pipeline in Water Distribution Network System

Authors: Shin Je Lee, Go Bong Choi, Jeong Cheol Seo, Jong Min Lee, Gibaek Lee

Abstract:

Water pipe network is installed underground and once equipped; it is difficult to recognize the state of pipes when the leak or burst happens. Accordingly, post management is often delayed after the fault occurs. Therefore, the systematic fault management system of water pipe network is required to prevent the accident and minimize the loss. In this work, we develop online fault detection system of water pipe network using data of pipes such as flow rate or pressure. The transient model describing water flow in pipelines is presented and simulated using Matlab. The fault situations such as the leak or burst can be also simulated and flow rate or pressure data when the fault happens are collected. Faults are detected using statistical methods of fast Fourier transform and discrete wavelet transform, and they are compared to find which method shows the better fault detection performance.

Keywords: fault detection, water pipeline model, fast Fourier transform, discrete wavelet transform

Procedia PDF Downloads 510
19177 Spring Water Quality Appraisement for Drinking and Irrigation Application in Nigeria: A Muliti-Criteria Approach

Authors: Hillary Onyeka Abugu, Valentine Chinakwugwo Ezea, Janefrances Ngozi Ihedioha, Nwachukwu Romanus Ekere

Abstract:

The study assessed the spring water quality in Igbo-Etiti, Nigeria, for drinking and irrigation application using Physico-chemical parameters, water quality index, mineral and trace elements, pollution indices and risk assessment. Standard methods were used to determine the physicochemical properties of the spring water in rainy and dry seasons. Trace metals such as Pb, Cd, Zn and Cu were determined with atomic absorption spectrophotometer. The results showed that most of the physicochemical properties studied were within the guideline values set by Nigeria Standard for Drinking Water Quality (NSDWQ), WHO and US EPA for drinking water purposes. However, pH of all the spring water (4.27- 4.73; and 4.95- 5.73), lead (Pb) (0.01-1.08 mg/L) and cadmium (Cd) (0.01-0.15 mg/L) concentrations were above the guideline values in both seasons. This could be attributed to the lithography of the study area, which is the Nsukka formation. Leaching of lead and sulphides from the embedded coal deposits could have led to the increased lead levels and made the water acidic. Two-way ANOVA showed significant differences in most of the parameters studied in dry and rainy seasons. Pearson correlation analysis and cluster analysis showed strong significant positive and negative correlations in some of the parameters studied in both seasons. The water quality index showed that none of the spring water had excellent water status. However, one spring (Iyi Ase) had poor water status in dry season and is considered unsafe for drinking. Iyi Ase was also considered not suitable for irrigation application as predicted by most of the pollution indices, while others were generally considered suitable for irrigation application. Probable cancer and non-cancer risk assessment revealed a probable risk associated with the consumption of the spring in the Igbo-Ettiti area, Nigeria.

Keywords: water quality, pollution index, risk assessment, physico-chemical parameters

Procedia PDF Downloads 164
19176 Improvement of Water Quality of Al Asfar Lake Using Constructed Wetland System

Authors: Jamal Radaideh

Abstract:

Al-Asfar Lake is located about 14 km east of Al-Ahsa and is one of the most important wetland lakes in the Al Ahsa/Eastern Province of Saudi Arabia. Al-Ahsa is may be the largest oasis in the world, having an area of 20,000 hectares, in addition, it is of the largest and oldest agricultural centers in the region. The surplus farm irrigation water beside additional water supplied by treated wastewater from Al-Hofuf sewage station is collected by a drainage network and discharged into Al-Asfar Lake. The lake has good wetlands, sand dunes as well as large expanses of open and shallow water. Salt tolerant vegetation is present in some of the shallow areas around the lake, and huge stands of Phragmites reeds occur around the lake. The lake presents an important habitat for wildlife and birds, something not expected to find in a large desert. Although high evaporation rates in the range of 3250 mm are common, the water remains in the evaporation lakes during all seasons of the year is used to supply cattle with drinking water and for aquifer recharge. Investigations showed that high concentrations of nitrogen (N), phosphorus (P), biological oxygen demand (BOD), chemical oxygen demand (COD) and salinity discharge to Al Asfar Lake from the D2 drain exist. It is expected that the majority of BOD, COD and N originates from wastewater discharge and leachate from surplus irrigation water which also contribute to the majority of P and salinity. The significant content of nutrients and biological oxygen demand reduces available oxygen in the water. The present project aimed to improve the water quality of the lake using constructed wetland trains which will be built around the lake. Phragmites reeds, which already occur around the lake, will be used.

