Search results for: video-based attention monitoring
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7228

Search results for: video-based attention monitoring

6388 Using the UK as a Case Study to Assess the Current State of Large Woody Debris Restoration as a Tool for Improving the Ecological Status of Natural Watercourses Globally

Authors: Isabelle Barrett

Abstract:

Natural watercourses provide a range of vital ecosystem services, notably freshwater provision. They also offer highly heterogeneous habitat which supports an extreme diversity of aquatic life. Exploitation of rivers, changing land use and flood prevention measures have led to habitat degradation and subsequent biodiversity loss; indeed, freshwater species currently face a disproportionate rate of extinction compared to their terrestrial and marine counterparts. Large woody debris (LWD) encompasses the trees, large branches and logs which fall into watercourses, and is responsible for important habitat characteristics. Historically, natural LWD has been removed from streams under the assumption that it is not aesthetically pleasing and is thus ecologically unfavourable, despite extensive evidence contradicting this. Restoration efforts aim to replace lost LWD in order to reinstate habitat heterogeneity. This paper aims to assess the current state of such restoration schemes for improving fluvial ecological health in the UK. A detailed review of the scientific literature was conducted alongside a meta-analysis of 25 UK-based projects involving LWD restoration. Projects were chosen for which sufficient information was attainable for analysis, covering a broad range of budgets and scales. The most effective strategies for river restoration encompass ecological success, stakeholder engagement and scientific advancement, however few projects surveyed showed sensitivity to all three; for example, only 32% of projects stated biological aims. Focus tended to be on stakeholder engagement and public approval, since this is often a key funding driver. Consequently, there is a tendency to focus on the aesthetic outcomes of a project, however physical habitat restoration does not necessarily lead to direct biodiversity increases. This highlights the significance of rivers as highly heterogeneous environments with multiple interlinked processes, and emphasises a need for a stronger scientific presence in project planning. Poor scientific rigour means monitoring is often lacking, with varying, if any, definitions of success which are rarely pre-determined. A tendency to overlook negative or neutral results was apparent, with unjustified focus often put on qualitative results. The temporal scale of monitoring is typically inadequate to facilitate scientific conclusions, with only 20% of projects surveyed reporting any pre-restoration monitoring. Furthermore, monitoring is often limited to a few variables, with biotic monitoring often fish-focussed. Due to their longer life cycles and dispersal capability, fish are usually poor indicators of environmental change, making it difficult to attribute any changes in ecological health to restoration efforts. Although the potential impact of LWD restoration may be positive, this method of restoration could simply be making short-term, small-scale improvements; without addressing the underlying symptoms of degradation, for example water quality, the issue cannot be fully resolved. Promotion of standardised monitoring for LWD projects could help establish a deeper understanding of the ecology surrounding the practice, supporting movement towards adaptive management in which scientific evidence feeds back to practitioners, enabling the design of more efficient projects with greater ecological success. By highlighting LWD, this study hopes to address the difficulties faced within river management, and emphasise the need for a more holistic international and inter-institutional approach to tackling problems associated with degradation.

Keywords: biological monitoring, ecological health, large woody debris, river management, river restoration

Procedia PDF Downloads 218
6387 The Complex Relationship Between IQ and Attention Deficit Hyperactivity Disorder Symptoms: Insights From Behaviors, Cognition, and Brain in 5,138 Children With Attention Deficit Hyperactivity Disorder

Authors: Ningning Liu, Gaoding Jia, Yinshan Wang, Haimei Li, Xinian Zuo, Yufeng Wang, Lu Liu, Qiujin Qian

Abstract:

Background: There has been speculation that a high IQ may not necessarily provide protection against attention deficit hyperactivity disorder (ADHD), and there may be a U-shaped correlation between IQ and ADHD symptoms. However, this speculation has not been validated in the ADHD population in any study so far. Method: We conducted a study with 5,138 children who have been professionally diagnosed with ADHD and have a wide range of IQ levels. General Linear Models were used to determine the optimal model between IQ and ADHD core symptoms with sex and age as covariates. The ADHD symptoms we looked at included the total scores (TO), inattention (IA) and hyperactivity/impulsivity (HI). Wechsler Intelligence scale were used to assess IQ [Full-Scale IQ (FSIQ), Verbal IQ (VIQ), and Performance IQ (PIQ)]. Furthermore, we examined the correlation between IQ and the execution function [Behavior Rating Inventory of Executive Function (BRIEF)], as well as between IQ and brain surface area, to determine if the associations between IQ and ADHD symptoms are reflected in executive functions and brain structure. Results: Consistent with previous research, the results indicated that FSIQ and VIQ both showed a linear negative correlation with the TO and IA scores of ADHD. However, PIQ showed an inverted U-shaped relationship with the TO and HI scores of ADHD, with 103 as the peak point. These findings were also partially reflected in the relationship between IQ and executive functions, as well as IQ and brain surface area. Conclusion: To sum up, the relationship between IQ and ADHD symptoms is not straightforward. Our study confirms long-standing academic hypotheses and finds that PIQ exhibits an inverted U-shaped relationship with ADHD symptoms. This study enhances our understanding of symptoms and behaviors of ADHD with varying IQ characteristics and provides some evidence for targeted clinical intervention.

Keywords: ADHD, IQ, execution function, brain imaging

Procedia PDF Downloads 65
6386 Interpretable Deep Learning Models for Medical Condition Identification

Authors: Dongping Fang, Lian Duan, Xiaojing Yuan, Mike Xu, Allyn Klunder, Kevin Tan, Suiting Cao, Yeqing Ji

Abstract:

Accurate prediction of a medical condition with straight clinical evidence is a long-sought topic in the medical management and health insurance field. Although great progress has been made with machine learning algorithms, the medical community is still, to a certain degree, suspicious about the model's accuracy and interpretability. This paper presents an innovative hierarchical attention deep learning model to achieve good prediction and clear interpretability that can be easily understood by medical professionals. This deep learning model uses a hierarchical attention structure that matches naturally with the medical history data structure and reflects the member’s encounter (date of service) sequence. The model attention structure consists of 3 levels: (1) attention on the medical code types (diagnosis codes, procedure codes, lab test results, and prescription drugs), (2) attention on the sequential medical encounters within a type, (3) attention on the medical codes within an encounter and type. This model is applied to predict the occurrence of stage 3 chronic kidney disease (CKD3), using three years’ medical history of Medicare Advantage (MA) members from a top health insurance company. The model takes members’ medical events, both claims and electronic medical record (EMR) data, as input, makes a prediction of CKD3 and calculates the contribution from individual events to the predicted outcome. The model outcome can be easily explained with the clinical evidence identified by the model algorithm. Here are examples: Member A had 36 medical encounters in the past three years: multiple office visits, lab tests and medications. The model predicts member A has a high risk of CKD3 with the following well-contributed clinical events - multiple high ‘Creatinine in Serum or Plasma’ tests and multiple low kidneys functioning ‘Glomerular filtration rate’ tests. Among the abnormal lab tests, more recent results contributed more to the prediction. The model also indicates regular office visits, no abnormal findings of medical examinations, and taking proper medications decreased the CKD3 risk. Member B had 104 medical encounters in the past 3 years and was predicted to have a low risk of CKD3, because the model didn’t identify diagnoses, procedures, or medications related to kidney disease, and many lab test results, including ‘Glomerular filtration rate’ were within the normal range. The model accurately predicts members A and B and provides interpretable clinical evidence that is validated by clinicians. Without extra effort, the interpretation is generated directly from the model and presented together with the occurrence date. Our model uses the medical data in its most raw format without any further data aggregation, transformation, or mapping. This greatly simplifies the data preparation process, mitigates the chance for error and eliminates post-modeling work needed for traditional model explanation. To our knowledge, this is the first paper on an interpretable deep-learning model using a 3-level attention structure, sourcing both EMR and claim data, including all 4 types of medical data, on the entire Medicare population of a big insurance company, and more importantly, directly generating model interpretation to support user decision. In the future, we plan to enrich the model input by adding patients’ demographics and information from free-texted physician notes.