Keywords: Al Asfar lake, constructed wetland, water quality, water treatment

Procedia PDF Downloads 446
19175 Real-Time Monitoring of Drinking Water Quality Using Advanced Devices

Authors: Amani Abdallah, Isam Shahrour

Abstract:

The quality of drinking water is a major concern of public health. The control of this quality is generally performed in the laboratory, which requires a long time. This type of control is not adapted for accidental pollution from sudden events, which can have serious consequences on population health. Therefore, it is of major interest to develop real-time innovative solutions for the detection of accidental contamination in drinking water systems This paper presents researches conducted within the SunRise Demonstrator for ‘Smart and Sustainable Cities’ with a particular focus on the supervision of the water quality. This work aims at (i) implementing a smart water system in a large water network (Campus of the University Lille1) including innovative equipment for real-time detection of abnormal events, such as those related to the contamination of drinking water and (ii) develop a numerical modeling of the contamination diffusion in the water distribution system. The first step included verification of the water quality sensors and their effectiveness on a network prototype of 50m length. This part included the evaluation of the efficiency of these sensors in the detection both bacterial and chemical contamination events in drinking water distribution systems. An on-line optical sensor integral with a laboratory-scale distribution system (LDS) was shown to respond rapidly to changes in refractive index induced by injected loads of chemical (cadmium, mercury) and biological contaminations (Escherichia coli). All injected substances were detected by the sensor; the magnitude of the response depends on the type of contaminant introduced and it is proportional to the injected substance concentration.

Keywords: distribution system, drinking water, refraction index, sensor, real-time

Procedia PDF Downloads 353
19174 The Impact of Low-Concentrated Acidic Electrolyzed Water on Foodborne Pathogens

Authors: Ewa Brychcy, Natalia Ulbin-Figlewicz, Dominika Kulig, Żaneta Król, Andrzej Jarmoluk

Abstract:

Acidic electrolyzed water (AEW) is an alternative with environmentally friendly broad spectrum microbial decontamination. It is produced by membrane electrolysis of a dilute NaCl solution in water ionizers. The aim of the study was to evaluate the effectiveness of low-concentrated AEW in reducing selected foodborne pathogens and to examine its bactericidal effect on cellular structures of Escherichia coli. E. coli and S. aureus cells were undetectable after 10 minutes of contact with electrolyzed salt solutions. Non-electrolyzed solutions did not inhibit the growth of bacteria. AE water was found to destroy the cellular structures of the E. coli. The use of more concentrated salt solutions and prolonged electrolysis time from 5 to 10 minutes resulted in a greater changes of rods shape as compared to the control and non-electrolyzed NaCl solutions. This research showed that low-concentrated acid electrolyzed water is an effective method to significantly reduce pathogenic microorganisms and indicated its potential application for decontamination of meat.

Keywords: acidic electrolyzed water, foodborne pathogens, meat decontamination, membrane electrolysis

Procedia PDF Downloads 491
19173 Treatment of Rice Industry Waste Water by Flotation-Flocculation Method

Authors: J. K. Kapoor, Shagufta Jabin, H. S. Bhatia

Abstract:

Polyamine flocculants were synthesized by poly-condensation of diphenylamine and epichlorohydrin using 1, 2-diaminoethane as modifying agent. The polyelectrolytes were prepared by taking epichlohydrin-diphenylamine in a molar ratio of 1:1, 1.5:1, 2:1, and 2.5:1. The flocculation performance of these polyelectrolytes was evaluated with rice industry waste water. The polyelectrolytes have been used in conjunction with alum for coagulation- flocculation process. Prior to the coagulation- flocculation process, air flotation technique was used with the aim to remove oil and grease content from waste water. Significant improvement was observed in the removal of oil and grease content after the air flotation technique. It has been able to remove 91.7% oil and grease from rice industry waste water. After coagulation-flocculation method, it has been observed that polyelectrolyte with epichlohydrin-diphenylamine molar ratio of 1.5:1 showed best results for the removal of pollutants from rice industry waste water. The highest efficiency of turbidity and TSS removal with polyelectrolyte has been found to be 97.5% and 98.2%, respectively. Results of these evaluations also reveal 86.8% removal of COD and 87.5% removal of BOD from rice industry waste water. Thus, we demonstrate optimization of coagulation–flocculation technique which is appropriate for waste water treatment.