Keywords: deep learning, interpretability, attention, big data, medical conditions

Procedia PDF Downloads 91
6385 Time Temperature Indicator for Monitoring Freshness of Packed Pasteurized Milk

Authors: Rajeshwar S. Matche, Subhash V. Pawde, Suraj P, Sachin R. Chaudhari

Abstract:

Time Temperature Indicator’s (TTI) are trending approach in a food packaging that will be insightful to have safe and hygienic food products. Currently, available TTI in the market are mostly a product specific and sometime even difficult to handle especially in supply chain as these are pre-activated and require specific storage conditions. In the present study, research focus is on the development of a cost-effective lactic acid based TTI that can work over a wide range of temperature and can be activated at time of packaging or on demand. The correlation between activation energies of colour change of the developed indicator and packed pasteurized milk spoilage with respect to time and temperature was established. Developed lactic acid based TTI strips have range of activation energy from 10.13 to 24.20 KJ/mol. We found that the developed TTI strip’s with activation energy 12.42, and 14.41KJ/mol can be correlated with spoilage activation energy of packed pasteurized milk which was 25.71 KJ/mol with factor of 2 at storage temperature 4°C. The implementation of these TTI on packed pasteurized milk allow us see visual colour change during the storage and can be fruitful to monitoring quality of the milk and understand its freshness especially in a cold supply chain, viz distributor and road vendor etc.

Keywords: pasteurised packed milk, time temperature indicator, spoilage, freshness

Procedia PDF Downloads 110
6384 Simultaneous Interpreting and Meditation: An Experimental Study on the Effects of Qigong Meditation on Simultaneous Interpreting Performance

Authors: Lara Bruno, Ilaria Tipà, Franco Delogu

Abstract:

Simultaneous interpreting (SI) is a demanding language task which includes the contemporary activation of different cognitive processes. This complex activity requires interpreters not only to be proficient in their working languages; but also to have a great ability in focusing attention and controlling anxiety during their performance. Effects of Qigong meditation techniques have a positive impact on several cognitive functions, including attention and anxiety control. This study aims at exploring the influence of Qigong meditation on the quality of simultaneous interpreting. 20 interpreting students, divided into two groups, were trained for 8 days in Qigong meditation practice. Before and after training, a brief simultaneous interpreting task was performed. Language combinations of group A and group B were respectively English-Italian and Chinese-Italian. Students’ performances were recorded and rated by independent evaluators. Assessments were based on 12 different parameters, divided into 4 macro-categories: content, form, delivery and anxiety control. To determine if there was any significant variation between the pre-training and post-training SI performance, ANOVA analyses were conducted on the ratings provided by the independent evaluators. Main results indicate a significant improvement of the interpreting performance after the meditation training intervention for both groups. However, group A registered a higher improvement compared to Group B. Nonetheless, positive effects of meditation have been found in all the observed macro-categories. Meditation was not only beneficial for speech delivery and anxiety control but also for cognitive and attention abilities. From a cognitive and pedagogical point of view, present results open new paths of research on the practice of meditation as a tool to improve SI performances.

Keywords: cognitive science, interpreting studies, Qigong meditation, simultaneous interpreting, training

Procedia PDF Downloads 160
6383 Blood Glucose Level Measurement from Breath Analysis

Authors: Tayyab Hassan, Talha Rehman, Qasim Abdul Aziz, Ahmad Salman

Abstract:

The constant monitoring of blood glucose level is necessary for maintaining health of patients and to alert medical specialists to take preemptive measures before the onset of any complication as a result of diabetes. The current clinical monitoring of blood glucose uses invasive methods repeatedly which are uncomfortable and may result in infections in diabetic patients. Several attempts have been made to develop non-invasive techniques for blood glucose measurement. In this regard, the existing methods are not reliable and are less accurate. Other approaches claiming high accuracy have not been tested on extended dataset, and thus, results are not statistically significant. It is a well-known fact that acetone concentration in breath has a direct relation with blood glucose level. In this paper, we have developed the first of its kind, reliable and high accuracy breath analyzer for non-invasive blood glucose measurement. The acetone concentration in breath was measured using MQ 138 sensor in the samples collected from local hospitals in Pakistan involving one hundred patients. The blood glucose levels of these patients are determined using conventional invasive clinical method. We propose a linear regression classifier that is trained to map breath acetone level to the collected blood glucose level achieving high accuracy.

Keywords: blood glucose level, breath acetone concentration, diabetes, linear regression

Procedia PDF Downloads 173
6382 A Pilot Study on the Sensory Processing Difficulty Pattern Association between the Hot and Cold Executive Function Deficits in Attention Deficit Hyperactivity Deficit Child

Authors: Sheng-Fen Fan, Sung-Hui Tseng

Abstract:

Attention deficit hyperactivity deficit (ADHD) child display diverse sensory processing difficulty behaviors. There is less evidence to figure out how the association between executive function and sensory deficit. To determine whether sensory deficit influence the executive functions, we examined sensory processing by SPM and try to indicate hot/cold executive function (EF) by BRIEF2, respectively. We found that the hot executive function deficit might associate with auditory processing in a variety of settings, and vestibular input to maintain balance and upright posture; the cold EF deficit might opposite to the hot EF deficit, the vestibular sensory modulation difficulty association with emotion shifting and emotional regulation. These results suggest that sensory processing might be another consideration factor to influence the higher cognitive control or emotional regulation of EF. Overall, this study indicates the distinction between hot and cold EF impairments with different sensory modulation problem. Moreover, for clinician, it needs more cautious consideration to conduct intervention with ADHD.

Keywords: hot executive function, cold executive function, sensory processing, ADHD

Procedia PDF Downloads 287
6381 The Relation between Coping Strategies with Stress and Mental Health Situation in Flying Addicted Family of Self Introducer and Private

Authors: Farnoush Haghanipour

Abstract:

Recent research studies relation between coping strategies with stress and mental health situation in flying addicted family of self-introducer and private, Units of Guilan province. For this purpose 251 family (parent, spouse), that referred to private and self-introducer centers to break out of drug are selected in random sampling form. Research method was cross sectional-descriptive and purpose of research was fixing of between kinds of coping strategies with stress and mental health condition with attention to demographic variables. Therefore to collection of information, coping strategies questionnaire (CSQ) and mental health questionnaire (GHQ) was used and finally data analyzed by descriptive statistical methods (average, standard deviation) and inferential statistical correlation coefficient and regression. Study of correlation coefficient between mental healths with problem focused emotional focused and detachment strategies in level more than %99 is confirmed. Also mental health with avoidant focused hasn't correlation in other words relation is between mental health with problem focused strategies (r= 0/34) and emotional focused with mental health (r=0.52) and detachment with mental health (r= 0.18) in meaningful level 0.05. And also relation is between emotional focused strategies and mental health (r= 0.034) that is meaningless in Alpha 0.05. Also relation between problem processed coping strategies and mental health situation with attention to demographic variable is meaningful and relation level verified in confidence level more than 0.99. And result of anticipation equation regression statistical test has most a have in problem focused coping strategy, mental health, but relation of the avoidant emotional, detachment strategy with mental health was meaningless with attention to demographic variables.

Keywords: stress, coping strategy with stress, mental health, self introducer and private

Procedia PDF Downloads 311
6380 A Single-Channel BSS-Based Method for Structural Health Monitoring of Civil Infrastructure under Environmental Variations

Authors: Yanjie Zhu, André Jesus, Irwanda Laory

Abstract:

Structural Health Monitoring (SHM), involving data acquisition, data interpretation and decision-making system aim to continuously monitor the structural performance of civil infrastructures under various in-service circumstances. The main value and purpose of SHM is identifying damages through data interpretation system. Research on SHM has been expanded in the last decades and a large volume of data is recorded every day owing to the dramatic development in sensor techniques and certain progress in signal processing techniques. However, efficient and reliable data interpretation for damage detection under environmental variations is still a big challenge. Structural damages might be masked because variations in measured data can be the result of environmental variations. This research reports a novel method based on single-channel Blind Signal Separation (BSS), which extracts environmental effects from measured data directly without any prior knowledge of the structure loading and environmental conditions. Despite the successful application in audio processing and bio-medical research fields, BSS has never been used to detect damage under varying environmental conditions. This proposed method optimizes and combines Ensemble Empirical Mode Decomposition (EEMD), Principal Component Analysis (PCA) and Independent Component Analysis (ICA) together to separate structural responses due to different loading conditions respectively from a single channel input signal. The ICA is applying on dimension-reduced output of EEMD. Numerical simulation of a truss bridge, inspired from New Joban Line Arakawa Railway Bridge, is used to validate this method. All results demonstrate that the single-channel BSS-based method can recover temperature effects from mixed structural response recorded by a single sensor with a convincing accuracy. This will be the foundation of further research on direct damage detection under varying environment.

Keywords: damage detection, ensemble empirical mode decomposition (EEMD), environmental variations, independent component analysis (ICA), principal component analysis (PCA), structural health monitoring (SHM)

Procedia PDF Downloads 306
6379 Smart Textiles Integration for Monitoring Real-time Air Pollution

Authors: Akshay Dirisala

Abstract:

Humans had developed a highly organized and efficient civilization to live in by improving the basic needs of humans like housing, transportation, and utilities. These developments have made a huge impact on major environmental factors. Air pollution is one prominent environmental factor that needs to be addressed to maintain a sustainable and healthier lifestyle. Textiles have always been at the forefront of helping humans shield from environmental conditions. With the growth in the field of electronic textiles, we now have the capability of monitoring the atmosphere in real time to understand and analyze the environment that a particular person is mostly spending their time at. Integrating textiles with the particulate matter sensors that measure air quality and pollutants that have a direct impact on human health will help to understand what type of air we are breathing. This research idea aims to develop a textile product and a process of collecting the pollutants through particulate matter sensors, which are equipped inside a smart textile product and store the data to develop a machine learning model to analyze the health conditions of the person wearing the garment and periodically notifying them not only will help to be cautious of airborne diseases but will help to regulate the diseases and could also help to take care of skin conditions.

Keywords: air pollution, e-textiles, particulate matter sensors, environment, machine learning models

Procedia PDF Downloads 115
6378 GPRS Based Automatic Metering System

Authors: Constant Akama, Frank Kulor, Frederick Agyemang

Abstract:

All over the world, due to increasing population, electric power distribution companies are looking for more efficient ways of reading electricity meters. In Ghana, the prepaid metering system was introduced in 2007 to replace the manual system of reading which was fraught with inefficiencies. However, the prepaid system in Ghana is not capable of integration with online systems such as e-commerce platforms and remote monitoring systems. In this paper, we present a design framework for an automatic metering system that can be integrated with e-commerce platforms and remote monitoring systems. The meter was designed using ADE 7755 which reads the energy consumption and the reading is processed by a microcontroller connected to Sim900 General Packet Radio Service module containing a GSM chip provisioned with an Access Point Name. The system also has a billing server and a management server located at the premises of the utility company which communicate with the meter over a Virtual Private Network and GPRS. With this system, customers can buy credit online and the credit will be transferred securely to the meter. Also, when a fault is reported, the utility company can log into the meter remotely through the management server to troubleshoot the problem.

Keywords: access point name, general packet radio service, GSM, virtual private network

Procedia PDF Downloads 301
6377 Monitoring Public Transportation in Developing Countries Using Automatic Vehicle Location System: A Case Study

Authors: Ahmed Osama, Hassan A. Mahdy, Khalid A. Kandil, Mohamed Elhabiby

Abstract:

Automatic Vehicle Location systems (AVL) have been used worldwide for more than twenty years and have showed great success in public transportation management and monitoring. Cairo public bus service suffers from several problems such as unscheduled stops, unscheduled route deviations, and inaccurate schedules, which have negative impacts on service reliability. This research aims to study those problems for a selected bus route in Cairo using a prototype AVL system. Experimental trips were run on the selected route; and the locations of unscheduled stops, regions of unscheduled deviations, along with other trip time and speed data were collected. Data was analyzed to demonstrate the reliability of passengers on the unscheduled stops compared to the scheduled ones. Trip time was also modeled to assess the unscheduled stops’ impact on trip time, and to check the accuracy of the applied scheduled trip time. Moreover, frequency and length of the unscheduled route deviations, as well as their impact on the bus stops, were illustrated. Solutions were proposed for the bus service deficiencies using the AVL system. Finally, recommendations were proposed for further research.