Keywords: coagulation, flocculation, air flotation technique, polyelectrolyte, turbidity

Procedia PDF Downloads 478
19172 Identifying the Factors that Influence Water-Use Efficiency in Agriculture: Case Study in a Spanish Semi-Arid Region

Authors: Laura Piedra-Muñoz, Ángeles Godoy-Durán, Emilio Galdeano-Gómez, Juan C. Pérez-Mesa

Abstract:

The current agricultural system in some arid and semi-arid areas is not sustainable in the long term. In southeast Spain, groundwater is the main water source and is overexploited, while alternatives like desalination are still limited. The Water Plan for the Mediterranean Basins 2015-2020 indicates a global deficit of 73.42 hm3 and an overexploitation of the aquifers of 205.58hm3. In order to solve this serious problem, two major actions can be taken: increasing available water, and/or improving the efficiency of its use. This study focuses on the latter. The main aim of this study is to present the major factors related to water usage efficiency in farming. It focuses on Almería province, southeast Spain, one of the most arid areas of the country, and in particular on family farms as the main direct managers of water use in this zone. Many of these farms are among the most water efficient in Spanish agriculture, but this efficiency is not generalized throughout the sector. This work conducts a comprehensive assessment of water performance in this area, using on-farm water-use, structural, socio-economic and environmental information. Two statistical techniques are used: descriptive analysis and cluster analysis. Thus, two groups are identified: the least and the most efficient farms regarding water usage. By analyzing both the common characteristics within each group and the differences between the groups with a one-way ANOVA analysis, several conclusions can be reached. The main differences between the two clusters center on the extent to which innovation and new technologies are used in irrigation. The most water efficient farms are characterized by more educated farmers, a greater degree of innovation, new irrigation technology, specialized production and awareness of water issues and environmental sustainability. The research shows that better practices and policies can have a substantial impact on achieving a more sustainable and efficient use of water. The findings of this study can be extended to farms in similar arid and semi-arid areas and contribute to foster appropriate policies to improve the efficiency of water usage in the agricultural sector.

Keywords: cluster analysis, family farms, Spain, water-use efficiency

Procedia PDF Downloads 286
19171 Modeling of Reverse Osmosis Water Desalination Powered by Photovoltaic Solar Energy

Authors: Salma El Aimani

Abstract:

Freshwater is an essential material in our daily life; its availability is on the decline due to population growth and climate change. To meet the demand for fresh water in regions where reserves are insufficient, several countries have adopted seawater desalination. Several physical methods allow the production of fresh water from seawater; among these methods are distillation and reverse osmosis, and there is great potential to use renewable energy sources such as solar Photovoltaics. The work presented in this paper consists of three parts. First, the generalities of desalination technologies will be presented. The second part is devoted to the presentation of different water desalination systems combined with renewable energy and their benefits and drawbacks on different sides. In the third part, we will perform a modeling of a PV water desalination system under Matlab Simulink software. Then, according to the obtained simulation results, we conclude this paper with the prospects of the presented work.

Keywords: reverse-osmosis, desalination, modelling, ‎irradiation, Matlab

Procedia PDF Downloads 86
19170 Finite Volume Method in Loop Network in Hydraulic Transient

Authors: Hossain Samani, Mohammad Ehteram

Abstract:

In this paper, we consider finite volume method (FVM) in water hammer. We will simulate these techniques on a looped network with complex boundary conditions. After comparing methods, we see the FVM method as the best method. We compare the results of FVM with experimental data. Finite volume using staggered grid is applied for solving water hammer equations.

Keywords: hydraulic transient, water hammer, interpolation, non-liner interpolation

Procedia PDF Downloads 348
19169 Drug Residues Disposal from Wastewater Using Carbon Nanomaterials

Authors: Stefan Nicolae, Cristina Cirtoaje, Emil Petrescu, Florin-Razvan Duca

Abstract:

In the context of the accelerated expansion of urban agglomerations and the exponential development of industry, a huge amount of water is used, and a crisis of drinking water may occur any time. Classic wastewater treatment removes most pollutants but, for some chemical residues, special methods are needed. Carbon nanotubes and other carbon materials might be used in many cases [1-2], especially for heavy metals removal but also on pharmaceutical products such as paracetamol [3]. Our research has confirmed the better efficiency of nanotubes compared to graphene on paracetamol removal from water, but even better results were obtained on single-walled nanotubes (SWCNTs) and graphene nanoplatelets. This can be due to their better dispersion in water which leads to an increased contact surface, so we propose a filtration system of membranes and carbon materials that can be used for paracetamol removal from wastewater but also for other drugs that affect the aquatic life as well as terrestrial animals and people who use this contaminated water.