Keywords: automatic vehicle location, public transportation, unscheduled stops, unscheduled route deviations, inaccurate schedule

Procedia PDF Downloads 391
6376 Cross-Cultural Study of Stroop Interference among Juvenile Delinquents

Authors: Tanusree Moitra, Garga Chatterjee, Diganta Mukherjee, Anjali Ghosh

Abstract:

Stroop task is considered to be an important measure of selective attention. However, the color – word Stroop task cannot be administered to the illiterate population. Some of the participants in the present study are illiterate, therefore, object – color Stroop task was used among male juvenile delinquents of India and Bangladesh citizenship (IC & BC), housed in delinquent home in India. The purpose of the study is to test the hypothesis that over - selective attention is present among juvenile delinquents across both the countries. Eighty juvenile delinquents and matched control of 12 – 18 years (50 IC juvenile delinquents, 30 BC juvenile delinquents and 50 Indian control) were shown 24 familiar objects in both typical (e.g. a red apple) and atypical (e.g. a blue apple) color. Repeated – measure factorial ANOVA was used and it was found that all the three groups have taken longer response time in the atypical condition compared to the typical condition. However, contrary to the over - selective attention hypothesis, both groups of juvenile delinquents displayed higher Stroop interference in comparison to the matched control group. The findings of the study can be explained on the basis of anxiety score. IC and BC juvenile delinquents have high anxiety score compared to the control group which indicates that increased anxiety is correlated with the interference produced by the atypical color object stimuli when compared with the typical object stimuli. Funding acknowledgement: Authors acknowledge Department of Science and Technology, Government of India for financial support to the first author of the paper vide Reference no. SR/CSRI/PDF -01/2013 under Cognitive Science Research Initiative (CSRI) to carry out this work.

Keywords: Bangladesh, India, male juvenile delinquent, objects - color Stroop task

Procedia PDF Downloads 344
6375 Self-Supervised Learning for Hate-Speech Identification

Authors: Shrabani Ghosh

Abstract:

Automatic offensive language detection in social media has become a stirring task in today's NLP. Manual Offensive language detection is tedious and laborious work where automatic methods based on machine learning are only alternatives. Previous works have done sentiment analysis over social media in different ways such as supervised, semi-supervised, and unsupervised manner. Domain adaptation in a semi-supervised way has also been explored in NLP, where the source domain and the target domain are different. In domain adaptation, the source domain usually has a large amount of labeled data, while only a limited amount of labeled data is available in the target domain. Pretrained transformers like BERT, RoBERTa models are fine-tuned to perform text classification in an unsupervised manner to perform further pre-train masked language modeling (MLM) tasks. In previous work, hate speech detection has been explored in Gab.ai, which is a free speech platform described as a platform of extremist in varying degrees in online social media. In domain adaptation process, Twitter data is used as the source domain, and Gab data is used as the target domain. The performance of domain adaptation also depends on the cross-domain similarity. Different distance measure methods such as L2 distance, cosine distance, Maximum Mean Discrepancy (MMD), Fisher Linear Discriminant (FLD), and CORAL have been used to estimate domain similarity. Certainly, in-domain distances are small, and between-domain distances are expected to be large. The previous work finding shows that pretrain masked language model (MLM) fine-tuned with a mixture of posts of source and target domain gives higher accuracy. However, in-domain performance of the hate classifier on Twitter data accuracy is 71.78%, and out-of-domain performance of the hate classifier on Gab data goes down to 56.53%. Recently self-supervised learning got a lot of attention as it is more applicable when labeled data are scarce. Few works have already been explored to apply self-supervised learning on NLP tasks such as sentiment classification. Self-supervised language representation model ALBERTA focuses on modeling inter-sentence coherence and helps downstream tasks with multi-sentence inputs. Self-supervised attention learning approach shows better performance as it exploits extracted context word in the training process. In this work, a self-supervised attention mechanism has been proposed to detect hate speech on Gab.ai. This framework initially classifies the Gab dataset in an attention-based self-supervised manner. On the next step, a semi-supervised classifier trained on the combination of labeled data from the first step and unlabeled data. The performance of the proposed framework will be compared with the results described earlier and also with optimized outcomes obtained from different optimization techniques.

Keywords: attention learning, language model, offensive language detection, self-supervised learning

Procedia PDF Downloads 107
6374 Study of Natural Radioactive and Radiation Hazard Index of Soil from Sembrong Catchment Area, Johor, Malaysia

Authors: M. I. A. Adziz, J. Sharib Sarip, M. T. Ishak, D. N. A. Tugi

Abstract:

Radiation exposure to humans and the environment is caused by natural radioactive material sources. Given that exposure to people and communities can occur through several pathways, it is necessary to pay attention to the increase in naturally radioactive material, particularly in the soil. Continuous research and monitoring on the distribution and determination of these natural radionuclides' activity as a guide and reference are beneficial, especially in an accidental exposure. Surface soil/sediment samples from several locations identified around the Sembrong catchment area were taken for the study. After 30 days of secular equilibrium with their daughters, the activity concentrations of the naturally occurring radioactive material (NORM) members, i.e. ²²⁶Ra, ²²⁸Ra, ²³⁸U, ²³²Th, and ⁴⁰K, were measured using high purity germanium (HPGe) gamma spectrometer. The results obtained showed that the radioactivity concentration of ²³⁸U ranged between 17.13 - 30.13 Bq/kg, ²³²Th ranged between 22.90 - 40.05 Bq/kg, ²²⁶Ra ranged between 19.19 - 32.10 Bq/kg, ²²⁸Ra ranged between 21.08 - 39.11 Bq/kg and ⁴⁰K ranged between 9.22 - 51.07 Bq/kg with average values of 20.98 Bq/kg, 27.39 Bq/kg, 23.55 Bq/kg, 26.93 Bq/kg and 23.55 Bq/kg respectively. The values obtained from this study were low or equivalent to previously reported in previous studies. It was also found that the mean/mean values obtained for the four parameters of the Radiation Hazard Index, namely radium equivalent activity (Raeq), external dose rate (D), annual effective dose and external hazard index (Hₑₓ), were 65.40 Bq/kg, 29.33 nGy/h, 19.18 ¹⁰⁻⁶Sv and 0.19 respectively. These obtained values are low compared to the world average values and the values of globally applied standards. Comparison with previous studies (dry season) also found that the values for all four parameters were low and equivalent. This indicates the level of radiation hazard in the area around the study is safe for the public.