Keywords: applied physics, wastewater, nanomaterials, enviromental science

Procedia PDF Downloads 187
19168 Hydration of Three-Piece K Peptide Fragments Studied by Means of Fourier Transform Infrared Spectroscopy

Authors: Marcin Stasiulewicz, Sebastian Filipkowski, Aneta Panuszko

Abstract:

Background: The hallmark of neurodegenerative diseases, including Alzheimer's and Parkinson's diseases, is an aggregation of the abnormal forms of peptides and proteins. Water is essential to functioning biomolecules, and it is one of the key factors influencing protein folding and misfolding. However, the hydration studies of proteins are complicated due to the complexity of protein systems. The use of model compounds can facilitate the interpretation of results involving larger systems. Objectives: The goal of the research was to characterize the properties of the hydration water surrounding the two three-residue K peptide fragments INS (Isoleucine - Asparagine - Serine) and NSR (Asparagine - Serine - Arginine). Methods: Fourier-transform infrared spectra of aqueous solutions of the tripeptides were recorded on Nicolet 8700 spectrometer (Thermo Electron Co.) Measurements were carried out at 25°C for varying molality of solute. To remove oscillation couplings from water spectra and, consequently, obtain narrow O-D semi-heavy water bands (HDO), the isotopic dilution method of HDO in H₂O was used. The difference spectra method allowed us to isolate the tripeptide-affected HDO spectrum. Results: The structural and energetic properties of water affected by the tripeptides were compared to the properties of pure water. The shift of the values of the gravity center of bands (related to the mean energy of water hydrogen bonds) towards lower values with respect to the ones corresponding to pure water suggests that the energy of hydrogen bonds between water molecules surrounding tripeptides is higher than in pure water. A comparison of the values of the mean oxygen-oxygen distances in water affected by tripeptides and pure water indicates that water-water hydrogen bonds are shorter in the presence of these tripeptides. The analysis of differences in oxygen-oxygen distance distributions between the tripeptide-affected water and pure water indicates that around the tripeptides, the contribution of water molecules with the mean energy of hydrogen bonds decreases, and simultaneously the contribution of strong hydrogen bonds increases. Conclusions: It was found that hydrogen bonds between water molecules in the hydration sphere of tripeptides are shorter and stronger than in pure water. It means that in the presence of the tested tripeptides, the structure of water is strengthened compared to pure water. Moreover, it has been shown that in the vicinity of the Asparagine - Serine - Arginine, water forms stronger and shorter hydrogen bonds. Acknowledgments: This work was funded by the National Science Centre, Poland (grant 2017/26/D/NZ1/00497).

Keywords: amyloids, K-peptide, hydration, FTIR spectroscopy

Procedia PDF Downloads 177
19167 Plecoptera Fauna of Alara and Karpuz Streams and Determination of their Relationships with Water Quality

Authors: Hasan Kalyoncu, Ayşe Güneş

Abstract:

This study was carried on 12 determined stations, on Alara and Karpuz Streams, between January and November 2014. Seasonal samples were taken from the stations to analyze physicochemical parameters and Plecoptera Fauna in the water. The correlation between identified taxa and physicochemical data were tried to determine. As the result of the study, 2088 individuals from Plecoptera fauna were examined, 3 genera and 13 species were identified. The taxa of Brachyptera risi, Capnia bifrons, Dinocras cephalotes, Diura bicaudata, Isogenus nebecula, Isogenus sp., Isoperla grammatica, Leuctra hippopus, Leuctra inermis, Leuctra moselyi, Leuctra sp., Nemoura sp., Perla bipunctata, Perla marginata, Protonemura meyeri and Rhabdiopteryx acuminata were determined. In Alara Stream, the dominant species were; Isogenus nebecula at stations I and IV, Leuctra moselyi at station II, Leuctra hippopus at stations III, V and VI. In Karpuz Stream, Brachyptera risi was the dominant species in all stations. While Leuctra hippopus was the dominant taxon in Alara Stream, in Karpuz Stream it was Brachyptera risi. The highest diversity value was at station III and the lowest was at station VI in Alara Stream and the lowest diversity value was at station VI, while the highest was at station I in Karpuz Stream. In Alara Stream, the most similar stations were I and III, while in Karpuz Stream the highest similarity was determined between stations I and II. As for the evaluation result, the water quality of Alara and Karpuz Streams were determined as at oligosaprobic level.

Keywords: Alara stream, Karpuz stream, plecoptera, water quality

Procedia PDF Downloads 295
19166 Combination of Artificial Neural Network Model and Geographic Information System for Prediction Water Quality

Authors: Sirilak Areerachakul

Abstract:

Water quality has initiated serious management efforts in many countries. Artificial Neural Network (ANN) models are developed as forecasting tools in predicting water quality trend based on historical data. This study endeavors to automatically classify water quality. The water quality classes are evaluated using 6 factor indices. These factors are pH value (pH), Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Nitrate Nitrogen (NO3N), Ammonia Nitrogen (NH3N) and Total Coliform (T-Coliform). The methodology involves applying data mining techniques using multilayer perceptron (MLP) neural network models. The data consisted of 11 sites of Saen Saep canal in Bangkok, Thailand. The data is obtained from the Department of Drainage and Sewerage Bangkok Metropolitan Administration during 2007-2011. The results of multilayer perceptron neural network exhibit a high accuracy multilayer perception rate at 94.23% in classifying the water quality of Saen Saep canal in Bangkok. Subsequently, this encouraging result could be combined with GIS data improves the classification accuracy significantly.

Keywords: artificial neural network, geographic information system, water quality, computer science

Procedia PDF Downloads 341
19165 Adsoption Tests of Two Industrial Dyes by Metallic Hydroxyds

Authors: R. Berrached, H. Ait Mahamed, A. Iddou

Abstract:

Water pollution is nowadays a serious problem, due to the increasing scarcity of water and thus to the impact induced by such pollution on the human health. Various techniques are made use of to deal with water pollution. Among the most used ones, some can be enumerated: the bacterian bed, the activated mud, the Lagunage as biological processes and coagulation-floculation as a physic-chemical process. These processes are very expensive and an treatment efficiency which decreases along with the increase of the initial pollutants’ concentration. This is the reason why research has been reoriented towards the use of a process by adsorption as an alternative solution instead of the other traditional processes. In our study, we have tempted to exploit the characteristics of two metallic hydroxides Al and Fe to purify contaminated water by two industrial dyes SBL blue and SRL-150 orange. Results have shown the efficiency of the two materials on the blue SBL dye.

Keywords: Metallic Hydroxydes, industrial dyes, purification, lagunage

Procedia PDF Downloads 465
19164 Technical Analysis of Combined Solar Water Heating Systems for Cold Climate Regions

Authors: Hossein Lotfizadeh, André McDonald, Amit Kumar

Abstract:

Renewable energy resources, which can supplement space and water heating for residential buildings, can have a noticeable impact on natural gas consumption and air pollution. This study considers a technical analysis of a combined solar water heating system with evacuated tube solar collectors for different solar coverage, ranging from 20% to 100% of the total roof area of a typical residential building located in Edmonton, Alberta, Canada. The alternative heating systems were conventional (non-condensing) and condensing tankless water heaters and condensing boilers that were coupled to solar water heating systems. The performance of the alternative heating systems was compared to a traditional heating system, consisting of a conventional boiler, applied to houses of various gross floor areas. A comparison among the annual natural gas consumption, carbon dioxide (CO2) mitigation, and emissions for the various house sizes indicated that the combined solar heating system can reduce the natural gas consumption and CO2 emissions, and increase CO2 mitigation for all the systems that were studied. The results suggest that solar water heating systems are potentially beneficial for residential heating system applications in terms of energy savings and CO2 mitigation.

Keywords: CO2 emissions, CO2 mitigation, natural gas consumption, solar water heating system

Procedia PDF Downloads 318
19163 Construction of Submerged Aquatic Vegetation Index through Global Sensitivity Analysis of Radiative Transfer Model

Authors: Guanhua Zhou, Zhongqi Ma

Abstract:

Submerged aquatic vegetation (SAV) in wetlands can absorb nitrogen and phosphorus effectively to prevent the eutrophication of water. It is feasible to monitor the distribution of SAV through remote sensing, but for the reason of weak vegetation signals affected by water body, traditional terrestrial vegetation indices are not applicable. This paper aims at constructing SAV index to enhance the vegetation signals and distinguish SAV from water body. The methodology is as follows: (1) select the bands sensitive to the vegetation parameters based on global sensitivity analysis of SAV canopy radiative transfer model; (2) take the soil line concept as reference, analyze the distribution of SAV and water reflectance simulated by SAV canopy model and semi-analytical water model in the two-dimensional space built by different sensitive bands; (3)select the band combinations which have better separation performance between SAV and water, and use them to build the SAVI indices in the form of normalized difference vegetation index(NDVI); (4)analyze the sensitivity of indices to the water and vegetation parameters, choose the one more sensitive to vegetation parameters. It is proved that index formed of the bands with central wavelengths in 705nm and 842nm has high sensitivity to chlorophyll content in leaves while it is less affected by water constituents. The model simulation shows a general negative, little correlation of SAV index with increasing water depth. Moreover, the index enhances capabilities in separating SAV from water compared to NDVI. The SAV index is expected to have potential in parameter inversion of wetland remote sensing.