Keywords: catchment area, gamma spectrometry, naturally occurring radioactive material (NORM), soil

Procedia PDF Downloads 103
6373 Intelligent Decision Support for Wind Park Operation: Machine-Learning Based Detection and Diagnosis of Anomalous Operating States

Authors: Angela Meyer

Abstract:

The operation and maintenance cost for wind parks make up a major fraction of the park’s overall lifetime cost. To minimize the cost and risk involved, an optimal operation and maintenance strategy requires continuous monitoring and analysis. In order to facilitate this, we present a decision support system that automatically scans the stream of telemetry sensor data generated from the turbines. By learning decision boundaries and normal reference operating states using machine learning algorithms, the decision support system can detect anomalous operating behavior in individual wind turbines and diagnose the involved turbine sub-systems. Operating personal can be alerted if a normal operating state boundary is exceeded. The presented decision support system and method are applicable for any turbine type and manufacturer providing telemetry data of the turbine operating state. We demonstrate the successful detection and diagnosis of anomalous operating states in a case study at a German onshore wind park comprised of Vestas V112 turbines.

Keywords: anomaly detection, decision support, machine learning, monitoring, performance optimization, wind turbines

Procedia PDF Downloads 167
6372 Computational System for the Monitoring Ecosystem of the Endangered White Fish (Chirostoma estor estor) in the Patzcuaro Lake, Mexico

Authors: Cesar Augusto Hoil Rosas, José Luis Vázquez Burgos, José Juan Carbajal Hernandez

Abstract:

White fish (Chirostoma estor estor) is an endemic species that habits in the Patzcuaro Lake, located in Michoacan, Mexico; being an important source of gastronomic and cultural wealth of the area. Actually, it have undergone an immense depopulation of individuals, due to the high fishing, contamination and eutrophication of the lake water, resulting in the possible extinction of this important species. This work proposes a new computational model for monitoring and assessment of critical environmental parameters of the white fish ecosystem. According to an Analytical Hierarchy Process, a mathematical model is built assigning weights to each environmental parameter depending on their water quality importance on the ecosystem. Then, a development of an advanced system for the monitoring, analysis and control of water quality is built using the virtual environment of LabVIEW. As results, we have obtained a global score that indicates the condition level of the water quality in the Chirostoma estor ecosystem (excellent, good, regular and poor), allowing to provide an effective decision making about the environmental parameters that affect the proper culture of the white fish such as temperature, pH and dissolved oxygen. In situ evaluations show regular conditions for a success reproduction and growth rates of this species where the water quality tends to have regular levels. This system emerges as a suitable tool for the water management, where future laws for white fish fishery regulations will result in the reduction of the mortality rate in the early stages of development of the species, which represent the most critical phase. This can guarantees better population sizes than those currently obtained in the aquiculture crop. The main benefit will be seen as a contribution to maintain the cultural and gastronomic wealth of the area and for its inhabitants, since white fish is an important food and economical income of the region, but the species is endangered.

Keywords: Chirostoma estor estor, computational system, lab view, white fish

Procedia PDF Downloads 326
6371 Developing Wearable EMG Sensor Designed for Parkinson's Disease (PD) Monitoring, and Treatment

Authors: Bulcha Belay Etana

Abstract:

Electromyography is used to measure the electrical activity of muscles for various health monitoring applications using surface electrodes or needle electrodes. Recent developments in electromyogram signal acquisition using textile electrodes open the door for wearable health monitoring which enables patients to monitor and control their health issues outside of traditional healthcare facilities. The aim of this research is therefore to develop and analyze wearable textile electrodes for the acquisition of electromyography signals for Parkinson’s patients and apply an appropriate thermal stimulus to relieve muscle cramping. In order to achieve this, textile electrodes are sewn with a silver-coated thread in an overlapping zigzag pattern into an inextensible fabric, and stainless steel knitted textile electrodes attached to a sleeve were prepared and its electrical characteristics including signal to noise ratio were compared with traditional electrodes. To relieve muscle cramping, a heating element using stainless steel conductive yarn Sewn onto a cotton fabric, coupled with a vibration system were developed. The system was integrated using a microcontroller and a Myoware muscle sensor so that when muscle cramping occurs, measured by the system activates the heating elements and vibration motors. The optimum temperature considered for treatment was 35.50c, so a Temperature measurement system was incorporated to deactivate the heating system when the temperature reaches this threshold, and the signals indicating muscle cramping have subsided. The textile electrode exhibited a signal to noise ratio of 6.38dB while the signal to noise ratio of the traditional electrode was 7.05dB. The rise time of the developed heating element was about 6 minutes to reach the optimum temperature using a 9volt power supply. The treatment of muscle cramping in Parkinson's patients using heat and muscle vibration simultaneously with a wearable electromyography signal acquisition system will improve patients’ livelihoods and enable better chronic pain management.

Keywords: electromyography, heating textile, vibration therapy, parkinson’s disease, wearable electronic textile

Procedia PDF Downloads 136
6370 Damage Detection in a Cantilever Beam under Different Excitation and Temperature Conditions

Authors: A. Kyprianou, A. Tjirkallis

Abstract:

Condition monitoring of structures in service is very important as it provides information about the risk of damage development. One of the essential constituents of structural condition monitoring is the damage detection methodology. In the context of condition monitoring of in service structures a damage detection methodology analyses data obtained from the structure while it is in operation. Usually, this means that the data could be affected by operational and environmental conditions in a way that could mask the effects of a possible damage on the data. This, depending on the damage detection methodology, could lead to either false alarms or miss existing damages. In this article a damage detection methodology that is based on the Spatio-temporal continuous wavelet transform (SPT-CWT) analysis of a sequence of experimental time responses of a cantilever beam is proposed. The cantilever is subjected to white and pink noise excitation to simulate different operating conditions. In addition, in order to simulate changing environmental conditions, the cantilever is subjected to heating by a heat gun. The response of the cantilever beam is measured by a high-speed camera. Edges are extracted from the series of images of the beam response captured by the camera. Subsequent processing of the edges gives a series of time responses on 439 points on the beam. This sequence is then analyzed using the SPT-CWT to identify damage. The algorithm proposed was able to clearly identify damage under any condition when the structure was excited by white noise force. In addition, in the case of white noise excitation, the analysis could also reveal the position of the heat gun when it was used to heat the structure. The analysis could identify the different operating conditions i.e. between responses due to white noise excitation and responses due to pink noise excitation. During the pink noise excitation whereas damage and changing temperature were identified it was not possible to clearly identify the effect of damage from that of temperature. The methodology proposed in this article for damage detection enables the separation the damage effect from that due to temperature and excitation on data obtained from measurements of a cantilever beam. This methodology does not require information about the apriori state of the structure.

Keywords: spatiotemporal continuous wavelet transform, damage detection, data normalization, varying temperature

Procedia PDF Downloads 279
6369 The Impact of Governance Criteria in the Supplier Selection Process of Large German Companies

Authors: Christoph Köster

Abstract:

Supplier selection is one of the key challenges in supply chain management and can be considered a multi-criteria decision-making (MCDM) problem. In the 1960s, it evolved from considering only economic criteria, such as price, quality, and performance, to including environmental and social criteria nowadays. Although receiving considerable attention from scholars and practitioners over the past decades, existing research has not considered governance criteria so far. This is, however, surprising, as ESG (environmental, social, and governance) criteria have gained considerable attention. In order to complement ESG criteria in the supplier selection process, this study investigates German DAX and MDAX companies and evaluates the impact of governance criteria along their supplier selection process. Moreover, it proposes a set of criteria for the respective process steps. Specifically, eleven criteria for the first process step and five criteria for the second process step are identified. This paper contributes to a better understanding of the supplier selection process by elucidating the relevance of governance criteria in the supplier selection process and providing a set of empirically developed governance criteria. These results can be applied by practitioners to complement the criteria set in the supplier selection process and thus balance economic, environmental, social, and governance targets.

Keywords: ESG, governance, sustainable supplier selection, sustainability

Procedia PDF Downloads 120
6368 Children’s Perception of Conversational Agents and Their Attention When Learning from Dialogic TV

Authors: Katherine Karayianis

Abstract:

Children with Attention Deficit Hyperactivity Disorder (ADHD) have trouble learning in traditional classrooms. These children miss out on important developmental opportunities in school, which leads to challenges starting in early childhood, and these problems persist throughout their adult lives. Despite receiving supplemental support in school, children with ADHD still perform below their non-ADHD peers. Thus, there is a great need to find better ways of facilitating learning in children with ADHD. Evidence has shown that children with ADHD learn best through interactive engagement, but this is not always possible in schools, given classroom restraints and the large student-to-teacher ratio. Redesigning classrooms may not be feasible, so informal learning opportunities provide a possible alternative. One popular informal learning opportunity is educational TV shows like Sesame Street. These types of educational shows can teach children foundational skills taught in pre-K and early elementary school. One downside to these shows is the lack of interactive dialogue between the TV characters and the child viewers. Pseudo-interaction is often deployed, but the benefits are limited if the characters can neither understand nor contingently respond to the child. AI technology has become extremely advanced and is now popular in many electronic devices that both children and adults have access to. AI has been successfully used to create interactive dialogue in children’s educational TV shows, and results show that this enhances children’s learning and engagement, especially when children perceive the character as a reliable teacher. It is likely that children with ADHD, whose minds may otherwise wander, may especially benefit from this type of interactive technology, possibly to a greater extent depending on their perception of the animated dialogic agent. To investigate this issue, I have begun examining the moderating role of inattention among children’s learning from an educational TV show with different types of dialogic interactions. Preliminary results have shown that when character interactions are neither immediate nor accurate, children who are more easily distracted will have greater difficulty learning from the show, but contingent interactions with a TV character seem to buffer these negative effects of distractibility by keeping the child engaged. To extend this line of work, the moderating role of the child’s perception of the dialogic agent as a reliable teacher will be examined in the association between children’s attention and the type of dialogic interaction in the TV show. As such, the current study will investigate this moderated moderation.

Keywords: attention, dialogic TV, informal learning, educational TV, perception of teacher

Procedia PDF Downloads 86
6367 Submarines Unmanned Vehicle for Underwater Exploration and Monitoring System in Indonesia

Authors: Nabila Dwi Agustin, Ria Septitis Mentari, Nugroho Adi Sasongko

Abstract:

Indonesia is experiencing a crisis in the development of defense equipment. Most of Indonesia's defense equipment must import its parts from other countries. Moreover, the area of Indonesia is 2/3 of its territory is the sea areas. For the protection of marine areas, Indonesia relies solely on submarines in monitoring conditions and whether or not intruders enter their territory. In fact, we know the submarine has a large size so that the expenses are getting bigger, the time it takes longer and needs a big maneuver to operate the submarine. Indeed, the submarine can only be operated for deeper seas. Many other countries enter the underwater world of Indonesia but Indonesia could not do anything due to the limitations of underwater monitoring system. At the same time, reconnaissance and monitor for shallow seas cannot be done by submarine. Equipment that can be used for surveillance of shallow underwater areas shall be made. This study reviewed the current research and development initiative of the submarine unmanned vehicle (SUV) or unmanned undersea vehicle (UUV) in Indonesia. This can explore underwater without the need for an operator to operate in it, but we can monitor it from a long distance. UUV has several advantages that size can be reduced as we desired, rechargeable ship batteries, has a detection sonar commonly found on a submarine and agile movement to detect at shallow sea depth. In the sonar sensors consisted of MEMS (Micro Electro Mechanical System), the sonar system runs more efficiently and effectively to monitor the target. UUV that has been developed will be very useful if the equipment is used around the outlying islands and outer from Indonesia especially the island frequented by foreign submarines without us know. The impact of this may not be felt now but it will allow foreign countries to attack Indonesia from within for the future. In addition, UUV needs to be equipped with a anti-radar system so that submarines of other countries crossing borders cannot detect it and Indonesia anti-submarine vessels can take further security measures. As the recommendation, Indonesia should take decisive steps in the state border rules, especially submarines of other countries that deliberately cross the borders of the state. This decisive action not only by word alone but also action as well. Indonesia government should show the strength and sovereignty as the entire society unites and applies the principle of universal peace.

Keywords: submarine unmanned vehicle, submarine, development of defense equipment, the border of Indonesia

Procedia PDF Downloads 147
6366 Landsat 8-TIRS NEΔT at Kīlauea Volcano and the Active East Rift Zone, Hawaii

Authors: Flora Paganelli

Abstract:

The radiometric performance of remotely sensed images is important for volcanic monitoring. The Thermal Infrared Sensor (TIRS) on-board Landsat 8 was designed with specific requirements in regard to the noise-equivalent change in temperature (NEΔT) at ≤ 0.4 K at 300 K for the two thermal infrared bands B10 and B11. This study investigated the on-orbit NEΔT of the TIRS two bands from a scene-based method using clear-sky images over the volcanic activity of Kīlauea Volcano and the active East Rift Zone (Hawaii), in order to optimize the use of TIRS data. Results showed that the NEΔTs of the two bands exceeded the design specification by an order of magnitude at 300 K. Both separate bands and split window algorithm were examined to estimate the effect of NEΔT on the land surface temperature (LST) retrieval, and NEΔT contribution to the final LST error. These results were also useful in the current efforts to assess the requirements for volcanology research campaign using the Hyperspectral Infrared Imager (HyspIRI) whose airborne prototype MODIS/ASTER instruments is plan to be flown by NASA as a single campaign to the Hawaiian Islands in support of volcanology and coastal area monitoring in 2016.