Keywords: global sensitivity analysis, radiative transfer model, submerged aquatic vegetation, vegetation indices

Procedia PDF Downloads 261
19162 Analysis of Vapor-Phase Diffusion of Benzene from Contaminated Soil

Authors: Asma A. Parlin, K. Nakamura, N. Watanabe, T. Komai

Abstract:

Understanding the effective diffusion of benzene vapor in the soil-atmosphere interface is important as an intrusion of benzene into the atmosphere from the soil is largely driven by diffusion. To analyze the vertical one dimensional effective diffusion of benzene vapor in porous medium with high water content, diffusion experiments were conducted in soil columns using Andosol soil and Toyoura silica sand with different water content; for soil water content was from 0 to 30 wt.% and for sand it was from 0.06 to 10 wt.%. In soil, a linear relation was found between water content and effective diffusion coefficient while the effective diffusion coefficient didn’t change in the sand with increasing water. A numerical transport model following unsteady-state approaches based on Fick’s second law was used to match the required time for a steady state of the gas phase concentration profile of benzene to the experimentally measured concentration profile gas phase in the column. The result highlighted that both the water content and porosity might increase vertical diffusion of benzene vapor in soil.

Keywords: benzene vapor-phase, effective diffusion, subsurface soil medium, unsteady state

Procedia PDF Downloads 141
19161 Ground Effect on Marine Midge Water Surface Locomotion

Authors: Chih-Hua Wu, Bang-Fuh Chen, Keryea Soong

Abstract:

Midges can move on the surface of the water at speeds of approximately 340 body-lengths/s and can move continuously for >90 min. Their wings periodically scull the sea surface to push water backward and thus generate thrust; their other body parts, including their three pairs of legs, touch the water only occasionally. The aim of this study was to investigate the locomotion mechanism of marine midges with a size of 2 mm and living in shallow reefs in Wanliton, southern Taiwan. We assumed that midges generate lift through two mechanisms: by sculling the surface of seawater to leverage the generated tension for thrust and by retracting their wings to generate aerodynamic lift at a suitable angle of attack. We performed computational fluid dynamic simulations to determine the mechanism of midge locomotion above the surface of the water. The simulations indicated that ground effects are essential and that both the midge trunk and wing tips must be very close to the water surface to produce sufficient lift to keep the midge airborne. Furthermore, a high wing-beat frequency is crucial for the midge to produce sufficient lift during wing retraction. Accordingly, ground effects, forward speed, and high wing-beat frequency are major factors influencing the ability of midges to generate sufficient lift and remain airborne above the water surface.

Keywords: ground effect, water locomotion, CFD, aerodynamic lift

Procedia PDF Downloads 79
19160 Influence of [Emim][OAc] and Water on Gelatinization Process and Interactions with Starch

Authors: Shajaratuldur Ismail, Nurlidia Mansor, Zakaria Man

Abstract:

Thermoplastic starch (TPS) plasticized by 1-ethyl-3-methylimidazolium acetate [Emim][OAc] were obtained through gelatinization process. The gelatinization process occurred in the presence of water and [Emim][OAc] as plasticizer at high temperature (90˚C). The influence of [Emim][OAc] and water on the gelatinization and interactions with starch have been studied over a range of compositions. The homogenous mass was obtained for the samples containing 35, 40 and 43.5 % of water contents which showed that water plays important role in gelatinization process. Detailed IR spectroscopy analysis showed decrease in hydrogen bonding intensity and strong interaction between acetate anion in [Emim][OAc] and starch hydroxyl groups in the presence of [Emim][OAc]. Starch-[Emim][OAc]-water mixture at 10-3-8.7 presented homogenous mass, less hydrogen bonding intensity and strong interaction between acetate anion in [Emim][OAc] and starch hydroxyl groups.

Keywords: starch, ionic liquid, 1-ethyl-3-methylimidazolium acetate, plasticizer, gelatinization, IR spectroscopy

Procedia PDF Downloads 227