Keywords: landsat 8, radiometric performance, thermal infrared sensor (TIRS), volcanology

Procedia PDF Downloads 242
6365 Portable, Noninvasive and Wireless Near Infrared Spectroscopy Device to Monitor Skeletal Muscle Metabolism during Exercise

Authors: Adkham Paiziev, Fikrat Kerimov

Abstract:

Near Infrared Spectroscopy (NIRS) is one of the biophotonic techniques which can be used to monitor oxygenation and hemodynamics in a variety of human tissues, including skeletal muscle. In the present work, we are offering tissue oximetry (OxyPrem) to measure hemodynamic parameters of skeletal muscles in rest and exercise. Purpose: - To elaborate the new wireless, portable, noninvasive, wearable NIRS device to measure skeletal muscle oxygenation during exercise. - To test this device on brachioradialis muscle of wrestler volunteers by using combined method of arterial occlusion (AO) and NIRS (AO+NIRS). Methods: Oxyprem NIRS device has been used together with AO test. AO test and Isometric brachioradialis muscle contraction experiments have been performed on one group of wrestler volunteers. ‘Accu- Measure’ caliper (USA) to measure skinfold thickness (SFT) has been used. Results: Elaborated device consists on power supply box, a sensor head and installed ‘Tubis’ software for data acquisition and to compute deoxyhemoglobin ([HHb), oxyhemoglobin ([O2Hb]), tissue oxygenation (StO2) and muscle tissue oxygen consumption (mVO2). Sensor head consists on four light sources with three light emitting diodes with nominal wavelengths of 760 nm, 805 nm, and 870 nm, and two detectors. AO and isometric voluntary forearm muscle contraction (IVFMC) on five healthy male subjects (23,2±0.84 in age, 0.43±0.05cm of SFT ) and four female subjects (22.0±1.0 in age and 0.24±0.04 cm SFT) has been measured. mVO2 for control group has been calculated (-0.65%/sec±0.07) for male and -0.69%/±0.19 for female subjects). Tissue oxygenation index for wrestlers in average about 75% whereas for control group StO2 =63%. Second experiment was connected with quality monitoring muscle activity during IVFMC at 10%,30% and 50% of MVC. It has been shown, that the concentration changes of HbO2 and HHb positively correlated to the contraction intensity. Conclusion: We have presented a portable multi-channel wireless NIRS device for real-time monitoring of muscle activity. The miniaturized NIRS sensor and the usage of wireless communication make the whole device have a compact-size, thus can be used in muscle monitoring.

Keywords: skeletal muscle, oxygenation, instrumentation, near infrared spectroscopy

Procedia PDF Downloads 275
6364 A Machine Learning Approach for Anomaly Detection in Environmental IoT-Driven Wastewater Purification Systems

Authors: Giovanni Cicceri, Roberta Maisano, Nathalie Morey, Salvatore Distefano

Abstract:

The main goal of this paper is to present a solution for a water purification system based on an Environmental Internet of Things (EIoT) platform to monitor and control water quality and machine learning (ML) models to support decision making and speed up the processes of purification of water. A real case study has been implemented by deploying an EIoT platform and a network of devices, called Gramb meters and belonging to the Gramb project, on wastewater purification systems located in Calabria, south of Italy. The data thus collected are used to control the wastewater quality, detect anomalies and predict the behaviour of the purification system. To this extent, three different statistical and machine learning models have been adopted and thus compared: Autoregressive Integrated Moving Average (ARIMA), Long Short Term Memory (LSTM) autoencoder, and Facebook Prophet (FP). The results demonstrated that the ML solution (LSTM) out-perform classical statistical approaches (ARIMA, FP), in terms of both accuracy, efficiency and effectiveness in monitoring and controlling the wastewater purification processes.

Keywords: environmental internet of things, EIoT, machine learning, anomaly detection, environment monitoring

Procedia PDF Downloads 152
6363 Predictive Maintenance: Machine Condition Real-Time Monitoring and Failure Prediction

Authors: Yan Zhang

Abstract:

Predictive maintenance is a technique to predict when an in-service machine will fail so that maintenance can be planned in advance. Analytics-driven predictive maintenance is gaining increasing attention in many industries such as manufacturing, utilities, aerospace, etc., along with the emerging demand of Internet of Things (IoT) applications and the maturity of technologies that support Big Data storage and processing. This study aims to build an end-to-end analytics solution that includes both real-time machine condition monitoring and machine learning based predictive analytics capabilities. The goal is to showcase a general predictive maintenance solution architecture, which suggests how the data generated from field machines can be collected, transmitted, stored, and analyzed. We use a publicly available aircraft engine run-to-failure dataset to illustrate the streaming analytics component and the batch failure prediction component. We outline the contributions of this study from four aspects. First, we compare the predictive maintenance problems from the view of the traditional reliability centered maintenance field, and from the view of the IoT applications. When evolving to the IoT era, predictive maintenance has shifted its focus from ensuring reliable machine operations to improve production/maintenance efficiency via any maintenance related tasks. It covers a variety of topics, including but not limited to: failure prediction, fault forecasting, failure detection and diagnosis, and recommendation of maintenance actions after failure. Second, we review the state-of-art technologies that enable a machine/device to transmit data all the way through the Cloud for storage and advanced analytics. These technologies vary drastically mainly based on the power source and functionality of the devices. For example, a consumer machine such as an elevator uses completely different data transmission protocols comparing to the sensor units in an environmental sensor network. The former may transfer data into the Cloud via WiFi directly. The latter usually uses radio communication inherent the network, and the data is stored in a staging data node before it can be transmitted into the Cloud when necessary. Third, we illustrate show to formulate a machine learning problem to predict machine fault/failures. By showing a step-by-step process of data labeling, feature engineering, model construction and evaluation, we share following experiences: (1) what are the specific data quality issues that have crucial impact on predictive maintenance use cases; (2) how to train and evaluate a model when training data contains inter-dependent records. Four, we review the tools available to build such a data pipeline that digests the data and produce insights. We show the tools we use including data injection, streaming data processing, machine learning model training, and the tool that coordinates/schedules different jobs. In addition, we show the visualization tool that creates rich data visualizations for both real-time insights and prediction results. To conclude, there are two key takeaways from this study. (1) It summarizes the landscape and challenges of predictive maintenance applications. (2) It takes an example in aerospace with publicly available data to illustrate each component in the proposed data pipeline and showcases how the solution can be deployed as a live demo.

Keywords: Internet of Things, machine learning, predictive maintenance, streaming data

Procedia PDF Downloads 387
6362 The Implantable MEMS Blood Pressure Sensor Model With Wireless Powering And Data Transmission

Authors: Vitaliy Petrov, Natalia Shusharina, Vitaliy Kasymov, Maksim Patrushev, Evgeny Bogdanov

Abstract:

The leading worldwide death reasons are ischemic heart disease and other cardiovascular illnesses. Generally, the common symptom is high blood pressure. Long-time blood pressure control is very important for the prophylaxis, correct diagnosis and timely therapy. Non-invasive methods which are based on Korotkoff sounds are impossible to apply often and for a long time. Implantable devices can combine longtime monitoring with high accuracy of measurements. The main purpose of this work is to create a real-time monitoring system for decreasing the death rate from cardiovascular diseases. These days implantable electronic devices began to play an important role in medicine. Usually implantable devices consist of a transmitter, powering which could be wireless with a special made battery and measurement circuit. Common problems in making implantable devices are short lifetime of the battery, big size and biocompatibility. In these work, blood pressure measure will be the focus because it’s one of the main symptoms of cardiovascular diseases. Our device will consist of three parts: the implantable pressure sensor, external transmitter and automated workstation in a hospital. The Implantable part of pressure sensors could be based on piezoresistive or capacitive technologies. Both sensors have some advantages and some limitations. The Developed circuit is based on a small capacitive sensor which is made of the technology of microelectromechanical systems (MEMS). The Capacitive sensor can provide high sensitivity, low power consumption and minimum hysteresis compared to the piezoresistive sensor. For this device, it was selected the oscillator-based circuit where frequency depends from the capacitance of sensor hence from capacitance one can calculate pressure. The external device (transmitter) used for wireless charging and signal transmission. Some implant devices for these applications are passive, the external device sends radio wave signal on internal LC circuit device. The external device gets reflected the signal from the implant and from a change of frequency is possible to calculate changing of capacitance and then blood pressure. However, this method has some disadvantages, such as the patient position dependence and static using. Developed implantable device doesn’t have these disadvantages and sends blood pressure data to the external part in real-time. The external device continuously sends information about blood pressure to hospital cloud service for analysis by a physician. Doctor’s automated workstation at the hospital also acts as a dashboard, which displays actual medical data of patients (which require attention) and stores it in cloud service. Usually, critical heart conditions occur few hours before heart attack but the device is able to send an alarm signal to the hospital for an early action of medical service. The system was tested with wireless charging and data transmission. These results can be used for ASIC design for MEMS pressure sensor.

Keywords: MEMS sensor, RF power, wireless data, oscillator-based circuit

Procedia PDF Downloads 590
6361 Examining Procrastination and Delay among Individuals with and without Attention Deficit Hyperactivity Disorder

Authors: S. J. Taylor, S. Chowdhury, T. A. Pychyl

Abstract:

Attention Deficit Hyperactivity Disorder (ADHD) and procrastination are often discussed in relation to problems with self-regulation and executive functioning (EF). The small body of extant research that has explored the relations between these variables has many limitations particularly in terms of the samples used and the measurement of procrastination. In this study, we recruited a sample of undergraduate students with a confirmed clinical diagnosis of ADHD (n = 48, 66.7% females) as well as a sample of student volunteers without ADHD (n = 68, 75.8% females) to investigate the relations between ADHD subtypes, EF, procrastination and other forms of delay. We used the newly developed Multidimensional Measure of Academic Procrastination and Delay Questionnaire. As hypothesized, the results revealed that individuals with ADHD displayed significantly more irrational delay, general procrastination and academic procrastination compared to individuals without ADHD. This study contributed to the research literature indicating that individuals with ADHD struggle with procrastination as a result of symptoms of ADHD and EF deficits. Theses results provide support for adopting a new language when describing procrastination problems among individuals with ADHD, and they have implications for the nature of academic accommodations and interventions for individuals with ADHD.

Keywords: ADHD, delay, executive functioning, procrastination, self-regulation

Procedia PDF Downloads 233
6360 Teen Insights into Drugs, Alcohol, and Nicotine: A National Survey of Adolescent Attitudes toward Addictive Substances

Authors: Linda Richter

Abstract:

Background and Significance: The influence of parents on their children’s attitudes and behaviors is immense, even as children grow out of what one might assume to be their most impressionable years and into teenagers. This study specifically examines the potential that parents have to prevent or reduce the risk of adolescent substance use, even in the face of considerable environmental influences to use nicotine, alcohol, or drugs. Methodology: The findings presented are based on a nationally representative survey of 1,014 teens aged 12-17 living in the United States. Data were collected using an online platform in early 2018. About half the sample was female (51%), 49% was aged 12-14, and 51% was aged 15-17. The margin of error was +/- 3.5%. Demographic data on the teens and their families were available through the survey platform. Survey items explored adolescent respondents’ exposure to addictive substances; the extent to which their sources of information about these substances are reliable or credible; friends’ and peers’ substance use; their own intentions to try substances in the future; and their relationship with their parents. Key Findings: Exposure to nicotine, alcohol, or other drugs and misinformation about these substances were associated with a greater likelihood that adolescents have friends who use drugs and that they have intentions to try substances in the future, which are known to directly predict actual teen substance use. In addition, teens who reported a positive relationship with their parents and having parents who are involved in their lives had a lower likelihood of having friends who use drugs and of having intentions to try substances in the future. This relationship appears to be mediated by parents’ ability to reduce the extent to which their children are exposed to substances in their environment and to misinformation about them. Indeed, the findings indicated that teens who reported a good relationship with their parents and those who reported higher levels of parental monitoring had significantly higher odds of reporting a lower number of risk factors than teens with a less positive relationship with parents or less monitoring. There also were significantly greater risk factors associated with substance use among older teens relative to younger teens. This shift appears to coincide directly with the tendency of parents to pull back in their monitoring and their involvement in their adolescent children’s lives. Conclusion: The survey findings underscore the importance of resisting the urge to completely pull back as teens age and demand more independence since that is exactly when the risks for teen substance use spike and young people need their parents and other trusted adults to be involved more than ever. Particularly through the cultivation of a healthy, positive, and open relationship, parents can help teens receive accurate and credible information about substance use and also monitor their whereabouts and exposure to addictive substances. These findings, which come directly from teens themselves, demonstrate the importance of continued parental engagement throughout children’s lives, regardless of their age and the disincentives to remaining involved and connected.

Keywords: adolescent, parental monitoring, prevention, substance use

Procedia PDF Downloads 147
6359 Agile Real-Time Field Programmable Gate Array-Based Image Processing System for Drone Imagery in Digital Agriculture

Authors: Sabiha Shahid Antora, Young Ki Chang

Abstract:

Along with various farm management technologies, imagery is an important tool that facilitates crop assessment, monitoring, and management. As a consequence, drone imaging technology is playing a vital role to capture the state of the entire field for yield mapping, crop scouting, weed detection, and so on. Although it is essential to inspect the cultivable lands in real-time for making rapid decisions regarding field variable inputs to combat stresses and diseases, drone imagery is still evolving in this area of interest. Cost margin and post-processing complexions of the image stream are the main challenges of imaging technology. Therefore, this proposed project involves the cost-effective field programmable gate array (FPGA) based image processing device that would process the image stream in real-time as well as providing the processed output to support on-the-spot decisions in the crop field. As a result, the real-time FPGA-based image processing system would reduce operating costs while minimizing a few intermediate steps to deliver scalable field decisions.

Keywords: real-time, FPGA, drone imagery, image processing, crop monitoring

Procedia PDF Downloads 114